1
|
Janssen V, Huveneers S. Cell-cell junctions in focus - imaging junctional architectures and dynamics at high resolution. J Cell Sci 2024; 137:jcs262041. [PMID: 39480660 DOI: 10.1242/jcs.262041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Studies utilizing electron microscopy and live fluorescence microscopy have significantly enhanced our understanding of the molecular mechanisms that regulate junctional dynamics during homeostasis, development and disease. To fully grasp the enormous complexity of cell-cell adhesions, it is crucial to study the nanoscale architectures of tight junctions, adherens junctions and desmosomes. It is important to integrate these junctional architectures with the membrane morphology and cellular topography in which the junctions are embedded. In this Review, we explore new insights from studies using super-resolution and volume electron microscopy into the nanoscale organization of these junctional complexes as well as the roles of the junction-associated cytoskeleton, neighboring organelles and the plasma membrane. Furthermore, we provide an overview of junction- and cytoskeletal-related biosensors and optogenetic probes that have contributed to these advances and discuss how these microscopy tools enhance our understanding of junctional dynamics across cellular environments.
Collapse
Affiliation(s)
- Vera Janssen
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ, Amsterdam, The Netherlands
| | - Stephan Huveneers
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Nielsen MS, van Opbergen CJM, van Veen TAB, Delmar M. The intercalated disc: a unique organelle for electromechanical synchrony in cardiomyocytes. Physiol Rev 2023; 103:2271-2319. [PMID: 36731030 PMCID: PMC10191137 DOI: 10.1152/physrev.00021.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The intercalated disc (ID) is a highly specialized structure that connects cardiomyocytes via mechanical and electrical junctions. Although described in some detail by light microscopy in the 19th century, it was in 1966 that electron microscopy images showed that the ID represented apposing cell borders and provided detailed insight into the complex ID nanostructure. Since then, much has been learned about the ID and its molecular composition, and it has become evident that a large number of proteins, not all of them involved in direct cell-to-cell coupling via mechanical or gap junctions, reside at the ID. Furthermore, an increasing number of functional interactions between ID components are emerging, leading to the concept that the ID is not the sum of isolated molecular silos but an interacting molecular complex, an "organelle" where components work in concert to bring about electrical and mechanical synchrony. The aim of the present review is to give a short historical account of the ID's discovery and an updated overview of its composition and organization, followed by a discussion of the physiological implications of the ID architecture and the local intermolecular interactions. The latter will focus on both the importance of normal conduction of cardiac action potentials as well as the impact on the pathophysiology of arrhythmias.
Collapse
Affiliation(s)
- Morten S Nielsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chantal J M van Opbergen
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine, New York, New York, United States
| | - Toon A B van Veen
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mario Delmar
- The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine, New York, New York, United States
| |
Collapse
|
3
|
Liang FX, Sall J, Petzold C, van Opbergen CJM, Liang X, Delmar M. Nanogold based protein localization enables subcellular visualization of cell junction protein by SBF-SEM. Methods Cell Biol 2023; 177:55-81. [PMID: 37451776 PMCID: PMC10612668 DOI: 10.1016/bs.mcb.2022.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Recent advances in volume electron microscopy (vEM) allow unprecedented visualization of the electron-dense structures of cells, tissues and model organisms at nanometric resolution in three dimensions (3D). Light-based microscopy has been widely used for specific localization of proteins; however, it is restricted by the diffraction limit of light, and lacks the ability to identify underlying structures. Here, we describe a protocol for ultrastructural detection, in three dimensions, of a protein (Connexin 43) expressed in the intercalated disc region of adult murine heart. Our protocol does not rest on the expression of genetically encoded proteins and it overcomes hurdles related to pre-embedding and immunolabeling, such as the penetration of the label and the preservation of the tissue. The pre-embedding volumetric immuno-electron microscopy (pre-embedding vIEM) protocol presented here combines several practical strategies to balance sample fixation with antigen and ultrastructural preservation, and penetration of labeling with blocking of non-specific antigen binding sites. The small 1.4 nm gold along with surrounded silver used as a detection marker buried in the sample also serves as a functional conductive resin that significantly reduces the charging of samples. Our protocol also presents strategies for facilitating the successful cutting of the samples during serial block-face scanning electron microscopy (SBF-SEM) imaging. Our results suggest that the small gold-based pre-embedding vIEM is an ideal labeling method for molecular localization throughout the depth of the sample at subcellular compartments and membrane microdomains.
Collapse
Affiliation(s)
- Feng-Xia Liang
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, United States; Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, United States.
| | - Joseph Sall
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, United States
| | - Chris Petzold
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, United States
| | - Chantal J M van Opbergen
- Leon H Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Xiangxi Liang
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, United States
| | - Mario Delmar
- Leon H Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
4
|
Welcome MO, Dogo D, Nikos E Mastorakis. Cellular mechanisms and molecular pathways linking bitter taste receptor signalling to cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction in heart diseases. Inflammopharmacology 2023; 31:89-117. [PMID: 36471190 PMCID: PMC9734786 DOI: 10.1007/s10787-022-01086-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022]
Abstract
Heart diseases and related complications constitute a leading cause of death and socioeconomic threat worldwide. Despite intense efforts and research on the pathogenetic mechanisms of these diseases, the underlying cellular and molecular mechanisms are yet to be completely understood. Several lines of evidence indicate a critical role of inflammatory and oxidative stress responses in the development and progression of heart diseases. Nevertheless, the molecular machinery that drives cardiac inflammation and oxidative stress is not completely known. Recent data suggest an important role of cardiac bitter taste receptors (TAS2Rs) in the pathogenetic mechanism of heart diseases. Independent groups of researchers have demonstrated a central role of TAS2Rs in mediating inflammatory, oxidative stress responses, autophagy, impulse generation/propagation and contractile activities in the heart, suggesting that dysfunctional TAS2R signalling may predispose to cardiac inflammatory and oxidative stress disorders, characterised by contractile dysfunction and arrhythmia. Moreover, cardiac TAS2Rs act as gateway surveillance units that monitor and detect toxigenic or pathogenic molecules, including microbial components, and initiate responses that ultimately culminate in protection of the host against the aggression. Unfortunately, however, the molecular mechanisms that link TAS2R sensing of the cardiac milieu to inflammatory and oxidative stress responses are not clearly known. Therefore, we sought to review the possible role of TAS2R signalling in the pathophysiology of cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction in heart diseases. Potential therapeutic significance of targeting TAS2R or its downstream signalling molecules in cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction is also discussed.
Collapse
Affiliation(s)
- Menizibeya O Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Plot 681 Cadastral Zone, C-00 Research and Institution Area, Jabi Airport Road Bypass, FCT, Abuja, Nigeria.
| | - Dilli Dogo
- Department of Surgery, Faculty of Clinical Sciences, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria
| | - Nikos E Mastorakis
- Technical University of Sofia, Klement Ohridksi 8, Sofia, 1000, Bulgaria
| |
Collapse
|
5
|
ERBB2 drives YAP activation and EMT-like processes during cardiac regeneration. Nat Cell Biol 2020; 22:1346-1356. [PMID: 33046882 DOI: 10.1038/s41556-020-00588-4] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/01/2020] [Indexed: 01/06/2023]
Abstract
Cardiomyocyte loss after injury results in adverse remodelling and fibrosis, inevitably leading to heart failure. The ERBB2-Neuregulin and Hippo-YAP signalling pathways are key mediators of heart regeneration, yet the crosstalk between them is unclear. We demonstrate that transient overexpression of activated ERBB2 in cardiomyocytes (OE CMs) promotes cardiac regeneration in a heart failure model. OE CMs present an epithelial-mesenchymal transition (EMT)-like regenerative response manifested by cytoskeletal remodelling, junction dissolution, migration and extracellular matrix turnover. We identified YAP as a critical mediator of ERBB2 signalling. In OE CMs, YAP interacts with nuclear-envelope and cytoskeletal components, reflecting an altered mechanical state elicited by ERBB2. We identified two YAP-activating phosphorylations on S352 and S274 in OE CMs, which peak during metaphase, that are ERK dependent and Hippo independent. Viral overexpression of YAP phospho-mutants dampened the proliferative competence of OE CMs. Together, we reveal a potent ERBB2-mediated YAP mechanotransduction signalling, involving EMT-like characteristics, resulting in robust heart regeneration.
Collapse
|
6
|
Lissoni A, Hulpiau P, Martins-Marques T, Wang N, Bultynck G, Schulz R, Witschas K, Girao H, De Smet M, Leybaert L. RyR2 regulates Cx43 hemichannel intracellular Ca2+-dependent activation in cardiomyocytes. Cardiovasc Res 2019; 117:123-136. [PMID: 31841141 DOI: 10.1093/cvr/cvz340] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/14/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022] Open
Abstract
AIMS Connexin-based gap junctions are crucial for electrical communication in the heart; they are each composed of two docked hemichannels (HCs), supplied as unpaired channels via the sarcolemma. When open, an unpaired HC forms a large pore, high-conductance and Ca2+-permeable membrane shunt pathway that may disturb cardiomyocyte function. HCs composed of connexin 43 (Cx43), a major cardiac connexin, can be opened by electrical stimulation but only by very positive membrane potentials. Here, we investigated the activation of Cx43 HCs in murine ventricular cardiomyocytes voltage-clamped at -70 mV. METHODS AND RESULTS Using whole-cell patch-clamp, co-immunoprecipitation, western blot analysis, immunocytochemistry, proximity ligation assays, and protein docking studies, we found that stimulation of ryanodine receptors (RyRs) triggered unitary currents with a single-channel conductance of ∼220 pS, which were strongly reduced by Cx43 knockdown. Recordings under Ca2+-clamp conditions showed that both RyR activation and intracellular Ca2+ elevation were necessary for HC opening. Proximity ligation studies indicated close Cx43-RyR2 apposition (<40 nm), and both proteins co-immunoprecipitated indicating physical interaction. Molecular modelling suggested a strongly conserved RyR-mimicking peptide sequence (RyRHCIp), which inhibited RyR/Ca2+ HC activation but not voltage-triggered activation. The peptide also slowed down action potential repolarization. Interestingly, alterations in the concerned RyR sequence are known to be associated with primary familial hypertrophic cardiomyopathy. CONCLUSION Our results demonstrate that Cx43 HCs are intimately linked to RyRs, allowing them to open at negative diastolic membrane potential in response to RyR activation.
Collapse
Affiliation(s)
- Alessio Lissoni
- Department of Basic and Applied Medical Sciences-Physiology Group, Ghent University, Ghent 9000, Belgium
| | - Paco Hulpiau
- Department of Bio-Medical Sciences, HOWEST University of Applied Sciences (Hogeschool West-Vlaanderen), Bruges, Belgium
| | - Tânia Martins-Marques
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Nan Wang
- Department of Basic and Applied Medical Sciences-Physiology Group, Ghent University, Ghent 9000, Belgium
| | - Geert Bultynck
- Department of Molecular Cell Biology, Laboratory of Molecular and Cellular Signaling, KU Leuven, Leuven, Belgium
| | - Rainer Schulz
- Institut für Physiologie, JustusLiebig Universität Giessen, Giessen, Germany
| | - Katja Witschas
- Department of Basic and Applied Medical Sciences-Physiology Group, Ghent University, Ghent 9000, Belgium
| | - Henrique Girao
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Maarten De Smet
- Department of Basic and Applied Medical Sciences-Physiology Group, Ghent University, Ghent 9000, Belgium
| | - Luc Leybaert
- Department of Basic and Applied Medical Sciences-Physiology Group, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
7
|
Colpaert RMW, Calore M. MicroRNAs in Cardiac Diseases. Cells 2019; 8:E737. [PMID: 31323768 PMCID: PMC6678080 DOI: 10.3390/cells8070737] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/08/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
Since their discovery 20 years ago, microRNAs have been related to posttranscriptional regulation of gene expression in major cardiac physiological and pathological processes. We know now that cardiac muscle phenotypes are tightly regulated by multiple noncoding RNA species to maintain cardiac homeostasis. Upon stress or various pathological conditions, this class of non-coding RNAs has been found to modulate different cardiac pathological conditions, such as contractility, arrhythmia, myocardial infarction, hypertrophy, and inherited cardiomyopathies. This review summarizes and updates microRNAs playing a role in the different processes underlying the pathogenic phenotypes of cardiac muscle and highlights their potential role as disease biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Robin M W Colpaert
- IMAiA-Institute for Molecular Biology and RNA Technology, Faculty of Science and Engineering, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Martina Calore
- IMAiA-Institute for Molecular Biology and RNA Technology, Faculty of Science and Engineering, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands.
| |
Collapse
|
8
|
Lee MO, Jung KB, Jo SJ, Hyun SA, Moon KS, Seo JW, Kim SH, Son MY. Modelling cardiac fibrosis using three-dimensional cardiac microtissues derived from human embryonic stem cells. J Biol Eng 2019; 13:15. [PMID: 30809271 PMCID: PMC6375184 DOI: 10.1186/s13036-019-0139-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
Background Cardiac fibrosis is the most common pathway of many cardiac diseases. To date, there has been no suitable in vitro cardiac fibrosis model that could sufficiently mimic the complex environment of the human heart. Here, a three-dimensional (3D) cardiac sphere platform of contractile cardiac microtissue, composed of human embryonic stem cell (hESC)-derived cardiomyocytes (CMs) and mesenchymal stem cells (MSCs), is presented to better recapitulate the human heart. Results We hypothesized that MSCs would develop an in vitro fibrotic reaction in response to treatment with transforming growth factor-β1 (TGF-β1), a primary inducer of cardiac fibrosis. The addition of MSCs improved sarcomeric organization, electrophysiological properties, and the expression of cardiac-specific genes, suggesting their physiological relevance in the generation of human cardiac microtissue model in vitro. MSCs could also generate fibroblasts within 3D cardiac microtissues and, subsequently, these fibroblasts were transdifferentiated into myofibroblasts by the exogenous addition of TGF-β1. Cardiac microtissues displayed fibrotic features such as the deposition of collagen, the presence of numerous apoptotic CMs and the dissolution of mitochondrial networks. Furthermore, treatment with pro-fibrotic substances demonstrated that this model could reproduce key molecular and cellular fibrotic events. Conclusions This highlights the potential of our 3D cardiac microtissues as a valuable tool for manifesting and evaluating the pro-fibrotic effects of various agents, thereby representing an important step forward towards an in vitro system for the prediction of drug-induced cardiac fibrosis and the study of the pathological changes in human cardiac fibrosis. Electronic supplementary material The online version of this article (10.1186/s13036-019-0139-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mi-Ok Lee
- 1Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 341411 Republic of Korea
| | - Kwang Bo Jung
- 1Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 341411 Republic of Korea.,2Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| | - Seong-Jae Jo
- 1Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 341411 Republic of Korea.,2Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| | - Sung-Ae Hyun
- Research Group for Safety Pharmacology, Korea Institute of Toxicology, KRICT, Daejeon, 34114 Republic of Korea
| | - Kyoung-Sik Moon
- Research Group for Safety Pharmacology, Korea Institute of Toxicology, KRICT, Daejeon, 34114 Republic of Korea
| | - Joung-Wook Seo
- Research Group for Safety Pharmacology, Korea Institute of Toxicology, KRICT, Daejeon, 34114 Republic of Korea
| | - Sang-Heon Kim
- 4Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea.,5Department of Biomedical Engineering, KIST school, UST, Daejeon, 34113 Republic of Korea
| | - Mi-Young Son
- 1Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 341411 Republic of Korea.,2Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| |
Collapse
|
9
|
The role of the gap junction perinexus in cardiac conduction: Potential as a novel anti-arrhythmic drug target. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 144:41-50. [PMID: 30241906 DOI: 10.1016/j.pbiomolbio.2018.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/09/2018] [Accepted: 08/10/2018] [Indexed: 12/16/2022]
Abstract
Cardiovascular disease remains the single largest cause of natural death in the United States, with a significant cause of mortality associated with cardiac arrhythmias. Presently, options for treating and preventing myocardial electrical dysfunction, including sudden cardiac death, are limited. Recent studies have indicated that conduction of electrical activation in the heart may have an ephaptic component, wherein intercellular coupling occurs via electrochemical signaling across narrow extracellular clefts between cardiomyocytes. The perinexus is a 100-200 nm-wide stretch of closely apposed membrane directly adjacent to connexin 43 gap junctions. Electron and super-resolution microscopy studies, as well as biochemical analyses, have provided evidence that perinexal nanodomains may be candidate structures for facilitating ephaptic coupling. This work has included characterization of the perinexus as a region of close inter-membrane contact between cardiomyocytes (<30 nm) containing dense clusters of voltage-gated sodium channels. Here, we review what is known about perinexal structure and function and the potential that the perinexus may have novel and pivotal roles in disorders of cardiac conduction. Of particular interest is the prospect that cell adhesion mediated by the cardiac sodium channel β subunit (Scn1b) may be a novel anti-arrhythmic target.
Collapse
|
10
|
Manring HR, Dorn LE, Ex-Willey A, Accornero F, Ackermann MA. At the heart of inter- and intracellular signaling: the intercalated disc. Biophys Rev 2018; 10:961-971. [PMID: 29876873 DOI: 10.1007/s12551-018-0430-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022] Open
Abstract
Proper cardiac function requires the synchronous mechanical and electrical coupling of individual cardiomyocytes. The intercalated disc (ID) mediates coupling of neighboring myocytes through intercellular signaling. Intercellular communication is highly regulated via intracellular signaling, and signaling pathways originating from the ID control cardiomyocyte remodeling and function. Herein, we present an overview of the inter- and intracellular signaling that occurs at and originates from the intercalated disc in normal physiology and pathophysiology. This review highlights the importance of the intercalated disc as an integrator of signaling events regulating homeostasis and stress responses in the heart and the center of several pathophysiological processes mediating the development of cardiomyopathies.
Collapse
Affiliation(s)
- Heather R Manring
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Lisa E Dorn
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Aidan Ex-Willey
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| | - Maegen A Ackermann
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
11
|
Vanslembrouck B, Kremer A, Pavie B, van Roy F, Lippens S, van Hengel J. Three-dimensional reconstruction of the intercalated disc including the intercellular junctions by applying volume scanning electron microscopy. Histochem Cell Biol 2018; 149:479-490. [PMID: 29508067 DOI: 10.1007/s00418-018-1657-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2018] [Indexed: 11/25/2022]
Abstract
The intercalated disc (ID) contains different kinds of intercellular junctions: gap junctions (GJs), desmosomes and areae compositae, essential for adhesion and communication between adjacent cardiomyocytes. The junctions can be identified based on their morphology when imaged using transmission electron microscopy (TEM), however, only with very limited information in the z-dimension. The application of volume EM techniques can give insight into the three-dimensional (3-D) organization of complex biological structures. In this study, we generated 3-D datasets using serial block-face scanning electron microscopy (SBF-SEM) and focused ion beam SEM (FIB-SEM), the latter resulting in datasets with 5 nm isotropic voxels. We visualized cardiomyocytes in murine ventricular heart tissue and, for the first time, we could three-dimensionally reconstruct the ID including desmosomes and GJs with 5 nm precision in a large volume. Results show in three dimensions a highly folded structure of the ID, with the presence of GJs and desmosomes in both plicae and interplicae regions. We observed close contact of GJs with mitochondria and a variable spatial distribution of the junctions. Based on measurements of the shape of the intercellular junctions in 3-D, it is seen that GJs and desmosomes vary in size, depending on the region within the ID. This demonstrates that volume EM is essential to visualize morphological changes and its potential to quantitatively determine structural changes between normal and pathological conditions, e.g., cardiomyopathies.
Collapse
Affiliation(s)
- Bieke Vanslembrouck
- Department of Basic Medical Science, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Building B, 9000, Ghent, Belgium
| | - Anna Kremer
- VIB BioImaging Core, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | - Frans van Roy
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Saskia Lippens
- VIB BioImaging Core, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolanda van Hengel
- Department of Basic Medical Science, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Building B, 9000, Ghent, Belgium.
| |
Collapse
|
12
|
Zorzi A, Rigato I, Bauce B, Pilichou K, Basso C, Thiene G, Iliceto S, Corrado D. Arrhythmogenic Right Ventricular Cardiomyopathy: Risk Stratification and Indications for Defibrillator Therapy. Curr Cardiol Rep 2017. [PMID: 27147509 DOI: 10.1007/s11886- 016-0734-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetically determined disease which predisposes to life-threatening ventricular arrhythmias. The main goal of ARVC therapy is prevention of sudden cardiac death (SCD). Implantable cardioverter defibrillator (ICD) is the most effective therapy for interruption of potentially lethal ventricular tachyarrhythmias. Despite its life-saving potential, ICD implantation is associated with a high rate of complications and significant impact on quality of life. Accurate risk stratification is needed to identify individuals who most benefit from the therapy. While there is general agreement that patients with a history of cardiac arrest or hemodynamically unstable ventricular tachycardia are at high risk of SCD and needs an ICD, indications for primary prevention remain a matter of debate. The article reviews the available scientific evidence and guidelines that may help to stratify the arrhythmic risk of ARVC patients and guide ICD implantation. Other therapeutic strategies, either alternative or additional to ICD, will be also addressed.
Collapse
Affiliation(s)
- Alessandro Zorzi
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Ilaria Rigato
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Barbara Bauce
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Kalliopi Pilichou
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Cristina Basso
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Gaetano Thiene
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Sabino Iliceto
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy.
- Inherited Arrhythmogenic Cardiomyopathy Unit, Department of Cardiac Thoracic and Vascular Sciences, University of Padova, Via N. Giustiniani 2, 35121, Padova, Italy.
| |
Collapse
|
13
|
Shevchuk A, Tokar S, Gopal S, Sanchez-Alonso JL, Tarasov AI, Vélez-Ortega AC, Chiappini C, Rorsman P, Stevens MM, Gorelik J, Frolenkov GI, Klenerman D, Korchev YE. Angular Approach Scanning Ion Conductance Microscopy. Biophys J 2016; 110:2252-65. [PMID: 27224490 PMCID: PMC4880884 DOI: 10.1016/j.bpj.2016.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 11/16/2022] Open
Abstract
Scanning ion conductance microscopy (SICM) is a super-resolution live imaging technique that uses a glass nanopipette as an imaging probe to produce three-dimensional (3D) images of cell surface. SICM can be used to analyze cell morphology at nanoscale, follow membrane dynamics, precisely position an imaging nanopipette close to a structure of interest, and use it to obtain ion channel recordings or locally apply stimuli or drugs. Practical implementations of these SICM advantages, however, are often complicated due to the limitations of currently available SICM systems that inherited their design from other scanning probe microscopes in which the scan assembly is placed right above the specimen. Such arrangement makes the setting of optimal illumination necessary for phase contrast or the use of high magnification upright optics difficult. Here, we describe the designs that allow mounting SICM scan head on a standard patch-clamp micromanipulator and imaging the sample at an adjustable approach angle. This angle could be as shallow as the approach angle of a patch-clamp pipette between a water immersion objective and the specimen. Using this angular approach SICM, we obtained topographical images of cells grown on nontransparent nanoneedle arrays, of islets of Langerhans, and of hippocampal neurons under upright optical microscope. We also imaged previously inaccessible areas of cells such as the side surfaces of the hair cell stereocilia and the intercalated disks of isolated cardiac myocytes, and performed targeted patch-clamp recordings from the latter. Thus, our new, to our knowledge, angular approach SICM allows imaging of living cells on nontransparent substrates and a seamless integration with most patch-clamp setups on either inverted or upright microscopes, which would facilitate research in cell biophysics and physiology.
Collapse
Affiliation(s)
- Andrew Shevchuk
- Department of Medicine, Imperial College London, London, United Kingdom.
| | - Sergiy Tokar
- Rayne Institute, King's College London, London, United Kingdom
| | - Sahana Gopal
- Department of Medicine, Imperial College London, London, United Kingdom; Department of Materials and Department of Bioengineering and Institute for Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Jose L Sanchez-Alonso
- National Heart and Lung Institute and Department of Cardiac Medicine, Imperial Center for Translational and Experimental Medicine, Imperial College London, London, United Kingdom
| | - Andrei I Tarasov
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | | | - Ciro Chiappini
- Department of Materials and Department of Bioengineering and Institute for Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Molly M Stevens
- Department of Materials and Department of Bioengineering and Institute for Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Julia Gorelik
- National Heart and Lung Institute and Department of Cardiac Medicine, Imperial Center for Translational and Experimental Medicine, Imperial College London, London, United Kingdom
| | | | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Yuri E Korchev
- Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
14
|
Zorzi A, Rigato I, Bauce B, Pilichou K, Basso C, Thiene G, Iliceto S, Corrado D. Arrhythmogenic Right Ventricular Cardiomyopathy: Risk Stratification and Indications for Defibrillator Therapy. Curr Cardiol Rep 2016; 18:57. [DOI: 10.1007/s11886-016-0734-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Leo-Macias A, Agullo-Pascual E, Sanchez-Alonso JL, Keegan S, Lin X, Arcos T, Feng-Xia-Liang, Korchev YE, Gorelik J, Fenyö D, Rothenberg E, Rothenberg E, Delmar M. Nanoscale visualization of functional adhesion/excitability nodes at the intercalated disc. Nat Commun 2016; 7:10342. [PMID: 26787348 PMCID: PMC4735805 DOI: 10.1038/ncomms10342] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 12/01/2015] [Indexed: 02/06/2023] Open
Abstract
Intercellular adhesion and electrical excitability are considered separate cellular properties. Studies of myelinated fibres, however, show that voltage-gated sodium channels (VGSCs) aggregate with cell adhesion molecules at discrete subcellular locations, such as the nodes of Ranvier. Demonstration of similar macromolecular organization in cardiac muscle is missing. Here we combine nanoscale-imaging (single-molecule localization microscopy; electron microscopy; and ‘angle view' scanning patch clamp) with mathematical simulations to demonstrate distinct hubs at the cardiac intercalated disc, populated by clusters of the adhesion molecule N-cadherin and the VGSC NaV1.5. We show that the N-cadherin-NaV1.5 association is not random, that NaV1.5 molecules in these clusters are major contributors to cardiac sodium current, and that loss of NaV1.5 expression reduces intercellular adhesion strength. We speculate that adhesion/excitability nodes are key sites for crosstalk of the contractile and electrical molecular apparatus and may represent the structural substrate of cardiomyopathies in patients with mutations in molecules of the VGSC complex. In myelinated fibres conduction and adhesion proteins aggregate at discrete foci, but it is unclear if this organization is present in other excitable cells. Using nanoscale visualization and in silico techniques, the authors show that adhesion/excitability nodes exist at the intercalated discs of adult cardiac muscle.
Collapse
Affiliation(s)
- Alejandra Leo-Macias
- The Leon H Charney Division of Cardiology, New York University School of Medicine (NYU-SoM), 522 First Avenue, Smilow 805, New York, New York 10016, USA
| | - Esperanza Agullo-Pascual
- The Leon H Charney Division of Cardiology, New York University School of Medicine (NYU-SoM), 522 First Avenue, Smilow 805, New York, New York 10016, USA
| | - Jose L Sanchez-Alonso
- Imperial College, National Heart and Lung Institute, Department of Cardiac Medicine, Imperial Center for Translational and Experimental Medicine, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Sarah Keegan
- Center for Health Informatics and Bioinformatics, NYU-SoM, Translational Research Building, 227 East 30th Street, New York, New York 10016, USA
| | - Xianming Lin
- The Leon H Charney Division of Cardiology, New York University School of Medicine (NYU-SoM), 522 First Avenue, Smilow 805, New York, New York 10016, USA
| | - Tatiana Arcos
- The Leon H Charney Division of Cardiology, New York University School of Medicine (NYU-SoM), 522 First Avenue, Smilow 805, New York, New York 10016, USA
| | - Feng-Xia-Liang
- Microscopy Core, NYU-SoM, 522 First Avenue, Skirball Institute, 2nd Floor, New York, New York 10016, USA
| | - Yuri E Korchev
- Division of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London, London W12 0NN, UK
| | - Julia Gorelik
- Imperial College, National Heart and Lung Institute, Department of Cardiac Medicine, Imperial Center for Translational and Experimental Medicine, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - David Fenyö
- Center for Health Informatics and Bioinformatics, NYU-SoM, Translational Research Building, 227 East 30th Street, New York, New York 10016, USA
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, NYU-SoM, 522 First Avenue, MSB 3rd Floor, New York, New York 10016, USA
| | | | - Mario Delmar
- The Leon H Charney Division of Cardiology, New York University School of Medicine (NYU-SoM), 522 First Avenue, Smilow 805, New York, New York 10016, USA
| |
Collapse
|
16
|
Leo-Macias A, Agullo-Pascual E, Delmar M. The cardiac connexome: Non-canonical functions of connexin43 and their role in cardiac arrhythmias. Semin Cell Dev Biol 2015; 50:13-21. [PMID: 26673388 DOI: 10.1016/j.semcdb.2015.12.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 12/01/2015] [Indexed: 12/17/2022]
Abstract
Connexin43 is the major component of gap junctions, an anatomical structure present in the cardiac intercalated disc that provides a low-resistance pathway for direct cell-to-cell passage of electrical charge. Recent studies have shown that in addition to its well-established function as an integral membrane protein that oligomerizes to form gap junctions, Cx43 plays other roles that are independent of channel (or perhaps even hemi-channel) formation. This article discusses non-canonical functions of Cx43. In particular, we focus on the role of Cx43 as a part of a protein interacting network, a connexome, where molecules classically defined as belonging to the mechanical junctions, the gap junctions and the sodium channel complex, multitask and work together to bring about excitability, electrical and mechanical coupling between cardiac cells. Overall, viewing Cx43 as a multi-functional protein, beyond gap junctions, opens a window to better understand the function of the intercalated disc and the pathological consequences that may result from changes in the abundance or localization of Cx43 in the intercalated disc subdomain.
Collapse
Affiliation(s)
- Alejandra Leo-Macias
- The Leon H Charney Division of Cardiology, New York University School of Medicine, New York, NY, United States
| | - Esperanza Agullo-Pascual
- The Leon H Charney Division of Cardiology, New York University School of Medicine, New York, NY, United States
| | - Mario Delmar
- The Leon H Charney Division of Cardiology, New York University School of Medicine, New York, NY, United States.
| |
Collapse
|
17
|
Kucera JP, Prudat Y, Marcu IC, Azzarito M, Ullrich ND. Slow conduction in mixed cultured strands of primary ventricular cells and stem cell-derived cardiomyocytes. Front Cell Dev Biol 2015; 3:58. [PMID: 26442264 PMCID: PMC4585316 DOI: 10.3389/fcell.2015.00058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/09/2015] [Indexed: 11/30/2022] Open
Abstract
Modern concepts for the treatment of myocardial diseases focus on novel cell therapeutic strategies involving stem cell-derived cardiomyocytes (SCMs). However, functional integration of SCMs requires similar electrophysiological properties as primary cardiomyocytes (PCMs) and the ability to establish intercellular connections with host myocytes in order to contribute to the electrical and mechanical activity of the heart. The aim of this project was to investigate the properties of cardiac conduction in a co-culture approach using SCMs and PCMs in cultured cell strands. Murine embryonic SCMs were pooled with fetal ventricular cells and seeded in predefined proportions on microelectrode arrays to form patterned strands of mixed cells. Conduction velocity (CV) was measured during steady state pacing. SCM excitability was estimated from action potentials measured in single cells using the patch clamp technique. Experiments were complemented with computer simulations of conduction using a detailed model of cellular architecture in mixed cell strands. CV was significantly lower in strands composed purely of SCMs (5.5 ± 1.5 cm/s, n = 11) as compared to PCMs (34.9 ± 2.9 cm/s, n = 21) at similar refractoriness (100% SCMs: 122 ± 25 ms, n = 9; 100% PCMs: 139 ± 67 ms, n = 14). In mixed strands combining both cell types, CV was higher than in pure SCMs strands, but always lower than in 100% PCM strands. Computer simulations demonstrated that both intercellular coupling and electrical excitability limit CV. These data provide evidence that in cultures of murine ventricular cardiomyocytes, SCMs cannot restore CV to control levels resulting in slow conduction, which may lead to reentry circuits and arrhythmias.
Collapse
Affiliation(s)
- Jan P Kucera
- Department of Physiology, University of Bern Bern, Switzerland
| | - Yann Prudat
- Department of Physiology, University of Bern Bern, Switzerland
| | - Irene C Marcu
- Department of Physiology, University of Bern Bern, Switzerland ; Department of Physiology and Pathophysiology, Heidelberg University Heidelberg, Germany
| | | | - Nina D Ullrich
- Department of Physiology and Pathophysiology, Heidelberg University Heidelberg, Germany
| |
Collapse
|
18
|
Zorzi A, Rigato I, Pilichou K, Perazzolo Marra M, Migliore F, Mazzotti E, Gregori D, Thiene G, Daliento L, Iliceto S, Rampazzo A, Basso C, Bauce B, Corrado D. Phenotypic expression is a prerequisite for malignant arrhythmic events and sudden cardiac death in arrhythmogenic right ventricular cardiomyopathy. Europace 2015; 18:1086-94. [PMID: 26138720 DOI: 10.1093/europace/euv205] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 05/15/2015] [Indexed: 01/25/2023] Open
Abstract
AIMS Whether a desmosomal (DS)-gene defect may in itself induce life-threatening ventricular arrhythmias regardless of phenotypic expression of arrhythmogenic right ventricular cardiomyopathy (ARVC) is still debated. This prospective study evaluated the long-term outcome of DS-gene mutation carriers in relation to the ARVC phenotypic expression. METHODS AND RESULTS The study population included 116 DS-gene mutation carriers [49% males; median age 33 years (16-48 years)] without prior sustained ventricular tachycardia (VT) or ventricular fibrillation (VF). The incidence of the arrhythmic endpoint, including sudden cardiac death (SCD), aborted SCD, sustained VT, and appropriate implantable cardioverter-defibrillator (ICD) intervention was evaluated prospectively and stratified by the presence of ARVC phenotype and risk factors (syncope, ventricular dysfunction, and non-sustained VT). At enrolment, 40 of 116 (34%) subjects fulfilled the criteria for definite ARVC while the remaining were either borderline or phenotype negatives. During a median follow-up of 8.5 (5-12) years, 10 patients (9%) had arrhythmic events (0.9%/year). The event rate was 2.3%/year among patients with definite ARVC and 0.2%/year among borderline or phenotype negative patients (P = 0.002). In patients with definite ARVC, the incidence of arrhythmias was higher in those with ≥1 risk factors (4.1%/year) than in those with no risk factors (0.4%/year, P = 0.02). Mortality was 0.2%/year (1 heart failure death and 1 SCD). CONCLUSIONS The ARVC phenotypic expression is a prerequisite for the occurrence of life-threatening arrhythmias in DS-gene mutation carriers. The vast majority of malignant arrhythmic events occurred in patients with an overt disease phenotype and major risk factors suggesting that this subgroup most benefits from ICD therapy.
Collapse
Affiliation(s)
- Alessandro Zorzi
- Inherited Arrhythmogenic Cardiomyopathy Unit, Department of Cardiac, Thoracic, and Vascular Sciences, University of Padua, Via N. Giustiniani 2, Padua 35121, Italy
| | - Ilaria Rigato
- Inherited Arrhythmogenic Cardiomyopathy Unit, Department of Cardiac, Thoracic, and Vascular Sciences, University of Padua, Via N. Giustiniani 2, Padua 35121, Italy
| | - Kalliopi Pilichou
- Inherited Arrhythmogenic Cardiomyopathy Unit, Department of Cardiac, Thoracic, and Vascular Sciences, University of Padua, Via N. Giustiniani 2, Padua 35121, Italy
| | - Martina Perazzolo Marra
- Inherited Arrhythmogenic Cardiomyopathy Unit, Department of Cardiac, Thoracic, and Vascular Sciences, University of Padua, Via N. Giustiniani 2, Padua 35121, Italy
| | - Federico Migliore
- Inherited Arrhythmogenic Cardiomyopathy Unit, Department of Cardiac, Thoracic, and Vascular Sciences, University of Padua, Via N. Giustiniani 2, Padua 35121, Italy
| | - Elisa Mazzotti
- Inherited Arrhythmogenic Cardiomyopathy Unit, Department of Cardiac, Thoracic, and Vascular Sciences, University of Padua, Via N. Giustiniani 2, Padua 35121, Italy
| | - Dario Gregori
- Inherited Arrhythmogenic Cardiomyopathy Unit, Department of Cardiac, Thoracic, and Vascular Sciences, University of Padua, Via N. Giustiniani 2, Padua 35121, Italy
| | - Gaetano Thiene
- Inherited Arrhythmogenic Cardiomyopathy Unit, Department of Cardiac, Thoracic, and Vascular Sciences, University of Padua, Via N. Giustiniani 2, Padua 35121, Italy
| | - Luciano Daliento
- Inherited Arrhythmogenic Cardiomyopathy Unit, Department of Cardiac, Thoracic, and Vascular Sciences, University of Padua, Via N. Giustiniani 2, Padua 35121, Italy
| | - Sabino Iliceto
- Inherited Arrhythmogenic Cardiomyopathy Unit, Department of Cardiac, Thoracic, and Vascular Sciences, University of Padua, Via N. Giustiniani 2, Padua 35121, Italy
| | | | - Cristina Basso
- Inherited Arrhythmogenic Cardiomyopathy Unit, Department of Cardiac, Thoracic, and Vascular Sciences, University of Padua, Via N. Giustiniani 2, Padua 35121, Italy
| | - Barbara Bauce
- Inherited Arrhythmogenic Cardiomyopathy Unit, Department of Cardiac, Thoracic, and Vascular Sciences, University of Padua, Via N. Giustiniani 2, Padua 35121, Italy
| | - Domenico Corrado
- Inherited Arrhythmogenic Cardiomyopathy Unit, Department of Cardiac, Thoracic, and Vascular Sciences, University of Padua, Via N. Giustiniani 2, Padua 35121, Italy
| |
Collapse
|
19
|
Lübkemeier I, Bosen F, Kim JS, Sasse P, Malan D, Fleischmann BK, Willecke K. Human Connexin43E42K Mutation From a Sudden Infant Death Victim Leads to Impaired Ventricular Activation and Neonatal Death in Mice. ACTA ACUST UNITED AC 2015; 8:21-9. [DOI: 10.1161/circgenetics.114.000793] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Sudden infant death syndrome (SIDS) describes the sudden, unexplained death of a baby during its first year of age and is the third leading cause of infant mortality. It is assumed that ≤20% of all SIDS cases are because of cardiac arrhythmias resulting from mutations in ion channel proteins. Besides ion channels also cardiac gap junction channels are important for proper conduction of cardiac electric activation. In the mammalian heart Connexin43 (Cx43) is the major gap junction protein expressed in ventricular cardiomyocytes. Recently, a novel Connexin43 loss-of-function mutation (Cx43E42K) was identified in a 2-month-old SIDS victim.
Methods and Results—
We have generated Cx43E42K-expressing mice as a model for SIDS. Heterozygous cardiac-restricted Cx43E42K-mutated mice die neonatally without major cardiac morphological defects. Electrocardiographic recordings of embryonic Cx43+/E42K mice reveal severely disturbed ventricular activation, whereas immunohistochemical analyses show normal localization and expression patterns of gap junctional Connexin43 protein in the Cx43E42K-mutated newborn mouse heart.
Conclusions—
Because we did not find heterogeneous gap junction loss in Cx43E42K mouse hearts, we conclude that the Cx43E42K gap junction channel creates an arrhythmogenic substrate leading to lethal ventricular arrhythmias. The strong cardiac phenotype of Cx43E42K expressing mice supports the association between the human Cx43E42K mutation and SIDS and indicates that Connexin43 mutations should be considered in future studies when SIDS cases are to be molecularly explained.
Collapse
Affiliation(s)
- Indra Lübkemeier
- From the Life and Medical Sciences (LIMES) Institute, Molecular Genetics (I.L., F.B., K.W.) and Institute of Physiology I, Life and Brain Center (P.S., D.M., B.K.F.), University of Bonn, Bonn, Germany; and Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (J.-S.K.)
| | - Felicitas Bosen
- From the Life and Medical Sciences (LIMES) Institute, Molecular Genetics (I.L., F.B., K.W.) and Institute of Physiology I, Life and Brain Center (P.S., D.M., B.K.F.), University of Bonn, Bonn, Germany; and Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (J.-S.K.)
| | - Jung-Sun Kim
- From the Life and Medical Sciences (LIMES) Institute, Molecular Genetics (I.L., F.B., K.W.) and Institute of Physiology I, Life and Brain Center (P.S., D.M., B.K.F.), University of Bonn, Bonn, Germany; and Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (J.-S.K.)
| | - Philipp Sasse
- From the Life and Medical Sciences (LIMES) Institute, Molecular Genetics (I.L., F.B., K.W.) and Institute of Physiology I, Life and Brain Center (P.S., D.M., B.K.F.), University of Bonn, Bonn, Germany; and Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (J.-S.K.)
| | - Daniela Malan
- From the Life and Medical Sciences (LIMES) Institute, Molecular Genetics (I.L., F.B., K.W.) and Institute of Physiology I, Life and Brain Center (P.S., D.M., B.K.F.), University of Bonn, Bonn, Germany; and Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (J.-S.K.)
| | - Bernd K. Fleischmann
- From the Life and Medical Sciences (LIMES) Institute, Molecular Genetics (I.L., F.B., K.W.) and Institute of Physiology I, Life and Brain Center (P.S., D.M., B.K.F.), University of Bonn, Bonn, Germany; and Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (J.-S.K.)
| | - Klaus Willecke
- From the Life and Medical Sciences (LIMES) Institute, Molecular Genetics (I.L., F.B., K.W.) and Institute of Physiology I, Life and Brain Center (P.S., D.M., B.K.F.), University of Bonn, Bonn, Germany; and Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (J.-S.K.)
| |
Collapse
|
20
|
Xiao S, Shaw RM. Cardiomyocyte protein trafficking: Relevance to heart disease and opportunities for therapeutic intervention. Trends Cardiovasc Med 2014; 25:379-89. [PMID: 25649302 DOI: 10.1016/j.tcm.2014.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/18/2014] [Accepted: 12/20/2014] [Indexed: 11/30/2022]
Abstract
Cardiomyocytes, the individual contractile units of heart muscle, are long-lived and robust. Given the longevity of these cells, it can be easy to overlook their dynamic intracellular environment that contain rapid protein movements and frequent protein turnover. Critical gene transcription and protein translation occur continuously, as well as trafficking and localization of proteins to specific functional zones of cell membrane. As heart failure becomes an increasingly important clinical entity, growing numbers of investigative teams are examining the cell biology of healthy and diseased cardiomyocytes. In this review, we introduce the major architectural structures and types of protein movements within cardiac cells, and then review recent studies that explore the regulation of such movements. We conclude by introducing current translational directions of the basic studies with a focus on novel areas of therapeutic development.
Collapse
Affiliation(s)
- Shaohua Xiao
- Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Robin M Shaw
- Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA; Department of Medicine, University of California Los Angeles, Los Angeles, CA.
| |
Collapse
|
21
|
Franke WW, Rickelt S, Zimbelmann R, Dörflinger Y, Kuhn C, Frey N, Heid H, Rosin-Arbesfeld R. Striatins as plaque molecules of zonulae adhaerentes in simple epithelia, of tessellate junctions in stratified epithelia, of cardiac composite junctions and of various size classes of lateral adherens junctions in cultures of epithelia- and carcinoma-derived cells. Cell Tissue Res 2014; 359:779-97. [PMID: 25501894 PMCID: PMC4341017 DOI: 10.1007/s00441-014-2053-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/05/2014] [Indexed: 11/29/2022]
Abstract
Proteins of the striatin family (striatins 1–4; sizes ranging from 90 to 110 kDa on SDS-polyacrylamide gel electrophoresis) are highly homologous in their amino acid sequences but can differ in their cell-type-specific gene expression patterns and biological functions. In various cell types, we have found one, two or three polypeptides of this evolutionarily old and nearly ubiquitous family of proteins known to serve as scaffold proteins for diverse protein complexes. Light and electron microscopic immunolocalization methods have revealed striatins in mammalian cell-cell adherens junctions (AJs). In simple epithelia, we have localized striatins as constitutive components of the plaques of the subapical zonulae adhaerentes of cells, including intestinal, glandular, ductal and urothelial cells and hepatocytes. Striatins colocalize with E-cadherin or E–N-cadherin heterodimers and with the plaque proteins α- and β-catenin, p120 and p0071. In some epithelia and carcinomas and in cultured cells derived therefrom, striatins are also seen in lateral AJs. In stratified epithelia and in corresponding squamous cell carcinomas, striatins can be found in plaques of some forms of tessellate junctions. Moreover, striatins are major plaque proteins of composite junctions (CJs; areae compositae) in the intercalated disks connecting cardiomyocytes, colocalizing with other CJ molecules, including plectin and ankyrin-G. We discuss the “multimodulator” scaffold roles of striatins in the initiation and regulation of the formation of various complex particles and structures. We propose that striatins are included in the diagnostic candidate list of proteins that, in the CJs of human hearts, can occur in mutated forms in the pathogeneses of hereditary cardiomyopathies, as seen in some types of genetically determined heart damage in boxer dogs.
Collapse
Affiliation(s)
- Werner W Franke
- Helmholtz Group for Cell Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kleber AG, Saffitz JE. Role of the intercalated disc in cardiac propagation and arrhythmogenesis. Front Physiol 2014; 5:404. [PMID: 25368581 PMCID: PMC4201087 DOI: 10.3389/fphys.2014.00404] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 09/30/2014] [Indexed: 01/28/2023] Open
Abstract
This review article discusses mechanisms underlying impulse propagation in cardiac muscle with specific emphasis on the role of the cardiac cell-to-cell junction, called the “intercalated disc.”The first part of this review deals with the role of gap junction channels, formed by connexin proteins, as a determinant of impulse propagation. It is shown that, depending on the underlying structure of the cellular network, decreasing the conductance of gap junction channels (so-called “electrical uncoupling”) may either only slow, or additionally stabilize propagation and reverse unidirectional propagation block to bidirectional propagation. This is because the safety factor for propagation increases with decreasing intercellular electrical conductance. The role of heterogeneous connexin expression, which may be present in disease states, is also discussed. The hypothesis that so-called ephaptic impulse transmission plays a role in heart and can substitute for electrical coupling has been revived recently. Whereas ephaptic transmission can be demonstrated in theoretical simulations, direct experimental evidence has not yet been presented. The second part of this review deals with the interaction of three protein complexes at the intercalated disc: (1) desmosomal and adherens junction proteins, (2) ion channel proteins, and (3) gap junction channels consisting of connexins. Recent work has revealed multiple interactions between these three protein complexes which occur, at least in part, at the level of protein trafficking. Such interactions are likely to play an important role in the pathogenesis of arrhythmogenic cardiomyopathy, and may reveal new therapeutic concepts and targets.
Collapse
Affiliation(s)
- Andre G Kleber
- Department of Pathology, Beth Israel Medical Center, Harvard Medical School Boston, MA, USA
| | - Jeffrey E Saffitz
- Department of Pathology, Beth Israel Medical Center, Harvard Medical School Boston, MA, USA
| |
Collapse
|
23
|
Agullo-Pascual E, Lin X, Leo-Macias A, Zhang M, Liang FX, Li Z, Pfenniger A, Lübkemeier I, Keegan S, Fenyö D, Willecke K, Rothenberg E, Delmar M. Super-resolution imaging reveals that loss of the C-terminus of connexin43 limits microtubule plus-end capture and NaV1.5 localization at the intercalated disc. Cardiovasc Res 2014; 104:371-81. [PMID: 25139742 DOI: 10.1093/cvr/cvu195] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIMS It is well known that connexin43 (Cx43) forms gap junctions. We recently showed that Cx43 is also part of a protein-interacting network that regulates excitability. Cardiac-specific truncation of Cx43 C-terminus (mutant 'Cx43D378stop') led to lethal arrhythmias. Cx43D378stop localized to the intercalated disc (ID); cell-cell coupling was normal, but there was significant sodium current (INa) loss. We proposed that the microtubule plus-end is at the crux of the Cx43-INa relation. Yet, specific localization of relevant molecular players was prevented due to the resolution limit of fluorescence microscopy. Here, we use nanoscale imaging to establish: (i) the morphology of clusters formed by the microtubule plus-end tracking protein 'end-binding 1' (EB1), (ii) their position, and that of sodium channel alpha-subunit NaV1.5, relative to N-cadherin-rich sites, and (iii) the role of Cx43 C-terminus on the above-mentioned parameters and on the location-specific function of INa. METHODS AND RESULTS Super-resolution fluorescence localization microscopy in murine adult cardiomyocytes revealed EB1 and NaV1.5 as distinct clusters preferentially localized to N-cadherin-rich sites. Extent of co-localization decreased in Cx43D378stop cells. Macropatch and scanning patch clamp showed reduced INa exclusively at cell end, without changes in unitary conductance. Experiments in Cx43-modified HL1 cells confirmed the relation between Cx43, INa, and microtubules. CONCLUSIONS NaV1.5 and EB1 localization at the cell end is Cx43-dependent. Cx43 is part of a molecular complex that determines capture of the microtubule plus-end at the ID, facilitating cargo delivery. These observations link excitability and electrical coupling through a common molecular mechanism.
Collapse
Affiliation(s)
- Esperanza Agullo-Pascual
- Leon H Charney Division of Cardiology, New York University School of Medicine (NYU-SoM), 522 First Avenue, Smilow 805, New York, NY 10016, USA
| | - Xianming Lin
- Leon H Charney Division of Cardiology, New York University School of Medicine (NYU-SoM), 522 First Avenue, Smilow 805, New York, NY 10016, USA
| | - Alejandra Leo-Macias
- Leon H Charney Division of Cardiology, New York University School of Medicine (NYU-SoM), 522 First Avenue, Smilow 805, New York, NY 10016, USA
| | - Mingliang Zhang
- Leon H Charney Division of Cardiology, New York University School of Medicine (NYU-SoM), 522 First Avenue, Smilow 805, New York, NY 10016, USA
| | - Feng-Xia Liang
- Office of Collaborative Science Microscopy Core, NYU-SoM, New York, NY, USA
| | - Zhen Li
- Leon H Charney Division of Cardiology, New York University School of Medicine (NYU-SoM), 522 First Avenue, Smilow 805, New York, NY 10016, USA
| | - Anna Pfenniger
- Leon H Charney Division of Cardiology, New York University School of Medicine (NYU-SoM), 522 First Avenue, Smilow 805, New York, NY 10016, USA
| | - Indra Lübkemeier
- Life and Medical Sciences Institute, Molecular Genetics, University of Bonn, Bonn, Germany
| | - Sarah Keegan
- Department of Biochemistry and Molecular Pharmacology, NYU-SoM, New York, NY, USA Center for Health Informatics and Bioinformatics, NYU-SoM, New York, NY, USA
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, NYU-SoM, New York, NY, USA Center for Health Informatics and Bioinformatics, NYU-SoM, New York, NY, USA
| | - Klaus Willecke
- Life and Medical Sciences Institute, Molecular Genetics, University of Bonn, Bonn, Germany
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, NYU-SoM, New York, NY, USA
| | - Mario Delmar
- Leon H Charney Division of Cardiology, New York University School of Medicine (NYU-SoM), 522 First Avenue, Smilow 805, New York, NY 10016, USA
| |
Collapse
|
24
|
Protein LUMA is a cytoplasmic plaque constituent of various epithelial adherens junctions and composite junctions of myocardial intercalated disks: a unifying finding for cell biology and cardiology. Cell Tissue Res 2014; 357:159-72. [PMID: 24770932 DOI: 10.1007/s00441-014-1865-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
Abstract
In a series of recent reports, mutations in the gene encoding a protein called LUMA (or TMEM43), widely speculated to be a tetraspan transmembrane protein of the nuclear envelope, have been associated with a specific subtype of cardiomyopathy (arrhythmogenic cardiomyopathies) and cases of sudden death. However, using antibodies of high specificity in immunolocalization experiments, we have discovered that, in mammals, LUMA is a component of zonula adhaerens and punctum adhaerens plaques of diverse epithelia and epithelial cell cultures and is also located in (or in some species associated with) the plaques of composite junctions (CJs) in myocardiac intercalated disks (IDs). In CJs, LUMA often colocalizes with several other CJ marker proteins. In all these cells, LUMA has not been detected in the nuclear envelope. Surprisingly, under certain conditions, similar CJ localizations have also been seen with some antibodies commercially available for some time. The identification of LUMA as a plaque component of myocardiac CJs leads to reconsiderations of the molecular composition and architecture, the development, the functions, and the pathogenic states of CJs and IDs. These findings now also allow the general conclusion that LUMA has to be added to the list of mutations of cardiomyocyte junction proteins that may be involved in cardiomyopathies.
Collapse
|
25
|
Agullo-Pascual E, Cerrone M, Delmar M. Arrhythmogenic cardiomyopathy and Brugada syndrome: diseases of the connexome. FEBS Lett 2014; 588:1322-30. [PMID: 24548564 DOI: 10.1016/j.febslet.2014.02.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 02/06/2014] [Accepted: 02/06/2014] [Indexed: 11/30/2022]
Abstract
This review summarizes data in support of the notion that the cardiac intercalated disc is the host of a protein interacting network, called "the connexome", where molecules classically defined as belonging to one particular structure (e.g., desmosomes, gap junctions, sodium channel complex) actually interact with others, and together, control excitability, electrical coupling and intercellular adhesion in the heart. The concept of the connexome is then translated into the understanding of the mechanisms leading to two inherited arrhythmia diseases: arrhythmogenic cardiomyopathy, and Brugada syndrome. The cross-over points in these two diseases are addressed to then suggest that, though separate identifiable clinical entities, they represent "bookends" of a spectrum of manifestations that vary depending on the effect that a particular mutation has on the connexome as a whole.
Collapse
Affiliation(s)
- Esperanza Agullo-Pascual
- Leon H Charney Division of Cardiology, New York University School of Medicine, 522 First avenue, Smilow 805, New York, NY 10016, United States
| | - Marina Cerrone
- Leon H Charney Division of Cardiology, New York University School of Medicine, 522 First avenue, Smilow 805, New York, NY 10016, United States
| | - Mario Delmar
- Leon H Charney Division of Cardiology, New York University School of Medicine, 522 First avenue, Smilow 805, New York, NY 10016, United States.
| |
Collapse
|
26
|
Zemljic-Harpf AE, Godoy JC, Platoshyn O, Asfaw EK, Busija AR, Domenighetti AA, Ross RS. Vinculin directly binds zonula occludens-1 and is essential for stabilizing connexin-43-containing gap junctions in cardiac myocytes. J Cell Sci 2014; 127:1104-16. [PMID: 24413171 DOI: 10.1242/jcs.143743] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Vinculin (Vcl) links actin filaments to integrin- and cadherin-based cellular junctions. Zonula occludens-1 (ZO-1, also known as TJP1) binds connexin-43 (Cx43, also known as GJA1), cadherin and actin. Vcl and ZO-1 anchor the actin cytoskeleton to the sarcolemma. Given that loss of Vcl from cardiomyocytes causes maldistribution of Cx43 and predisposes cardiomyocyte-specific Vcl-knockout mice with preserved heart function to arrhythmia and sudden death, we hypothesized that Vcl and ZO-1 interact and that loss of this interaction destabilizes gap junctions. We found that Vcl, Cx43 and ZO-1 colocalized at the intercalated disc. Loss of cardiomyocyte Vcl caused parallel loss of ZO-1 from intercalated dics. Vcl co-immunoprecipitated Cx43 and ZO-1, and directly bound ZO-1 in yeast two-hybrid studies. Excision of the Vcl gene in neonatal mouse cardiomyocytes caused a reduction in the amount of Vcl mRNA transcript and protein expression leading to (1) decreased protein expression of Cx43, ZO-1, talin, and β1D-integrin, (2) reduced PI3K activation, (3) increased activation of Akt, Erk1 and Erk2, and (4) cardiomyocyte necrosis. In summary, this is the first study showing a direct interaction between Vcl and ZO-1 and illustrates how Vcl plays a crucial role in stabilizing gap junctions and myocyte integrity.
Collapse
|
27
|
Rigato I, Bauce B, Rampazzo A, Zorzi A, Pilichou K, Mazzotti E, Migliore F, Marra MP, Lorenzon A, De Bortoli M, Calore M, Nava A, Daliento L, Gregori D, Iliceto S, Thiene G, Basso C, Corrado D. Compound and digenic heterozygosity predicts lifetime arrhythmic outcome and sudden cardiac death in desmosomal gene-related arrhythmogenic right ventricular cardiomyopathy. ACTA ACUST UNITED AC 2013; 6:533-42. [PMID: 24070718 DOI: 10.1161/circgenetics.113.000288] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mutations in genes encoding for desmosomal proteins are the most common cause of arrhythmogenic right ventricular cardiomyopathy (ARVC). We assessed the value of genotype for prediction of lifetime major arrhythmic events and sudden cardiac death (SCD) in desmosomal gene-related ARVC. METHODS AND RESULTS The overall study population included 134 desmosomal gene mutation carriers (68 men; median age 36 years [22-52]) from 44 consecutive ARVC families undergoing comprehensive genetic screening. The probability of experiencing a first major arrhythmic event or SCD during a lifetime was determined by using date of birth as start point for the time-to-event analysis, and was stratified by sex, desmosomal genes, mutation types, and genotype complexity (single versus multiple mutations). One hundred thirteen patients (84%) carried a single desmosomal gene mutation in desmoplakin (n=44; 39%), plakophilin-2 (n=38; 34%), desmoglein-2 (n=30; 26%), and desmocollin-2 (n=1; 1%), whereas 21 patients (16%) had a complex genotype with compound heterozygosity in 7 and digenic heterozygosity in 14. Over a median observation period of 39 (22-52) years, 22 patients (16%) from 20 different families had arrhythmic events, such as SCD (n=1), aborted SCD because of ventricular fibrillation (n=6), sustained ventricular tachycardia (n=14), and appropriate defibrillator intervention (n=1). Multiple desmosomal gene mutations and male sex were independent predictors of lifetime arrhythmic events with a hazard ratio of 3.71 (95% confidence interval, 1.54-8.92; P=0.003) and 2.76 (95% confidence interval, 1.19-6.41; P=0.02), respectively. CONCLUSIONS Compound/digenic heterozygosity was identified in 16% of ARVC-causing desmosomal gene mutation carriers and was a powerful risk factor for lifetime major arrhythmic events and SCD. These results support the use of comprehensive genetic screening of desmosomal genes for arrhythmic risk stratification in ARVC.
Collapse
Affiliation(s)
- Ilaria Rigato
- Departments of Cardiac, Thoracic, and Vascular Sciences, and Biology, University of Padua, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Meens MJ, Pfenniger A, Kwak BR, Delmar M. Regulation of cardiovascular connexins by mechanical forces and junctions. Cardiovasc Res 2013; 99:304-14. [PMID: 23612582 DOI: 10.1093/cvr/cvt095] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Connexins form a family of transmembrane proteins that consists of 20 members in humans and 21 members in mice. Six connexins assemble into a connexon that can function as a hemichannel or connexon that can dock to a connexon expressed by a neighbouring cell, thereby forming a gap junction channel. Such intercellular channels synchronize responses in multicellular organisms through direct exchange of ions, small metabolites, and other second messenger molecules between the cytoplasms of adjacent cells. Multiple connexins are expressed in the cardiovascular system. These connexins not only experience the different biomechanical forces within this system, but may also act as effector proteins in co-ordinating responses within groups of cells towards these forces. This review discusses recent insights regarding regulation of cardiovascular connexins by mechanical forces and junctions. It specifically addresses effects of (i) shear stress on endothelial connexins, (ii) hypertension on vascular connexins, and (iii) changes in afterload and the composition of myocardial mechanical junctions on cardiac connexins.
Collapse
Affiliation(s)
- Merlijn J Meens
- Department of Pathology and Immunology, Foundation for Medical Research, University of Geneva, 2nd floor, 64 Avenue de Roseraie, 1211 Geneva, Switzerland
| | | | | | | |
Collapse
|
29
|
Deletion of the last five C-terminal amino acid residues of connexin43 leads to lethal ventricular arrhythmias in mice without affecting coupling via gap junction channels. Basic Res Cardiol 2013; 108:348. [PMID: 23558439 DOI: 10.1007/s00395-013-0348-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/08/2013] [Accepted: 03/25/2013] [Indexed: 10/27/2022]
Abstract
The cardiac intercalated disc harbors mechanical and electrical junctions as well as ion channel complexes mediating propagation of electrical impulses. Cardiac connexin43 (Cx43) co-localizes and interacts with several of the proteins located at intercalated discs in the ventricular myocardium. We have generated conditional Cx43D378stop mice lacking the last five C-terminal amino acid residues, representing a binding motif for zonula occludens protein-1 (ZO-1), and investigated the functional consequences of this mutation on cardiac physiology and morphology. Newborn and adult homozygous Cx43D378stop mice displayed markedly impaired and heterogeneous cardiac electrical activation properties and died from severe ventricular arrhythmias. Cx43 and ZO-1 were co-localized at intercalated discs in Cx43D378stop hearts, and the Cx43D378stop gap junction channels showed normal coupling properties. Patch clamp analyses of isolated adult Cx43D378stop cardiomyocytes revealed a significant decrease in sodium and potassium current densities. Furthermore, we also observed a significant loss of Nav1.5 protein from intercalated discs in Cx43D378stop hearts. The phenotypic lethality of the Cx43D378stop mutation was very similar to the one previously reported for adult Cx43 deficient (Cx43KO) mice. Yet, in contrast to Cx43KO mice, the Cx43 gap junction channel was still functional in the Cx43D378stop mutant. We conclude that the lethality of Cx43D378stop mice is independent of the loss of gap junctional intercellular communication, but most likely results from impaired cardiac sodium and potassium currents. The Cx43D378stop mice reveal for the first time that Cx43 dependent arrhythmias can develop by mechanisms other than impairment of gap junction channel function.
Collapse
|
30
|
Abstract
Intercellular calcium (Ca(2+)) waves (ICWs) represent the propagation of increases in intracellular Ca(2+) through a syncytium of cells and appear to be a fundamental mechanism for coordinating multicellular responses. ICWs occur in a wide diversity of cells and have been extensively studied in vitro. More recent studies focus on ICWs in vivo. ICWs are triggered by a variety of stimuli and involve the release of Ca(2+) from internal stores. The propagation of ICWs predominately involves cell communication with internal messengers moving via gap junctions or extracellular messengers mediating paracrine signaling. ICWs appear to be important in both normal physiology as well as pathophysiological processes in a variety of organs and tissues including brain, liver, retina, cochlea, and vascular tissue. We review here the mechanisms of initiation and propagation of ICWs, the key intra- and extracellular messengers (inositol 1,4,5-trisphosphate and ATP) mediating ICWs, and the proposed physiological functions of ICWs.
Collapse
Affiliation(s)
- Luc Leybaert
- Department of Basic Medical Sciences, Physiology Group, Faculty of Medicine & Health Sciences, Ghent University, Ghent, Belgium.
| | | |
Collapse
|
31
|
Delmar M. Desmosome-ion channel interactions and their possible role in arrhythmogenic cardiomyopathy. Pediatr Cardiol 2012; 33:975-9. [PMID: 22407454 DOI: 10.1007/s00246-012-0257-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 02/15/2012] [Indexed: 01/03/2023]
Abstract
Most commonly, arrhythmogenic cardiomyopathy (also known as arrhythmogenic right ventricular cardiomyopathy, or ARVC) is caused by mutations in desmosomal proteins. The question arises as to the mechanisms by which mutations in mechanical junctions, affect the rhythm of the heart. We have proposed that a component of the arrhythmogenic substrate may include changes in the function of both, gap junctions and sodium channels. Here, we review the relevant literature on this subject.
Collapse
Affiliation(s)
- Mario Delmar
- The Leon H. Charney Division of Cardiology, New York University School of Medicine, 522 First Avenue, Smilow 805, New York, NY 10016, USA.
| |
Collapse
|
32
|
Agullo-Pascual E, Delmar M. The noncanonical functions of Cx43 in the heart. J Membr Biol 2012; 245:477-82. [PMID: 22825715 DOI: 10.1007/s00232-012-9466-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/20/2012] [Indexed: 11/27/2022]
Abstract
There is abundant evidence showing that connexins form gap junctions. Yet this does not exclude the possibility that connexins can exert other functions, separate from that of gap junction (or even a permeable hemichannel) formation. Here, we focus on these noncanonical functions of connexin43 (Cx43), particularly in the heart. We describe two specific examples: the importance of Cx43 on intercellular adhesion, and the role of Cx43 in the function of the sodium channel. We propose that these two functions of Cx43 have important repercussions on the propagation of electrical activity in the heart, irrespective of the presence of permeable gap junction channels. Overall, the gap junction-independent functions of Cx43 in cardiac electrophysiology emerge as an exciting area of future research.
Collapse
Affiliation(s)
- Esperanza Agullo-Pascual
- The Leon H. Charney Division of Cardiology, New York University School of Medicine, 522 First Avenue, Smilow 805, New York, NY 10016, USA
| | | |
Collapse
|
33
|
Rhett JM, Ongstad EL, Jourdan J, Gourdie RG. Cx43 associates with Na(v)1.5 in the cardiomyocyte perinexus. J Membr Biol 2012; 245:411-22. [PMID: 22811280 DOI: 10.1007/s00232-012-9465-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/20/2012] [Indexed: 01/24/2023]
Abstract
Gap junctions (GJs) are aggregates of channels that provide for direct cytoplasmic connection between cells. Importantly, this connection is thought responsible for cell-to-cell transfer of the cardiac action potential. The GJ channels of ventricular myocytes are composed of connexin43 (Cx43). Interaction of Cx43 with zonula occludens-1 (ZO-1) is localized not only at the GJ plaque, but also to the region surrounding the GJ, the perinexus. Cx43 in the perinexus is not detectable by immunofluorescence, yet localization of Cx43/ZO-1 interaction to this region indicated the presence of Cx43. Therefore, we hypothesized that Cx43 occurs in the perinexus at a lower concentration per unit membrane than in the GJ itself, making it difficult to visualize. To overcome this, the Duolink protein-protein interaction assay was used to detect Cx43. Duolink labeling of cardiomyocytes localized Cx43 to the perinexus. Quantification demonstrated that signal in the perinexus was lower than in the GJ but significantly higher than in nonjunctional regions. Additionally, Duolink of Triton X-100-extracted cultures suggested that perinexal Cx43 is nonjunctional. Importantly, the voltage gated sodium channel Na(v)1.5, which is responsible for initiation of the action potential, was found to interact with perinexal Cx43 but not with ZO-1. This work provides a detailed characterization of the structure of the perinexus at the GJ edge and indicates that one of its potential functions in the heart may be in facilitating conduction of action potential.
Collapse
Affiliation(s)
- J Matthew Rhett
- Department of Regenerative Medicine, Medical University of South Carolina, 173 Ashley Ave, CRI Room 616, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
34
|
Cerrone M, Noorman M, Lin X, Chkourko H, Liang FX, van der Nagel R, Hund T, Birchmeier W, Mohler P, van Veen TA, van Rijen HV, Delmar M. Sodium current deficit and arrhythmogenesis in a murine model of plakophilin-2 haploinsufficiency. Cardiovasc Res 2012; 95:460-8. [PMID: 22764151 DOI: 10.1093/cvr/cvs218] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIMS The shRNA-mediated loss of expression of the desmosomal protein plakophilin-2 leads to sodium current (I(Na)) dysfunction. Whether pkp2 gene haploinsufficiency leads to I(Na) deficit in vivo remains undefined. Mutations in pkp2 are detected in arrhythmogenic right ventricular cardiomyopathy (ARVC). Ventricular fibrillation and sudden death often occur in the 'concealed phase' of the disease, prior to overt structural damage. The mechanisms responsible for these arrhythmias remain poorly understood. We sought to characterize the morphology, histology, and ultrastructural features of PKP2-heterozygous-null (PKP2-Hz) murine hearts and explore the relation between PKP2 abundance, I(Na) function, and cardiac electrical synchrony. METHODS AND RESULTS Hearts of PKP2-Hz mice were characterized by multiple methods. We observed ultrastructural but not histological or gross anatomical differences in PKP2-Hz hearts compared with wild-type (WT) littermates. Yet, in myocytes, decreased amplitude and a shift in gating and kinetics of I(Na) were observed. To further unmask I(Na) deficiency, we exposed myocytes, Langendorff-perfused hearts, and anaesthetized animals to a pharmacological challenge (flecainide). In PKP2-Hz hearts, the extent of flecainide-induced I(Na) block, impaired ventricular conduction, and altered electrocardiographic parameters were larger than controls. Flecainide provoked ventricular arrhythmias and death in PKP2-Hz animals, but not in the WT. CONCLUSIONS PKP2 haploinsufficiency leads to I(Na) deficit in murine hearts. Our data support the notion of a cross-talk between desmosome and sodium channel complex. They also suggest that I(Na) dysfunction may contribute to generation and/or maintenance of arrhythmias in PKP2-deficient hearts. Whether pharmacological challenges could help unveil arrhythmia risk in patients with mutations or variants in PKP2 remains undefined.
Collapse
Affiliation(s)
- Marina Cerrone
- Division of Cardiology, New York University School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Rizzo S, Lodder EM, Verkerk AO, Wolswinkel R, Beekman L, Pilichou K, Basso C, Remme CA, Thiene G, Bezzina CR. Intercalated disc abnormalities, reduced Na(+) current density, and conduction slowing in desmoglein-2 mutant mice prior to cardiomyopathic changes. Cardiovasc Res 2012; 95:409-18. [PMID: 22764152 DOI: 10.1093/cvr/cvs219] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AIMS Mutations in genes encoding desmosomal proteins have been implicated in the pathogenesis of arrhythmogenic right ventricular cardiomyopathy (ARVC). However, the consequences of these mutations in early disease stages are unknown. We investigated whether mutation-induced intercalated disc remodelling impacts on electrophysiological properties before the onset of cell death and replacement fibrosis. METHODS AND RESULTS Transgenic mice with cardiac overexpression of mutant Desmoglein2 (Dsg2) Dsg2-N271S (Tg-NS/L) were studied before and after the onset of cell death and replacement fibrosis. Mice with cardiac overexpression of wild-type Dsg2 and wild-type mice served as controls. Assessment by electron microscopy established that intercellular space widening at the desmosomes/adherens junctions occurred in Tg-NS/L mice before the onset of necrosis and fibrosis. At this stage, epicardial mapping in Langendorff-perfused hearts demonstrated prolonged ventricular activation time, reduced longitudinal and transversal conduction velocities, and increased arrhythmia inducibility. A reduced action potential (AP) upstroke velocity due to a lower Na(+) current density was also observed at this stage of the disease. Furthermore, co-immunoprecipitation demonstrated an in vivo interaction between Dsg2 and the Na(+) channel protein Na(V)1.5. CONCLUSION Intercellular space widening at the level of the intercalated disc (desmosomes/adherens junctions) and a concomitant reduction in AP upstroke velocity as a consequence of lower Na(+) current density lead to slowed conduction and increased arrhythmia susceptibility at disease stages preceding the onset of necrosis and replacement fibrosis. The demonstration of an in vivo interaction between Dsg2 and Na(V)1.5 provides a molecular pathway for the observed electrical disturbances during the early ARVC stages.
Collapse
Affiliation(s)
- Stefania Rizzo
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua 35121, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Chkourko HS, Guerrero-Serna G, Lin X, Darwish N, Pohlmann JR, Cook KE, Martens JR, Rothenberg E, Musa H, Delmar M. Remodeling of mechanical junctions and of microtubule-associated proteins accompany cardiac connexin43 lateralization. Heart Rhythm 2012; 9:1133-1140.e6. [PMID: 22406144 DOI: 10.1016/j.hrthm.2012.03.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Indexed: 11/18/2022]
Abstract
BACKGROUND Desmosomes and adherens junctions provide mechanical continuity between cardiac cells, whereas gap junctions allow for cell-cell electrical/metabolic coupling. These structures reside at the cardiac intercalated disc (ID). Also at the ID is the voltage-gated sodium channel (VGSC) complex. Functional interactions between desmosomes, gap junctions, and VGSC have been demonstrated. Separate studies show, under various conditions, reduced presence of gap junctions at the ID and redistribution of connexin43 (Cx43) to plaques oriented parallel to fiber direction (gap junction "lateralization"). OBJECTIVE To determine the mechanisms of Cx43 lateralization, and the fate of desmosomal and sodium channel molecules in the setting of Cx43 remodeling. METHODS Adult sheep were subjected to right ventricular pressure overload (pulmonary hypertension). Tissue was analyzed by quantitative confocal microscopy and by transmission electron microscopy. Ionic currents were measured using conventional patch clamp. RESULT Quantitative confocal microscopy demonstrated lateralization of immunoreactive junctional molecules. Desmosomes and gap junctions in lateral membranes were demonstrable by electron microscopy. Cx43/desmosomal remodeling was accompanied by lateralization of 2 microtubule-associated proteins relevant for Cx43 trafficking: EB1 and kinesin protein Kif5b. In contrast, molecules of the VGSC failed to reorganize in plaques discernable by confocal microscopy. Patch-clamp studies demonstrated change in amplitude and kinetics of sodium current and a small reduction in electrical coupling between cells. CONCLUSIONS Cx43 lateralization is part of a complex remodeling that includes mechanical and gap junctions but may exclude components of the VGSC. We speculate that lateralization results from redirectionality of microtubule-mediated forward trafficking. Remodeling of junctional complexes may preserve electrical synchrony under conditions that disrupt ID integrity.
Collapse
Affiliation(s)
- Halina S Chkourko
- The Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|