1
|
Chan CS, Lin FJ, Chen YC, Lin YK, Higa S, Chen SA, Chen YJ. Glucagon-like Peptide-1 Receptor Activation Reduces Pulmonary Vein Arrhythmogenesis and Regulates Calcium Homeostasis. Int J Mol Sci 2023; 24:13100. [PMID: 37685906 PMCID: PMC10488086 DOI: 10.3390/ijms241713100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are associated with reduced atrial fibrillation risk, but the mechanisms underlying this association remain unclear. The GLP-1 receptor agonist directly impacts cardiac Ca2+ homeostasis, which is crucial in pulmonary vein (PV, the initiator of atrial fibrillation) arrhythmogenesis. This study investigated the effects of the GLP-1 receptor agonist on PV electrophysiology and Ca2+ homeostasis and elucidated the potential underlying mechanisms. Conventional microelectrodes and whole-cell patch clamp techniques were employed in rabbit PV tissues and single PV cardiomyocytes before and after GLP-1 (7-36) amide, a GLP-1 receptor agonist. Evaluations were conducted both with and without pretreatment with H89 (10 μM, an inhibitor of protein kinase A, PKA), KN93 (1 μM, an inhibitor of Ca2+/calmodulin-dependent protein kinase II, CaMKII), and KB-R7943 (10 μM, an inhibitor of Na+/Ca2+ exchanger, NCX). Results showed that GLP-1 (7-36) amide (at concentrations of 1, 10, and 100 nM) reduced PV spontaneous activity in a concentration-dependent manner without affecting sinoatrial node electrical activity. In single-cell experiments, GLP-1 (7-36) amide (at 10 nM) reduced L-type Ca2+ current, NCX current, and late Na+ current in PV cardiomyocytes without altering Na+ current. Additionally, GLP-1 (7-36) amide (at 10 nM) increased sarcoplasmic reticulum Ca2+ content in PV cardiomyocytes. Furthermore, the antiarrhythmic effects of GLP-1 (7-36) amide on PV automaticity were diminished when pretreated with H89, KN93, or KB-R7943. This suggests that the GLP-1 receptor agonist may exert its antiarrhythmic potential by regulating PKA, CaMKII, and NCX activity, as well as modulating intracellular Ca2+ homeostasis, thereby reducing PV arrhythmogenesis.
Collapse
Affiliation(s)
- Chao-Shun Chan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-S.C.); (Y.-K.L.)
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Fong-Jhih Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Biomedical Engineering, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Yung-Kuo Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-S.C.); (Y.-K.L.)
- Division of Cardiology, Department of Internal Medicine, Wan-Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Satoshi Higa
- Cardiac Electrophysiology and Pacing Laboratory, Division of Cardiovascular Medicine, Makiminato Central Hospital, Okinawa 9012131, Japan;
| | - Shih-Ann Chen
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Institute of Clinical Medicine and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Yi-Jen Chen
- Division of Cardiology, Department of Internal Medicine, Wan-Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cardiovascular Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| |
Collapse
|
2
|
Pfenniger A. Bachmann's bundle-The "wrinkled neck" of the aging atria? J Cardiovasc Electrophysiol 2021; 32:913-915. [PMID: 33650731 DOI: 10.1111/jce.14981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Anna Pfenniger
- Feinberg Cardiovascular Research and Renal Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
3
|
Salazar-Ramírez F, Ramos-Mondragón R, García-Rivas G. Mitochondrial and Sarcoplasmic Reticulum Interconnection in Cardiac Arrhythmia. Front Cell Dev Biol 2021; 8:623381. [PMID: 33585462 PMCID: PMC7876262 DOI: 10.3389/fcell.2020.623381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/30/2020] [Indexed: 12/31/2022] Open
Abstract
Ca2+ plays a pivotal role in mitochondrial energy production, contraction, and apoptosis. Mitochondrial Ca2+-targeted fluorescent probes have demonstrated that mitochondria Ca2+ transients are synchronized with Ca2+ fluxes occurring in the sarcoplasmic reticulum (SR). The presence of specialized proteins tethering SR to mitochondria ensures the local Ca2+ flux between these organelles. Furthermore, communication between SR and mitochondria impacts their functionality in a bidirectional manner. Mitochondrial Ca2+ uptake through the mitochondrial Ca2+ uniplex is essential for ATP production and controlled reactive oxygen species levels for proper cellular signaling. Conversely, mitochondrial ATP ensures the proper functioning of SR Ca2+-handling proteins, which ensures that mitochondria receive an adequate supply of Ca2+. Recent evidence suggests that altered SR Ca2+ proteins, such as ryanodine receptors and the sarco/endoplasmic reticulum Ca2+ ATPase pump, play an important role in maintaining proper cardiac membrane excitability, which may be initiated and potentiated when mitochondria are dysfunctional. This recognized mitochondrial role offers the opportunity to develop new therapeutic approaches aimed at preventing cardiac arrhythmias in cardiac disease.
Collapse
Affiliation(s)
- Felipe Salazar-Ramírez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Cardiovascular, Monterrey, Mexico
| | - Roberto Ramos-Mondragón
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Gerardo García-Rivas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Cardiovascular, Monterrey, Mexico.,TecSalud, Centro de Investigación Biomédica, Hospital Zambrano-Hellion, San Pedro Garza García, Mexico.,TecSalud, Centro de Medicina Funcional, Hospital Zambrano-Hellion, San Pedro Garza García, Mexico
| |
Collapse
|
4
|
Chan CS, Lin YS, Lin YK, Chen YC, Kao YH, Hsu CC, Chen SA, Chen YJ. Atrial arrhythmogenesis in a rabbit model of chronic obstructive pulmonary disease. Transl Res 2020; 223:25-39. [PMID: 32438072 DOI: 10.1016/j.trsl.2020.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/25/2020] [Accepted: 04/16/2020] [Indexed: 02/02/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) increases the risk of atrial fibrillation (AF), however, its arrhythmogenic mechanisms are unclear. This study investigated the effects of COPD on AF triggers (pulmonary veins, PVs) and substrates (atria), and their potential underlying mechanisms. Electrocardiographic, echocardiographic, and biochemical studies were conducted in control rabbits and rabbits with human leukocyte elastase (0.3 unit/kg)-induced COPD. Conventional microelectrode, Western blotting, and histological examinations were performed on PV, left atrium (LA), right atrium, and sinoatrial node (SAN) preparations from control rabbits and those with COPD. The rabbits with COPD had a higher incidence of atrial premature complexes, PV burst firing and delayed afterdepolarizations, higher sympathetic activity, larger LA, and faster PV spontaneous activity than did the control rabbits; but they exhibited a slower SAN beating rate. The LA of the rabbits with COPD had a shorter action potential duration and longer tachyarrhythmia induced by tachypacing (20 Hz) and isoproterenol (1 μM). Additionally, the rabbits with COPD had higher fibrosis in the PVs, LA, and SAN. H89 (10 μM), KN93 (1 μM), and KB-R7943 (10 μM) significantly suppressed burst firing and delayed afterdepolarizations in the PVs of the rabbits with COPD. Moreover, compared with the control rabbits, those with COPD had lower expression levels of the β1 adrenergic receptor, Cav 1.2, and Na+/Ca2+ exchanger in the PVs; Cav 1.2 in the LA; and hyperpolarization-activated cyclic nucleotide-gated K+ channel 4 in the SAN. COPD increases atrial arrhythmogenesis by modulating the distinctive electrophysiological characteristics of the PVs, LA, and SAN.
Collapse
Affiliation(s)
- Chao-Shun Chan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - You Shuei Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Education and Research, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chun-Chun Hsu
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Shih-Ann Chen
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Cardiovascular Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
5
|
Lu Y, Chen Y, Lin Y, Chen S, Chen Y. Mechanoelectrical feedback in pulmonary vein arrhythmogenesis: Clinical challenges and therapeutic opportunities. J Arrhythm 2020; 36:608-614. [PMID: 32782628 PMCID: PMC7411213 DOI: 10.1002/joa3.12391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/28/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Abstract
Mechanoelectrical feedback is an important factor in the pathophysiology of atrial fibrillation (AF). Ectopic electrical activity originating from pulmonary vein (PV) myocardial sleeves has been found to trigger and maintain paroxysmal AF. Dilated PVs by high stretching force may activate mechanoelectrical feedback, which induces calcium overload and produces afterdepolarization. These results, in turn, increase PV arrhythmogenesis and contribute to initiation of AF. Paracrine factors, effectors of the renin-angiotensin system, membranous channels, or cytoskeleton of PV myocytes may modulate PV arrhythmogenesis directly through mechanoelectrical feedback or indirectly through endocardial/myocardial cross-talk. The purpose of this review is to present laboratory and translational relevance of mechanoelectrical feedback in PV arrhythmogenesis. Targeting mechanoelectrical feedback in PV arrhythmogenesis may shed light on potential opportunities and clinical concerns of AF treatment.
Collapse
Affiliation(s)
- Yen‐Yu Lu
- Division of CardiologyDepartment of Internal MedicineSijhih Cathay General HospitalNew Taipei CityTaiwan
- School of MedicineFu‐Jen Catholic UniversityNew Taipei CityTaiwan
| | - Yao‐Chang Chen
- Department of Biomedical Engineering and Institute of PhysiologyNational Defense Medical CenterTaipeiTaiwan
| | - Yung‐Kuo Lin
- Division of Cardiovascular MedicineDepartment of Internal MedicineWan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
- Cardiovacular Research CenterWan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
| | - Shih‐Ann Chen
- Heart Rhythm Center and Division of CardiologyDepartment of MedicineTaipei Veterans General HospitalTaipeiTaiwan
| | - Yi‐Jen Chen
- Division of Cardiovascular MedicineDepartment of Internal MedicineWan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
- Cardiovacular Research CenterWan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
- Graduate Institute of Clinical MedicineCollege of MedicineTaipei Medical UniversityTaipeiTaiwan
| |
Collapse
|
6
|
Chan CS, Lin YK, Chen YC, Lu YY, Chen SA, Chen YJ. Heart Failure Differentially Modulates Natural (Sinoatrial Node) and Ectopic (Pulmonary Veins) Pacemakers: Mechanism and Therapeutic Implication for Atrial Fibrillation. Int J Mol Sci 2019; 20:E3224. [PMID: 31262061 PMCID: PMC6651382 DOI: 10.3390/ijms20133224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
Heart failure (HF) frequently coexists with atrial fibrillation (AF) and dysfunction of the sinoatrial node (SAN), the natural pacemaker. HF is associated with chronic adrenergic stimulation, neurohormonal activation, abnormal intracellular calcium handling, elevated cardiac filling pressure and atrial stretch, and fibrosis. Pulmonary veins (PVs), which are the points of onset of ectopic electrical activity, are the most crucial AF triggers. A crosstalk between the SAN and PVs determines PV arrhythmogenesis. HF has different effects on SAN and PV electrophysiological characteristics, which critically modulate the development of AF and sick sinus syndrome. This review provides updates to improve our current understanding of the effects of HF in the electrical activity of the SAN and PVs as well as therapeutic implications for AF.
Collapse
Affiliation(s)
- Chao-Shun Chan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11042, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan-Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yen-Yu Lu
- Division of Cardiology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei City 22174, Taiwan
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City 24257, Taiwan
| | - Shih-Ann Chen
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Institute of Clinical Medicine, and Cardiovascular Research Center, National Yang-Ming University, Taipei 11221, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan.
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan-Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan.
- Cardiovascular Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan.
| |
Collapse
|
7
|
Kawada S, Morita H, Watanabe A, Ito H. Radiofrequency catheter ablation for drug-refractory atrial tachyarrhythmias in a patient with catecholaminergic polymorphic ventricular tachycardia: A case report. J Cardiol Cases 2019; 19:36-39. [PMID: 30693058 DOI: 10.1016/j.jccase.2018.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/04/2018] [Accepted: 09/30/2018] [Indexed: 01/08/2023] Open
Abstract
Patients with catecholaminergic polymorphic ventricular tachycardia (CPVT) frequently have atrial arrhythmias, such as atrial tachycardia (AT) and fibrillation (AF), in addition to the ventricular tachyarrhythmias. The development of AT/AF in patients with CPVT is associated with adverse outcomes, and its management is still challenging. A 43-year-old woman with CPVT underwent radiofrequency catheter ablation (RFCA) for drug-refractory AT/AF. Pulmonary vein isolation (PVI) was carried out prior to AT ablation. Repetitive rapid firing from the left superior PV occurred frequently during PVI. After completion of PVI, the firing disappeared, but both polymorphic VT and multifocal ATs were induced by infusion of isoproterenol (ISP) (0.5 mcg/min). The origins of the two ATs were in the right atrium (RA) posterior septum [cycle length (CL), 285 ms] and ostium of the coronary sinus (CS) (CL, 235 ms). Electrophysiologic evaluation revealed that the earliest activation occurred at the RA posterior septum and CS ostium, preceding the onset of P waves by 52 ms and 84 ms, respectively. Application of radiofrequency energy at the site terminated ATs. After RFCA of the two ATs and PVI, no atrial tachyarrhythmias were induced by continuous ISP administration (0.5 mcg/min). <Learning objective: A 43-year-old woman with catecholaminergic polymorphic ventricular tachycardia (CPVT) underwent radiofrequency catheter ablation (RFCA) for drug-refractory atrial tachyarrhythmias (AT/AF). Catecholamine hypersensitivities were observed in the right atrium and pulmonary veins (PVs) as well as the ventricle. Multiple ATs originating from not only a PV but also non-PVs should be considered for elimination of AT/AF in CPVT patients.>.
Collapse
Affiliation(s)
- Satoshi Kawada
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Morita
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Atsuyuki Watanabe
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Ito
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
8
|
Mashat AA, Subki AH, Bakhaider MA, Baabdullah WM, Walid JB, Alobudi AH, Fakeeh MM, Algethmi AJ, Alhejily WA. Atrial fibrillation: risk factors and comorbidities in a tertiary center in Jeddah, Saudi Arabia. Int J Gen Med 2019; 12:71-77. [PMID: 30666150 PMCID: PMC6333319 DOI: 10.2147/ijgm.s188524] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Introduction Atrial fibrillation (AF) is the most common type of cardiac arrhythmia worldwide and carries significant risk of morbidity and mortality. The prevalence of AF is high in significant parts of the world, but not much is known from countries, such as Saudi Arabia. Aims To study the risk factors, etiologies, comorbidities, and outcome of AF in Saudi Arabia. Patients and methods A retrospective study was conducted in King Abdul-Aziz Hospital in Jeddah during the period 2010–2017. Data were collected from both the electronic-and paper-based medical records of patients with AF. The data included the demographic information, adverse lifestyle (smoking and obesity), cardiothoracic surgery, and comorbidities. Results A total of 167 patients were included in the analysis (43% were males). The mean age was 63.3±35 years and the mean body mass index was 28.8±83. Hypertension (HTN) was the most prevalent risk factor encountered (73.1%). This was followed by valvular heart disease, and type 2 diabetes mellitus (T2DM), which occurred in 58.7% and 53.3% of patients, respectively. Valvular heart disease was significantly associated with older age (P=0.002) and coronary artery disease (CAD) (P=0.001). Heart failure (HF) was associated with HTN (P=0.005), coronary heart disease (P=0.001), and chronic kidney disease (CKD) (P=0.003). Conclusion AF was more prevalent among females in Saudi Arabia. HTN, valvular heart disease, and T2DM were the most prevalent risk factors of AF in Saudi Arabia. Valvular heart disease was more prevalent among older patients and significantly associated with CAD. HTN, CAD, and CKD were the most significant risk factors for HF in patients with AF.
Collapse
Affiliation(s)
| | - Ahmed Hussein Subki
- Department of Internal Medicine, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,
| | | | | | - Jawaher Badr Walid
- Department of Internal Medicine, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,
| | - Abdulrahman Hatim Alobudi
- Department of Internal Medicine, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,
| | - Maged Mazen Fakeeh
- Department of Internal Medicine, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,
| | - Anas Jamal Algethmi
- Department of Internal Medicine, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,
| | - Wesam Awad Alhejily
- Department of Internal Medicine, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,
| |
Collapse
|
9
|
Pearman CM, Madders GW, Radcliffe EJ, Kirkwood GJ, Lawless M, Watkins A, Smith CE, Trafford AW, Eisner DA, Dibb KM. Increased Vulnerability to Atrial Fibrillation Is Associated With Increased Susceptibility to Alternans in Old Sheep. J Am Heart Assoc 2018; 7:e009972. [PMID: 30520673 PMCID: PMC6405564 DOI: 10.1161/jaha.118.009972] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/17/2018] [Indexed: 12/17/2022]
Abstract
Background Atrial fibrillation ( AF ) is common in the elderly, but rare in the young; however, the changes that occur with age that promote AF are not fully understood. Action potential ( AP ) alternans may be involved in the initiation of AF . Using a translationally relevant model, we investigated whether age-associated atrial vulnerability to AF was associated with susceptibility to AP alternans. Methods and Results AF was induced in conscious young and old sheep using 50 Hz burst pacing. Old sheep were more vulnerable to AF . Monophasic and cellular AP s were recorded from the right atrium in vivo and from myocytes isolated from the left and right atrial appendages. AP alternans occurred at lower stimulation frequencies in old sheep than young in vivo (old, 3.0±0.1 Hz; young, 3.3±0.1 Hz; P<0.05) and in isolated myocytes (old, 1.6±0.1 Hz; young, 2.0±0.1 Hz; P<0.05). Simultaneous recordings of [Ca2+]i and membrane potential in myocytes showed that alternans of AP s and [Ca2+]i often occurred together. However, at low stimulation rates [Ca2+]i alternans could occur without AP alternans, whereas at high stimulation rates AP alternans could still be observed despite disabling Ca2+ cycling using thapsigargin. Conclusions We have shown, for the first time in a large mammalian model, that aging is associated with increased duration of AF and susceptibility to AP alternans. We suggest that instabilities in Ca2+ handling initiate alternans at low stimulation rates, but that AP restitution alone can sustain alternans at higher rates.
Collapse
|
10
|
Laredo M, Waldmann V, Khairy P, Nattel S. Age as a Critical Determinant of Atrial Fibrillation: A Two-sided Relationship. Can J Cardiol 2018; 34:1396-1406. [PMID: 30404745 DOI: 10.1016/j.cjca.2018.08.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/23/2018] [Accepted: 08/01/2018] [Indexed: 12/19/2022] Open
Abstract
The incidence of atrial fibrillation (AF), the most common sustained arrhythmia and a major public health burden, increases exponentially with age. However, mechanisms underlying this long-recognized association remain incompletely understood. Experimental and human studies have demonstrated the involvement of aging in several arrhythmogenic processes, including atrial electrical and structural remodelling, disturbed calcium homeostasis, and enhanced atrial ectopic activity/increased vulnerability to re-entry induction. Given this wide range of putative mechanisms, the task of delineating the specific effects of aging responsible for AF promotion is not simple, as aging is itself associated with increasing prevalence of a host of AF-predisposing conditions, including heart failure, coronary artery disease, and hypertension. Although we usually think of old age promoting AF, there is also evidence that young age may actually have a protective effect against AF occurrence. For example, the low AF incidence among populations of young patients with significant structural congenital heart disease and substantial atrial enlargement/remodelling suggests that younger age might protect against fibrillation in the diseased atrium; efforts at understating how younger age may prevent AF might be helpful in elucidating missing mechanistic links between AF and age. The goal of this paper is to review the epidemiologic and pathophysiologic evidence regarding mechanisms underlying age-related AF. Although the therapeutic options for AF have recently improved, major gaps still remain and a better understanding of the special relationship between age and AF may be important for the identification of new targets for therapeutic innovation.
Collapse
Affiliation(s)
- Mikael Laredo
- Montreal Heart Institute, Université de Montréal, Montreal, Québec, Canada; AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Institut de Cardiologie, Paris, France
| | - Victor Waldmann
- Montreal Heart Institute, Université de Montréal, Montreal, Québec, Canada
| | - Paul Khairy
- Montreal Heart Institute, Université de Montréal, Montreal, Québec, Canada.
| | - Stanley Nattel
- Montreal Heart Institute, Université de Montréal, Montreal, Québec, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec, Canada; Institute of Pharmacology, University Duisburg-Essen, Essen, Germany; LIRYC Center, Bordeaux, France.
| |
Collapse
|
11
|
Chen Q, Yi Z, Cheng J. Atrial fibrillation in aging population. Aging Med (Milton) 2018; 1:67-74. [PMID: 31942483 PMCID: PMC6880740 DOI: 10.1002/agm2.12015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 12/19/2022] Open
Abstract
With aging, the pathogenesis processes of atrial fibrillation (AF) are heightened. In this article, we review the mechanisms that predispose elderly patients to AF. We also highlight the unique features in diagnosis, stroke prevention, and treatment strategies for the elderly patient with AF.
Collapse
Affiliation(s)
- Qi Chen
- Texas Heart InstituteHoustonTXUSA
| | - Zhong Yi
- Department of GeriatricsAerospace Center HospitalBeijingChina
| | | |
Collapse
|
12
|
Chan CS, Lin YK, Kao YH, Chen YC, Chen SA, Chen YJ. Hydrogen sulphide increases pulmonary veins and atrial arrhythmogenesis with activation of protein kinase C. J Cell Mol Med 2018; 22:3503-3513. [PMID: 29659148 PMCID: PMC6010708 DOI: 10.1111/jcmm.13627] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 03/09/2018] [Indexed: 12/29/2022] Open
Abstract
Hydrogen sulphide (H2 S), one of the most common toxic air pollutants, is an important aetiology of atrial fibrillation (AF). Pulmonary veins (PVs) and left atrium (LA) are the most important AF trigger and substrate. We investigated whether H2 S may modulate the arrhythmogenesis of PVs and atria. Conventional microelectrodes and whole-cell patch clamp were performed in rabbit PV, sinoatrial node (SAN) or atrial cardiomyocytes before and after the perfusion of NaHS with or without chelerythrine (a selective PKC inhibitor), rottlerin (a specific PKC δ inhibitor) or KB-R7943 (a NCX inhibitor). NaHS reduced spontaneous beating rates, but increased the occurrences of delayed afterdepolarizations and burst firing in PVs and SANs. NaHS (100 μmol/L) increased IKATP and INCX in PV and LA cardiomyocytes, which were attenuated by chelerythrine (3 μmol/L). Chelerythrine, rottlerin (10 μmol/L) or KB-R7943 (10 μmol/L) attenuated the arrhythmogenic effects of NaHS on PVs or SANs. NaHS shortened the action potential duration in LA, but not in right atrium or in the presence of chelerythrine. NaHS increased PKC activity, but did not translocate PKC isoforms α, ε to membrane in LA. In conclusion, through protein kinase C signalling, H2 S increases PV and atrial arrhythmogenesis, which may contribute to air pollution-induced AF.
Collapse
Affiliation(s)
- Chao-Shun Chan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Wang Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Ann Chen
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, and Institute of Clinical Medicine and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Wang Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
13
|
Clarke JD, Caldwell JL, Pearman CM, Eisner DA, Trafford AW, Dibb KM. Increased Ca buffering underpins remodelling of Ca 2+ handling in old sheep atrial myocytes. J Physiol 2017; 595:6263-6279. [PMID: 28752958 PMCID: PMC5621500 DOI: 10.1113/jp274053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 07/26/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Ageing is associated with an increased risk of cardiovascular disease and arrhythmias, with the most common arrhythmia being found in the atria of the heart. Little is known about how the normal atria of the heart remodel with age and thus why dysfunction might occur. We report alterations to the atrial systolic Ca2+ transient that have implications for the function of the atrial in the elderly. We describe a novel mechanism by which increased Ca buffering can account for changes to systolic Ca2+ in the old atria. The present study helps us to understand how the processes regulating atrial contraction are remodelled during ageing and provides a basis for future work aiming to understand why dysfunction develops. ABSTRACT Many cardiovascular diseases, including those affecting the atria, are associated with advancing age. Arrhythmias, including those in the atria, can arise as a result of electrical remodelling or alterations in Ca2+ homeostasis. In the atria, age-associated changes in the action potential have been documented. However, little is known about remodelling of intracellular Ca2+ homeostasis in the healthy aged atria. Using single atrial myocytes from young and old Welsh Mountain sheep, we show the free Ca2+ transient amplitude and rate of decay of systolic Ca2+ decrease with age, whereas sarcoplasmic reticulum (SR) Ca content increases. An increase in intracellular Ca buffering explains both the decrease in Ca2+ transient amplitude and decay kinetics in the absence of any change in sarcoendoplasmic reticulum calcium transport ATPase function. Ageing maintained the integrated Ca2+ influx via ICa-L but decreased peak ICa-L . Decreased peak ICa-L was found to be responsible for the age-associated increase in SR Ca content but not the decrease in Ca2+ transient amplitude. Instead, decreased peak ICa-L offsets increased SR load such that Ca2+ release from the SR was maintained during ageing. The results of the present study highlight a novel mechanism by which increased Ca buffering decreases systolic Ca2+ in old atria. Furthermore, for the first time, we have shown that SR Ca content is increased in old atrial myocytes.
Collapse
Affiliation(s)
- Jessica D. Clarke
- Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Central Manchester Foundation Trust, 3.14 Core Technology FacilityUniversity of ManchesterManchesterUK
| | - Jessica L. Caldwell
- Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Central Manchester Foundation Trust, 3.14 Core Technology FacilityUniversity of ManchesterManchesterUK
| | - Charles M. Pearman
- Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Central Manchester Foundation Trust, 3.14 Core Technology FacilityUniversity of ManchesterManchesterUK
| | - David A. Eisner
- Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Central Manchester Foundation Trust, 3.14 Core Technology FacilityUniversity of ManchesterManchesterUK
| | - Andrew W. Trafford
- Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Central Manchester Foundation Trust, 3.14 Core Technology FacilityUniversity of ManchesterManchesterUK
| | - Katharine M. Dibb
- Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Central Manchester Foundation Trust, 3.14 Core Technology FacilityUniversity of ManchesterManchesterUK
| |
Collapse
|
14
|
Lin YK, Chen YA, Lee TI, Chen YC, Chen SA, Chen YJ. Aging Modulates the Substrate and Triggers Remodeling in Atrial Fibrillation. Circ J 2017; 82:1237-1244. [PMID: 28904308 DOI: 10.1253/circj.cj-17-0242] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aging plays a critical role in the genesis of atrial fibrillation (AF) and also increases the risks of cardiac dysfunction and stroke in AF patients. AF is caused by increased AF triggering from abnormalities of the thoracic vein and/or modulated substrate (atrial) with enhancement of AF maintenance. Clinical and laboratory evidence indicates that aging is significant in the creation of atrial electrical and structural remodeling that leads to increased susceptibility to AF occurrence. Aging is commonly associated with cardiovascular comorbidities, oxidative stress, calcium dysregulation, atrial myopathy with apoptosis, and fibrosis, which all contribute to the genesis of AF. This review updates the current understanding of the effects of aging on the pathophysiology of AF.
Collapse
Affiliation(s)
- Yung-Kuo Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University.,Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University
| | - Yi-Ann Chen
- Division of Nephrology, Sijhih Cathay General Hospital
| | - Ting-I Lee
- Division of Endocrinology and Metabolism, Wan Fang Hospital, Taipei Medical University
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center
| | - Shih-Ann Chen
- Division of Cardiology and Cardiovascular Research Center, Veterans General Hospital-Taipei
| | - Yi-Jen Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University
| |
Collapse
|
15
|
Huang SY, Chen YC, Kao YH, Hsieh MH, Lin YK, Chen SA, Chen YJ. Redox and Activation of Protein Kinase A Dysregulates Calcium Homeostasis in Pulmonary Vein Cardiomyocytes of Chronic Kidney Disease. J Am Heart Assoc 2017; 6:JAHA.117.005701. [PMID: 28701305 PMCID: PMC5586294 DOI: 10.1161/jaha.117.005701] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background Chronic kidney disease (CKD) increases the occurrence of atrial fibrillation and pulmonary vein (PV) arrhythmogenesis. Calcium dysregulation and reactive oxygen species (ROS) enhance PV arrhythmogenic activity. The purposes of this study were to investigate whether CKD modulates PV electrical activity through dysregulation of calcium homeostasis and ROS. Methods and Results Biochemical and electrocardiographic studies were conducted in rabbits with and without CKD (induced by 150 mg/kg per day neomycin sulfate and 500 mg/kg per day cefazolin). Confocal microscopy with fluorescence and a whole‐cell patch clamp were applied to study calcium homeostasis and electrical activities in control and CKD isolated single PV cardiomyocytes with or without treatment with H89 (1 μmol/L, a protein kinase A inhibitor) and MPG (N‐[2‐mercaptopropionyl]glycine; 100 μmol/L, a ROS scavenger). The ROS in mitochondria and cytosol were evaluated via intracellular dye fluorescence and lipid peroxidation. CKD rabbits had excessive atrial premature captures over those of control rabbits. Compared with the control, CKD PV cardiomyocytes had a faster beating rate and larger calcium transient amplitudes, sarcoplasmic reticulum calcium contents, sodium/calcium exchanger currents, and late sodium currents but smaller L‐type calcium current densities. CKD PV cardiomyocytes had a higher frequency and longer duration of calcium sparks and more ROS in the mitochondria and cytosol than did controls. Moreover, H89 suppressed all calcium sparks in CKD PV cardiomyocytes, and H89‐ and MPG‐treated CKD PV cardiomyocytes had similar calcium transients compared with control PV cardiomyocytes. Conclusions CKD increases PV arrhythmogenesis with enhanced calcium‐handling abnormalities through activation of protein kinase A and ROS.
Collapse
Affiliation(s)
- Shih-Yu Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiology, Department of Internal Medicine, Cathay General Hospital, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ming-Hsiung Hsieh
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shih-Ann Chen
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Cardiology and Cardiovascular Research Center, Veterans General Hospital-Taipei, Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan .,Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
16
|
|
17
|
Yılmaz M D S, Canpolat M D U. Catheter Ablation Of Atrial Fibrillation In The Elderly: Risk Benefit Analysis. J Atr Fibrillation 2014; 7:1116. [PMID: 27957106 DOI: 10.4022/jafib.1116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/12/2014] [Accepted: 08/12/2014] [Indexed: 11/10/2022]
Abstract
Over the past decade, catheter ablation has emerged as an important therapeutic option and reserved for drug refractory symptomatic paroxysmal and persistent atrial fibrillation (AF). Although elderly population constitutes the significant amount of AF patients, literature data is inadequate regarding the use of catheter ablation for elderly AF patients. Since there has been significant improvement in efficacy and safety of the AF ablation in last decade, it has become widespread accross the whole world. As the life expectancy continues to grow in population and outcomes of catheter ablation for AF further improve, higher number of elderly patients are likely to undergo catheter ablation for AF. Therefore, in this paper we reviewed the published literature to date regarding the clinical efficacy and safety of catheter ablation for AF in elderly patients.
Collapse
Affiliation(s)
- Samet Yılmaz M D
- Cardiology Clinic, Turkiye Yuksek Ihtisas Training and Research Hospital, Ankara, Turkey
| | - Ugur Canpolat M D
- Cardiology Clinic, Turkiye Yuksek Ihtisas Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
18
|
Tsai WC, Lee TI, Chen YC, Kao YH, Lu YY, Lin YK, Chen SA, Chen YJ. Testosterone replacement increases aged pulmonary vein and left atrium arrhythmogenesis with enhanced adrenergic activity. Int J Cardiol 2014; 176:110-8. [PMID: 25037694 DOI: 10.1016/j.ijcard.2014.06.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/25/2014] [Accepted: 06/28/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Aging and testosterone deficiency contribute to the pathogenesis of atrial fibrillation (AF). We determine the effects of testosterone replacement on the electrophysiology and arrhythmogenesis of pulmonary vein (PV) and left atrium (LA) in aged rabbits. METHODS Electrocardiography, heart rate variability, echocardiography, Western blot and conventional microelectrodes were used in aged rabbits (age, >2 years) with and without (control) testosterone treatment (10mg/kg, 12 weeks). RESULTS Testosterone-treated aged rabbits had longer corrected QT interval, higher low frequency/high frequency, greater left ventricle (LV) mass but lower LA total emptying fraction and LV ejection fraction than control rabbits. In tissue preparations, the spontaneous rate was faster for testosterone-treated PVs than for control PVs. Angiotensin II concentration-dependently increased the amplitude of delayed afterdepolarizations (DADs) in testosterone-treated PVs but only did so at the highest angiotensin II concentration (100 nM) in control PVs. Isoproterenol increased the incidence of early afterdepolarizations (EADs) and DADs in testosterone-treated PVs but not in control PVs. Testosterone-treated PVs had more H2O2-induced burst firing and EADs than control PVs. Testosterone-treated LAs had more isoproterenol-induced DADs and spontaneous activity than did control LAs. However, acetylcholine infusion and rapid atrial pacing (10-20 Hz) induced AF in control LAs but not in testosterone-treated LAs. In addition, as compared with control LAs, testosterone-treated LAs expressed more androgen receptor, β1-adrenergic receptor, and Cav 1.2 and less G protein-coupled receptor kinase-2 and Kv 4.2. CONCLUSIONS Testosterone replacement increased arrhythmogenesis in PV and LA by enhancing adrenergic activity in aged rabbits.
Collapse
Affiliation(s)
- Wen-Chin Tsai
- Division of Cardiology, Tzu-Chi General Hospital, Hualien, Taiwan
| | - Ting-I Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of General Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsun Kao
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Yu Lu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
| | - Yung-Kuo Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shih-Ann Chen
- School of medicine, National Yang-Ming University, Taipei, Taiwan; Division of Cardiology, Veterans General Hospital, Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
19
|
Kennedy R, Oral H. Catheter ablation of atrial fibrillation in the elderly: does the benefit outweigh the risk? Expert Rev Cardiovasc Ther 2014; 11:697-704. [DOI: 10.1586/erc.13.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Chang SL, Chen YC, Hsu CP, Kao YH, Lin YK, Lin YJ, Wu TJ, Chen SA, Chen YJ. Electrophysiological characteristics of complex fractionated electrograms and high frequency activity in atrial fibrillation. Int J Cardiol 2013; 168:2289-99. [DOI: 10.1016/j.ijcard.2013.01.194] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 11/14/2012] [Accepted: 01/18/2013] [Indexed: 11/16/2022]
|
21
|
Antiarrhythmic effects of simvastatin in canine pulmonary vein sleeve preparations. J Am Coll Cardiol 2013; 57:986-93. [PMID: 21329846 DOI: 10.1016/j.jacc.2010.08.649] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/15/2010] [Accepted: 09/23/2010] [Indexed: 12/19/2022]
Abstract
OBJECTIVES The purpose of this study was to determine the electrophysiologic effects of simvastatin in canine pulmonary vein (PV) sleeve preparations. BACKGROUND Ectopic activity arising from the PV plays a prominent role in the development of atrial fibrillation. METHODS Transmembrane action potentials were recorded from canine superfused left superior or inferior PV sleeves using standard microelectrode techniques. Acetylcholine (1 μM), isoproterenol (1 μM), high calcium ([Ca(2+)](o) = 5.4 mM), or a combination was used to induce early afterdepolarizations or delayed afterdepolarizations and triggered activity. Voltage clamp experiments were performed in the left atrium measuring fast and late sodium currents. RESULTS Under steady-state conditions, simvastatin (10 nM, n = 9) induced a small increase in action potential duration measured at 85% repolarization and a significant decrease in action potential amplitude, take-off potential, and maximum rate of rise of action potential upstroke at the fastest rates. The V(max) decreased from 175.1 ± 34 V/s to 151.7 ± 28 V/s and from 142 ± 47 V/s to 97.4 ± 39 V/s at basic cycle lengths of 300 and 200 ms, respectively. Simvastatin (10 to 20 nM) eliminated delayed afterdepolarizations and delayed afterdepolarization-induced triggered activity in 7 of 7 PV sleeve preparations and eliminated or reduced late-phase 3 early afterdepolarizations in 6 of 6 PV sleeve preparations. Simvastatin (20 nM) did not affect late or fast sodium currents measured using voltage clamp techniques. CONCLUSIONS Our data suggest that in addition to its upstream actions to reduce atrial structural remodeling, simvastatin exerts a direct antiarrhythmic effect by suppressing triggers responsible for the genesis of atrial fibrillation.
Collapse
|
22
|
Shryock JC, Song Y, Rajamani S, Antzelevitch C, Belardinelli L. The arrhythmogenic consequences of increasing late INa in the cardiomyocyte. Cardiovasc Res 2013; 99:600-11. [PMID: 23752976 DOI: 10.1093/cvr/cvt145] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This review presents the roles of cardiac sodium channel NaV1.5 late current (late INa) in generation of arrhythmic activity. The assumption of the authors is that proper Na(+) channel function is necessary to the maintenance of the transmembrane electrochemical gradient of Na(+) and regulation of cardiac electrical activity. Myocyte Na(+) channels' openings during the brief action potential upstroke contribute to peak INa and initiate excitation-contraction coupling. Openings of Na(+) channels outside the upstroke contribute to late INa, a depolarizing current that persists throughout the action potential plateau. The small, physiological late INa does not appear to be critical for normal electrical or contractile function in the heart. Late INa does, however, reduce the net repolarizing current, prolongs action potential duration, and increases cellular Na(+) loading. An increase of late INa, due to acquired conditions (e.g. heart failure) or inherited Na(+) channelopathies, facilitates the formation of early and delayed afterpolarizations and triggered arrhythmias, spontaneous diastolic depolarization, and cellular Ca(2+) loading. These in turn increase the spatial and temporal dispersion of repolarization time and may lead to reentrant arrhythmias.
Collapse
Affiliation(s)
- John C Shryock
- Department of Biology, Cardiovascular Therapeutic Area, Gilead Sciences, Foster City, CA, USA
| | | | | | | | | |
Collapse
|
23
|
Lu YY, Chen YC, Kao YH, Chen SA, Chen YJ. Extracellular matrix of collagen modulates arrhythmogenic activity of pulmonary veins through p38 MAPK activation. J Mol Cell Cardiol 2013; 59:159-66. [PMID: 23524328 DOI: 10.1016/j.yjmcc.2013.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 02/05/2013] [Accepted: 03/13/2013] [Indexed: 11/28/2022]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia. Cardiac fibrosis with enhanced extracellular collagen plays a critical role in the pathophysiology of AF through structural and electrical remodeling. Pulmonary veins (PVs) are important foci for AF genesis. The purpose of this study was to evaluate whether collagen can directly modulate PV arrhythmogenesis. Action potentials and ionic currents were investigated in isolated male New Zealand rabbit PV cardiomyocytes with and without collagen incubation (10μg/ml, 5-7h) using the whole-cell patch-clamp technique. Compared to control PV cardiomyocytes (n=25), collagen-treated PV cardiomyocytes (n=22) had a faster beating rate (3.2±04 vs. 1.9±0.2Hz, p<0.005) and a larger amplitude of delayed afterdepolarization (16±2 vs. 10±1mV, p<0.01). Moreover, collagen-treated PV cardiomyocytes showed a larger transient outward potassium current, small-conductance Ca(2+)-activated K(+) current, inward rectifier potassium current, pacemaker current, and late sodium current than control PV cardiomyocytes, but amplitudes of the sodium current, sustained outward potassium current, and L-type calcium current were similar. Collagen increased the p38 MAPK phosphorylation in PV cardiomyocytes as compared to control. The change of the spontaneous activity and action potential morphology were ameliorated by SB203580 (the p38 MAPK catalytic activity inhibitor), indicating that collagen can directly increase PV cardiomyocyte arrhythmogenesis through p38 MAPK activation, which may contribute to the pathogenesis of AF.
Collapse
Affiliation(s)
- Yen-Yu Lu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
24
|
Atrial fibrillation in the elderly: the potential contribution of reactive oxygen species. J Geriatr Cardiol 2013; 9:379-88. [PMID: 23341843 PMCID: PMC3545256 DOI: 10.3724/sp.j.1263.2012.08141] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/16/2012] [Accepted: 10/18/2012] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most commonly encountered cardiac arrhythmia, and is a significant source of healthcare expenditures throughout the world. It is an arrhythmia with a very clearly defined predisposition for individuals of advanced age, and this fact has led to intense study of the mechanistic links between aging and AF. By promoting oxidative damage to multiple subcellular and cellular structures, reactive oxygen species (ROS) have been shown to induce the intra- and extra-cellular changes necessary to promote the pathogenesis of AF. In addition, the generation and accumulation of ROS have been intimately linked to the cellular processes which underlie aging. This review begins with an overview of AF pathophysiology, and introduces the critical structures which, when damaged, predispose an otherwise healthy atrium to AF. The available evidence that ROS can lead to damage of these critical structures is then reviewed. Finally, the evidence linking the process of aging to the pathogenesis of AF is discussed.
Collapse
|
25
|
Sankaranarayanan R, Kirkwood G, Dibb K, Garratt CJ. Comparison of Atrial Fibrillation in the Young versus That in the Elderly: A Review. Cardiol Res Pract 2013; 2013:976976. [PMID: 23401843 PMCID: PMC3564268 DOI: 10.1155/2013/976976] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 08/09/2012] [Indexed: 02/07/2023] Open
Abstract
The incidence and prevalence of atrial fibrillation (AF) are projected to increase significantly worldwide, imposing a significant burden on healthcare resources. The disease itself is extremely heterogeneous in its epidemiology, pathophysiology, and treatment options based on individual patient characteristics. Whilst ageing is well recognised to be an independent risk factor for the development of AF, this condition also affects the young in whom the condition is frequently symptomatic and troublesome. Traditional thinking suggests that the causal factors and pathogenesis of the condition in the young with structurally normal atria but electrophysiological "triggers" in the form of pulmonary vein ectopics leading to lone AF are in stark contrast to that in the elderly who have AF primarily due to an abnormal substrate consisting of fibrosed and dilated atria acting in concert with the pulmonary vein triggers. However, there can be exceptions to this rule as there is increasing evidence of structural and electrophysiological abnormalities in the atrial substrate in young patients with "lone AF," as well as elderly patients who present with idiopathic AF. These reports seem to be blurring the distinction in the pathophysiology of so-called idiopathic lone AF in the young versus that in the elderly. Moreover with availability of improved and modern investigational and diagnostic techniques, novel causes of AF are being reported thereby seemingly consigning the diagnosis of "lone AF" to a rather mythical existence. We shall also elucidate in this paper the differences seen in the epidemiology, causes, pathogenesis, and clinical features of AF in the young versus that seen in the elderly, thereby requiring clearly defined management strategies to tackle this arrhythmia and its associated consequences.
Collapse
Affiliation(s)
- Rajiv Sankaranarayanan
- Unit of Cardiac Physiology, Cardiovascular Research Group, 3rd Floor, Core Technology Facility, The University of Manchester, M139PL, Grafton Street, Manchester M13 9NT, UK
- Manchester Heart Centre, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WPL, UK
| | - Graeme Kirkwood
- Unit of Cardiac Physiology, Cardiovascular Research Group, 3rd Floor, Core Technology Facility, The University of Manchester, M139PL, Grafton Street, Manchester M13 9NT, UK
- Manchester Heart Centre, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WPL, UK
| | - Katharine Dibb
- Manchester Heart Centre, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WPL, UK
| | - Clifford J. Garratt
- Unit of Cardiac Physiology, Cardiovascular Research Group, 3rd Floor, Core Technology Facility, The University of Manchester, M139PL, Grafton Street, Manchester M13 9NT, UK
- Manchester Heart Centre, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WPL, UK
| |
Collapse
|
26
|
Choi BR. Calcium measurements from whole heart using Rhod-2. Methods Mol Biol 2013; 937:217-228. [PMID: 23007589 DOI: 10.1007/978-1-62703-086-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Calcium recording from whole heart is an important technique to investigate role of calcium in cardiac arrhythmias. Intracellular calcium can be recorded from multiple locations using imaging devices and organic dyes or genetic probe (Tallini et al. PNAS 103(12):4753-4758, 2006) from whole heart. Here, we describe the optical apparatus and the method to record intracellular calcium transients.
Collapse
Affiliation(s)
- Bum-Rak Choi
- Cardiovascular Research Center, Rhode Island Hospital and Brown Medical School, Providence, RI, USA.
| |
Collapse
|
27
|
Grubitzsch H, Haverkamp W. Atrial Remodelling : Role in Atrial Fibrillation Ablation. J Atr Fibrillation 2012; 5:691. [PMID: 28496795 DOI: 10.4022/jafib.691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/02/2012] [Accepted: 11/23/2012] [Indexed: 12/19/2022]
Abstract
There have been considerable advances in understanding the relationship of atrial fibrillation (AF) and atrial remodelling suggesting that remodelling states have a significant impact on treatment results. Therefore, we reviewed the literature about the role of atrial remodelling in AF treatment, focussing on AF ablation. Atrial fibrillatory activity, dominant frequencies (DF), complex fractionated atrial electrograms (CFAE) as well as function, volume, and fibrosis of the - especially left - atrium are most important characteristics for electrical, contractile, and structural remodelling predicting success of AF treatment. In particular, the results of AF ablation, either using catheter-based or surgical techniques, predominantly depend on the degree of structural remodelling, namely dilatation and fibrosis of the left atrium. The available data suggest that recognizing parameters of remodelling as predictors for AF treatment facilitates differentiation between patients who may or may not benefit from the procedure and individualization of AF treatment by adapting lesion sets, by ablating additional targets, by reducing left atrial size, or by applying extended pharmacological treatment.
Collapse
Affiliation(s)
| | - Wilhelm Haverkamp
- Medizinische Klinik mit Schwerpunkt Kardiologie, Campus Virchow-Klinikum, Charité - Universit?tsmedizin Berlin, Berlin, Germany
| |
Collapse
|
28
|
Luo T, Chang CX, Zhou X, Gu SK, Jiang TM, Li YM. Characterization of atrial histopathological and electrophysiological changes in a mouse model of aging. Int J Mol Med 2012; 31:138-46. [PMID: 23135407 DOI: 10.3892/ijmm.2012.1174] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/04/2012] [Indexed: 11/06/2022] Open
Abstract
The detailed mechanisms of age-related atrial structural and electrophysiological changes remain elusive. Small animal models have recently been used for the investigation of atrial tachyarrhythmia. In this study, we investigated the hypothesis that atrial structural and electrical characterization with aging provides a substrate for atrial fibrillation using a mouse model of aging. Male Kunming mice aged 2 (young), 12 (middle-aged) and 24 months (aged) were used in this study. A surface electrocardiogram and sinus node recovery time (SNRT) were recorded at baseline. Atrial fibrillation (AF) inducibility and duration were measured by a transesophageal electrode catheter. Collagen content was assessed by the collagen volume fraction. Whole cell configuration using the patch clamp technique was performed for the transient outward potassium (Ito) and ultra-rapid delayed rectifier potassium (Ikur) currents. P-wave duration, SNRT and rate-corrected SNRT were longer in the aged group than in the remaining 2 groups, paralleled by inducibility significantly being increased in the aged group. The right atrium had significantly higher levels of fibrosis than the left atrium in all the groups (P<0.05), whereas the extent of fibrosis in the left atrium had a higher positive correlation with age relative to the right atrium (P<0.05). Moreover, in old age, the dispersion of left relative to right atrium repolarization and augmented Ito currents contributed to vulnerability to AF. Nevertheless, Ikur currents in the atrial myocytes showed no age-related changes. The present study demonstrates that in addition to the structural alterations, aging can also cause integrative and cellular electrophysiological changes in a mouse model of aging, facilitating AF initiation and maintenance.
Collapse
Affiliation(s)
- Tao Luo
- Graduate School of Medicine, Tianjin Medical University, Tianjin, PR China
| | | | | | | | | | | |
Collapse
|
29
|
Atrial remodeling in varying clinical substrates within beating human hearts: Relevance to atrial fibrillation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 110:278-94. [DOI: 10.1016/j.pbiomolbio.2012.07.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 07/24/2012] [Indexed: 11/19/2022]
|
30
|
Lu YY, Cheng CC, Chen YC, Chen SA, Chen YJ. ATX-II-induced pulmonary vein arrhythmogenesis related to atrial fibrillation and long QT syndrome. Eur J Clin Invest 2012; 42:823-31. [PMID: 22339387 DOI: 10.1111/j.1365-2362.2012.02655.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Long QT syndrome (LQTS) is associated with a high incidence of atrial fibrillation (AF), but the underlying mechanisms are unclear. Pulmonary veins (PVs) play a critical role in AF genesis. Type 3 LQTS increases late sodium current (I(Na,L) ), which may increase PV arrhythmogenesis and AF. Therefore, this study examines PV arrhythmogenesis in anemonia sulcata toxin II (ATX-II)-induced type 3 LQTS and evaluates whether the I(Na,L) inhibitor ranolazine can suppress PV arrhythmogenesis. MATERIALS AND METHODS Conventional microelectrodes were used to record the action potentials (AP) and contractility in isolated rabbit PV specimens before and after ATX-II administration with or without ranolazine. RESULTS Anemonia sulcata toxin II (100 nM) increased the PV spontaneous rates from 2·0 ± 0·1 to 2·9 ± 0·2 Hz (n = 7), induced PV burst firing (100%) with the genesis of early afterdepolarization (EAD) (86%) and prolonged the AP duration. Ranolazine (0·1, 1 and 10 μM) dose dependently reduced the PV spontaneous rates from 2·5 ± 0·2 to 2·3 ± 0·2 Hz, 1·9 ± 0·2 and 1·5 ± 0·3 Hz (P < 0·05) and decreased the diastolic tension by 40 ± 19%, 87 ± 26% and 113 ± 28%. In the presence of ranolazine (10 μM), ATX-II (100 nM) further increased the AP duration. However, ATX-II neither increased the PV spontaneous rates (1·6 ± 0·1 vs. 1·7 ± 0·2 Hz, n = 7) nor induced PV burst firing or EAD. Moreover, ranolazine (10 μM) reduced ATX-II-induced PV acceleration and EAD. CONCLUSIONS The I(Na,L) enhancer ATX-II can increase PV arrhythmogenesis, which can be attenuated or blocked by ranolazine. This suggests that AF may be related to type 3 LQTS through increased I(Na,L) .
Collapse
Affiliation(s)
- Yen-Yu Lu
- Division of Cardiology, Sijhih Cathay General Hospital, Sijhih, Taiwan
| | | | | | | | | |
Collapse
|
31
|
Jacquemet V, Kappenberger L, Henriquez CS. Modeling atrial arrhythmias: impact on clinical diagnosis and therapies. IEEE Rev Biomed Eng 2012; 1:94-114. [PMID: 22274901 DOI: 10.1109/rbme.2008.2008242] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Atrial arrhythmias are the most frequent sustained rhythm disorders in humans and often lead to severe complications such as heart failure and stroke. Despite the important insights provided by animal models into the mechanisms of atrial arrhythmias, direct translation of experimental findings to new therapies in patients has not been straightforward. With the advances in computer technology, large-scale electroanatomical computer models of the atria that integrate information from the molecular to organ scale have reached a level of sophistication that they can be used to interpret the outcome of experimental and clinical studies and aid in the rational design of therapies. This paper reviews the state-of-the-art of computer models of the electrical dynamics of the atria and discusses the evolving role of simulation in assisting the clinical diagnosis and treatment of atrial arrhythmias.
Collapse
Affiliation(s)
- Vincent Jacquemet
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | | | | |
Collapse
|
32
|
Tsao HM, Weerateerangkul P, Chen YC, Kao YH, Lin YK, Huang JH, Chen SA, Chen YJ. Amyloid peptide regulates calcium homoeostasis and arrhythmogenesis in pulmonary vein cardiomyocytes. Eur J Clin Invest 2012; 42:589-98. [PMID: 22070199 DOI: 10.1111/j.1365-2362.2011.02618.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Amyloid peptides modulate cardiac calcium homoeostasis and play an important role in the pathophysiology of atrial fibrillation. Pulmonary veins (PVs) are critical in the genesis of atrial fibrillation and contain abundant amyloid peptides. Therefore, the purpose of this study is to investigate whether amyloid peptides may change the PV electrical activity through regulating calcium homoeostasis. METHODS AND RESULTS The channel and calcium-handling protein expressions, intracellular calcium and ionic currents were studied in isolated rabbit PV cardiomyocytes in the presence and absence (control) of beta-amyloid (Aβ(25-35) ) for 4-6 h, using Western blot analysis, indo-1 fluorimetric ratio and whole-cell patch clamp techniques. Aβ(25-35) decreased the expressions of Ca(V) 1.2, total or Ser16-phosphorylated phospholamban (p-PLB), p-PLB/PLB ratio, sodium/calcium exchanger, but did not change ryanodine receptor, sarcoplasmic reticulum (SR) ATPase and K(+) channel proteins (Kir2.1, Kir2.3, Kv1.4, Kv1.5 and Kv4.2). Aβ(25-35) -treated cardiomyocytes had smaller calcium transient, SR calcium store, L-type calcium current and sodium/calcium exchanger current than control cardiomyocytes. Moreover, Aβ(25-35) -treated cardiomyocytes (n = 20) had shorter 90% of the action potential duration (82 ± 3 vs. 93 ± 5 ms, P < 0·05) than control cardiomyocytes (n = 16). CONCLUSION Aβ(25-35) has direct electrophysiological effects on PV cardiomyocytes.
Collapse
Affiliation(s)
- Hsuan-Ming Tsao
- Division of Cardiology, National Yang-Ming University Hospital, I-Lan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Sicouri S, Pourrier M, Gibson JK, Lynch JJ, Antzelevitch C. Comparison of electrophysiological and antiarrhythmic effects of vernakalant, ranolazine, and sotalol in canine pulmonary vein sleeve preparations. Heart Rhythm 2012; 9:422-9. [PMID: 22019863 PMCID: PMC3288874 DOI: 10.1016/j.hrthm.2011.10.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 10/17/2011] [Indexed: 12/19/2022]
Abstract
BACKGROUND Vernakalant (VER) is a relatively atrial-selective antiarrhythmic drug capable of blocking potassium and sodium currents in a frequency- and voltage-dependent manner. Ranolazine (RAN) is a sodium-channel blocker shown to exert antiarrhythmic effects in pulmonary vein (PV) sleeves. dl-Sotalol (SOT) is a β-blocker commonly used in the rhythm-control treatment of atrial fibrillation. This study evaluated the electrophysiological and antiarrhythmic effects of VER, RAN, and SOT in canine PV sleeve preparations in a blinded fashion. METHODS Transmembrane action potentials were recorded from canine superfused PV sleeve preparations exposed to VER (n = 6), RAN (n = 6), and SOT (n = 6). Delayed afterdepolarizations were induced in the presence of isoproterenol and high-calcium concentrations by periods of rapid pacing. RESULTS In PV sleeves, VER, RAN, and SOT (3-30 μM) produced small (10-15 ms) increases in action potential duration. The effective refractory period, diastolic threshold of excitation, and the shortest S(1)-S(1) cycle length permitting 1:1 activation were significantly increased by VER and RAN in a rate- and concentration-dependent manner. VER and RAN significantly reduced V(max) in a concentration- and rate-dependent manner. SOT did not significantly affect the effective refractory period, V(max), diastolic threshold of excitation, or the shortest S(1)-S(1) cycle length permitting 1:1 activation. All 3 agents (3-30 μM) suppressed delayed afterdepolarization-mediated triggered activity induced by isoproterenol and high calcium. CONCLUSIONS In canine PV sleeves, the effects of VER and RAN were similar and largely characterized by concentration- and rate-dependent depression of sodium-channel-mediated parameters, which were largely unaffected by SOT. All 3 agents demonstrated an ability to effectively suppress delayed afterdepolarization-induced triggers of atrial arrhythmia.
Collapse
|
34
|
Chang SL, Chen YC, Yeh YH, Lai YJ, Yeh HI, Lin CI, Lin YK, Lin YJ, Wu TJ, Huang YK, Chen SA, Chen YJ. Heart failure enhances arrhythmogenesis in pulmonary veins. Clin Exp Pharmacol Physiol 2012; 38:666-74. [PMID: 21671985 DOI: 10.1111/j.1440-1681.2011.05553.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Heart failure (HF) predisposes to atrial fibrillation (AF) as a result of substrate remodelling. The present study aimed to investigate the impact of HF on the electrical remodelling of the pulmonary veins (PV) and left atrium (LA). 2. The electrical activity was recorded in LA and PV from control rabbits and rabbits with rapid ventricular pacing-induced HF, using a multi-electrode array system and conventional microelectrodes. 3. Compared with the control-PV (n = 21), the HF-PV (n = 13) had a higher incidence and frequency of rapid pacing-induced spontaneous activity (85 vs 29%, P = 0.005; 3.5 ± 0.2 vs 1.7 ± 0.1 Hz, P < 0.001) and high-frequency irregular electrical activity (92 vs 38%, P = 0.01; 23 ± 1 vs 19 ± 1 Hz, P = 0.003), greater depolarized resting membrane potential (-59 ± 1 vs -70 ± 2 mV, P < 0.001), higher incidence of early afterdepolarizations (EAD; 69 vs 6%, P = 0.001) and delayed afterdepolarizations (DAD; 92 vs 25%, P = 0.001), and slower conduction velocity (38 ± 2 vs 63 ± 2 cm/s, P < 0.05). In comparison to the HF-LA, the HF-PV had a higher incidence of spontaneous activity and high-frequency irregular electrical activity (85 vs 39%, P = 0.04; 92 vs 46%, P = 0.03), and higher incidence of EAD and DAD, and those differences were not found between the control-LA and control-PV. The control-PV with high-frequency irregular electrical activity had a higher incidence of DAD and spontaneous activity as compared with those without it. 4. HF contributed to an increased automaticity, triggered activity and conduction disturbance in the PV. The PV possessed more arrhythmogenic properties, which might play an important role in the genesis of AF in HF.
Collapse
Affiliation(s)
- Shih-Lin Chang
- Institute of Clinical Medicine and Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chang SL, Chen YC, Yeh YH, Lin YK, Wu TJ, Lin CI, Chen SA, Chen YJ. Heart failure enhanced pulmonary vein arrhythmogenesis and dysregulated sodium and calcium homeostasis with increased calcium sparks. J Cardiovasc Electrophysiol 2011; 22:1378-86. [PMID: 21992547 DOI: 10.1111/j.1540-8167.2011.02126.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UNLABELLED Late sodium currents and intracellular Ca(2+) (Ca(2+) (i)) dynamics play an important role in arrhythmogenesis of pulmonary vein (PV) and heart failure (HF). It is not clear whether HF enhances PV arrhythmogenesis through modulation of Ca(2+) homeostasis and increased late sodium currents. The aim of this study was to investigate the sodium and calcium homeostasis in PV cardiomyocytes with HF. METHODS AND RESULTS Whole-cell patch clamp was used to investigate the action potentials and ionic currents in isolated rabbit single PV cardiomyocytes with and without rapid pacing induced HF. The Ca(2+) (i) dynamics were evaluated through fluorescence and confocal microscopy. As compared to control PV cardiomyocytes (n = 18), HF PV cardiomyocytes (n = 13) had a higher incidence of delayed afterdepolarization (45% vs 13%, P < 0.05) and faster spontaneous activity (3.0 ± 0.2 vs 2.1 ± 0.2 Hz, P < 0.05). HF PV cardiomyocytes had increased late Na(+) currents, Na(+) /Ca(2+) exchanger currents, and transient inward currents, but had decreased Na(+) currents or L-type calcium currents. HF PV cardiomyocytes with pacemaker activity had larger Ca(2+) (i) transients (R410/485, 0.18 ± 0.04 vs 0.11 ± 0.02, P < 0.05), and sarcoplasmic reticulum Ca(2+) stores. Moreover, HF PV cardiomyocytes with pacemaker activity (n = 18) had higher incidence (95% vs 70%, P < 0.05), frequency (7.8 ± 3.1 vs 2.3 ± 1.2 spark/mm/s, P < 0.05), amplitude (F/F(0) , 3.2 ± 0.8 vs 1.9 ± 0.5, P < 0.05), and longer decay time (65 ± 3 vs 48 ± 4 ms, P < 0.05) of Ca(2+) sparks than control PV cardiomyocytes with pacemaker activity (n = 18). CONCLUSIONS Dysregulated sodium and calcium homeostasis, and enhanced calcium sparks promote arrhythmogenesis of PV cardiomyocytes in HF, which may play an important role in the development of atrial fibrillation.
Collapse
Affiliation(s)
- Shih-Lin Chang
- Institute of Clinical Medicine, National Yang-Ming University school of medicine, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Suenari K, Chen YC, Kao YH, Cheng CC, Lin YK, Kihara Y, Chen YJ, Chen SA. Eicosapentaenoic acid reduces the pulmonary vein arrhythmias through nitric oxide. Life Sci 2011; 89:129-36. [PMID: 21684293 DOI: 10.1016/j.lfs.2011.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 05/11/2011] [Accepted: 05/19/2011] [Indexed: 12/31/2022]
Abstract
AIMS Omega-3 polyunsaturated fatty acids can modulate cardiac electrophysiology and reduce the genesis of atrial fibrillation. This study investigates the potential mechanisms through which eicosapentaenoic acid (EPA) reduces pulmonary vein (PV) arrhythmogenesis. MAIN METHODS Conventional microelectrodes were used to record the action potentials (APs), before and after the EPA (0.1 μM and 1.0 μM) administration with and without the presence of a nitric oxide (NO) synthase inhibitor (L-NAME, 100 μM) in isolated rabbit PV tissue preparations. Furthermore, indo-1 fluorimetric ratio technique was used to evaluate intracellular calcium in isolated single PV cardiomyocytes with or without incubation of EPA (1.0 μM, 30 min). KEY FINDINGS EPA concentration-dependently reduced the PV spontaneous beating rate (P<0.05). EPA (1.0 μM) also reduced the amplitude of delayed afterdepolarizations (P<0.05). EPA hyperpolarized the maximal diastolic potential (MDP), shortened AP duration, increased AP amplitude (APA), and reduced diastolic tension and contractility. However, EPA in the presence of L-NAME or omega-9 fatty acids (oleic acid, 1.0 μM) did not have any effect on PV spontaneous activity, AP morphology, or contractile force. A linear regression shows that the decrease in PV spontaneous beating rates induced by EPA correlated well with the changes of MDP, APA, diastolic tension, and contractile force of PVs. In addition, intracellular Ca(2+) transient and sarcoplasmic reticulum Ca(2+) content were significantly more decreased in the EPA-treated cardiomyocytes than in control PV cardiomyocytes as observed by indo-1 fluorescence. SIGNIFICANCE EPA reduces PV arrhythmogenesis through the mechanoelectrical feedback generated by NO production.
Collapse
Affiliation(s)
- Kazuyoshi Suenari
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Lin YK, Chen YC, Chen SA, Chen YJ. Ion Channel Remodeling in Pulmonary Vein Arrhythmogenesis for Atrial Fibrillation. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.jecm.2011.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
38
|
Arrhythmia characterization and long-term outcomes in catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm 2011; 8:864-71. [DOI: 10.1016/j.hrthm.2011.01.048] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 01/30/2011] [Indexed: 11/16/2022]
|
39
|
Sicouri S, Cordeiro JM, Talarico M, Antzelevitch C. Antiarrhythmic effects of losartan and enalapril in canine pulmonary vein sleeve preparations. J Cardiovasc Electrophysiol 2011; 22:698-705. [PMID: 21159010 PMCID: PMC3061245 DOI: 10.1111/j.1540-8167.2010.01972.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Angiotensin-converting enzyme (ACE) inhibitors and angiotensin II-receptor blockers (ARBs) are prototypes of "upstream" therapy for the management of atrial fibrillation (AF). Ectopic activity arising from the PV sleeves plays a prominent role in the development of AF. METHODS Transmembrane action potentials were recorded from canine superfused left superior or inferior PV sleeves using standard microelectrode techniques. Acetylcholine (ACh, 1 μM), isoproterenol (1 μM), high calcium ([Ca(2+)](o) = 5.4 mM) or a combination was used to induce early or delayed afterdepolarizations (EADs or DADs) and triggered activity. RESULTS The ARB losartan (1 μM, n = 5) and the ACE inhibitor enalapril (10 μM, n = 5) produced no significant change in action potential duration, maximum rate of rise of action potential upstroke (V(max)), action potential amplitude or take-off potential at basic cycle lengths of 200 to 2000 ms. Losartan (1 μM) and enalapril (10-20 μM) markedly attenuated or suppressed EADs and DAD-induced triggered activity elicited by exposure of the PV sleeves to ACh, isoproterenol or high calcium following rapid pacing in 6 of 6 (losartan) and 4 of 5 (enalapril) PV sleeve preparations. Neither losartan nor enalapril altered Ca(2+) or K(+) channel currents in enzymatically-dissociated atrial myocytes at these concentrations. CONCLUSIONS Our data suggest that in addition to their "upstream" effects to reduce atrial structural remodeling, ACE inhibitors and ARBs exert a "direct" antiarrhythmic effect by suppressing triggers responsible for the genesis of AF and other atrial arrhythmias.
Collapse
Affiliation(s)
- Serge Sicouri
- Masonic Medical Research Laboratory, Utica, New York 13501-1787, USA.
| | | | | | | |
Collapse
|
40
|
Schotten U, Verheule S, Kirchhof P, Goette A. Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev 2011; 91:265-325. [PMID: 21248168 DOI: 10.1152/physrev.00031.2009] [Citation(s) in RCA: 881] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrillation (AF) is an arrhythmia that can occur as the result of numerous different pathophysiological processes in the atria. Some aspects of the morphological and electrophysiological alterations promoting AF have been studied extensively in animal models. Atrial tachycardia or AF itself shortens atrial refractoriness and causes loss of atrial contractility. Aging, neurohumoral activation, and chronic atrial stretch due to structural heart disease activate a variety of signaling pathways leading to histological changes in the atria including myocyte hypertrophy, fibroblast proliferation, and complex alterations of the extracellular matrix including tissue fibrosis. These changes in electrical, contractile, and structural properties of the atria have been called "atrial remodeling." The resulting electrophysiological substrate is characterized by shortening of atrial refractoriness and reentrant wavelength or by local conduction heterogeneities caused by disruption of electrical interconnections between muscle bundles. Under these conditions, ectopic activity originating from the pulmonary veins or other sites is more likely to occur and to trigger longer episodes of AF. Many of these alterations also occur in patients with or at risk for AF, although the direct demonstration of these mechanisms is sometimes challenging. The diversity of etiological factors and electrophysiological mechanisms promoting AF in humans hampers the development of more effective therapy of AF. This review aims to give a translational overview on the biological basis of atrial remodeling and the proarrhythmic mechanisms involved in the fibrillation process. We pay attention to translation of pathophysiological insights gained from in vitro experiments and animal models to patients. Also, suggestions for future research objectives and therapeutical implications are discussed.
Collapse
Affiliation(s)
- Ulrich Schotten
- Department of Physiology, University Maastricht, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
41
|
Abstract
Although normally absent, spontaneous pacemaker activity can develop in human atrium to promote tachyarrhythmias. HL-1 cells are immortalized atrial cardiomyocytes that contract spontaneously in culture, providing a model system of atrial cell automaticity. Using electrophysiologic recordings and selective pharmacologic blockers, we investigated the ionic basis of automaticity in atrial HL-1 cells. Both the sarcoplasmic reticulum Ca release channel inhibitor ryanodine and the sarcoplasmic reticulum Ca ATPase inhibitor thapsigargin slowed automaticity, supporting a role for intracellular Ca release in pacemaker activity. Additional experiments were performed to examine the effects of ionic currents activating in the voltage range of diastolic depolarization. Inhibition of the hyperpolarization-activated pacemaker current, If, by ivabradine significantly suppressed diastolic depolarization, with modest slowing of automaticity. Block of inward Na currents also reduced automaticity, whereas inhibition of T- and L-type Ca currents caused milder effects to slow beat rate. The major outward current in HL-1 cells is the rapidly activating delayed rectifier, IKr. Inhibition of IKr using dofetilide caused marked prolongation of action potential duration and thus spontaneous cycle length. These results demonstrate a mutual role for both intracellular Ca release and sarcolemmal ionic currents in controlling automaticity in atrial HL-1 cells. Given that similar internal and membrane-based mechanisms also play a role in sinoatrial nodal cell pacemaker activity, our findings provide evidence for generalized conservation of pacemaker mechanisms among different types of cardiomyocytes.
Collapse
Affiliation(s)
- Zhenjiang Yang
- Department of Medicine and Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-6602, USA
| | | |
Collapse
|
42
|
Discrepant electrophysiological characteristics and calcium homeostasis of left atrial anterior and posterior myocytes. Basic Res Cardiol 2010; 106:65-74. [PMID: 21072524 DOI: 10.1007/s00395-010-0132-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 10/13/2010] [Accepted: 10/22/2010] [Indexed: 10/18/2022]
Abstract
The left atrial (LA) posterior wall has been demonstrated to have regional electrophysiological differences with a higher arrhythmogenic potential leading to atrial fibrillation (AF). However, the ionic characteristics and calcium regulation in the LA anterior and posterior myocytes have not been fully elucidated. The purpose of this study was to investigate the electrical characteristics of the LA anterior and posterior myocytes. Whole-cell patch-clamp techniques and the indo-1 fluorimetric ratio technique were used to investigate the characteristics of the ionic currents, action potentials, and intracellular calcium in single isolated rabbit myocytes in the LA anterior and posterior walls. The expression of the Na(+)-Ca(2+) exchanger (NCX) and ryanodine receptor (RyR) were evaluated by a Western blot. The LA posterior myocytes (n = 15) had a higher incidence (53 vs. 19%, P < 0.05) of delayed afterdepolarizations than the LA anterior myocytes (n = 16). The LA posterior myocytes had larger sodium currents and late sodium currents, but smaller inward rectifier potassium currents than the LA anterior myocytes. The LA posterior myocytes had larger intracellular Ca(2+) transient and sarcoplasmic reticulum Ca(2+) contents as compared with the LA anterior myocytes. However, the NCX currents in the LA posterior myocytes were smaller than those in the LA anterior myocytes. The LA posterior myocytes had a smaller protein expression of NCX, but a larger protein expression of RyR than the LA anterior myocytes. In conclusion, LA posterior myocytes contain a high arrhythmogenic potential and distinctive electrophysiological characteristics, which may contribute to the pathophysiology of AF.
Collapse
|
43
|
Yu MC, Huang CF, Chang CM, Chen YC, Lin CI, Chen SA. Diverse cell morphology and intracellular calcium dynamics in pulmonary vein cardiomyocytes. Heart Vessels 2010; 26:101-10. [PMID: 20978896 DOI: 10.1007/s00380-010-0035-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 02/19/2010] [Indexed: 12/01/2022]
Abstract
Pulmonary veins (PVs) contain cardiomyocytes with a complex cellular morphology and high arrhythmogenesis. Ca(2+) regulation and Ca(2+) sparks play a pivotal role in the electrical activity of cardiomyocytes. The purpose of this study was to investigate whether the cell morphology can determine the PV electrical activity and Ca(2+) homeostasis. Through confocal microscopy with fluo-3 Ca(2+) fluorescence, Ca(2+) sparks and Ca(2+) transients were evaluated in isolated single rabbit left atria (LA) and PV cardiomyocytes according to the cell morphology (rod, rod-spindle and spindle/bifurcated). Twenty-two (20%) rod, 49 (43%) rod-spindle and 41 (37%) spindle/bifurcated cardiomyocytes were identified in the LA (n = 29) and PV (n = 83) cardiomyocytes. The PV cardiomyocytes with pacemaker activity had a higher incidence of spindle/bifurcated morphology than LA and PV cardiomyocytes without pacemaker activity. As compared to those in the rod or rod-spindle cardiomyocytes, spindle/bifurcated cardiomyocytes had a larger Ca(2+) transient amplitude and higher frequency of the Ca(2+) sparks with larger amplitude and longer duration. In contrast, rod-spindle and rod cardiomyocytes had similar Ca(2+) transients and Ca(2+) sparks. The cell length correlated well with the amplitude of the Ca(2+) transient and Ca(2+) spark duration with a linear regression. In conclusion, cell morphology and cell length play a potential role in the Ca(2+) homeostasis and Ca(2+) spark. The large Ca(2+) transients and high frequency of Ca(2+) sparks in spindle/bifurcated cardiomyocytes may cause a high arrhythmogenesis in the PV cardiomyocytes with pacemaker activity.
Collapse
Affiliation(s)
- Ming-Chih Yu
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
44
|
Peng G, Lu W, Li X, Chen Y, Zhong N, Ran P, Wang J. Expression of store-operated Ca2+ entry and transient receptor potential canonical and vanilloid-related proteins in rat distal pulmonary venous smooth muscle. Am J Physiol Lung Cell Mol Physiol 2010; 299:L621-30. [PMID: 20693314 DOI: 10.1152/ajplung.00176.2009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic hypoxia causes remodeling and alters contractile responses in both pulmonary arteries and pulmonary veins. Although pulmonary arteries have been studied extensively in these disorders, the mechanisms by which pulmonary veins respond to hypoxia and whether these responses contribute to chronic hypoxic pulmonary hypertension remain poorly understood. In pulmonary arterial smooth muscle, we have previously demonstrated that influx of Ca(2+) through store-operated calcium channels (SOCC) thought to be composed of transient receptor potential (TRP) proteins is likely to play an important role in development of chronic hypoxic pulmonary hypertension. To determine whether this mechanism could also be operative in pulmonary venous smooth muscle, we measured intracellular Ca(2+) concentration ([Ca(2+)](i)) by fura-2 fluorescence microscopy in primary cultures of pulmonary venous smooth muscle cells (PVSMC) isolated from rat distal pulmonary veins. In cells perfused with Ca(2+)-free media containing cyclopiazonic acid (10 μM) and nifedipine (5 μM) to deplete sarcoplasmic reticulum Ca(2+) stores and block voltage-dependent Ca(2+) channels, restoration of extracellular Ca(2+) (2.5 mM) caused marked increases in [Ca(2+)](i), whereas MnCl(2) (200 μM) quenched fura-2 fluorescence, indicating store-operated Ca(2+) entry (SOCE). SKF-96365 and NiCl(2), antagonists of SOCC, blocked SOCE at concentrations that did not alter Ca(2+) responses to 60 mM KCl. Of the seven known canonical TRP (TRPC1-7) and six vanilloid-related TRP channels (TRPV1-6), real-time PCR revealed mRNA expression of TRPC1 > TRPC6 > TRPC4 > TRPC2 ≈ TRPC5 > TRPC3, TRPV2 > TRPV4 > TRPV1 in distal PVSMC, and TRPC1 > TRPC6 > TRPC3 > TRPC4 ≈ TRPC5, TRPV2 ≈ TRPV4 > TRPV1 in rat distal pulmonary vein (PV) smooth muscle. Western blotting confirmed protein expression of TRPC1, TRPC6, TRPV2, and TRPV4 in both PVSMC and PV. Our results suggest that SOCE through Ca(2+) channels composed of TRP proteins may contribute to Ca(2+) signaling in rat distal PV smooth muscle.
Collapse
Affiliation(s)
- Gongyong Peng
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Sicouri S, Carlsson L, Antzelevitch C. Electrophysiologic and antiarrhythmic effects of AZD1305 in canine pulmonary vein sleeves. J Pharmacol Exp Ther 2010; 334:255-9. [PMID: 20360353 PMCID: PMC2912040 DOI: 10.1124/jpet.110.166702] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 03/31/2010] [Indexed: 11/22/2022] Open
Abstract
The objective of this study was to examine the electrophysiologic and antiarrhythmic effects of the new antiarrhythmic agent tert-butyl (2-[7-[2-(4-cyano-2-fluorophenoxy)ethyl]-9-oxa-3,7-diazabicyclo[3.3.1]non3-yl]ethyl)carbamate (AZD1305) in canine pulmonary vein (PV) sleeve preparations isolated from untreated and long-term amiodarone-treated animals. Ectopic activity arising from PV sleeves plays a prominent role in the development of atrial fibrillation (AF). Delayed afterdepolarizations (DADs) and late phase 3 early afterdepolarizations (EADs), originating from the PV have been proposed as potential triggers in initiation of AF. Action potentials were recorded from canine superfused PV sleeves using standard microelectrode techniques. Acetylcholine (1 microM), isoproterenol (1 microM), or their combination was used to induce EADs, DADs, and triggered activity (TA). The effects of AZD1305 (0.1-10 microM) were evaluated in PV sleeve preparations isolated from untreated and amiodarone-treated (40 mg/kg daily for 6 weeks) dogs. AZD1305 (0.1-10 microM, 30 min) significantly prolonged action potential duration and reduced excitability. Abbreviating basic cycle length from 1000 to 300 ms resulted in a decrease of V(max) from 314 +/- 79 to 251 +/- 55 V/s (Delta = -20%) in control and from 177 +/- 53 to 76.5 +/- 33 V/s (Delta = -57%) after AZD1305 (n = 6, p < 0.05). AZD1305 markedly attenuated or suppressed DADs and DAD-induced TA, but not late phase 3 EADs. AZD1305-induced attenuation of excitability, leading to activation failure at much longer cycle lengths, was much more pronounced in PV from amiodarone-treated dogs. Potent effects of AZD1305 to depress excitability, prolong action potential duration, and suppress DAD-induced triggered activity in canine PV sleeve preparations may be effective in suppressing triggers responsible for the genesis of AF and other atrial arrhythmias.
Collapse
Affiliation(s)
- Serge Sicouri
- Masonic Medical Research Laboratory, Utica, NY 13501, USA.
| | | | | |
Collapse
|
46
|
Huh J. Practical stepwise approach to rhythm disturbances in congenital heart diseases. KOREAN JOURNAL OF PEDIATRICS 2010; 53:680-7. [PMID: 21189938 PMCID: PMC2994137 DOI: 10.3345/kjp.2010.53.6.680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 05/19/2010] [Indexed: 11/30/2022]
Abstract
Patients with congenital heart diseases (CHD) are confronted with early- and late-onset complications, such as conduction disorders, arrhythmias, myocardial dysfunction, altered coronary flow, and ischemia, throughout their lifetime despite successful hemodynamic and/or anatomical correction. Rhythm disturbance is a well-known and increasingly frequent cause of morbidity and mortality in patients with CHD. Predisposing factors to rhythm disturbances include underlying cardiac defects, hemodynamic changes as part of the natural history, surgical repair and related scarring, and residual hemodynamic abnormalities. Acquired factors such as aging, hypertension, diabetes, obesity, and others may also contribute to arrhythmogenesis in CHD. The first step in evaluating arrhythmias in CHD is to understand the complex anatomy and to find predisposing factors and hemodynamic abnormalities. A practical stepwise approach can lead to diagnosis and prompt appropriate interventions. Electrophysiological assessment and management should be done with integrated care of the underlying heart defects and hemodynamic abnormalities. Catheter ablation and arrhythmia surgery have been increasingly applied, showing increasing success rates with technological advancement despite complicated arrhythmia circuits in complex anatomy and the difficulty of access. Correction of residual hemodynamic abnormalities may be critical in the treatment of arrhythmia in patients with CHD.
Collapse
Affiliation(s)
- June Huh
- Department of Pediatrics, Cardiac and Vascular Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
47
|
Sugiyasu A, Oginosawa Y, Nogami A, Hata Y. A case with catecholaminergic polymorphic ventricular tachycardia unmasked after successful ablation of atrial tachycardias from pulmonary veins. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2009; 32:e21-4. [PMID: 19712071 DOI: 10.1111/j.1540-8159.2009.02519.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Catecholaminergic polymorphic ventricular tachycardia (VT) is characterized by polymorphic VT during exercise, and the association of atrial fibrillation (AF) has been reported. However, the mechanism of AF in this disease and the relationship between VT and AF has been obscured. We described a 13-year-old girl who referred for catheter ablation of exercise-induced paroxysmal AF. Multifocal atrial tachycardia mimicking AF on the surface electrocardiogram originated from multiple pulmonary veins (PVs). While AT became non-inducible after the isolation of four PVs, polymorphic VT was initiated by isoproterenol infusion. Polymorphic VT was suppressed during rapid atrial pacing.
Collapse
Affiliation(s)
- Aiko Sugiyasu
- Division of Cardiology, Yokohama Rosai Hospital, Yokohama, Japan
| | | | | | | |
Collapse
|
48
|
Cariporide (HOE642) attenuates lactic acidosis induced pulmonary vein arrhythmogenesis. Life Sci 2009; 85:19-25. [DOI: 10.1016/j.lfs.2009.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 04/23/2009] [Accepted: 04/17/2009] [Indexed: 10/20/2022]
|
49
|
Yang YH, Zheng QS, Li J, Shang FJ, Liu T, Wang HT, Liu XT, Liu L. Age-related changes in the atrial muscarinic type 2 receptor and their effects on atrial fibrillation vulnerability in rabbits. Exp Gerontol 2009; 44:572-8. [PMID: 19539740 DOI: 10.1016/j.exger.2009.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 04/23/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
Abstract
Aging plays an important role in increased vulnerability to atrial fibrillation (AF). Mediated by activity at the muscarinic type 2 receptor (M2R), the parasympathetic nerve contributes to the onset of AF. The purpose of this study was to investigate whether aging changes the distribution of M2R in the atrial myocardium and to determine the impact of these changes on AF vulnerability. Expression of M2R in the atrial myocardium was evaluated by immunostaining and Western blot in three groups-young (3 months old), mature (8 months old) and senescent (36-48 months old) rabbits. AF inducibility was recorded with and without cervical vagal stimulation (VS) in vivo in all groups. AF inducibility, the atrial effective refractory period (AERP) and the monophasic action potential (MAP) were recorded in an additional seven senescent rabbits before and after topical administration of tropicamide. The results showed that the density of M2R in the left atrial free wall (LAFW) was significantly higher than that in other parts of the atria. The left atrial appendage had a higher level of M2R expression than the right atrium. The M2R density of the epicardial side was greater than that of endocardial side in both atria. The senescent group had a significant increase in M2R expression in the LAFW relative to the mature group. AF inducibility was also higher in the senescent group than in the other two groups. After tropicamide administration in the senescent rabbits, AF inducibility decreased significantly, the VS-induced decrease in AERP and MAP duration at 90% repolarization (MAPD90) of LAFW was attenuated, and the dispersion of the AERP and MAPD90 increase was attenuated. In conclusion, our results suggested that there is spatial heterogeneity in the M2R distribution in the atria of the rabbit. The density of M2R in the LAFW increased with the aging of rabbits. This change in M2R enhanced the heterogeneity of the M2R distribution and contributed to the change in age-related AF vulnerability.
Collapse
Affiliation(s)
- Yu Hui Yang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Sicouri S, Belardinelli L, Carlsson L, Antzelevitch C. Potent antiarrhythmic effects of chronic amiodarone in canine pulmonary vein sleeve preparations. J Cardiovasc Electrophysiol 2009; 20:803-10. [PMID: 19298559 DOI: 10.1111/j.1540-8167.2009.01449.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To examine the effects of chronic amiodarone on the electrophysiology of canine pulmonary vein (PV) sleeve preparations and left ventricular wedge preparation. BACKGROUND Amiodarone is commonly used for the treatment of ventricular and supraventricular arrhythmias. Ectopic activity arising from the PV plays a prominent role in the development of atrial fibrillation (AF). METHODS Standard microelectrode techniques were used to evaluate the electrophysiological characteristics of superfused PV sleeve (left superior or inferior) and arterially perfused left ventricular (LV) wedge preparations isolated from untreated and chronic amiodarone-treated dogs (amiodarone, 40 mg/kg daily for 6 weeks). RESULTS In PV sleeves, chronic amiodarone (n = 6) induced a significant increase in action potential duration at 90% repolarization (APD90) and a significant use-dependent reduction in Vmax leading to 1:1 activation failure at long cycle lengths (basic cycle length of 124 +/- 15 ms in control vs 420 +/- 320 ms after chronic amiodarone [P < 0.01]). Diastolic threshold of excitation increased from 0.3 +/- 0.2 to 1.8 +/- 0.7 mA (P < 0.01). Delayed and late phase 3 early afterdepolarizations and triggered activity could be induced in PV sleeve preparations using acetylcholine (ACh, 1 microM), high calcium ([Ca2+]o = 5.4 mM), isoproterenol (Iso, 1 microM), or their combination in 6 of 6 untreated PV sleeves, but in only 1 of 5 chronic amiodarone-treated PV sleeve preparations. Vmax, conduction velocity, and 1:1 activation failure were much more affected in PV sleeves versus LV wedge preparations isolated from amiodarone-treated animals. CONCLUSIONS The results point to potent effects of chronic amiodarone to preferentially suppress arrhythmogenic substrates and triggers arising from the PV sleeves of the dog.
Collapse
Affiliation(s)
- Serge Sicouri
- Masonic Medical Research Laboratory, Utica, New York 13501, USA
| | | | | | | |
Collapse
|