1
|
Del Monte A, Sarkozy A, Verbrugge FH. Atrial Fibrillation Management with Guideline-Directed Medical Therapy and Comorbidity Treatment in Heart Failure Patients. Card Electrophysiol Clin 2025; 17:63-73. [PMID: 39893038 DOI: 10.1016/j.ccep.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Atrial myopathy is the underlying pathophysiological substrate of atrial fibrillation and contributes to the risk of heart failure as well. Atrial myopathy is caused by classic risk factors such as obesity, inflammation, diabetes, hypertension, and frequent alcohol use, in addition to structural heart and lung diseases that cause atrial pressure or volume overload. An optimal management of atrial fibrillation includes careful assessment of contributors to atrial myopathy, which can be treated by guideline-recommended medical therapies for heart failure, adequate control of congestion, and treatment of comorbid conditions such as sleep apnea syndrome. This approach works synergistically with rhythm control.
Collapse
Affiliation(s)
- Alvise Del Monte
- Heart Rhythm Management Centre, University Hospital Brussels, Jette, Belgium
| | - Andrea Sarkozy
- Heart Rhythm Management Centre, University Hospital Brussels, Jette, Belgium; Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Frederik H Verbrugge
- Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium; Centre for Cardiovascular Diseases, University Hospital Brussels, Laarbeeklaan 101, Jette 1090, Belgium.
| |
Collapse
|
2
|
Ayagama T, Charles PD, Bose SJ, Boland B, Priestman DA, Aston D, Berridge G, Fischer R, Cribbs AP, Song Q, Mirams GR, Amponsah K, Heather L, Galione A, Herring N, Kramer H, Capel RA, Platt FM, Schotten U, Verheule S, Burton RA. Compartmentalization proteomics revealed endolysosomal protein network changes in a goat model of atrial fibrillation. iScience 2024; 27:109609. [PMID: 38827406 PMCID: PMC11141153 DOI: 10.1016/j.isci.2024.109609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/07/2024] [Accepted: 03/25/2024] [Indexed: 06/04/2024] Open
Abstract
Endolysosomes (EL) are known for their role in regulating both intracellular trafficking and proteostasis. EL facilitate the elimination of damaged membranes, protein aggregates, membranous organelles and play an important role in calcium signaling. The specific role of EL in cardiac atrial fibrillation (AF) is not well understood. We isolated atrial EL organelles from AF goat biopsies and conducted a comprehensive integrated omics analysis to study the EL-specific proteins and pathways. We also performed electron tomography, protein and enzyme assays on these biopsies. Our results revealed the upregulation of the AMPK pathway and the expression of EL-specific proteins that were not found in whole tissue lysates, including GAA, DYNLRB1, CLTB, SIRT3, CCT2, and muscle-specific HSPB2. We also observed structural anomalies, such as autophagic-vacuole formation, irregularly shaped mitochondria, and glycogen deposition. Our results provide molecular information suggesting EL play a role in AF disease process over extended time frames.
Collapse
Affiliation(s)
- Thamali Ayagama
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Samuel J. Bose
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Barry Boland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | | | - Daniel Aston
- Department of Anaesthesia and Critical Care, Royal Papworth Hospital NHS Foundation Trust, Papworth Road, Cambridge CB2 0AY, UK
| | | | - Roman Fischer
- Target Discovery Institute, University of Oxford, Oxford, UK
| | - Adam P. Cribbs
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Headington OX3 7LD, UK
| | - Qianqian Song
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Gary R. Mirams
- Centre for Mathematical Medicine & Biology, Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Kwabena Amponsah
- Centre for Mathematical Medicine & Biology, Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Lisa Heather
- Department of Physiology, Anatomy and Genetics, , University of Oxford, South Park Road, Oxford OX1 3PT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Neil Herring
- Department of Physiology, Anatomy and Genetics, , University of Oxford, South Park Road, Oxford OX1 3PT, UK
| | - Holger Kramer
- Mass spectrometry Facility, The MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | | | - Ulrich Schotten
- Departments of Physiology and Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Sander Verheule
- Departments of Physiology and Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Rebecca A.B. Burton
- Department of Pharmacology, University of Oxford, Oxford, UK
- University of Liverpool, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool, UK
| |
Collapse
|
3
|
Báez Cabanillas MV, Colque R, Tibaldi MÁ, Kaplinsky E, Perrone S, Barbagelata A. Emerging concepts in heart failure management and treatment: focus on tachycardia-induced cardiomyopathy. Drugs Context 2023; 12:dic-2022-8-4. [PMID: 36660016 PMCID: PMC9828873 DOI: 10.7573/dic.2022-8-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/07/2022] [Indexed: 01/04/2023] Open
Abstract
Tachycardia-induced cardiomyopathy is an entity characterized by reversible dysfunction of the left ventricle, which can be induced by different types of arrhythmia such as atrial fibrillation, atrial flutter, incessant supraventricular tachycardia and ventricular arrhythmia (more frequent causes). Correct identification of the causative arrhythmia and normalization of the heart rate (e.g through medical treatment, electrical cardioversion, ablation) can lead to recovery of left ventricular function. Tachycardia-induced cardiomyopathy should be suspected in patients with tachycardia and left ventricular dysfunction (heart failure setting), especially when there is no history of previous heart disease. Its usual phenotype is that of non-ischaemic/non-valvular dilated cardiomyopathy and it can occur in both children (main cause: permanent junctional reciprocating tachycardia) and adults (main cause: atrial fibrillation). With proper treatment, most cases recover within a few months, though there is a risk of relapse, especially when the causal arrhythmia reappears or its control is lost. This is a narrative review that comprehensively addresses the pathophysiology, clinical manifestations, and therapeutic management of tachycardia-induced cardiomyopathy. This article is part of the Emerging concepts in heart failure management and treatment Special Issue: https://www.drugsincontext.com/special_issues/emerging-concepts-in-heart-failure-management-and-treatment.
Collapse
Affiliation(s)
- María Victoria Báez Cabanillas
- Catholic University of Argentina, Buenos Aires, Argentina,Cardiovascular Medicine Department, Sanatorio Allende, Córdoba, Argentina
| | - Roberto Colque
- Cardiovascular Medicine Department, Sanatorio Allende, Córdoba, Argentina
| | | | - Edgardo Kaplinsky
- Cardiology Unit, Medicine Department, Hospital Municipal de Badalona, Barcelona, Spain
| | - Sergio Perrone
- Catholic University of Argentina, Buenos Aires, Argentina,Fleni Institute, Buenos Aires, Argentina
| | - Alejandro Barbagelata
- Catholic University of Argentina, Buenos Aires, Argentina,Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
4
|
Elliott J, Mainardi L, Rodriguez Matas JF. Cellular heterogeneity and repolarisation across the atria: an in silico study. Med Biol Eng Comput 2022; 60:3153-3168. [PMID: 36104609 PMCID: PMC9537222 DOI: 10.1007/s11517-022-02640-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/28/2022] [Indexed: 11/08/2022]
Abstract
Mechanisms of atrial fibrillation and the susceptibility to reentries can be impacted by the repolarization across the atria. Studies into atrial fibrillation ignore cell-to-cell heterogeneity due to electrotonic coupling. Recent studies show that cellular variability may have a larger impact on electrophysiological behaviour than assumed. This paper aims to determine the impact of cellular heterogeneity on the repolarization phase across the AF remodelled atria. Using a population of models approach, 10 anatomically identical atrial models were created to include cellular heterogeneity. Atrial models were compared with an equivalent homogenous model. Activation, APD90, and repolarization maps were used to compare models. The impact of electrotonic coupling in the tissue was determined through a comparison of RMP, APD20, APD50, APD90, and triangulation between regional atrial tissue and the single cell populations. After calibration, cellular heterogeneity does not impact atrial depolarization. Repolarization patterns were significantly impacted by cellular heterogeneity, with the APD90 across the LA increasing due to heterogeneity and the reverse occurring in the RA. Electrotonic coupling caused a reduction in variability across all biomarkers but did not fully remove variability. Electrotonic coupling resulted in an increase in APD20 and APD50, and reduced triangulation compared to isolated cell populations. Heterogeneity also caused a reduction in triangulation compared with regionally homogeneous atria.
Collapse
Affiliation(s)
- Jordan Elliott
- Department of Chemical and Material Engineering, Politecnico Di Milano, 20133, Milan, Italy.
| | - Luca Mainardi
- Department of Electronic, Information and Bioengineering, Politecnico Di Milano, 20133, Milan, Italy
| | | |
Collapse
|
5
|
Jæger KH, Edwards AG, Giles WR, Tveito A. Arrhythmogenic influence of mutations in a myocyte-based computational model of the pulmonary vein sleeve. Sci Rep 2022; 12:7040. [PMID: 35487957 PMCID: PMC9054808 DOI: 10.1038/s41598-022-11110-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/12/2022] [Indexed: 11/09/2022] Open
Abstract
In the heart, electrophysiological dysregulation arises from defects at many biological levels (from point mutations in ion channel proteins to gross structural abnormalities). These defects disrupt the normal pattern of electrical activation, producing ectopic activity and reentrant arrhythmia. To interrogate mechanisms that link these primary biological defects to macroscopic electrophysiologic dysregulation most prior computational studies have utilized either (i) detailed models of myocyte ion channel dynamics at limited spatial scales, or (ii) homogenized models of action potential conduction that reproduce arrhythmic activity at tissue and organ levels. Here we apply our recent model (EMI), which integrates electrical activation and propagation across these scales, to study human atrial arrhythmias originating in the pulmonary vein (PV) sleeves. These small structures initiate most supraventricular arrhythmias and include pronounced myocyte-to-myocyte heterogeneities in ion channel expression and intercellular coupling. To test EMI's cell-based architecture in this physiological context we asked whether ion channel mutations known to underlie atrial fibrillation are capable of initiating arrhythmogenic behavior via increased excitability or reentry in a schematic PV sleeve geometry. Our results illustrate that EMI's improved spatial resolution can directly interrogate how electrophysiological changes at the individual myocyte level manifest in tissue and as arrhythmia in the PV sleeve.
Collapse
Affiliation(s)
| | | | - Wayne R Giles
- Simula Research Laboratory, Oslo, Norway.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | | |
Collapse
|
6
|
Abstract
Conduction disorders and arrhythmias remain difficult to treat and are increasingly prevalent owing to the increasing age and body mass of the general population, because both are risk factors for arrhythmia. Many of the underlying conditions that give rise to arrhythmia - including atrial fibrillation and ventricular arrhythmia, which frequently occur in patients with acute myocardial ischaemia or heart failure - can have an inflammatory component. In the past, inflammation was viewed mostly as an epiphenomenon associated with arrhythmia; however, the recently discovered inflammatory and non-canonical functions of cardiac immune cells indicate that leukocytes can be arrhythmogenic either by altering tissue composition or by interacting with cardiomyocytes; for example, by changing their phenotype or perhaps even by directly interfering with conduction. In this Review, we discuss the electrophysiological properties of leukocytes and how these cells relate to conduction in the heart. Given the thematic parallels, we also summarize the interactions between immune cells and neural systems that influence information transfer, extrapolating findings from the field of neuroscience to the heart and defining common themes. We aim to bridge the knowledge gap between electrophysiology and immunology, to promote conceptual connections between these two fields and to explore promising opportunities for future research.
Collapse
|
7
|
Gopinathannair R, Chen LY, Chung MK, Cornwell WK, Furie KL, Lakkireddy DR, Marrouche NF, Natale A, Olshansky B, Joglar JA. Managing Atrial Fibrillation in Patients With Heart Failure and Reduced Ejection Fraction: A Scientific Statement From the American Heart Association. Circ Arrhythm Electrophysiol 2021; 14:HAE0000000000000078. [PMID: 34129347 DOI: 10.1161/hae.0000000000000078] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Atrial fibrillation and heart failure with reduced ejection fraction are increasing in prevalence worldwide. Atrial fibrillation can precipitate and can be a consequence of heart failure with reduced ejection fraction and cardiomyopathy. Atrial fibrillation and heart failure, when present together, are associated with worse outcomes. Together, these 2 conditions increase the risk of stroke, requiring oral anticoagulation in many or left atrial appendage closure in some. Medical management for rate and rhythm control of atrial fibrillation in heart failure remain hampered by variable success, intolerance, and adverse effects. In multiple randomized clinical trials in recent years, catheter ablation for atrial fibrillation in patients with heart failure and reduced ejection fraction has shown superiority in improving survival, quality of life, and ventricular function and reducing heart failure hospitalizations compared with antiarrhythmic drugs and rate control therapies. This has resulted in a paradigm shift in management toward nonpharmacological rhythm control of atrial fibrillation in heart failure with reduced ejection fraction. The primary objective of this American Heart Association scientific statement is to review the available evidence on the epidemiology and pathophysiology of atrial fibrillation in relation to heart failure and to provide guidance on the latest advances in pharmacological and nonpharmacological management of atrial fibrillation in patients with heart failure and reduced ejection fraction. The writing committee's consensus on the implications for clinical practice, gaps in knowledge, and directions for future research are highlighted.
Collapse
|
8
|
Ramirez RJ, Takemoto Y, Martins RP, Filgueiras-Rama D, Ennis SR, Mironov S, Bhushal S, Deo M, Rajamani S, Berenfeld O, Belardinelli L, Jalife J, Pandit SV. Mechanisms by Which Ranolazine Terminates Paroxysmal but Not Persistent Atrial Fibrillation. Circ Arrhythm Electrophysiol 2019; 12:e005557. [PMID: 31594392 DOI: 10.1161/circep.117.005557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Ranolazine inhibits Na+ current (INa), but whether it can convert atrial fibrillation (AF) to sinus rhythm remains unclear. We investigated antiarrhythmic mechanisms of ranolazine in sheep models of paroxysmal (PxAF) and persistent AF (PsAF). METHODS PxAF was maintained during acute stretch (N=8), and PsAF was induced by long-term atrial tachypacing (N=9). Isolated, Langendorff-perfused sheep hearts were optically mapped. RESULTS In PxAF ranolazine (10 μmol/L) reduced dominant frequency from 8.3±0.4 to 6.2±0.5 Hz (P<0.01) before converting to sinus rhythm, decreased singularity point density from 0.070±0.007 to 0.039±0.005 cm-2 s-1 (P<0.001) in left atrial epicardium (LAepi), and prolonged AF cycle length (AFCL); rotor duration, tip trajectory, and variance of AFCL were unaltered. In PsAF, ranolazine reduced dominant frequency (8.3±0.5 to 6.5±0.4 Hz; P<0.01), prolonged AFCL, increased the variance of AFCL, had no effect on singularity point density (0.048±0.011 to 0.042±0.016 cm-2 s-1; P=ns) and failed to convert AF to sinus rhythm. Doubling the ranolazine concentration (20 μmol/L) or supplementing with dofetilide (1 μmol/L) failed to convert PsAF to sinus rhythm. In computer simulations of rotors, reducing INa decreased dominant frequency, increased tip meandering and produced vortex shedding on wave interaction with unexcitable regions. CONCLUSIONS PxAF and PsAF respond differently to ranolazine. Cardioversion in the former can be attributed partly to decreased dominant frequency and singularity point density, and prolongation of AFCL. In the latter, increased dispersion of AFCL and likely vortex shedding contributes to rotor formation, compensating for any rotor loss, and may underlie the inefficacy of ranolazine to terminate PsAF.
Collapse
Affiliation(s)
- Rafael J Ramirez
- Center for Arrhythmia Research, Department of Internal Medicine-Cardiology, University of Michigan, Ann Arbor (R.J.R., Y.T., R.P.M., D.F.-R., S.R.E., S.M., O.B., J.J., S.V.P.)
| | - Yoshio Takemoto
- Center for Arrhythmia Research, Department of Internal Medicine-Cardiology, University of Michigan, Ann Arbor (R.J.R., Y.T., R.P.M., D.F.-R., S.R.E., S.M., O.B., J.J., S.V.P.)
| | - Raphaël P Martins
- Center for Arrhythmia Research, Department of Internal Medicine-Cardiology, University of Michigan, Ann Arbor (R.J.R., Y.T., R.P.M., D.F.-R., S.R.E., S.M., O.B., J.J., S.V.P.)
| | - David Filgueiras-Rama
- Center for Arrhythmia Research, Department of Internal Medicine-Cardiology, University of Michigan, Ann Arbor (R.J.R., Y.T., R.P.M., D.F.-R., S.R.E., S.M., O.B., J.J., S.V.P.).,Fundación Centro Nacional de Investigaciones Cardiovasculares, Carlos III (CNIC; D.F.-R., J.J.).,Centros de Investigación Biomédica en Red (CIBER) for Cardiovascular Diseases, Madrid, Spain (D.F.-R., J.J.)
| | - Steven R Ennis
- Center for Arrhythmia Research, Department of Internal Medicine-Cardiology, University of Michigan, Ann Arbor (R.J.R., Y.T., R.P.M., D.F.-R., S.R.E., S.M., O.B., J.J., S.V.P.)
| | - Sergey Mironov
- Center for Arrhythmia Research, Department of Internal Medicine-Cardiology, University of Michigan, Ann Arbor (R.J.R., Y.T., R.P.M., D.F.-R., S.R.E., S.M., O.B., J.J., S.V.P.)
| | - Sandesh Bhushal
- Department of Engineering, Norfolk State University, VA (S.B., M.D.)
| | - Makarand Deo
- Department of Engineering, Norfolk State University, VA (S.B., M.D.)
| | - Sridharan Rajamani
- Gilead Sciences, Foster City, CA (S.R., L.B.).,Currently: Amgen Inc, San Francisco, CA (S.R.)
| | - Omer Berenfeld
- Center for Arrhythmia Research, Department of Internal Medicine-Cardiology, University of Michigan, Ann Arbor (R.J.R., Y.T., R.P.M., D.F.-R., S.R.E., S.M., O.B., J.J., S.V.P.)
| | | | - José Jalife
- Center for Arrhythmia Research, Department of Internal Medicine-Cardiology, University of Michigan, Ann Arbor (R.J.R., Y.T., R.P.M., D.F.-R., S.R.E., S.M., O.B., J.J., S.V.P.).,Fundación Centro Nacional de Investigaciones Cardiovasculares, Carlos III (CNIC; D.F.-R., J.J.).,Centros de Investigación Biomédica en Red (CIBER) for Cardiovascular Diseases, Madrid, Spain (D.F.-R., J.J.)
| | - Sandeep V Pandit
- Center for Arrhythmia Research, Department of Internal Medicine-Cardiology, University of Michigan, Ann Arbor (R.J.R., Y.T., R.P.M., D.F.-R., S.R.E., S.M., O.B., J.J., S.V.P.)
| |
Collapse
|
9
|
Kettlewell S, Saxena P, Dempster J, Colman MA, Myles RC, Smith GL, Workman AJ. Dynamic clamping human and rabbit atrial calcium current: narrowing I CaL window abolishes early afterdepolarizations. J Physiol 2019; 597:3619-3638. [PMID: 31093979 PMCID: PMC6767690 DOI: 10.1113/jp277827] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/13/2019] [Indexed: 11/08/2022] Open
Abstract
Key points Early‐afterdepolarizations (EADs) are abnormal action potential oscillations and a known cause of cardiac arrhythmias. Ventricular EADs involve reactivation of a Ca2+ current (ICaL) in its ‘window region’ voltage range. However, electrical mechanisms of atrial EADs, a potential cause of atrial fibrillation, are poorly understood. Atrial cells were obtained from consenting patients undergoing heart surgery, as well as from rabbits. ICaL was blocked with nifedipine and then a hybrid patch clamp/mathematical‐modelling technique, ‘dynamic clamping’, was used to record action potentials at the same time as injecting an artificial, modifiable, ICaL (ICaL,D‐C). Progressively widening the ICaL,D‐C window region produced EADs of various types, dependent on window width. EAD production was strongest upon moving the activation (vs. inactivation) side of the window. EADs were then induced by a different method: increasing ICaL,D‐C amplitude and/or K+ channel‐blockade (4‐aminopyridine). Narrowing of the ICaL,D‐C window by ∼10 mV abolished these EADs. Atrial ICaL window narrowing is worthy of further testing as a potential anti‐atrial fibrillation drug mechanism.
Abstract Atrial early‐afterdepolarizations (EADs) may contribute to atrial fibrillation (AF), perhaps involving reactivation of L‐type Ca2+ current (ICaL) in its window region voltage range. The present study aimed (i) to validate the dynamic clamp technique for modifying the ICaL contribution to atrial action potential (AP) waveform; (ii) to investigate the effects of widening the window ICaL on EAD‐propensity; and (iii) to test whether EADs from increased ICaL and AP duration are supressed by narrowing the window ICaL. ICaL and APs were recorded from rabbit and human atrial myocytes by whole‐cell‐patch clamp. During AP recording, ICaL was inhibited (3 µm nifedipine) and replaced by a dynamic clamp model current, ICaL,D‐C (tuned to native ICaL characteristics), computed in real‐time (every 50 µs) based on myocyte membrane potential. ICaL,D‐C‐injection restored the nifedipine‐suppressed AP plateau. Widening the window ICaL,D‐C, symmetrically by stepwise simultaneous equal shifts of half‐voltages (V0.5) of ICaL,D‐C activation (negatively) and inactivation (positively), generated EADs (single, multiple or preceding repolarization failure) in a window width‐dependent manner, as well as AP alternans. A stronger EAD‐generating effect resulted from independently shifting activation V0.5 (asymmetrical widening) than inactivation V0.5; for example, a 15 mV activation shift produced EADs in nine of 17 (53%) human atrial myocytes vs. 0 of 18 from inactivation shift (P < 0.05). In 11 rabbit atrial myocytes in which EADs were generated either by increasing the conductance of normal window width ICaL,D‐C or subsequent 4‐aminopyridine (2 mm), window ICaL,D‐C narrowing (10 mV) abolished EADs of all types (P < 0.05). The present study validated the dynamic clamp for ICaL, which is novel in atrial cardiomyocytes, and showed that EADs of various types are generated by widening (particularly asymmetrically) the window ICaL, as well as abolished by narrowing it. Window ICaL narrowing is a potential therapeutic mechanism worth pursuing in the search for improved anti‐AF drugs. Early‐afterdepolarizations (EADs) are abnormal action potential oscillations and a known cause of cardiac arrhythmias. Ventricular EADs involve reactivation of a Ca2+ current (ICaL) in its ‘window region’ voltage range. However, electrical mechanisms of atrial EADs, a potential cause of atrial fibrillation, are poorly understood. Atrial cells were obtained from consenting patients undergoing heart surgery, as well as from rabbits. ICaL was blocked with nifedipine and then a hybrid patch clamp/mathematical‐modelling technique, ‘dynamic clamping’, was used to record action potentials at the same time as injecting an artificial, modifiable, ICaL (ICaL,D‐C). Progressively widening the ICaL,D‐C window region produced EADs of various types, dependent on window width. EAD production was strongest upon moving the activation (vs. inactivation) side of the window. EADs were then induced by a different method: increasing ICaL,D‐C amplitude and/or K+ channel‐blockade (4‐aminopyridine). Narrowing of the ICaL,D‐C window by ∼10 mV abolished these EADs. Atrial ICaL window narrowing is worthy of further testing as a potential anti‐atrial fibrillation drug mechanism.
Collapse
Affiliation(s)
- Sarah Kettlewell
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - Priyanka Saxena
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - John Dempster
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | - Rachel C Myles
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - Godfrey L Smith
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - Antony J Workman
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
10
|
Shamsaldeen YA, Culliford L, Clout M, James AF, Ascione R, Hancox JC, Marrion NV. Role of SK channel activation in determining the action potential configuration in freshly isolated human atrial myocytes from the SKArF study. Biochem Biophys Res Commun 2019; 512:684-690. [PMID: 30922569 DOI: 10.1016/j.bbrc.2019.03.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/13/2019] [Indexed: 10/27/2022]
Abstract
Inhibition of SK channel function is being pursued in animal models as a possible therapeutic approach to treat atrial fibrillation (AF). However, the pharmacology of SK channels in human atria is unclear. SK channel function is inhibited by both apamin and UCL1684, with the former discriminating between SK channel subtypes. In this proof-of-principle study, the effects of apamin and UCL1684 on right atrial myocytes freshly isolated from patients in sinus rhythm undergoing elective cardiac surgery were investigated. Outward current evoked from voltage clamped human atrial myocytes was reduced by these two inhibitors of SK channel function. In contrast, membrane current underlying the atrial action potential was affected significantly only by UCL1684 and not by apamin. This pharmacology mirrors that observed in mouse atria, suggesting that mammalian atria possess two populations of SK channels, with only one population contributing to the action potential waveform. Immuno-visualization of the subcellular localization of SK2 and SK3 subunits showed a high degree of colocalization, consistent with the formation of heteromeric SK2/SK3 channels. These data reveal that human atrial myocytes express two SK channel subtypes, one exhibiting an unusual pharmacology. These channels contribute to the atrial action potential waveform and might be a target for novel therapeutic approaches to treat supraventricular arrhythmic conditions such as atrial fibrillation.
Collapse
Affiliation(s)
- Yousif A Shamsaldeen
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Lucy Culliford
- Clinical Trials and Evaluation Unit, Bristol Trials Centre, Bristol Medical School, University of Bristol, Bristol, UK
| | - Madeleine Clout
- Clinical Trials and Evaluation Unit, Bristol Trials Centre, Bristol Medical School, University of Bristol, Bristol, UK
| | - Andrew F James
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Raimondo Ascione
- Translational Biomedical Research Centre, Faculty of Health Sciences, University of Bristol, UK
| | - Jules C Hancox
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Neil V Marrion
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
11
|
Scott L, Li N, Dobrev D. Role of inflammatory signaling in atrial fibrillation. Int J Cardiol 2018; 287:195-200. [PMID: 30316645 DOI: 10.1016/j.ijcard.2018.10.020] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 01/09/2023]
Abstract
Atrial fibrillation (AF), the most prevalent arrhythmia, is often associated with enhanced inflammatory response. Emerging evidence points to a causal role of inflammatory signaling pathways in the evolution of atrial electrical, calcium handling and structural remodeling, which create the substrate of AF development. In this review, we discuss the clinical evidence supporting the association between inflammatory indices and AF development, the molecular and cellular mechanisms of AF, which appear to involve multiple canonical inflammatory pathways, and the potential of anti-inflammatory therapeutic approaches in AF prevention/treatment.
Collapse
Affiliation(s)
- Larry Scott
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA; Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Na Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA; Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
12
|
Influence of Amiodarone and Dronedarone on the Force-Interval Dependence of Rat Myocardium. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4737489. [PMID: 30155479 PMCID: PMC6098862 DOI: 10.1155/2018/4737489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 06/21/2018] [Indexed: 11/17/2022]
Abstract
The antiarrhythmic effect of amiodarone and its analogue dronedarone is caused by their direct actions on several cardiomyocyte sarcolemmal ion currents. However, whether their effects are related to intracellular calcium levels is not exactly known. Ca2+ cycling refers to the release and reuptake of intracellular Ca2+, which induces muscle contraction and relaxation and determines the force-interval dependence. This study aimed to evaluate the influence of amiodarone and dronedarone on the force-interval relationship. Materials and Results. The work was performed on the papillary muscles of the left ventricle of male Wistar rats. Muscle perfusion was performed at 36.5°C with oxygenated Krebs-Henseleit solution with baseline stimulation 0.5 Hz. The postrest test (4-60 s) and the extrasystolic exposure (0.2-1.5 s) were evaluated. Inotropic reaction to the test exposure was evaluated before and after muscle perfusion with solution containing amiodarone (10−6 M) or dronedarone (10−6 M) during 10 min. Amiodarone or dronedarone led to decrease of the amplitude of extrasystolic contractions of the papillary muscles. The amplitude of postextrasystolic contractions after short extrasystolic intervals on the background of the drugs was increased. Amiodarone and dronedarone led to increase of the amplitude of postrest contractions. Conclusions. Dronedarone reduces the excitability of cardiomyocyte sarcolemma to a greater extent than amiodarone. Amiodarone and dronedarone are able to increase postextrasystolic and postrest potentiation. The effect of amiodarone on postextrasystolic and postrest potentiation is more pronounced in comparison with dronedarone.
Collapse
|
13
|
Rahm AK, Lugenbiel P, Schweizer PA, Katus HA, Thomas D. Role of ion channels in heart failure and channelopathies. Biophys Rev 2018; 10:1097-1106. [PMID: 30019205 PMCID: PMC6082303 DOI: 10.1007/s12551-018-0442-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022] Open
Abstract
Heart failure (HF) is a complication of multiple cardiac diseases and is characterized by impaired contractile and electric function. Patients with HF are not only limited by reduced contractile function but are also prone to life-threatening ventricular arrhythmias. HF itself leads to remodeling of ion channels, gap junctions, and intracellular calcium handling abnormalities that in combination with structural remodeling, e.g., fibrosis, produce a substrate for an arrhythmogenic disorders. Not only ventricular life-threatening arrhythmias contribute to increased morbidity and mortality but also atrial arrhythmias, especially atrial fibrillation (AF), are common in HF patients and contribute to morbidity and mortality. The distinct ion channel remodeling processes in HF and in channelopathies associated with HF will be discussed. Further basic research and clinical studies are needed to identify underlying molecular pathways of HF pathophysiology to provide the basis for improved patient care and individualized therapy based on individualized ion channel composition and remodeling.
Collapse
Affiliation(s)
- Ann-Kathrin Rahm
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Patrick Lugenbiel
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Patrick A. Schweizer
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Hugo A. Katus
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Dierk Thomas
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
14
|
Roney CH, Bayer JD, Cochet H, Meo M, Dubois R, Jaïs P, Vigmond EJ. Variability in pulmonary vein electrophysiology and fibrosis determines arrhythmia susceptibility and dynamics. PLoS Comput Biol 2018; 14:e1006166. [PMID: 29795549 PMCID: PMC5997352 DOI: 10.1371/journal.pcbi.1006166] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/12/2018] [Accepted: 04/30/2018] [Indexed: 11/28/2022] Open
Abstract
Success rates for catheter ablation of persistent atrial fibrillation patients are currently low; however, there is a subset of patients for whom electrical isolation of the pulmonary veins alone is a successful treatment strategy. It is difficult to identify these patients because there are a multitude of factors affecting arrhythmia susceptibility and maintenance, and the individual contributions of these factors are difficult to determine clinically. We hypothesised that the combination of pulmonary vein (PV) electrophysiology and atrial body fibrosis determine driver location and effectiveness of pulmonary vein isolation (PVI). We used bilayer biatrial computer models based on patient geometries to investigate the effects of PV properties and atrial fibrosis on arrhythmia inducibility, maintenance mechanisms, and the outcome of PVI. Short PV action potential duration (APD) increased arrhythmia susceptibility, while longer PV APD was found to be protective. Arrhythmia inducibility increased with slower conduction velocity (CV) at the LA/PV junction, but not for cases with homogeneous CV changes or slower CV at the distal PV. Phase singularity (PS) density in the PV region for cases with PV fibrosis was increased. Arrhythmia dynamics depend on both PV properties and fibrosis distribution, varying from meandering rotors to PV reentry (in cases with baseline or long APD), to stable rotors at regions of high fibrosis density. Measurement of fibrosis and PV properties may indicate patient specific susceptibility to AF initiation and maintenance. PV PS density before PVI was higher for cases in which AF terminated or converted to a macroreentry; thus, high PV PS density may indicate likelihood of PVI success. Atrial fibrillation is the most commonly encountered cardiac arrhythmia, affecting a significant portion of the population. Currently, ablation is the most effective treatment but success rates are less than optimal, being 70% one-year post-treatment. There is a large effort to find better ablation strategies to permanently cure the condition. Pulmonary vein isolation by ablation is more or less the standard of care, but many questions remain since pulmonary vein ectopy by itself does not explain all of the clinical successes or failures. We used computer simulations to investigate how electrophysiological properties of the pulmonary veins can affect rotor formation and maintenance in patients suffering from atrial fibrillation. We used complex, biophysical representations of cellular electrophysiology in highly detailed geometries constructed from patient scans. We heterogeneously varied electrophysiological and structural properties to see their effects on rotor initiation and maintenance. Our study suggests a metric for indicating the likelihood of success of pulmonary vein isolation. Thus either measuring this clinically, or running patient-specific simulations to estimate this metric may suggest whether ablation in addition to pulmonary vein isolation should be performed. Our study provides motivation for a retrospective clinical study or experimental study into this metric.
Collapse
Affiliation(s)
- Caroline H. Roney
- IHU Liryc, Electrophysiology and Heart Modeling Institute, foundation Bordeaux Université, F-33600 Pessac- Bordeaux, France
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, United Kingdom
| | - Jason D. Bayer
- IHU Liryc, Electrophysiology and Heart Modeling Institute, foundation Bordeaux Université, F-33600 Pessac- Bordeaux, France
- Univ. Bordeaux, IMB UMR 5251, CNRS, F-33400 Talence, France
| | - Hubert Cochet
- IHU Liryc, Electrophysiology and Heart Modeling Institute, foundation Bordeaux Université, F-33600 Pessac- Bordeaux, France
- Hôpital Cardiologique du Haut-L’évêque, Université de Bordeaux, LIRYC Institute: IHU LIRYC ANR-10-IAHU-04 and Equipex MUSIC ANR-11-EQPX-0030, Bordeaux, France
| | - Marianna Meo
- IHU Liryc, Electrophysiology and Heart Modeling Institute, foundation Bordeaux Université, F-33600 Pessac- Bordeaux, France
| | - Rémi Dubois
- IHU Liryc, Electrophysiology and Heart Modeling Institute, foundation Bordeaux Université, F-33600 Pessac- Bordeaux, France
| | - Pierre Jaïs
- IHU Liryc, Electrophysiology and Heart Modeling Institute, foundation Bordeaux Université, F-33600 Pessac- Bordeaux, France
- Hôpital Cardiologique du Haut-L’évêque, Université de Bordeaux, LIRYC Institute: IHU LIRYC ANR-10-IAHU-04 and Equipex MUSIC ANR-11-EQPX-0030, Bordeaux, France
| | - Edward J. Vigmond
- IHU Liryc, Electrophysiology and Heart Modeling Institute, foundation Bordeaux Université, F-33600 Pessac- Bordeaux, France
- Univ. Bordeaux, IMB UMR 5251, CNRS, F-33400 Talence, France
- * E-mail:
| |
Collapse
|
15
|
Seidl MD, Stein J, Hamer S, Pluteanu F, Scholz B, Wardelmann E, Huge A, Witten A, Stoll M, Hammer E, Völker U, Müller FU. Characterization of the Genetic Program Linked to the Development of Atrial Fibrillation in CREM-IbΔC-X Mice. Circ Arrhythm Electrophysiol 2017; 10:CIRCEP.117.005075. [DOI: 10.1161/circep.117.005075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/10/2017] [Indexed: 12/19/2022]
Abstract
Background—
Reduced expression of genes regulated by the transcription factors CREB/CREM (cAMP response element-binding protein/modulator) is linked to atrial fibrillation (AF) susceptibility in patients. Cardiomyocyte-directed expression of the inhibitory CREM isoform CREM-IbΔC-X in transgenic mice (TG) leads to spontaneous-onset AF preceded by atrial dilatation and conduction abnormalities. Here, we characterized the altered gene program linked to atrial remodeling and development of AF in CREM-TG mice.
Methods and Results—
Atria of young (TGy, before AF onset) and old (TGo, after AF onset) TG mice were investigated by mRNA microarray profiling in comparison with age-matched wild-type controls (WTy/WTo). Proteomic alterations were profiled in young mice (8 TGy versus 8 WTy). Annotation of differentially expressed genes revealed distinct differences in biological functions and pathways before and after onset of AF. Alterations in metabolic pathways, some linked to altered peroxisome proliferator–activated receptor signaling, muscle contraction, and ion transport were already present in TGy. Electron microscopy revealed significant loss of sarcomeres and mitochondria and increased collagen and glycogen deposition in TG mice. Alterations in electrophysiological pathways became prominent in TGo, concomitant with altered gene expression of K
+
-channel subunits and ion channel modulators, relevant in human AF.
Conclusions—
The most prominent alterations of the gene program linked to CREM-induced atrial remodeling were identified in the expression of genes related to structure, metabolism, contractility, and electric activity regulation, suggesting that CREM transgenic mice are a valuable experimental model for human AF pathophysiology.
Collapse
Affiliation(s)
- Matthias D. Seidl
- From the Institute of Pharmacology and Toxicology, University of Münster, Germany (M.D.S., J.S., S.H., F.P., B.S., F.U.M.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (A.H., A.W., M.S.); Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Germany (E.W.); Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany (E.H., U.V.); and German Centre for Cardiovascular Research, Partner Site
| | - Juliane Stein
- From the Institute of Pharmacology and Toxicology, University of Münster, Germany (M.D.S., J.S., S.H., F.P., B.S., F.U.M.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (A.H., A.W., M.S.); Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Germany (E.W.); Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany (E.H., U.V.); and German Centre for Cardiovascular Research, Partner Site
| | - Sabine Hamer
- From the Institute of Pharmacology and Toxicology, University of Münster, Germany (M.D.S., J.S., S.H., F.P., B.S., F.U.M.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (A.H., A.W., M.S.); Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Germany (E.W.); Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany (E.H., U.V.); and German Centre for Cardiovascular Research, Partner Site
| | - Florentina Pluteanu
- From the Institute of Pharmacology and Toxicology, University of Münster, Germany (M.D.S., J.S., S.H., F.P., B.S., F.U.M.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (A.H., A.W., M.S.); Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Germany (E.W.); Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany (E.H., U.V.); and German Centre for Cardiovascular Research, Partner Site
| | - Beatrix Scholz
- From the Institute of Pharmacology and Toxicology, University of Münster, Germany (M.D.S., J.S., S.H., F.P., B.S., F.U.M.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (A.H., A.W., M.S.); Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Germany (E.W.); Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany (E.H., U.V.); and German Centre for Cardiovascular Research, Partner Site
| | - Eva Wardelmann
- From the Institute of Pharmacology and Toxicology, University of Münster, Germany (M.D.S., J.S., S.H., F.P., B.S., F.U.M.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (A.H., A.W., M.S.); Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Germany (E.W.); Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany (E.H., U.V.); and German Centre for Cardiovascular Research, Partner Site
| | - Andreas Huge
- From the Institute of Pharmacology and Toxicology, University of Münster, Germany (M.D.S., J.S., S.H., F.P., B.S., F.U.M.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (A.H., A.W., M.S.); Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Germany (E.W.); Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany (E.H., U.V.); and German Centre for Cardiovascular Research, Partner Site
| | - Anika Witten
- From the Institute of Pharmacology and Toxicology, University of Münster, Germany (M.D.S., J.S., S.H., F.P., B.S., F.U.M.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (A.H., A.W., M.S.); Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Germany (E.W.); Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany (E.H., U.V.); and German Centre for Cardiovascular Research, Partner Site
| | - Monika Stoll
- From the Institute of Pharmacology and Toxicology, University of Münster, Germany (M.D.S., J.S., S.H., F.P., B.S., F.U.M.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (A.H., A.W., M.S.); Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Germany (E.W.); Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany (E.H., U.V.); and German Centre for Cardiovascular Research, Partner Site
| | - Elke Hammer
- From the Institute of Pharmacology and Toxicology, University of Münster, Germany (M.D.S., J.S., S.H., F.P., B.S., F.U.M.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (A.H., A.W., M.S.); Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Germany (E.W.); Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany (E.H., U.V.); and German Centre for Cardiovascular Research, Partner Site
| | - Uwe Völker
- From the Institute of Pharmacology and Toxicology, University of Münster, Germany (M.D.S., J.S., S.H., F.P., B.S., F.U.M.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (A.H., A.W., M.S.); Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Germany (E.W.); Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany (E.H., U.V.); and German Centre for Cardiovascular Research, Partner Site
| | - Frank U. Müller
- From the Institute of Pharmacology and Toxicology, University of Münster, Germany (M.D.S., J.S., S.H., F.P., B.S., F.U.M.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (A.H., A.W., M.S.); Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Germany (E.W.); Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany (E.H., U.V.); and German Centre for Cardiovascular Research, Partner Site
| |
Collapse
|
16
|
Ramírez-Barrera JD, Agudelo-Uribe JF, Correa-Velásquez R, González-Rivera E. Fisiopatología de la fibrilación auricular. REVISTA COLOMBIANA DE CARDIOLOGÍA 2016. [DOI: 10.1016/j.rccar.2016.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
17
|
Pandit SV, Workman AJ. Atrial Electrophysiological Remodeling and Fibrillation in Heart Failure. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2016; 10:41-46. [PMID: 27812293 PMCID: PMC5089851 DOI: 10.4137/cmc.s39713] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/24/2016] [Accepted: 09/09/2016] [Indexed: 11/21/2022]
Abstract
Heart failure (HF) causes complex, chronic changes in atrial structure and function, which can cause substantial electrophysiological remodeling and predispose the individual to atrial fibrillation (AF). Pharmacological treatments for preventing AF in patients with HF are limited. Improved understanding of the atrial electrical and ionic/molecular mechanisms that promote AF in these patients could lead to the identification of novel therapeutic targets. Animal models of HF have identified numerous changes in atrial ion currents, intracellular calcium handling, action potential waveform and conduction, as well as expression and signaling of associated proteins. These studies have shown that the pattern of electrophysiological remodeling likely depends on the duration of HF, the underlying cardiac pathology, and the species studied. In atrial myocytes and tissues obtained from patients with HF or left ventricular systolic dysfunction, the data on changes in ion currents and action potentials are largely equivocal, probably owing mainly to difficulties in controlling for the confounding influences of multiple variables, such as patient’s age, sex, disease history, and drug treatments, as well as the technical challenges in obtaining such data. In this review, we provide a summary and comparison of the main animal and human electrophysiological studies to date, with the aim of highlighting the consistencies in some of the remodeling patterns, as well as identifying areas of contention and gaps in the knowledge, which warrant further investigation.
Collapse
Affiliation(s)
- Sandeep V Pandit
- Department of Internal Medicine - Cardiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, USA
| | - Antony J Workman
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
18
|
Czick ME, Shapter CL, Silverman DI. Atrial Fibrillation: The Science behind Its Defiance. Aging Dis 2016; 7:635-656. [PMID: 27699086 PMCID: PMC5036958 DOI: 10.14336/ad.2016.0211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/11/2016] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most prevalent arrhythmia in the world, due both to its tenacious treatment resistance, and to the tremendous number of risk factors that set the stage for the atria to fibrillate. Cardiopulmonary, behavioral, and psychological risk factors generate electrical and structural alterations of the atria that promote reentry and wavebreak. These culminate in fibrillation once atrial ectopic beats set the arrhythmia process in motion. There is growing evidence that chronic stress can physically alter the emotion centers of the limbic system, changing their input to the hypothalamic-limbic-autonomic network that regulates autonomic outflow. This leads to imbalance of the parasympathetic and sympathetic nervous systems, most often in favor of sympathetic overactivation. Autonomic imbalance acts as a driving force behind the atrial ectopy and reentry that promote AF. Careful study of AF pathophysiology can illuminate the means that enable AF to elude both pharmacological control and surgical cure, by revealing ways in which antiarrhythmic drugs and surgical and ablation procedures may paradoxically promote fibrillation. Understanding AF pathophysiology can also help clarify the mechanisms by which emerging modalities aiming to correct autonomic imbalance, such as renal sympathetic denervation, may offer potential to better control this arrhythmia. Finally, growing evidence supports lifestyle modification approaches as adjuncts to improve AF control.
Collapse
Affiliation(s)
| | | | - David I. Silverman
- Echocardiography Laboratory, Hartford Hospital, Hartford, CT 06106, USA.
| |
Collapse
|
19
|
A Computer Simulation Study of Anatomy Induced Drift of Spiral Waves in the Human Atrium. BIOMED RESEARCH INTERNATIONAL 2015; 2015:731386. [PMID: 26587545 PMCID: PMC4637448 DOI: 10.1155/2015/731386] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/09/2014] [Indexed: 12/03/2022]
Abstract
The interaction of spiral waves of excitation with atrial anatomy remains unclear. This simulation study isolates the role of atrial anatomical structures on spiral wave spontaneous drift in the human atrium. We implemented realistic and idealised 3D human atria models to investigate the functional impact of anatomical structures on the long-term (∼40 s) behaviour of spiral waves. The drift of a spiral wave was quantified by tracing its tip trajectory, which was correlated to atrial anatomical features. The interaction of spiral waves with the following idealised geometries was investigated: (a) a wedge-like structure with a continuously varying atrial wall thickness; (b) a ridge-like structure with a sudden change in atrial wall thickness; (c) multiple bridge-like structures consisting of a bridge connected to the atrial wall. Spiral waves drifted from thicker to thinner regions and along ridge-like structures. Breakthrough patterns caused by pectinate muscles (PM) bridges were also observed, albeit infrequently. Apparent anchoring close to PM-atrial wall junctions was observed. These observations were similar in both the realistic and the idealised models. We conclude that spatially altering atrial wall thickness is a significant cause of drift of spiral waves. PM bridges cause breakthrough patterns and induce transient anchoring of spiral waves.
Collapse
|
20
|
Abstract
Optimal cardiac function depends on proper timing of excitation and contraction in various regions of the heart, as well as on appropriate heart rate. This is accomplished via specialized electrical properties of various components of the system, including the sinoatrial node, atria, atrioventricular node, His-Purkinje system, and ventricles. Here we review the major regionally determined electrical properties of these cardiac regions and present the available data regarding the molecular and ionic bases of regional cardiac function and dysfunction. Understanding these differences is of fundamental importance for the investigation of arrhythmia mechanisms and pharmacotherapy.
Collapse
Affiliation(s)
- Daniel C Bartos
- Department of Pharmacology, University of California Davis, Davis, California, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, California, USA
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California Davis, Davis, California, USA
| |
Collapse
|
21
|
Hancock JM, Weatherall KL, Choisy SC, James AF, Hancox JC, Marrion NV. Selective activation of heteromeric SK channels contributes to action potential repolarization in mouse atrial myocytes. Heart Rhythm 2015; 12:1003-15. [PMID: 25620048 DOI: 10.1016/j.hrthm.2015.01.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND Activation of small conductance calcium-activated potassium (SK) channels is proposed to contribute to repolarization of the action potential in atrial myocytes. This role is controversial, as these cardiac SK channels appear to exhibit an uncharacteristic pharmacology. OBJECTIVES The objectives of this study were to resolve whether activation of SK channels contributes to atrial action potential repolarization and to determine the likely subunit composition of the channel. METHODS The effect of 2 SK channel inhibitors was assessed on outward current evoked in voltage clamp and on action potential duration in perforated patch and whole-cell current clamp recording from acutely isolated mouse atrial myocytes. The presence of SK channel subunits was assessed using immunocytochemistry. RESULTS A significant component of outward current was reduced by the SK channel blockers apamin and UCL1684. Block by apamin displayed a sensitivity indicating that this current was carried by homomeric SK2 channels. Action potential duration was significantly prolonged by UCL1684, but not by apamin. This effect was accompanied by an increase in beat-to-beat variability and action potential triangulation. This pharmacology was matched by that of expressed heteromeric SK2-SK3 channels in HEK293 cells. Immunocytochemistry showed that atrial myocytes express both SK2 and SK3 channels with an overlapping expression pattern. CONCLUSION Only proposed heteromeric SK2-SK3 channels are physiologically activated to contribute to action potential repolarization, which is indicated by the difference in pharmacology of evoked outward current and prolongation of atrial action potential duration. The effect of blocking this channel on the action potential suggests that SK channel inhibition during cardiac function has the potential to be proarrhythmic.
Collapse
Affiliation(s)
- Jane M Hancock
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Kate L Weatherall
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Stéphanie C Choisy
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Andrew F James
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Jules C Hancox
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Neil V Marrion
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
22
|
Turnow K, Metzner K, Cotella D, Morales MJ, Schaefer M, Christ T, Ravens U, Wettwer E, Kämmerer S. Interaction of DPP10a with Kv4.3 channel complex results in a sustained current component of human transient outward current Ito. Basic Res Cardiol 2015; 110:5. [PMID: 25600224 DOI: 10.1007/s00395-014-0457-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 11/21/2014] [Accepted: 12/09/2014] [Indexed: 01/19/2023]
Abstract
The sustained component of the K(+) outward current in human atrial myocytes is believed to be due to the slowly inactivating ultra-rapid potassium current I Kur and not to the fast inactivating transient outward current Ito. Here we provide evidence for contribution of Ito to this late current due to the effects of dipeptidyl peptidase-like protein (DPP) 10 (DPP10a) interacting with Kv4.3 channels. We studied the late current component of Ito in human atrial myocytes and CHO cells co-expressing Kv4.3 or Kv4.3/KChIP2 (control) and DPP proteins using voltage-clamp technique and a pharmacological approach. A voltage dependent and slowly inactivating late current (43% of peak amplitude) could be observed in atrial myocytes. We found a similar current in CHO cells expressing Kv4.3/KChIP2 + DPP10a, but not in cells co-expressing Kv4.3 + DPP or Kv4.3/KChIP2 + DPP6-S. Assuming that DPP10a influences atrial Ito, we detected DPP10 expression of three alternatively spliced mRNAs, DPP10 protein and colocalization of Kv4.3 and DPP10 proteins in human atrial myocytes. DPP10a did not affect properties of expressed Kv1.5 excluding a contribution to the sustained IKur in atrial cells. To test for the contribution of Kv4-based Ito on sustained K(+) outward currents in human atrial myocytes, we used 4-AP to block IKur, in combination with Heteropoda toxin 2 to block Kv4 channels. We could clearly separate an Ito fraction of about 19% contributing to the late current in atrial myocytes. Thus, the interaction of DPP10a, expressed in human atrium, with Kv4.3 channels generates a sustained current component of Ito, which may affect late repolarization phase of atrial action potentials.
Collapse
Affiliation(s)
- K Turnow
- Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wolke C, Bukowska A, Goette A, Lendeckel U. Redox control of cardiac remodeling in atrial fibrillation. Biochim Biophys Acta Gen Subj 2014; 1850:1555-65. [PMID: 25513966 DOI: 10.1016/j.bbagen.2014.12.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/04/2014] [Accepted: 12/09/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common arrhythmia in clinical practice and is a potential cause of thromboembolic events. AF induces significant changes in the electrophysiological properties of atrial myocytes and causes alterations in the structure, metabolism, and function of the atrial tissue. The molecular basis for the development of structural atrial remodeling of fibrillating human atria is still not fully understood. However, increased production of reactive oxygen or nitrogen species (ROS/RNS) and the activation of specific redox-sensitive signaling pathways observed both in patients with and animal models of AF are supposed to contribute to development, progression and self-perpetuation of AF. SCOPE OF REVIEW The present review summarizes the sources and targets of ROS/RNS in the setting of AF and focuses on key redox-sensitive signaling pathways that are implicated in the pathogenesis of AF and function either to aggravate or protect from disease. MAJOR CONCLUSIONS NADPH oxidases and various mitochondrial monooxygenases are major sources of ROS during AF. Besides direct oxidative modification of e.g. ion channels and ion handling proteins that are crucially involved in action potential generation and duration, AF leads to the reversible activation of redox-sensitive signaling pathways mediated by activation of redox-regulated proteins including Nrf2, NF-κB, and CaMKII. Both processes are recognized to contribute to the formation of a substrate for AF and, thus, to increase AF inducibility and duration. GENERAL SIGNIFICANCE AF is a prevalent disease and due to the current demographic developments its socio-economic relevance will further increase. Improving our understanding of the role that ROS and redox-related (patho)-mechanisms play in the development and progression of AF may allow the development of a targeted therapy for AF that surpasses the efficacy of previous general anti-oxidative strategies. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Carmen Wolke
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, D-17487 Greifswald, Germany
| | - Alicja Bukowska
- EUTRAF Working Group: Molecular Electrophysiology, University Hospital Magdeburg, D-39120 Magdeburg, Germany
| | - Andreas Goette
- EUTRAF Working Group: Molecular Electrophysiology, University Hospital Magdeburg, D-39120 Magdeburg, Germany; Department of Cardiology and Intensive Care Medicine, St. Vincenz-Hospital, D-33098 Paderborn, Germany
| | - Uwe Lendeckel
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, D-17487 Greifswald, Germany.
| |
Collapse
|
24
|
Ravens U, Katircioglu-Öztürk D, Wettwer E, Christ T, Dobrev D, Voigt N, Poulet C, Loose S, Simon J, Stein A, Matschke K, Knaut M, Oto E, Oto A, Güvenir HA. Application of the RIMARC algorithm to a large data set of action potentials and clinical parameters for risk prediction of atrial fibrillation. Med Biol Eng Comput 2014; 53:263-73. [PMID: 25466224 DOI: 10.1007/s11517-014-1232-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 11/16/2014] [Indexed: 12/20/2022]
Abstract
Ex vivo recorded action potentials (APs) in human right atrial tissue from patients in sinus rhythm (SR) or atrial fibrillation (AF) display a characteristic spike-and-dome or triangular shape, respectively, but variability is huge within each rhythm group. The aim of our study was to apply the machine-learning algorithm ranking instances by maximizing the area under the ROC curve (RIMARC) to a large data set of 480 APs combined with retrospectively collected general clinical parameters and to test whether the rules learned by the RIMARC algorithm can be used for accurately classifying the preoperative rhythm status. APs were included from 221 SR and 158 AF patients. During a learning phase, the RIMARC algorithm established a ranking order of 62 features by predictive value for SR or AF. The model was then challenged with an additional test set of features from 28 patients in whom rhythm status was blinded. The accuracy of the risk prediction for AF by the model was very good (0.93) when all features were used. Without the seven AP features, accuracy still reached 0.71. In conclusion, we have shown that training the machine-learning algorithm RIMARC with an experimental and clinical data set allows predicting a classification in a test data set with high accuracy. In a clinical setting, this approach may prove useful for finding hypothesis-generating associations between different parameters.
Collapse
Affiliation(s)
- Ursula Ravens
- Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kharche SR, Stary T, Colman MA, Biktasheva IV, Workman AJ, Rankin AC, Holden AV, Zhang H. Effects of human atrial ionic remodelling by β-blocker therapy on mechanisms of atrial fibrillation: a computer simulation. Europace 2014; 16:1524-33. [PMID: 25085203 DOI: 10.1093/europace/euu084] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Atrial anti-arrhythmic effects of β-adrenoceptor antagonists (β-blockers) may involve both a suppression of pro-arrhythmic effects of catecholamines, and an adaptational electrophysiological response to chronic β-blocker use; so-called 'pharmacological remodelling'. In human atrium, such remodelling decreases the transient outward (Ito) and inward rectifier (IK1) K(+) currents, and increases the cellular action potential duration (APD) and effective refractory period (ERP). However, the consequences of these changes on mechanisms of genesis and maintenance of atrial fibrillation (AF) are unknown. Using mathematical modelling, we tested the hypothesis that the long-term adaptational decrease in human atrial Ito and IK1 caused by chronic β-blocker therapy, i.e. independent of acute electrophysiological effects of β-blockers, in an otherwise un-remodelled atrium, could suppress AF. METHODS AND RESULTS Contemporarily, biophysically detailed human atrial cell and tissue models were used to investigate effects of the β-blocker-based pharmacological remodelling. Chronic β-blockade remodelling prolonged atrial cell APD and ERP. The incidence of small amplitude APD alternans in the CRN model was reduced. At the 1D tissue level, β-blocker remodelling decreased the maximum pacing rate at which APs could be conducted. At the three-dimensional organ level, β-blocker remodelling reduced the life span of re-entry scroll waves. CONCLUSION This study improves our understanding of the electrophysiological mechanisms of AF suppression by chronic β-blocker therapy. Atrial fibrillation suppression may involve a reduced propensity for maintenance of re-entrant excitation waves, as a consequence of increased APD and ERP.
Collapse
Affiliation(s)
- Sanjay R Kharche
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
| | - Tomas Stary
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| | - Michael A Colman
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
| | - Irina V Biktasheva
- Department of Computer Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| | - Antony J Workman
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Andrew C Rankin
- School of Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Arun V Holden
- School of Biomedical Sciences, University of Leeds, Leeds, LS6 9JT, UK
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
26
|
Koivumäki JT, Seemann G, Maleckar MM, Tavi P. In silico screening of the key cellular remodeling targets in chronic atrial fibrillation. PLoS Comput Biol 2014; 10:e1003620. [PMID: 24853123 PMCID: PMC4031057 DOI: 10.1371/journal.pcbi.1003620] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 03/30/2014] [Indexed: 02/07/2023] Open
Abstract
Chronic atrial fibrillation (AF) is a complex disease with underlying changes in electrophysiology, calcium signaling and the structure of atrial myocytes. How these individual remodeling targets and their emergent interactions contribute to cell physiology in chronic AF is not well understood. To approach this problem, we performed in silico experiments in a computational model of the human atrial myocyte. The remodeled function of cellular components was based on a broad literature review of in vitro findings in chronic AF, and these were integrated into the model to define a cohort of virtual cells. Simulation results indicate that while the altered function of calcium and potassium ion channels alone causes a pronounced decrease in action potential duration, remodeling of intracellular calcium handling also has a substantial impact on the chronic AF phenotype. We additionally found that the reduction in amplitude of the calcium transient in chronic AF as compared to normal sinus rhythm is primarily due to the remodeling of calcium channel function, calcium handling and cellular geometry. Finally, we found that decreased electrical resistance of the membrane together with remodeled calcium handling synergistically decreased cellular excitability and the subsequent inducibility of repolarization abnormalities in the human atrial myocyte in chronic AF. We conclude that the presented results highlight the complexity of both intrinsic cellular interactions and emergent properties of human atrial myocytes in chronic AF. Therefore, reversing remodeling for a single remodeled component does little to restore the normal sinus rhythm phenotype. These findings may have important implications for developing novel therapeutic approaches for chronic AF.
Collapse
Affiliation(s)
- Jussi T. Koivumäki
- Simula Research Laboratory, Center for Cardiological Innovation and Center for Biomedical Computing, Oslo, Norway
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Gunnar Seemann
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Mary M. Maleckar
- Simula Research Laboratory, Center for Cardiological Innovation and Center for Biomedical Computing, Oslo, Norway
| | - Pasi Tavi
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- * E-mail:
| |
Collapse
|
27
|
Kettlewell S, Burton FL, Smith GL, Workman AJ. Chronic myocardial infarction promotes atrial action potential alternans, afterdepolarizations, and fibrillation. Cardiovasc Res 2013; 99:215-24. [PMID: 23568957 PMCID: PMC3687753 DOI: 10.1093/cvr/cvt087] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aims Atrial fibrillation (AF) is increased in patients with heart failure resulting from myocardial infarction (MI). We aimed to determine the effects of chronic ventricular MI in rabbits on the susceptibility to AF, and underlying atrial electrophysiological and Ca2+-handling mechanisms. Methods and results In Langendorff-perfused rabbit hearts, under β-adrenergic stimulation with isoproterenol (ISO; 1 µM), 8 weeks MI decreased AF threshold, indicating increased AF susceptibility. This was associated with increased atrial action potential duration (APD)-alternans at 90% repolarization, by 147%, and no significant change in the mean APD or atrial global conduction velocity (CV; n = 6–13 non-MI hearts, 5–12 MI). In atrial isolated myocytes, also under β-stimulation, L-type Ca2+ current (ICaL) density and intracellular Ca2+-transient amplitude were decreased by MI, by 35 and 41%, respectively, and the frequency of spontaneous depolarizations (SDs) was substantially increased. MI increased atrial myocyte size and capacity, and markedly decreased transverse-tubule density. In non-MI hearts perfused with ISO, the ICaL-blocker nifedipine, at a concentration (0.02 µM) causing an equivalent ICaL reduction (35%) to that from the MI, did not affect AF susceptibility, and decreased APD. Conclusion Chronic MI in rabbits remodels atrial structure, electrophysiology, and intracellular Ca2+ handling. Increased susceptibility to AF by MI, under β-adrenergic stimulation, may result from associated production of atrial APD alternans and SDs, since steady-state APD and global CV were unchanged under these conditions, and may be unrelated to the associated reduction in whole-cell ICaL. Future studies may clarify potential contributions of local conduction changes, and cellular and subcellular mechanisms of alternans, to the increased AF susceptibility.
Collapse
Affiliation(s)
- Sarah Kettlewell
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G128TA, UK
| | | | | | | |
Collapse
|
28
|
Olesen MS, Refsgaard L, Holst AG, Larsen AP, Grubb S, Haunsø S, Svendsen JH, Olesen SP, Schmitt N, Calloe K. A novel KCND3 gain-of-function mutation associated with early-onset of persistent lone atrial fibrillation. Cardiovasc Res 2013; 98:488-95. [PMID: 23400760 DOI: 10.1093/cvr/cvt028] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AIMS Atrial fibrillation (AF) is the most common cardiac arrhythmia, and early-onset lone AF has been linked to mutations in genes encoding ion channels. Mutations in the pore forming subunit KV4.3 leading to an increase in the transient outward potassium current (Ito) have previously been associated with the Brugada Syndrome. Here we aim to determine if mutations in KV4.3 or in the auxiliary subunit K(+) Channel-Interacting Protein (KChIP) 2 are associated with early-onset lone AF. METHODS AND RESULTS Two hundred and nine unrelated early-onset lone AF patients (<40 years) were recruited. The entire coding sequence of KCND3 and KCNIP2 was bidirectionally sequenced. One novel non-synonymous mutation A545P was found in KCND3 and was neither present in the control group (n = 432 alleles) nor in any publicly available database. The proband had onset of persistent AF at the age of 22, and no mutations in genes previously associated with AF were found. Electrophysiological analysis of KV4.3-A545P expressed in CHO-K1 cells, revealed that peak-current density was increased and the onset of inactivation was slower compared with WT, resulting in a significant gain-of-function both in the absence and the presence of KChIP2. CONCLUSION Gain-of-function mutations in KV4.3 have previously been described in Brugada Syndrome, however, this is the first report of a KV4.3 gain-of-function mutation in early-onset lone AF. This association of KV4.3 gain-of-function and early-onset lone AF further supports the hypothesis that increased potassium current enhances AF susceptibility.
Collapse
Affiliation(s)
- Morten Salling Olesen
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ambrosi CM, Yamada KA, Nerbonne JM, Efimov IR. Gender differences in electrophysiological gene expression in failing and non-failing human hearts. PLoS One 2013; 8:e54635. [PMID: 23355885 PMCID: PMC3552854 DOI: 10.1371/journal.pone.0054635] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/13/2012] [Indexed: 12/19/2022] Open
Abstract
The increasing availability of human cardiac tissues for study are critically important in increasing our understanding of the impact of gender, age, and other parameters, such as medications and cardiac disease, on arrhythmia susceptibility. In this study, we aimed to compare the mRNA expression of 89 ion channel subunits, calcium handling proteins, and transcription factors important in cardiac conduction and arrhythmogenesis in the left atria (LA) and ventricles (LV) of failing and nonfailing human hearts of both genders. Total RNA samples, prepared from failing male (n = 9) and female (n = 7), and from nonfailing male (n = 9) and female (n = 9) hearts, were probed using custom-designed Taqman gene arrays. Analyses were performed to explore the relationships between gender, failure state, and chamber expression. Hierarchical cluster analysis revealed chamber specific expression patterns, but failed to identify disease- or gender-dependent clustering. Gender-specific analysis showed lower expression levels in transcripts encoding for Kv4.3, KChIP2, Kv1.5, and Kir3.1 in the failing female as compared with the male LA. Analysis of LV transcripts, however, did not reveal significant differences based on gender. Overall, our data highlight the differential expression and transcriptional remodeling of ion channel subunits in the human heart as a function of gender and cardiac disease. Furthermore, the availability of such data sets will allow for the development of disease-, gender-, and, most importantly, patient-specific cardiac models, with the ability to utilize such information as mRNA expression to predict cardiac phenotype.
Collapse
Affiliation(s)
- Christina M. Ambrosi
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Kathryn A. Yamada
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jeanne M. Nerbonne
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Igor R. Efimov
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
30
|
Atrial remodeling in varying clinical substrates within beating human hearts: Relevance to atrial fibrillation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 110:278-94. [DOI: 10.1016/j.pbiomolbio.2012.07.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 07/24/2012] [Indexed: 11/19/2022]
|
31
|
Laszlo R, Konior A, Bentz K, Eick C, Schreiner B, Schreieck J, Bosch RF. Atrial reverse remodeling: restitution of early tachycardia-induced alterations of atrial ion currents after termination of rapid atrial pacing in rabbits. Res Vet Sci 2012; 94:320-4. [PMID: 22939085 DOI: 10.1016/j.rvsc.2012.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND PURPOSE Studies report on the reversal of electrophysiological parameters altered by atrial tachycardia after cessation of the latter. However, there is no data concerning reversal of tachycardia-induced alterations of ion currents. Reverse remodeling of atrial ion currents (I(Ca,L), I(to), I(sus)) was studied in our rabbit model of tachycardia-induced electrical remodeling. METHODS Three groups each with four animals were built. Rapid atrial pacing (600/min) for 5 days was applied in all groups. Thereafter, different time intervals (5, 10, 20 days) were awaited before the patch clamp experiments. RESULTS Similar to I(to) remodeling in our model, within 20 days after cessation of atrial tachycardia, time course of I(to) reverse remodeling was also U-shaped. In contrast, there was no significant recovery of I(Ca,L) which was initially reduced by rapid atrial pacing. CONCLUSION Relevance of a missing recovery of I(Ca,L) is likely as this current is closely linked with intracellular calcium handling.
Collapse
Affiliation(s)
- Roman Laszlo
- Department of Cardiology, University of Tuebingen, Otfried-Mueller-Strasse 10, D-72076 Tuebingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
32
|
Workman AJ, Marshall GE, Rankin AC, Smith GL, Dempster J. Transient outward K+ current reduction prolongs action potentials and promotes afterdepolarisations: a dynamic-clamp study in human and rabbit cardiac atrial myocytes. J Physiol 2012; 590:4289-305. [PMID: 22733660 DOI: 10.1113/jphysiol.2012.235986] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Human atrial transient outward K(+) current (I(TO)) is decreased in a variety of cardiac pathologies, but how I(TO) reduction alters action potentials (APs) and arrhythmia mechanisms is poorly understood, owing to non-selectivity of I(TO) blockers. The aim of this study was to investigate effects of selective I(TO) changes on AP shape and duration (APD), and on afterdepolarisations or abnormal automaticity with β-adrenergic-stimulation, using the dynamic-clamp technique in atrial cells. Human and rabbit atrial cells were isolated by enzymatic dissociation, and electrical activity recorded by whole-cell-patch clamp (35-37°C). Dynamic-clamp-simulated I(TO) reduction or block slowed AP phase 1 and elevated the plateau, significantly prolonging APD, in both species. In human atrial cells, I(TO) block (100% I(TO) subtraction) increased APD(50) by 31%, APD(90) by 17%, and APD(-61 mV) (reflecting cellular effective refractory period) by 22% (P < 0.05 for each). Interrupting I(TO) block at various time points during repolarisation revealed that the APD(90) increase resulted mainly from plateau-elevation, rather than from phase 1-slowing or any residual I(TO). In rabbit atrial cells, partial I(TO) block (∼40% I(TO) subtraction) reversibly increased the incidence of cellular arrhythmic depolarisations (CADs; afterdepolarisations and/or abnormal automaticity) in the presence of the β-agonist isoproterenol (0.1 μm; ISO), from 0% to 64% (P < 0.05). ISO-induced CADs were significantly suppressed by dynamic-clamp increase in I(TO) (∼40% I(TO) addition). ISO+I(TO) decrease-induced CADs were abolished by β(1)-antagonism with atenolol at therapeutic concentration (1 μm). Atrial cell action potential changes from selective I(TO) modulation, shown for the first time using dynamic-clamp, have the potential to influence reentrant and non-reentrant arrhythmia mechanisms, with implications for both the development and treatment of atrial fibrillation.
Collapse
Affiliation(s)
- A J Workman
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK.
| | | | | | | | | |
Collapse
|
33
|
Kharche S, Adeniran I, Stott J, Law P, Boyett MR, Hancox JC, Zhang H. Pro-arrhythmogenic effects of the S140G KCNQ1 mutation in human atrial fibrillation - insights from modelling. J Physiol 2012; 590:4501-14. [PMID: 22508963 DOI: 10.1113/jphysiol.2012.229146] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Functional analysis has shown that the missense gain-in-function KCNQ1 S140G mutation associated with familial atrial fibrillation produces an increase of the slow delayed rectifier potassium current (I(Ks)). Through computer modelling, this study investigated mechanisms by which the KCNQ1 S140G mutation promotes and perpetuates atrial fibrillation. In simulations, Courtemanche et al.'s model of human atrial cell action potentials (APs) was modified to incorporate experimental data on changes of I(Ks) induced by the KCNQ1 S140G mutation. The cell models for wild type (WT) and mutant type (MT) I(Ks) were incorporated into homogeneous multicellular 2D and 3D tissue models. Effects of the mutation were quantified on AP profile, AP duration (APD) restitution, effective refractory period (ERP) restitution, and conduction velocity (CV) restitution.Temporal and spatial vulnerabilities of atrial tissue to genesis of re-entry were computed. Dynamic behaviours of re-entrant excitation waves (lifespan (LS), tip meandering patterns and dominant frequency) in 2D and 3D models were characterised. It was shown that the KCNQ1 S140G mutation abbreviated atrial APD and ERP and flattened APD and ERP restitution curves. It reduced atrial CV at low excitation rates, but increased it at high excitation rates that facilitated the conduction of high rate atrial excitation waves. Although it increased slightly tissue temporal vulnerability for initiating re-entry, it reduced markedly the minimal substrate size necessary for sustaining re-entry (increasing the tissue spatial vulnerability). In the 2D and 3D models, the mutation also stabilized and accelerated re-entrant excitation waves, leading to rapid and sustained re-entry. In the 3D model, scroll waves under the mutation condition MT conditions also degenerated into persistent and erratic wavelets, leading to fibrillation. In conclusion, increased I(Ks) due to the KCNQ1 S140G mutation increases atrial susceptibility to arrhythmia due to increased tissue vulnerability, shortened ERP and altered atrial conduction velocity, which, in combination, facilitate initiation and maintenance of re-entrant excitation waves.
Collapse
Affiliation(s)
- Sanjay Kharche
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
| | | | | | | | | | | | | |
Collapse
|
34
|
Grandi E, Workman AJ, Pandit SV. Altered Excitation-Contraction Coupling in Human Chronic Atrial Fibrillation. J Atr Fibrillation 2012; 4:495. [PMID: 28496736 DOI: 10.4022/jafib.495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 02/10/2012] [Accepted: 03/19/2012] [Indexed: 12/19/2022]
Abstract
This review focuses on the (mal)adaptive processes in atrial excitation-contraction coupling occurring in patients with chronic atrial fibrillation. Cellular remodeling includes shortening of the atrial action potential duration and effective refractory period, depressed intracellular Ca2+ transient, and reduced myocyte contractility. Here we summarize the current knowledge of the ionic bases underlying these changes. Understanding the molecular mechanisms of excitation-contraction-coupling remodeling in the fibrillating human atria is important to identify new potential targets for AF therapy.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California at Davis, Davis, CA, USA
| | - Antony J Workman
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Sandeep V Pandit
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
35
|
Sánchez C, Corrias A, Bueno-Orovio A, Davies M, Swinton J, Jacobson I, Laguna P, Pueyo E, Rodríguez B. The Na+/K+ pump is an important modulator of refractoriness and rotor dynamics in human atrial tissue. Am J Physiol Heart Circ Physiol 2012; 302:H1146-59. [PMID: 22198174 PMCID: PMC3311461 DOI: 10.1152/ajpheart.00668.2011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 12/04/2011] [Indexed: 11/22/2022]
Abstract
Pharmacological treatment of atrial fibrillation (AF) exhibits limited efficacy. Further developments require a comprehensive characterization of ionic modulators of electrophysiology in human atria. Our aim is to systematically investigate the relative importance of ionic properties in modulating excitability, refractoriness, and rotor dynamics in human atria before and after AF-related electrical remodeling (AFER). Computer simulations of single cell and tissue atrial electrophysiology were conducted using two human atrial action potential (AP) models. Changes in AP, refractory period (RP), conduction velocity (CV), and rotor dynamics caused by alterations in key properties of all atrial ionic currents were characterized before and after AFER. Results show that the investigated human atrial electrophysiological properties are primarily modulated by maximal value of Na(+)/K(+) pump current (G(NaK)) as well as conductances of inward rectifier potassium current (G(K1)) and fast inward sodium current (G(Na)). G(NaK) plays a fundamental role through both electrogenic and homeostatic modulation of AP duration (APD), APD restitution, RP, and reentrant dominant frequency (DF). G(K1) controls DF through modulation of AP, APD restitution, RP, and CV. G(Na) is key in determining DF through alteration of CV and RP, particularly in AFER. Changes in ionic currents have qualitatively similar effects in control and AFER, but effects are smaller in AFER. The systematic analysis conducted in this study unravels the important role of the Na(+)/K(+) pump current in determining human atrial electrophysiology.
Collapse
Affiliation(s)
- Carlos Sánchez
- Communications Technology Group, I3A and IIS, University of Zaragoza, Zaragoza
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Remodelling of human atrial K+ currents but not ion channel expression by chronic β-blockade. Pflugers Arch 2011; 463:537-48. [PMID: 22160437 DOI: 10.1007/s00424-011-1061-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 11/11/2011] [Accepted: 11/14/2011] [Indexed: 10/14/2022]
Abstract
Chronic β-adrenoceptor antagonist (β-blocker) treatment in patients is associated with a potentially anti-arrhythmic prolongation of the atrial action potential duration (APD), which may involve remodelling of repolarising K(+) currents. The aim of this study was to investigate the effects of chronic β-blockade on transient outward, sustained and inward rectifier K(+) currents (I(TO), I(KSUS) and I(K1)) in human atrial myocytes and on the expression of underlying ion channel subunits. Ion currents were recorded from human right atrial isolated myocytes using the whole-cell-patch clamp technique. Tissue mRNA and protein levels were measured using real time RT-PCR and Western blotting. Chronic β-blockade was associated with a 41% reduction in I(TO) density: 9.3 ± 0.8 (30 myocytes, 15 patients) vs 15.7 ± 1.1 pA/pF (32, 14), p < 0.05; without affecting its voltage-, time- or rate dependence. I(K1) was reduced by 34% at -120 mV (p < 0.05). Neither I(KSUS), nor its increase by acute β-stimulation with isoprenaline, was affected by chronic β-blockade. Mathematical modelling suggested that the combination of I(TO)- and I(K1)-decrease could result in a 28% increase in APD(90). Chronic β-blockade did not alter mRNA or protein expression of the I(TO) pore-forming subunit, Kv4.3, or mRNA expression of the accessory subunits KChIP2, KChAP, Kvβ1, Kvβ2 or frequenin. There was no reduction in mRNA expression of Kir2.1 or TWIK to account for the reduction in I(K1). A reduction in atrial I(TO) and I(K1) associated with chronic β-blocker treatment in patients may contribute to the associated action potential prolongation, and this cannot be explained by a reduction in expression of associated ion channel subunits.
Collapse
|
37
|
Burashnikov A, Antzelevitch C. Novel pharmacological targets for the rhythm control management of atrial fibrillation. Pharmacol Ther 2011; 132:300-13. [PMID: 21867730 PMCID: PMC3205214 DOI: 10.1016/j.pharmthera.2011.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 08/05/2011] [Indexed: 12/19/2022]
Abstract
Atrial fibrillation (AF) is a growing clinical problem associated with increased morbidity and mortality. Development of safe and effective pharmacological treatments for AF is one of the greatest unmet medical needs facing our society. In spite of significant progress in non-pharmacological AF treatments (largely due to the use of catheter ablation techniques), anti-arrhythmic agents (AADs) remain first line therapy for rhythm control management of AF for most AF patients. When considering efficacy, safety and tolerability, currently available AADs for rhythm control of AF are less than optimal. Ion channel inhibition remains the principal strategy for termination of AF and prevention of its recurrence. Practical clinical experience indicates that multi-ion channel blockers are generally more optimal for rhythm control of AF compared to ion channel-selective blockers. Recent studies suggest that atrial-selective sodium channel block can lead to safe and effective suppression of AF and that concurrent inhibition of potassium ion channels may potentiate this effect. An important limitation of the ion channel block approach for AF treatment is that non-electrical factors (largely structural remodeling) may importantly determine the generation of AF, so that "upstream therapy", aimed at preventing or reversing structural remodeling, may be required for effective rhythm control management. This review focuses on novel pharmacological targets for the rhythm control management of AF.
Collapse
|
38
|
Grandi E, Pandit SV, Voigt N, Workman AJ, Dobrev D, Jalife J, Bers DM. Human atrial action potential and Ca2+ model: sinus rhythm and chronic atrial fibrillation. Circ Res 2011; 109:1055-66. [PMID: 21921263 DOI: 10.1161/circresaha.111.253955] [Citation(s) in RCA: 263] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RATIONALE Understanding atrial fibrillation (AF) requires integrated understanding of ionic currents and Ca2+ transport in remodeled human atrium, but appropriate models are limited. OBJECTIVE To study AF, we developed a new human atrial action potential (AP) model, derived from atrial experimental results and our human ventricular myocyte model. METHODS AND RESULTS Atria versus ventricles have lower I(K1), resulting in more depolarized resting membrane potential (≈7 mV). We used higher I(to,fast) density in atrium, removed I(to,slow), and included an atrial-specific I(Kur). I(NCX) and I(NaK) densities were reduced in atrial versus ventricular myocytes according to experimental results. SERCA function was altered to reproduce human atrial myocyte Ca2+ transients. To simulate chronic AF, we reduced I(CaL), I(to), I(Kur) and SERCA, and increased I(K1),I(Ks) and I(NCX). We also investigated the link between Kv1.5 channelopathy, [Ca2+]i, and AF. The sinus rhythm model showed a typical human atrial AP morphology. Consistent with experiments, the model showed shorter APs and reduced AP duration shortening at increasing pacing frequencies in AF or when I(CaL) was partially blocked, suggesting a crucial role of Ca2+ and Na+ in this effect. This also explained blunted Ca2+ transient and rate-adaptation of [Ca2+]i and [Na+]i in chronic AF. Moreover, increasing [Na+]i and altered I(NaK) and I(NCX) causes rate-dependent atrial AP shortening. Blocking I(Kur) to mimic Kv1.5 loss-of-function increased [Ca2+]i and caused early afterdepolarizations under adrenergic stress, as observed experimentally. CONCLUSIONS Our study provides a novel tool and insights into ionic bases of atrioventricular AP differences, and shows how Na+ and Ca2+ homeostases critically mediate abnormal repolarization in AF.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California, Davis, 451 Health Sciences Dr, GBSF Room 3513, Davis, CA 95616-8636, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Schotten U, Verheule S, Kirchhof P, Goette A. Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev 2011; 91:265-325. [PMID: 21248168 DOI: 10.1152/physrev.00031.2009] [Citation(s) in RCA: 881] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrillation (AF) is an arrhythmia that can occur as the result of numerous different pathophysiological processes in the atria. Some aspects of the morphological and electrophysiological alterations promoting AF have been studied extensively in animal models. Atrial tachycardia or AF itself shortens atrial refractoriness and causes loss of atrial contractility. Aging, neurohumoral activation, and chronic atrial stretch due to structural heart disease activate a variety of signaling pathways leading to histological changes in the atria including myocyte hypertrophy, fibroblast proliferation, and complex alterations of the extracellular matrix including tissue fibrosis. These changes in electrical, contractile, and structural properties of the atria have been called "atrial remodeling." The resulting electrophysiological substrate is characterized by shortening of atrial refractoriness and reentrant wavelength or by local conduction heterogeneities caused by disruption of electrical interconnections between muscle bundles. Under these conditions, ectopic activity originating from the pulmonary veins or other sites is more likely to occur and to trigger longer episodes of AF. Many of these alterations also occur in patients with or at risk for AF, although the direct demonstration of these mechanisms is sometimes challenging. The diversity of etiological factors and electrophysiological mechanisms promoting AF in humans hampers the development of more effective therapy of AF. This review aims to give a translational overview on the biological basis of atrial remodeling and the proarrhythmic mechanisms involved in the fibrillation process. We pay attention to translation of pathophysiological insights gained from in vitro experiments and animal models to patients. Also, suggestions for future research objectives and therapeutical implications are discussed.
Collapse
Affiliation(s)
- Ulrich Schotten
- Department of Physiology, University Maastricht, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
40
|
Workman AJ, Smith GL, Rankin AC. Mechanisms of termination and prevention of atrial fibrillation by drug therapy. Pharmacol Ther 2011; 131:221-41. [PMID: 21334377 DOI: 10.1016/j.pharmthera.2011.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 02/09/2011] [Indexed: 01/13/2023]
Abstract
Atrial fibrillation (AF) is a disorder of the rhythm of electrical activation of the cardiac atria. It is the most common cardiac arrhythmia, has multiple aetiologies, and increases the risk of death from stroke. Pharmacological therapy is the mainstay of treatment for AF, but currently available anti-arrhythmic drugs have limited efficacy and safety. An improved understanding of how anti-arrhythmic drugs affect the electrophysiological mechanisms of AF initiation and maintenance, in the setting of the different cardiac diseases that predispose to AF, is therefore required. A variety of animal models of AF has been developed, to represent and control the pathophysiological causes and risk factors of AF, and to permit the measurement of detailed and invasive parameters relating to the associated electrophysiological mechanisms of AF. The purpose of this review is to examine, consolidate and compare available relevant data on in-vivo electrophysiological mechanisms of AF suppression by currently approved and investigational anti-arrhythmic drugs in such models. These include the Vaughan Williams class I-IV drugs, namely Na(+) channel blockers, β-adrenoceptor antagonists, action potential prolonging drugs, and Ca(2+) channel blockers; the "upstream therapies", e.g., angiotensin converting enzyme inhibitors, statins and fish oils; and a variety of investigational drugs such as "atrial-selective" multiple ion channel blockers, gap junction-enhancers, and intracellular Ca(2+)-handling modulators. It is hoped that this will help to clarify the main electrophysiological mechanisms of action of different and related drug types in different disease settings, and the likely clinical significance and potential future exploitation of such mechanisms.
Collapse
Affiliation(s)
- A J Workman
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, United Kingdom.
| | | | | |
Collapse
|
41
|
Greiser M, Lederer WJ, Schotten U. Alterations of atrial Ca(2+) handling as cause and consequence of atrial fibrillation. Cardiovasc Res 2010; 89:722-33. [PMID: 21159669 DOI: 10.1093/cvr/cvq389] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Atrial fibrillation (AF) is the most prevalent sustained arrhythmia. As the most important risk factor for embolic stroke, AF is associated with a high morbidity and mortality. Despite decades of research, successful (pharmacological and interventional) 'ablation' of the arrhythmia remains challenging. AF is characterized by a diverse aetiology, including heart failure, hypertension, and valvular disease. Based on this understanding, new treatment strategies that are specifically tailored to the underlying pathophysiology of a certain 'type' of AF are being developed. One important aspect of AF pathophysiology is altered intracellular Ca(2+) handling. Due to the increase in the atrial activation rate and the subsequent initial [Ca(2+)](i) overload, AF induces 'remodelling' of intracellular Ca(2+) handling. Current research focuses on unravelling the contribution of altered intracellular Ca(2+) handling to different types of AF. More specifically, changes in intracellular Ca(2+) homeostasis preceding the onset of AF, in conditions which predispose to AF (e.g. heart failure), appear to be different from changes in Ca(2+) handling developing after the onset of AF. Here we review and critique altered intracellular Ca(2+) handling and its contribution to three specific aspects of AF pathophysiology, (i) excitation-transcription coupling and Ca(2+)-dependent signalling pathways, (ii) atrial contractile dysfunction, and (iii) arrhythmogenicity.
Collapse
Affiliation(s)
- Maura Greiser
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | | | | |
Collapse
|
42
|
Berenfeld O. Ionic and substrate mechanism of atrial fibrillation: rotors and the exitación frequency approach. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2010; 80:301-314. [PMID: 21169095 PMCID: PMC3175431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023] Open
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in humans, however its mechanisms are poorly understood and its therapy is often sub-optimal. This article reviews recent experimental, numerical and clinical data on dynamics of wave propagation during AF and its mechanistic link to ionic and structural properties of the atria. At the onset, the article presents numerical and optical mapping data suggesting that a presence of periodic source with increasingly high dominant frequency (DF) of excitation underlies observations of dispersion of local activation rate during AF. Further optical mapping studies in isolated normal sheep hearts in the presence of acetylcholine (ACh) reveals that rotors localized to the left atrium (LA) drive the arrhythmia and are faster than those in the right atrium (RA). Patch-clamp data from isolated cardiomycytes shows that the ACh-modulated potassium inward rectifier current is higher in the LA than in the RA which may explain the higher DFs and sensitivity of LA rotors to ACh compared with RA rotors. Following, the role of fibrosis in governing the propagation dynamics with a decrease in excitation frequency is presented in AF in failing sheep hearts and complex activation in cell cultures. Translation into the clinical setting is then discussed: DF distribution in patients with paroxysmal AF follows the LA-to-RA gradients found in the acute cholinergic AF of sheep hearts with highest DFs localized primarily to the posterior LA wall and pulmonary veins (PV) region; however in patients with persistent AF, the highest DFs localize mainly outside of the PVs region with possible implication on the outcome of ablation procedures. Next, intravenous injection of adenosine to patients in AF is demonstrated to result in further acceleration of high DF sites and suggests that reentrant activity, rather than triggered or automatic activity, maintains the arrhythmia. Finally, analysis of excitation during AF developed in patients post-cardiac surgery suggests a DF distribution similar to that of patients with paroxysmal AF with dependency on fibrosis as found in sheep failing hearts and cell cultures. In sum, the article presents data demonstrating the use of DF of excitation in linking wave propagation mechanisms to ionic and structural properties in both experimental and human AF.
Collapse
Affiliation(s)
- Omer Berenfeld
- Center for Arrhythmia Research. University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
43
|
Atorvastatin treatment affects atrial ion currents and their tachycardia-induced remodeling in rabbits. Life Sci 2010; 87:507-13. [PMID: 20851131 DOI: 10.1016/j.lfs.2010.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 08/21/2010] [Accepted: 09/11/2010] [Indexed: 11/23/2022]
Abstract
AIMS Atrial fibrillation (AF) leads to electrical atrial remodeling including alterations of various ion channels early after arrhythmia onset. The beneficial effects of statins in AF treatment due to their influence on oxidative stress and inflammation are discussed. Our hypothesis was that statins might also alter atrial ion currents and their early tachycardia-induced remodeling. MAIN METHODS Effects of an atorvastatin treatment (7 days) on atrial ion currents and their tachycardia-induced alterations were studied in a rabbit model of tachycardia-induced electrical remodeling (rapid atrial pacing (600 min) for 24 and 120 h). Ion currents (L-type calcium channel [I(Ca,L)], transient outward current [I(to)]) were measured using whole cell patch clamp method and were compared with previous experiments in untreated but also tachypaced animals. KEY FINDINGS Atorvastatin treatment alone decreased I(Ca,L) similar to rapid atrial pacing alone, currents were also further reduced by additional atrial tachypacing. I(to) and its pacing-induced down-regulation after 24 h were not influenced by atorvastatin treatment. However, I(to) was still reduced after 120 h in atorvastatin-treated animals and did not return to control values as expected. SIGNIFICANCE The present study establishes that an atorvastatin treatment can affect atrial ion currents and their tachycardia-induced remodeling in a rabbit model. These results show that-amongst other positive effects on oxidative stress and inflammation-the impact of statins on ion currents and their tachycardia-induced alterations might also play a role in "upstream" treatment of AF with HMG-CoA reductase inhibitors.
Collapse
|
44
|
Workman AJ, Rankin AC. Do hypoxemia or hypercapnia predispose to atrial fibrillation in breathing disorders, and, if so, how? Heart Rhythm 2010; 7:1271-2. [DOI: 10.1016/j.hrthm.2010.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Indexed: 10/19/2022]
|
45
|
Laszlo R, Bentz K, Konior A, Eick C, Schreiner B, Kettering K, Schreieck J. Effects of selective mineralocorticoid receptor antagonism on atrial ion currents and early ionic tachycardia-induced electrical remodelling in rabbits. Naunyn Schmiedebergs Arch Pharmacol 2010; 382:347-56. [PMID: 20799026 DOI: 10.1007/s00210-010-0553-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 08/12/2010] [Indexed: 12/19/2022]
Abstract
Over the past years, the importance of the renin-angiotensin-aldosterone system in atrial fibrillation (AF) pathophysiology has been recognised. Lately, the role of aldosterone in AF pathophysiology and mineralocorticoid receptor (MR) antagonism in "upstream" AF treatment is discussed. Hypothesising that selective MR antagonism might also influence atrial ion currents (L-type calcium current [I (Ca,L)], transient outward potassium current [I (to)], sustained outward potassium current [I (sus)]) and their tachycardia-induced remodelling, the effects of an eplerenone treatment were studied in a rabbit model. Six groups each with four animals were built. Animals of the control group received atrial pacing leads, but in contrast to the pacing groups, no atrial tachypacing (600 per minute for 24 and 120 h immediately before heart removal) was applied. Animals of the eplerenone groups were instrumented/paced as the corresponding control/pacing groups, but were additionally treated with eplerenone (7 days before heart removal). Atrial tachypacing was associated with a reduction of I (Ca,L). I (to) was decreased after 24 h of tachypacing, but returned to control values after 120 h. In the absence of rapid atrial pacing, MR antagonism reduced I (Ca,L) to a similar extent as 120 h of tachypacing alone. Based on this lower "take-off level", I (Ca,L) was not further decreased by high-rate pacing. I (to) and its expected tachycardia-induced alterations were not influenced by MR antagonism. In our experiments, selective MR antagonism influenced atrial I (Ca,L) and its tachycardia-induced alterations. As changes of I (Ca,L) are closely linked with atrial calcium signalling, the relevance of these alterations in AF pathophysiology and, accordingly, AF treatment is likely and has to be further evaluated.
Collapse
Affiliation(s)
- Roman Laszlo
- Kardiologie und Kreislauferkrankungen, Eberhard Karls Universität Tuebingen, Otfried-Mueller-Straße 10, 72076, Tuebingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Michel Haïssaguerre
- Hôpital Cardiologique du Haut Lévêque-Université Bordeaux II, PESSAC, France.
| |
Collapse
|
47
|
Workman AJ. Cardiac adrenergic control and atrial fibrillation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2010; 381:235-49. [PMID: 19960186 PMCID: PMC2855383 DOI: 10.1007/s00210-009-0474-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 11/08/2009] [Indexed: 10/20/2022]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia, and it causes substantial mortality. The autonomic nervous system, and particularly the adrenergic/cholinergic balance, has a profound influence on the occurrence of AF. Adrenergic stimulation from catecholamines can cause AF in patients. In human atrium, catecholamines can affect each of the electrophysiological mechanisms of AF initiation and/or maintenance. Catecholamines may produce membrane potential oscillations characteristic of afterdepolarisations, by increasing Ca(2+) current, [Ca(2+)](i) and consequent Na(+)-Ca(2+) exchange, and may also enhance automaticity. Catecholamines might affect reentry, by altering excitability or conduction, rather than action potential terminal repolarisation or refractory period. However, which arrhythmia mechanisms predominate is unclear, and likely depends on cardiac pathology and adrenergic tone. Heart failure (HF), a major cause of AF, causes adrenergic activation and adaptational changes, remodelling, of atrial electrophysiology, Ca(2+) homeostasis, and adrenergic responses. Chronic AF also remodels these, but differently to HF. Myocardial infarction and AF cause neural remodelling that also may promote AF. beta-Adrenoceptor antagonists (beta-blockers) are used in the treatment of AF, mainly to control the ventricular rate, by slowing atrioventricular conduction. beta-Blockers also reduce the incidence of AF, particularly in HF or after cardiac surgery, when adrenergic tone is high. Furthermore, the chronic treatment of patients with beta-blockers remodels the atria, with a potentially antiarrhythmic increase in the refractory period. Therefore, the suppression of AF by beta-blocker treatment may involve an attenuation of arrhythmic activity that is caused by increased [Ca(2+)](i), coupled with effects of adaptation to the treatment. An improved understanding of the involvement of the adrenergic system and its control in basic mechanisms of AF under differing cardiac pathologies might lead to better treatments.
Collapse
Affiliation(s)
- Antony J Workman
- British Heart Foundation Glasgow Cardiovascular Research Centre, Division of Cardiovascular and Medical Sciences, Faculty of Medicine, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
48
|
Burashnikov A, Antzelevitch C. New pharmacological strategies for the treatment of atrial fibrillation. Ann Noninvasive Electrocardiol 2009; 14:290-300. [PMID: 19614642 DOI: 10.1111/j.1542-474x.2009.00305.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is a growing clinical problem, increasing in prevalence as the population of the United States and countries around the world ages. Intensive research aimed at improving prevention, diagnosis, and treatment of AF is ongoing. Although the use and efficacy of catheter ablation-based approaches in AF treatment have increased significantly in the last decade, pharmacological agents remain the first-line therapy for rhythm management of AF. Currently available anti-AF agents are generally only moderately effective and associated with extracardiac toxicity and/or a risk for development of life-threatening ventricular arrhythmias. Included among current investigational strategies for improving the effectiveness and safety of anti-AF drugs is the development of (1) Agents that produce atrial-specific or predominant inhibition of I(Kur), I(K-ACh), or I(Na); (2) "Upstream therapies" that effect nonion channel targets that reduce atrial structural remodeling, hypertrophy, dilatation, inflammation, oxidative injury, etc; (3) Derivatives of "old" anti-AF drugs with an improved safety pharmacological profile; and (4) Gap junction therapy aimed at improving conduction without affecting sodium channels. This review focuses on new pharmacological approaches under investigation for the treatment of AF.
Collapse
|
49
|
Zafalon N, Bassani JWM, Bassani RA. Determination of the vectorelectrogram in isolated rat atria: application to the study of arrhythmias. Physiol Meas 2009; 30:1281-91. [PMID: 19822923 DOI: 10.1088/0967-3334/30/11/011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Atrial tachyarrhythmias, the most frequent type of cardiac arrhythmia, are associated with increased stroke risk. Reentry and focal activity are considered as the main mechanisms underlying this dysfunction. In this study, we describe determination of the vectorelectrogram in isolated rat atria as a means to distinguish different patterns of electrical propagation. In all studied right atria beating at sinus rhythm, the mean electric vector (MEV) trajectory was clockwise, and each cycle was preceded by electric diastole (null MEV), either in the absence or presence of muscarinic cholinergic or beta-adrenergic receptor stimulation. During cholinergic tachyarrhythmia (induced by high-rate electric stimulation in both atria, plus exposure to carbachol in left atria), vector loops were ellipsoidal and stable, with variable direction, and did not cross the origin, which is consistent with reentrant activation and with findings obtained in vivo by other authors. In contrast, during spontaneous activity induced by rapid pacing in isoproterenol-exposed left atria, vector loops were similar to those in right atria at sinus rhythm, thus suggestive of focal activity. It is concluded that the vectorelectrogram approach allows discrimination of different patterns of propagation during arrhythmia in isolated atria and may be useful for high-output tests of pro- and anti-arrhythmic compounds.
Collapse
Affiliation(s)
- Nivaldo Zafalon
- Department of Biomedical Engineering/FEEC, University of Campinas (UNICAMP), São Paulo, Brazil
| | | | | |
Collapse
|
50
|
Swartz MF, Fink GW, Lutz CJ, Taffet SM, Berenfeld O, Vikstrom KL, Kasprowicz K, Bhatta L, Puskas F, Kalifa J, Jalife J. Left versus right atrial difference in dominant frequency, K(+) channel transcripts, and fibrosis in patients developing atrial fibrillation after cardiac surgery. Heart Rhythm 2009; 6:1415-22. [PMID: 19656731 PMCID: PMC2790556 DOI: 10.1016/j.hrthm.2009.06.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 06/12/2009] [Indexed: 12/11/2022]
Abstract
BACKGROUND The development of atrial fibrillation (AF) after cardiac surgery is associated with adverse outcomes; however, the mechanism(s) that trigger and maintain AF in these patients are unknown. OBJECTIVE The purpose of this study was to test our hypothesis that postoperative AF is maintained by high-frequency sources in the left atrium (LA) resulting from ion channel and structural features that differ from the right atrium (RA). METHODS Forty-four patients with no previous history of AF who underwent cardiac surgery consented to LA and RA biopsies. Histologic sections evaluated fatty infiltration, fibrosis, and iron deposition; quantitative reverse transcription-polymerase chain reaction (RT-PCR) assessed ion channel expression. In a subset of 27 patients, LA and RA unipolar recording leads were also placed. In patients who developed AF, the dominant frequency (DF) for each lead was calculated using fast Fourier transform. RESULTS DFs during AF were LA 6.26 +/- 0.8 Hz, RA 4.56 +/- 0.7 Hz (P <.01). RT-PCR revealed LA-to-RA differences in mRNA abundance for Kir2.3 (1.8:1) and Kir3.4 (2.3:1). While LA fibrosis was greater in patients developing AF compared with those remaining in normal sinus rhythm (10.8% +/- 11% vs. 3.8% +/- 3.5%; P = .03), the amount of LA fibrosis inversely correlated with the LA DF. CONCLUSIONS This is the first demonstration of LA-to-RA frequency differences during postoperative AF, which are associated with LA-to-RA differences in mRNA levels for potassium channel proteins and LA fibrosis. These results strongly suggest that sources of AF after cardiac surgery are located in the LA and are stabilized by LA fibrosis.
Collapse
Affiliation(s)
- Michael F. Swartz
- Department of Pharmacology, University of Colorado at Denver
- Department of Surgery, University of Colorado at Denver
| | | | | | - Steven M Taffet
- Department of Microbiology, University of Colorado at Denver
| | | | | | | | - Luna Bhatta
- Department of Medicine, SUNY Upstate Medical University, University of Colorado at Denver
| | - Ferenc Puskas
- Department of Anesthesiology, University of Colorado at Denver
| | - Jérôme Kalifa
- Center for Arrhythmia Research, University of Michigan
| | - José Jalife
- Center for Arrhythmia Research, University of Michigan
- Department of Pharmacology, University of Colorado at Denver
| |
Collapse
|