1
|
Lewetag RD, Nimani S, Alerni N, Hornyik T, Jacobi SF, Moss R, Menza M, Pilia N, Walz TP, HajiRassouliha A, Perez-Feliz S, Zehender M, Seemann G, Zgierski-Johnston CM, Lopez R, Odening KE. Mechano-electrical interactions and heterogeneities in wild-type and drug-induced long QT syndrome rabbits. J Physiol 2024; 602:4511-4527. [PMID: 37082830 DOI: 10.1113/jp284604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023] Open
Abstract
Electromechanical reciprocity - comprising electro-mechanical (EMC) and mechano-electric coupling (MEC) - provides cardiac adaptation to changing physiological demands. Understanding electromechanical reciprocity and its impact on function and heterogeneity in pathological conditions - such as (drug-induced) acquired long QT syndrome (aLQTS) - might lead to novel insights in arrhythmogenesis. Our aim is to investigate how electrical changes impact on mechanical function (EMC) and vice versa (MEC) under physiological conditions and in aLQTS. To measure regional differences in EMC and MEC in vivo, we used tissue phase mapping cardiac MRI and a 24-lead ECG vest in healthy (control) and IKr-blocker E-4031-induced aLQTS rabbit hearts. MEC was studied in vivo by acutely increasing cardiac preload, and ex vivo by using voltage optical mapping (OM) in beating hearts at different preloads. In aLQTS, electrical repolarization (heart rate corrected RT-interval, RTn370) was prolonged compared to control (P < 0.0001) with increased spatial and temporal RT heterogeneity (P < 0.01). Changing electrical function (in aLQTS) resulted in significantly reduced diastolic mechanical function and prolonged contraction duration (EMC), causing increased apico-basal mechanical heterogeneity. Increased preload acutely prolonged RTn370 in both control and aLQTS hearts (MEC). This effect was more pronounced in aLQTS (P < 0.0001). Additionally, regional RT-dispersion increased in aLQTS. Motion-correction allowed us to determine APD-prolongation in beating aLQTS hearts, but limited motion correction accuracy upon preload-changes prevented a clear analysis of MEC ex vivo. Mechano-induced RT-prolongation and increased heterogeneity were more pronounced in aLQTS than in healthy hearts. Acute MEC effects may play an additional role in LQT-related arrhythmogenesis, warranting further mechanistic investigations. KEY POINTS: Electromechanical reciprocity comprising excitation-contraction coupling (EMC) and mechano-electric feedback loops (MEC) is essential for physiological cardiac function. Alterations in electrical and/or mechanical heterogeneity are known to have potentially pro-arrhythmic effects. In this study, we aimed to investigate how electrical changes impact on the mechanical function (EMC) and vice versa (MEC) both under physiological conditions (control) and in acquired long QT syndrome (aLQTS). We show that changing the electrical function (in aLQTS) results in significantly altered mechanical heterogeneity via EMC and, vice versa, that increasing the preload acutely prolongs repolarization duration and increases electrical heterogeneity, particularly in aLQTS as compared to control. Our results substantiate the hypothesis that LQTS is an ‛electro-mechanical', rather than a 'purely electrical', disease and suggest that acute MEC effects may play an additional role in LQT-related arrhythmogenesis.
Collapse
Affiliation(s)
- Raphaela D Lewetag
- Department of Cardiology and Angiology I, University Heart Center Freiburg, University Medical Center Freiburg, Freiburg, Germany
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Saranda Nimani
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, Bern, Switzerland
| | - Nicolò Alerni
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, Bern, Switzerland
| | - Tibor Hornyik
- Department of Cardiology and Angiology I, University Heart Center Freiburg, University Medical Center Freiburg, Freiburg, Germany
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, Bern, Switzerland
| | - Simon F Jacobi
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Congenital Heart Defects and Pediatric Cardiology, University Heart Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robin Moss
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institute EMI, Freiburg, Germany
| | - Marius Menza
- Department of Radiology, Medical Physics, University Hospital Freiburg, and Faculty of Medicine, University of Freiburg, Germany
| | - Nicolas Pilia
- Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Teo P Walz
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institute EMI, Freiburg, Germany
| | | | - Stefanie Perez-Feliz
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Manfred Zehender
- Department of Cardiology and Angiology I, University Heart Center Freiburg, University Medical Center Freiburg, Freiburg, Germany
| | - Gunnar Seemann
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Callum M Zgierski-Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ruben Lopez
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, Bern, Switzerland
| | - Katja E Odening
- Department of Cardiology and Angiology I, University Heart Center Freiburg, University Medical Center Freiburg, Freiburg, Germany
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, Bern, Switzerland
| |
Collapse
|
2
|
Rosas Diaz AN, Stabenau HF, Pajares Hurtado G, Warack S, Waks JW, Asnani A. The Spatial Ventricular Gradient Is an Independent Predictor of Anthracycline-Associated Cardiotoxicity. JACC. ADVANCES 2023; 2:100269. [PMID: 38938305 PMCID: PMC11198294 DOI: 10.1016/j.jacadv.2023.100269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 06/29/2024]
Abstract
Background Anthracyclines are effective chemotherapies that are limited by cardiotoxicity. The spatial ventricular gradient (SVG) is a marker of electrical heterogeneity linked to adverse cardiovascular outcomes, including sudden cardiac death and heart failure (HF). Objectives The purpose of this study was to assess if SVG values before chemotherapy are associated with the risk of anthracycline-associated HF or cardiomyopathy (CM). Methods We analyzed 12-lead electrocardiograms obtained within 6 months before initiation of anthracyclines in a retrospective cohort treated for cancer between 1992 and 2019 at a single academic medical center. Incident HF and CM were defined by ICD-9/10 codes and confirmed by chart review. Vectorcardiograms were constructed from baseline electrocardiograms, and the SVG was calculated. The cumulative incidence of anthracycline-associated HF or CM was regressed on SVG vector orientation and magnitude with death as a competing risk. Results In 889 patients (47% male; mean age 58 ± 16 years; 71% hematologic malignancies), larger SVG magnitude prechemotherapy was associated with decreased risk of HF or CM after multivariable adjustment, with a subhazard ratio of 0.76 per 1 SD increase (95% CI: 0.59-0.96; P = 0.024). SVG vector orientation, specifically a more leftward oriented VGx, was associated with decreased risk of HF or CM with a subhazard ratio of 0.77 per 1 SD increase (95% CI: 0.61-0.96; P = 0.023). Conclusions Larger SVG magnitude and more leftward SVG orientation were associated with a decreased risk of anthracycline cardiotoxicity in a large retrospective cohort. Improved cardiac risk stratification algorithms incorporating the SVG could personalize both cancer and cardioprotective therapy.
Collapse
Affiliation(s)
- Andrea Nathalie Rosas Diaz
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Hans Friedrich Stabenau
- Harvard-Thorndike Electrophysiology Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Gabriel Pajares Hurtado
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah Warack
- Department of Pharmacy, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan W. Waks
- Harvard-Thorndike Electrophysiology Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Aarti Asnani
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
You T, Xie Y, Luo C, Zhang K, Zhang H. Mechanistic insights into spontaneous transition from cellular alternans to ventricular fibrillation. Physiol Rep 2023; 11:e15619. [PMID: 36863774 PMCID: PMC9981424 DOI: 10.14814/phy2.15619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/04/2023] [Accepted: 02/05/2023] [Indexed: 03/04/2023] Open
Abstract
T-wave alternans (TWA) has been used for predicting the risk of malignant cardiac arrhythmias and sudden cardiac death (SCD) in multiple clinical settings; however, possible mechanism(s) underlying the spontaneous transition from cellular alternans reflected by TWA to arrhythmias in impaired repolarization remains unclear. The healthy guinea pig ventricular myocytes under E-4031 blocking IKr (0.1 μM, N = 12; 0.3 μM, N = 10; 1 μM, N = 10) were evaluated using whole-cell patch-clamp. The electrophysiological properties of isolated perfused guinea pig hearts under E-4031 (0.1 μM, N = 5; 0.3 μM, N = 5; 1 μM, N = 5) were evaluated using dual- optical mapping. The amplitude/threshold/restitution curves of action potential duration (APD) alternans and potential mechanism(s) underlying the spontaneous transition of cellular alternans to ventricular fibrillation (VF) were examined. There were longer APD80 and increased amplitude and threshold of APD alternans in E-4031 group compared with baseline group, which was reflected by more pronounced arrhythmogenesis at the tissue level, and were associated with steep restitution curves of the APD and the conduction velocity (CV). Conduction of AP alternans augmented tissue's functional spatiotemporal heterogeneity of regional AP/Ca alternans, as well as the AP/Ca dispersion, leading to localized uni-directional conduction block that spontaneous facilitated the formation of reentrant excitation waves without the need for additional premature stimulus. Our results provide a possible mechanism for the spontaneous transition from cardiac electrical alternans in cellular action potentials and intercellular conduction without the involvement of premature excitations, and explain the increased susceptibility to ventricular arrhythmias in impaired repolarization. In this study, we implemented voltage-clamp and dual-optical mapping approaches to investigate the underlying mechanism(s) for the arrhythmogenesis of cardiac alternans in the guinea pig heart at cellular and tissue levels. Our results demonstrated a spontaneous development of reentry from cellular alternans, arising from a combined actions of restitution properties of action potential duration, conduction velocity of excitation wave and interplay between alternants of action potential and the intracellular Ca handling. We believe this study provides new insights into underlying the mechanism, by which cellular cardiac alternans spontaneously evolves into cardiac arrhythmias.
Collapse
Affiliation(s)
- Tingting You
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases)Institute of Cardiovascular Research, Southwest Medical UniversityLuzhouChina
- Department of NeurosurgeryXinqiao Hospital, Army Medical UniversityChongqingChina
| | - Yulong Xie
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases)Institute of Cardiovascular Research, Southwest Medical UniversityLuzhouChina
| | - Cunjin Luo
- School of Computer Science and Electronic EngineeringUniversity of EssexColchesterUK
| | - Kevin Zhang
- School of MedicineImperial College of LondonLondonUK
| | - Henggui Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases)Institute of Cardiovascular Research, Southwest Medical UniversityLuzhouChina
- Department of Physics and AstronomyUniversity of ManchesterManchesterUK
| |
Collapse
|
4
|
Moss R, Wülfers EM, Lewetag R, Hornyik T, Perez-Feliz S, Strohbach T, Menza M, Krafft A, Odening KE, Seemann G. A computational model of rabbit geometry and ECG: Optimizing ventricular activation sequence and APD distribution. PLoS One 2022; 17:e0270559. [PMID: 35771854 PMCID: PMC9246225 DOI: 10.1371/journal.pone.0270559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 06/13/2022] [Indexed: 11/19/2022] Open
Abstract
Computational modeling of electrophysiological properties of the rabbit heart is a commonly used way to enhance and/or complement findings from classic lab work on single cell or tissue levels. Yet, thus far, there was no possibility to extend the scope to include the resulting body surface potentials as a way of validation or to investigate the effect of certain pathologies. Based on CT imaging, we developed the first openly available computational geometrical model not only of the whole heart but also the complete torso of the rabbit. Additionally, we fabricated a 32-lead ECG-vest to record body surface potential signals of the aforementioned rabbit. Based on the developed geometrical model and the measured signals, we then optimized the activation sequence of the ventricles, recreating the functionality of the Purkinje network, and we investigated different apico-basal and transmural gradients in action potential duration. Optimization of the activation sequence resulted in an average root mean square error between measured and simulated signal of 0.074 mV/ms for all leads. The best-fit T-Wave, compared to measured data (0.038 mV/ms), resulted from incorporating an action potential duration gradient from base to apex with a respective shortening of 20 ms and a transmural gradient with a shortening of 15 ms from endocardium to epicardium. By making our model and measured data openly available, we hope to give other researchers the opportunity to verify their research, as well as to create the possibility to investigate the impact of electrophysiological alterations on body surface signals for translational research.
Collapse
Affiliation(s)
- Robin Moss
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg ⋅ Bad Krozingen, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- * E-mail:
| | - Eike M. Wülfers
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg ⋅ Bad Krozingen, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Raphaela Lewetag
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg ⋅ Bad Krozingen, Medical Center—University of Freiburg, Freiburg, Germany
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Medical Faculty, Freiburg, Germany
| | - Tibor Hornyik
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg ⋅ Bad Krozingen, Medical Center—University of Freiburg, Freiburg, Germany
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, Bern, Switzerland
| | - Stefanie Perez-Feliz
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg ⋅ Bad Krozingen, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Medical Faculty, Freiburg, Germany
| | - Tim Strohbach
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany
| | - Marius Menza
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany
| | - Axel Krafft
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany
| | - Katja E. Odening
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Medical Faculty, Freiburg, Germany
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, Bern, Switzerland
| | - Gunnar Seemann
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg ⋅ Bad Krozingen, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Hou Y, Zhang X, Sun X, Qin Q, Chen D, Jia M, Chen Y. Genetically modified rabbit models for cardiovascular medicine. Eur J Pharmacol 2022; 922:174890. [PMID: 35300995 DOI: 10.1016/j.ejphar.2022.174890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/23/2022] [Accepted: 03/09/2022] [Indexed: 01/19/2023]
Abstract
Genetically modified (GM) rabbits are outstanding animal models for studying human genetic and acquired diseases. As such, GM rabbits that express human genes have been extensively used as models of cardiovascular disease. Rabbits are genetically modified via prokaryotic microinjection. Through this process, genes are randomly integrated into the rabbit genome. Moreover, gene targeting in embryonic stem (ES) cells is a powerful tool for understanding gene function. However, rabbits lack stable ES cell lines. Therefore, ES-dependent gene targeting is not possible in rabbits. Nevertheless, the RNA interference technique is rapidly becoming a useful experimental tool that enables researchers to knock down specific gene expression, which leads to the genetic modification of rabbits. Recently, with the emergence of new genetic technology, such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR), and CRISPR-associated protein 9 (CRISPR/Cas9), major breakthroughs have been made in rabbit gene targeting. Using these novel genetic techniques, researchers have successfully modified knockout (KO) rabbit models. In this paper, we aimed to review the recent advances in GM technology in rabbits and highlight their application as models for cardiovascular medicine.
Collapse
Affiliation(s)
- Ying Hou
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xin Zhang
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xia Sun
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China; School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Qiaohong Qin
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Di Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China; School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Min Jia
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Yulong Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
6
|
Charisopoulou D, Koulaouzidis G, Rydberg A, Henein MY. Reversed Apico-Basal Myocardial Relaxation Sequence During Exercise in Long QT Syndrome Mutations Carriers With History of Previous Cardiac Events. Front Physiol 2022; 12:780448. [PMID: 35197859 PMCID: PMC8859439 DOI: 10.3389/fphys.2021.780448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022] Open
Abstract
Background Recent echocardiography studies in inherited long QT syndrome (LQTS) have shown left ventricular (LV) myocardial relaxation disturbances to follow markedly prolonged and dispersed mechanical contraction. Aim We used speckle-tracking echocardiography to assess disturbances in LV myocardial relaxation sequence during exercise and their relationship to symptoms. Methods Forty seven LQTS patients (45 ± 15 years, 25 female and 20 symptomatic, LVEF: 65 ± 6%) and 35 controls underwent exercise echocardiogram using Bruce protocol. ECG and echo parameters were recorded at rest, peak exercise (p.e.) and recovery. Results Between patients and controls there were no differences in age, gender, HR or LVEF. At p.e, patients had longer time to LV longitudinal ESR (tESR) at all three LV segments; basal (p < 0.0001), mid- cavity (p = 0.03) and apical (p = 0.03) whereas at rest such difference was noted only at base (p = 0.0007). Patients showed reversed apico-basal relaxation sequence (ΔtESRbase–apex) with early relaxation onset occurring later at base than at apex, both at rest (49 ± 43 vs. –29 ± 19 ms, p < 0.0001) and at p.e. (46 ± 38 vs. –40 ± 22 ms, p < 0.0001), particularly in symptomatic patients (69 ± 44 vs. 32 ± 26, p < 0.0007). ΔtESRbase–apex correlated with longer QTc interval, lower ESR and attenuated LV stroke volume. Conclusion LQTS patients show reversed longitudinal relaxation sequence, which worsens with exercise, particularly in those with previous cardiac events.
Collapse
Affiliation(s)
- Dafni Charisopoulou
- Institute of Public Health and Clinical Medicine, Umea University, Umeå, Sweden.,Division of Pediatric Cardiology, Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands.,Academic Centre for Congenital Heart Disease, Nijmegen, Netherlands
| | - George Koulaouzidis
- Department of Biochemical Sciences, Pomeranian Medical University, Szczecin, Poland
| | - Annika Rydberg
- Department of Clinical Sciences, Paediatrics, Umea University, Umeå, Sweden
| | - Michael Y Henein
- Institute of Public Health and Clinical Medicine, Umea University, Umeå, Sweden
| |
Collapse
|
7
|
Odening KE, van der Linde HJ, Ackerman MJ, Volders PGA, ter Bekke RMA. OUP accepted manuscript. Eur Heart J 2022; 43:3018-3028. [PMID: 35445703 PMCID: PMC9443984 DOI: 10.1093/eurheartj/ehac135] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/23/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
An abundance of literature describes physiological and pathological determinants of cardiac performance, building on the principles of excitation–contraction coupling. However, the mutual influencing of excitation–contraction and mechano-electrical feedback in the beating heart, here designated ‘electromechanical reciprocity’, remains poorly recognized clinically, despite the awareness that external and cardiac-internal mechanical stimuli can trigger electrical responses and arrhythmia. This review focuses on electromechanical reciprocity in the long-QT syndrome (LQTS), historically considered a purely electrical disease, but now appreciated as paradigmatic for the understanding of mechano-electrical contributions to arrhythmogenesis in this and other cardiac conditions. Electromechanical dispersion in LQTS is characterized by heterogeneously prolonged ventricular repolarization, besides altered contraction duration and relaxation. Mechanical alterations may deviate from what would be expected from global and regional repolarization abnormalities. Pathological repolarization prolongation outlasts mechanical systole in patients with LQTS, yielding a negative electromechanical window (EMW), which is most pronounced in symptomatic patients. The electromechanical window is a superior and independent arrhythmia-risk predictor compared with the heart rate-corrected QT. A negative EMW implies that the ventricle is deformed—by volume loading during the rapid filling phase—when repolarization is still ongoing. This creates a ‘sensitized’ electromechanical substrate, in which inadvertent electrical or mechanical stimuli such as local after-depolarizations, after-contractions, or dyssynchrony can trigger abnormal impulses. Increased sympathetic-nerve activity and pause-dependent potentiation further exaggerate electromechanical heterogeneities, promoting arrhythmogenesis. Unraveling electromechanical reciprocity advances the understanding of arrhythmia formation in various conditions. Real-time image integration of cardiac electrophysiology and mechanics offers new opportunities to address challenges in arrhythmia management.
Collapse
Affiliation(s)
| | - Henk J van der Linde
- Janssen Research & Development, Division of Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Michael J Ackerman
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services (Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, MN, USA
- Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN, USA
| | - Paul G A Volders
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | | |
Collapse
|
8
|
Emig R, Zgierski-Johnston CM, Timmermann V, Taberner AJ, Nash MP, Kohl P, Peyronnet R. Passive myocardial mechanical properties: meaning, measurement, models. Biophys Rev 2021; 13:587-610. [PMID: 34765043 PMCID: PMC8555034 DOI: 10.1007/s12551-021-00838-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
Passive mechanical tissue properties are major determinants of myocardial contraction and relaxation and, thus, shape cardiac function. Tightly regulated, dynamically adapting throughout life, and affecting a host of cellular functions, passive tissue mechanics also contribute to cardiac dysfunction. Development of treatments and early identification of diseases requires better spatio-temporal characterisation of tissue mechanical properties and their underlying mechanisms. With this understanding, key regulators may be identified, providing pathways with potential to control and limit pathological development. Methodologies and models used to assess and mimic tissue mechanical properties are diverse, and available data are in part mutually contradictory. In this review, we define important concepts useful for characterising passive mechanical tissue properties, and compare a variety of in vitro and in vivo techniques that allow one to assess tissue mechanics. We give definitions of key terms, and summarise insight into determinants of myocardial stiffness in situ. We then provide an overview of common experimental models utilised to assess the role of environmental stiffness and composition, and its effects on cardiac cell and tissue function. Finally, promising future directions are outlined.
Collapse
Affiliation(s)
- Ramona Emig
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Callum M. Zgierski-Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Viviane Timmermann
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrew J. Taberner
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - Martyn P. Nash
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Faculty of Engineering, University of Freiburg, Freiburg, Germany
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Crotti L, Odening KE, Sanguinetti MC. Heritable arrhythmias associated with abnormal function of cardiac potassium channels. Cardiovasc Res 2021; 116:1542-1556. [PMID: 32227190 DOI: 10.1093/cvr/cvaa068] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/24/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiomyocytes express a surprisingly large number of potassium channel types. The primary physiological functions of the currents conducted by these channels are to maintain the resting membrane potential and mediate action potential repolarization under basal conditions and in response to changes in the concentrations of intracellular sodium, calcium, and ATP/ADP. Here, we review the diversity and functional roles of cardiac potassium channels under normal conditions and how heritable mutations in the genes encoding these channels can lead to distinct arrhythmias. We briefly review atrial fibrillation and J-wave syndromes. For long and short QT syndromes, we describe their genetic basis, clinical manifestation, risk stratification, traditional and novel therapeutic approaches, as well as insights into disease mechanisms provided by animal and cellular models.
Collapse
Affiliation(s)
- Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCS, Milan, Italy.,Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Milan, Italy.,Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, IRCCS, San Luca Hospital, Milan, Italy.,Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Katja E Odening
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Medical Faculty, Freiburg, Germany.,Institute of Experimental Cardiovascular Medicine, Heart Center University of Freiburg, Medical Faculty, Freiburg, Germany.,Department of Cardiology, Translational Cardiology, Inselspital, Bern University Hospital, and Institute of Physiology, University of Bern, Bern, Switzerland
| | - Michael C Sanguinetti
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
10
|
Ravens U, Kohl P. Mechanoelectric feedback in the human heart: A causal affair. Heart Rhythm 2021; 18:1414-1415. [PMID: 34015538 DOI: 10.1016/j.hrthm.2021.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Ursula Ravens
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg · Bad Krozingen, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg · Bad Krozingen, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Hornyik T, Rieder M, Castiglione A, Major P, Baczko I, Brunner M, Koren G, Odening KE. Transgenic rabbit models for cardiac disease research. Br J Pharmacol 2021; 179:938-957. [PMID: 33822374 DOI: 10.1111/bph.15484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
To study the pathophysiology of human cardiac diseases and to develop novel treatment strategies, complex interactions of cardiac cells on cellular, tissue and on level of the whole heart need to be considered. As in vitro cell-based models do not depict the complexity of the human heart, animal models are used to obtain insights that can be translated to human diseases. Mice are the most commonly used animals in cardiac research. However, differences in electrophysiological and mechanical cardiac function and a different composition of electrical and contractile proteins limit the transferability of the knowledge gained. Moreover, the small heart size and fast heart rate are major disadvantages. In contrast to rodents, electrophysiological, mechanical and structural cardiac characteristics of rabbits resemble the human heart more closely, making them particularly suitable as an animal model for cardiac disease research. In this review, various methodological approaches for the generation of transgenic rabbits for cardiac disease research, such as pronuclear microinjection, the sleeping beauty transposon system and novel genome-editing methods (ZFN and CRISPR/Cas9)will be discussed. In the second section, we will introduce the different currently available transgenic rabbit models for monogenic cardiac diseases (such as long QT syndrome, short-QT syndrome and hypertrophic cardiomyopathy) in detail, especially in regard to their utility to increase the understanding of pathophysiological disease mechanisms and novel treatment options.
Collapse
Affiliation(s)
- Tibor Hornyik
- Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, and Institute of Physiology, University of Bern, Bern, Switzerland.,Department of Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marina Rieder
- Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, and Institute of Physiology, University of Bern, Bern, Switzerland
| | - Alessandro Castiglione
- Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, and Institute of Physiology, University of Bern, Bern, Switzerland
| | - Peter Major
- Institute for Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Istvan Baczko
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Michael Brunner
- Department of Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Cardiology and Medical Intensive Care, St. Josefskrankenhaus, Freiburg, Germany
| | - Gideon Koren
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Katja E Odening
- Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, and Institute of Physiology, University of Bern, Bern, Switzerland.,Department of Cardiology and Angiology I, University Heart Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Zhou J, Peng F, Cao X, Xie X, Chen D, Yang L, Rao C, Peng C, Pan X. Risk Compounds, Preclinical Toxicity Evaluation, and Potential Mechanisms of Chinese Materia Medica-Induced Cardiotoxicity. Front Pharmacol 2021; 12:578796. [PMID: 33867974 PMCID: PMC8044783 DOI: 10.3389/fphar.2021.578796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/29/2021] [Indexed: 02/05/2023] Open
Abstract
Chinese materia medica (CMM) has been applied for the prevention and treatment of diseases for thousands of years. However, arrhythmia, myocardial ischemia, heart failure, and other cardiac adverse reactions during CMM application were gradually reported. CMM-induced cardiotoxicity has aroused widespread attention. Our review aimed to summarize the risk compounds, preclinical toxicity evaluation, and potential mechanisms of CMM-induced cardiotoxicity. All relevant articles published on the PubMed, Embase, and China National Knowledge Infrastructure (CNKI) databases for the latest twenty years were searched and manually extracted. The risk substances of CMM-induced cardiotoxicity are relatively complex. A single CMM usually contains various risk compounds, and the same risk substance may exist in various CMM. The active and risk substances in CMM may be transformed into each other under different conditions, such as drug dosage, medication methods, and body status. Generally, the risk compounds of CMM-induced cardiotoxicity can be classified into alkaloids, terpenoids, steroids, heavy metals, organic acids, toxic proteins, and peptides. Traditional evaluation methods of chemical drug-induced cardiotoxicity primarily include cardiac function monitoring, endomyocardial biopsy, myocardial zymogram, and biomarker determination. In the preclinical stage, CMM-induced cardiotoxicity should be systematically evaluated at the overall, tissue, cellular, and molecular levels, including cardiac function, histopathology, cytology, myocardial zymogram, and biomarkers. Thanks to the development of systematic biology, the higher specificity and sensitivity of biomarkers, such as genes, proteins, and metabolic small molecules, are gradually applied for evaluating CMM-induced cardiotoxicity. Previous studies on the mechanisms of CMM-induced cardiotoxicity focused on a single drug, monomer or components of CMM. The interaction among ion homeostasis (sodium, potassium, and calcium ions), oxidative damage, mitochondrial injury, apoptosis and autophagy, and metabolic disturbance is involved in CMM-induced cardiotoxicity. Clarification on the risk compounds, preclinical toxicity evaluation, and potential mechanisms of CMM-induced cardiotoxicity must be beneficial to guide new CMM development and post-marketed CMM reevaluation.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fu Peng
- West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dayi Chen
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lian Yang
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaolong Rao
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqi Pan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Odening KE, Bodi I, Franke G, Rieke R, Ryan de Medeiros A, Perez-Feliz S, Fürniss H, Mettke L, Michaelides K, Lang CN, Steinfurt J, Pantulu ND, Ziupa D, Menza M, Zehender M, Bugger H, Peyronnet R, Behrends JC, Doleschall Z, Zur Hausen A, Bode C, Jolivet G, Brunner M. Transgenic short-QT syndrome 1 rabbits mimic the human disease phenotype with QT/action potential duration shortening in the atria and ventricles and increased ventricular tachycardia/ventricular fibrillation inducibility. Eur Heart J 2020; 40:842-853. [PMID: 30496390 DOI: 10.1093/eurheartj/ehy761] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/07/2018] [Accepted: 10/29/2018] [Indexed: 11/14/2022] Open
Abstract
AIMS Short-QT syndrome 1 (SQT1) is an inherited channelopathy with accelerated repolarization due to gain-of-function in HERG/IKr. Patients develop atrial fibrillation, ventricular tachycardia (VT), and sudden cardiac death with pronounced inter-individual variability in phenotype. We generated and characterized transgenic SQT1 rabbits and investigated electrical remodelling. METHODS AND RESULTS Transgenic rabbits were generated by oocyte-microinjection of β-myosin-heavy-chain-promoter-KCNH2/HERG-N588K constructs. Short-QT syndrome 1 and wild type (WT) littermates were subjected to in vivo ECG, electrophysiological studies, magnetic resonance imaging, and ex vivo action potential (AP) measurements. Electrical remodelling was assessed using patch clamp, real-time PCR, and western blot. We generated three SQT1 founders. QT interval was shorter and QT/RR slope was shallower in SQT1 than in WT (QT, 147.8 ± 2 ms vs. 166.4 ± 3, P < 0.0001). Atrial and ventricular refractoriness and AP duration were shortened in SQT1 (vAPD90, 118.6 ± 5 ms vs. 154.4 ± 2, P < 0.0001). Ventricular tachycardia/fibrillation (VT/VF) inducibility was increased in SQT1. Systolic function was unaltered but diastolic relaxation was enhanced in SQT1. IKr-steady was increased with impaired inactivation in SQT1, while IKr-tail was reduced. Quinidine prolonged/normalized QT and action potential duration (APD) in SQT1 rabbits by reducing IKr. Diverse electrical remodelling was observed: in SQT1, IK1 was decreased-partially reversing the phenotype-while a small increase in IKs may partly contribute to an accentuation of the phenotype. CONCLUSION Short-QT syndrome 1 rabbits mimic the human disease phenotype on all levels with shortened QT/APD and increased VT/VF-inducibility and show similar beneficial responses to quinidine, indicating their value for elucidation of arrhythmogenic mechanisms and identification of novel anti-arrhythmic strategies.
Collapse
Affiliation(s)
- Katja E Odening
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Hugstetter Str. 55, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Breisacher Str. 153, Freiburg, Germany
| | - Ilona Bodi
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Hugstetter Str. 55, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Breisacher Str. 153, Freiburg, Germany
| | - Gerlind Franke
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Hugstetter Str. 55, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Breisacher Str. 153, Freiburg, Germany
| | - Raphaela Rieke
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Hugstetter Str. 55, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Breisacher Str. 153, Freiburg, Germany
| | - Anna Ryan de Medeiros
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Hugstetter Str. 55, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Breisacher Str. 153, Freiburg, Germany
| | - Stefanie Perez-Feliz
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Hugstetter Str. 55, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Breisacher Str. 153, Freiburg, Germany
| | - Hannah Fürniss
- Faculty of Medicine, University of Freiburg, Breisacher Str. 153, Freiburg, Germany.,Institute for Experimental Cardiovascular Medicine, Heart Center University of Freiburg, Elsässer Str. 2Q, Freiburg, Germany.,Department of Congenital Heart Disease and Pediatric Cardiology, Heart Center University of Freiburg, Mathildenstr. 1, Freiburg, Germany
| | - Lea Mettke
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Hugstetter Str. 55, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Breisacher Str. 153, Freiburg, Germany
| | - Konstantin Michaelides
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Hugstetter Str. 55, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Breisacher Str. 153, Freiburg, Germany
| | - Corinna N Lang
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Hugstetter Str. 55, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Breisacher Str. 153, Freiburg, Germany
| | - Johannes Steinfurt
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Hugstetter Str. 55, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Breisacher Str. 153, Freiburg, Germany
| | - Naga Deepa Pantulu
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Hugstetter Str. 55, Freiburg, Germany.,Department of Pathology, University Hospital Freiburg, Breisacher Str. 115A, Freiburg, Germany.,Department of Pathology, Maastricht University Medical Center, AZ Maastricht, Netherlands
| | - David Ziupa
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Hugstetter Str. 55, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Breisacher Str. 153, Freiburg, Germany
| | - Marius Menza
- Faculty of Medicine, University of Freiburg, Breisacher Str. 153, Freiburg, Germany.,Department of Radiology and Medical Physics, Medical Center University of Freiburg, Killianstraße 5a, Freiburg, Germany
| | - Manfred Zehender
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Hugstetter Str. 55, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Breisacher Str. 153, Freiburg, Germany
| | - Heiko Bugger
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Hugstetter Str. 55, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Breisacher Str. 153, Freiburg, Germany
| | - Remi Peyronnet
- Faculty of Medicine, University of Freiburg, Breisacher Str. 153, Freiburg, Germany.,Institute for Experimental Cardiovascular Medicine, Heart Center University of Freiburg, Elsässer Str. 2Q, Freiburg, Germany
| | - Jan C Behrends
- Faculty of Medicine, University of Freiburg, Breisacher Str. 153, Freiburg, Germany.,Department of Physiology, University of Freiburg, Hermann-Herder Straße 7, Freiburg, Germany
| | - Zoltan Doleschall
- Department of Pathogenetics, National Institute of Oncology, 7-9 Ráth György str, H-1122 Budapest, Hungary
| | - Axel Zur Hausen
- Department of Pathology, University Hospital Freiburg, Breisacher Str. 115A, Freiburg, Germany.,Department of Pathology, Maastricht University Medical Center, AZ Maastricht, Netherlands
| | - Christoph Bode
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Hugstetter Str. 55, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Breisacher Str. 153, Freiburg, Germany
| | - Genevieve Jolivet
- INRA, UMR1198 Biologie du Développement et Reproduction, Allée de Vilvert, Jouy-en-Josas, France
| | - Michael Brunner
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Hugstetter Str. 55, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Breisacher Str. 153, Freiburg, Germany.,Department of Cardiology and Medical Intensive Care, St. Josefskrankenhaus, Sautierstraße 1, Freiburg, Germany
| |
Collapse
|
14
|
Abdelsayed M, Bytyçi I, Rydberg A, Henein MY. Left Ventricular Contraction Duration Is the Most Powerful Predictor of Cardiac Events in LQTS: A Systematic Review and Meta-Analysis. J Clin Med 2020; 9:jcm9092820. [PMID: 32878246 PMCID: PMC7565502 DOI: 10.3390/jcm9092820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Long-QT syndrome (LQTS) is primarily an electrical disorder characterized by a prolonged myocardial action potential. The delay in cardiac repolarization leads to electromechanical (EM) abnormalities, which adds a diagnostic value for LQTS. Prolonged left ventricular (LV) contraction was identified as a potential risk for arrhythmia. The aim of this meta-analysis was to assess the best predictor of all EM parameters for cardiac events (CEs) in LQTS patients. Methods: We systematically searched all electronic databases up to March 2020, to select studies that assessed the relationship between echocardiographic indices—contraction duration (CD), mechanical dispersion (MD), QRS onset to peak systolic strain (QAoC), and the EM window (EMW); and electrical indices— corrected QT interval (QTC), QTC dispersion, RR interval in relation to CEs in LQTS. This meta-analysis included a total of 1041 patients and 373 controls recruited from 12 studies. Results: The meta-analysis showed that LQTS patients had electrical and mechanical abnormalities as compared to controls—QTC, WMD 72.8; QTC dispersion, WMD 31.7; RR interval, WMD 91.5; CD, WMD 49.2; MD, WMD 15.9; QAoC, WMD 27.8; and EMW, WMD −62.4. These mechanical abnormalities were more profound in symptomatic compared to asymptomatic patients in whom disturbances were already manifest, compared to controls. A CD ≥430 ms had a summary sensitivity (SS) of 71%, specificity of 84%, and diagnostic odds ratio (DOR) >19.5 in predicting CEs. EMW and QTC had a lower accuracy. Conclusions: LQTS is associated with pronounced EM abnormalities, particularly prolonged LV myocardial CD, which is profound in symptomatic patients. These findings highlight the significant role of EM indices like CD in managing LQTS patients.
Collapse
Affiliation(s)
- Mena Abdelsayed
- Institute of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (M.A.); (I.B.)
| | - Ibadete Bytyçi
- Institute of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (M.A.); (I.B.)
- Universi College, Bardhosh, 10000 Prishtina, Kosovo
| | - Annika Rydberg
- Department of Clinical Sciences, Pediatrics, Umeå University, 90187 Umeå, Sweden;
| | - Michael Y. Henein
- Institute of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (M.A.); (I.B.)
- Molecular and Clinical Sciences Research Institute, St George University London, SW17 0QT, UK
- Institute of Fluid Dynamics, Brunel University, London UB8 3PH, UK
- Correspondence: ; Tel.: +46-90-785-1431
| |
Collapse
|
15
|
Baczkó I, Hornyik T, Brunner M, Koren G, Odening KE. Transgenic Rabbit Models in Proarrhythmia Research. Front Pharmacol 2020; 11:853. [PMID: 32581808 PMCID: PMC7291951 DOI: 10.3389/fphar.2020.00853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
Drug-induced proarrhythmia constitutes a potentially lethal side effect of various drugs. Most often, this proarrhythmia is mechanistically linked to the drug's potential to interact with repolarizing cardiac ion channels causing a prolongation of the QT interval in the ECG. Despite sophisticated screening approaches during drug development, reliable prediction of proarrhythmia remains very challenging. Although drug-induced long-QT-related proarrhythmia is often favored by conditions or diseases that impair the individual's repolarization reserve, most cellular, tissue, and whole animal model systems used for drug safety screening are based on normal, healthy models. In recent years, several transgenic rabbit models for different types of long QT syndromes (LQTS) with differences in the extent of impairment in repolarization reserve have been generated. These might be useful for screening/prediction of a drug's potential for long-QT-related proarrhythmia, particularly as different repolarizing cardiac ion channels are impaired in the different models. In this review, we summarize the electrophysiological characteristics of the available transgenic LQTS rabbit models, and the pharmacological proof-of-principle studies that have been performed with these models—highlighting the advantages and disadvantages of LQTS models for proarrhythmia research. In the end, we give an outlook on potential future directions and novel models.
Collapse
Affiliation(s)
- István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Tibor Hornyik
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.,Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Brunner
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Cardiology and Medical Intensive Care, St. Josefskrankenhaus, Freiburg, Germany
| | - Gideon Koren
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| | - Katja E Odening
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, Bern, Switzerland.,Institute of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
16
|
Quinn TA, Kohl P. Cardiac Mechano-Electric Coupling: Acute Effects of Mechanical Stimulation on Heart Rate and Rhythm. Physiol Rev 2020; 101:37-92. [PMID: 32380895 DOI: 10.1152/physrev.00036.2019] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The heart is vital for biological function in almost all chordates, including humans. It beats continually throughout our life, supplying the body with oxygen and nutrients while removing waste products. If it stops, so does life. The heartbeat involves precise coordination of the activity of billions of individual cells, as well as their swift and well-coordinated adaption to changes in physiological demand. Much of the vital control of cardiac function occurs at the level of individual cardiac muscle cells, including acute beat-by-beat feedback from the local mechanical environment to electrical activity (as opposed to longer term changes in gene expression and functional or structural remodeling). This process is known as mechano-electric coupling (MEC). In the current review, we present evidence for, and implications of, MEC in health and disease in human; summarize our understanding of MEC effects gained from whole animal, organ, tissue, and cell studies; identify potential molecular mediators of MEC responses; and demonstrate the power of computational modeling in developing a more comprehensive understanding of ‟what makes the heart tick.ˮ.
Collapse
Affiliation(s)
- T Alexander Quinn
- Department of Physiology and Biophysics and School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada; Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Medical Faculty of the University of Freiburg, Freiburg, Germany; and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Peter Kohl
- Department of Physiology and Biophysics and School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada; Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Medical Faculty of the University of Freiburg, Freiburg, Germany; and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
Ziupa D, Menza M, Koppermann S, Moss R, Beck J, Franke G, Perez Feliz S, Brunner M, Mayer S, Bugger H, Koren G, Zehender M, Jung BA, Seemann G, Foell D, Bode C, Odening KE. Electro-mechanical (dys-)function in long QT syndrome type 1. Int J Cardiol 2019; 274:144-151. [DOI: 10.1016/j.ijcard.2018.07.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/18/2018] [Accepted: 07/06/2018] [Indexed: 01/28/2023]
|
18
|
Cardiac electrical and mechanical alterations - united in the long QT syndrome. Int J Cardiol 2019; 274:190-191. [DOI: 10.1016/j.ijcard.2018.09.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/12/2018] [Indexed: 11/18/2022]
|
19
|
Thomas D, Christ T, Fabritz L, Goette A, Hammwöhner M, Heijman J, Kockskämper J, Linz D, Odening KE, Schweizer PA, Wakili R, Voigt N. German Cardiac Society Working Group on Cellular Electrophysiology state-of-the-art paper: impact of molecular mechanisms on clinical arrhythmia management. Clin Res Cardiol 2018; 108:577-599. [PMID: 30306295 DOI: 10.1007/s00392-018-1377-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Abstract
Cardiac arrhythmias remain a common challenge and are associated with significant morbidity and mortality. Effective and safe rhythm control strategies are a primary, yet unmet need in everyday clinical practice. Despite significant pharmacological and technological advances, including catheter ablation and device-based therapies, the development of more effective alternatives is of significant interest to increase quality of life and to reduce symptom burden, hospitalizations and mortality. The mechanistic understanding of pathophysiological pathways underlying cardiac arrhythmias has advanced profoundly, opening up novel avenues for mechanism-based therapeutic approaches. Current management of arrhythmias, however, is primarily guided by clinical and demographic characteristics of patient groups as opposed to individual, patient-specific mechanisms and pheno-/genotyping. With this state-of-the-art paper, the Working Group on Cellular Electrophysiology of the German Cardiac Society aims to close the gap between advanced molecular understanding and clinical decision-making in cardiac electrophysiology. The significance of cellular electrophysiological findings for clinical arrhythmia management constitutes the main focus of this document. Clinically relevant knowledge of pathophysiological pathways of arrhythmias and cellular mechanisms of antiarrhythmic interventions are summarized. Furthermore, the specific molecular background for the initiation and perpetuation of atrial and ventricular arrhythmias and mechanism-based strategies for therapeutic interventions are highlighted. Current "hot topics" in atrial fibrillation are critically appraised. Finally, the establishment and support of cellular and translational electrophysiology programs in clinical rhythmology departments is called for to improve basic-science-guided patient management.
Collapse
Affiliation(s)
- Dierk Thomas
- Department of Cardiology, Medical University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany. .,HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany. .,DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Torsten Christ
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK.,Department of Cardiology, UHB NHS Trust, Birmingham, UK.,Department of Cardiovascular Medicine, Division of Rhythmology, University Hospital Münster, Münster, Germany
| | - Andreas Goette
- St. Vincenz-Hospital, Paderborn, Germany.,Working Group: Molecular Electrophysiology, University Hospital Magdeburg, Magdeburg, Germany
| | - Matthias Hammwöhner
- St. Vincenz-Hospital, Paderborn, Germany.,Working Group: Molecular Electrophysiology, University Hospital Magdeburg, Magdeburg, Germany
| | - Jordi Heijman
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany.,Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jens Kockskämper
- Biochemical and Pharmacological Center (BPC) Marburg, Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
| | - Dominik Linz
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, SA, Australia.,Experimental Electrophysiology, University Hospital of Saarland, Homburg, Saar, Germany
| | - Katja E Odening
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Experimental Cardiovascular Medicine, Heart Center University of Freiburg, Freiburg, Germany
| | - Patrick A Schweizer
- Department of Cardiology, Medical University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.,Heidelberg Research Center for Molecular Medicine (HRCMM), Heidelberg, Germany
| | - Reza Wakili
- Department of Cardiology and Vascular Medicine, Medical Faculty, West German Heart Center, University Hospital Essen, Essen, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany. .,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany.
| |
Collapse
|
20
|
Charisopoulou D, Koulaouzidis G, Rydberg A, Henein MY. Abnormal ventricular repolarization in long QT syndrome carriers is related to short left ventricular filling time and attenuated stroke volume response during exercise. Echocardiography 2018; 35:1116-1123. [PMID: 29648704 DOI: 10.1111/echo.13891] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Long QT syndrome (LQTS) carriers are characterized by abnormal ventricular repolarization, prolonged systole, and mechanical dispersion. Prolonged left ventricular (LV) systole has been shown to result in disproportionate shortening of LV filling in other conditions. The aim of this study was to assess LV filling, diastolic function, and stroke volume (SV) response to dynamic exercise, in a group of LQTS carriers. METHODS Forty-seven LQTS carriers (45 ± 15 years, 20 symptomatic) and 35 healthy individuals underwent bicycle stress echocardiogram. Electrocardiographic and echocardiographic measurements were obtained at rest, peak exercise, and 4 minutes into recovery. RESULTS Long QT syndrome carriers and controls did not differ in age, gender, heart rate, QRS duration, or LV ejection fraction. At rest, LQTS carriers had longer QTc and shorter filling time (FT). At peak exercise, QTc increased and remained longer than controls at recovery. A negative correlation was found between QTc and FT (r = -.398, P = .001) with greater fall in FT in LQTS carriers than in controls at peak exercise (-23% ± 10 vs +2% ± 3, P < .0001). FT correlated with SV (r = +.27, P = .001), which increased more in controls than in LQTS carriers (+32% ± 4 vs +2% ± 1, P < .05). These differences were more pronounced in symptomatic LQTS carriers who had shorter FT and smaller SV at peak exercise and during recovery compared to asymptomatics (P < .05). CONCLUSIONS Long QT syndrome carriers have longer QTc, but also shorter FT. These disturbances worsen at peak exercise (particularly in symptomatics) compromising LV filling and SV, hence a potential pathomechanism for adverse events.
Collapse
Affiliation(s)
- Dafni Charisopoulou
- Department of Public Health and Clinical Medicine, Umea University and Heart Centre, Umea, Sweden.,Department of Paediatric Cardiology, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - George Koulaouzidis
- Department of Public Health and Clinical Medicine, Umea University and Heart Centre, Umea, Sweden
| | - Annika Rydberg
- Department of Clinical Sciences, Paediatrics, Umea University, Umea, Sweden
| | - Michael Y Henein
- Department of Public Health and Clinical Medicine, Umea University and Heart Centre, Umea, Sweden.,Molecular & Clinical Sciences Research Institute, St George University, London, UK
| |
Collapse
|
21
|
Dressler FF, Brado J, Odening KE. Electromechanical heterogeneity in the heart : A key to long QT syndrome? Herzschrittmacherther Elektrophysiol 2018; 29:43-47. [PMID: 29234865 DOI: 10.1007/s00399-017-0544-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/24/2017] [Indexed: 06/07/2023]
Abstract
In the healthy heart, physiological heterogeneities in structure and in electrical and mechanical activity are crucial for normal, efficient excitation and pumping. Alterations of heterogeneity have been linked to arrhythmogenesis in various cardiac disorders such as long QT syndrome (LQTS). This inherited arrhythmia disorder is caused by mutations in different ion channel genes and is characterized by (heterogeneously) prolonged cardiac repolarization and increased risk for ventricular tachycardia, syncope and sudden cardiac death. Cardiac electrical and mechanical function are not independent of each other but interact in a bidirectional manner by electromechanical and mechano-electrical coupling. Therefore, changes in either process will affect the other. Recent experimental and clinical evidence suggests that LQTS, which is primarily considered an "electrical" disorder, also exhibits features of disturbed mechanical function and heterogeneity, which in turn appears to correlate with the risk of arrhythmia in the individual patient. In this review, we give a short overview of the current knowledge about physiological and pathological, long QT-related electrical and mechanical heterogeneity in the heart. Also, their respective roles for future risk prediction approaches in LQTS are discussed.
Collapse
Affiliation(s)
- F F Dressler
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - J Brado
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany
| | - K E Odening
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Institute for Experimental Cardiovascular Medicine, Heart Center, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
22
|
Johnston CM, Krafft AJ, Russe MF, Rog-Zielinska EA. A new look at the heart-novel imaging techniques. Herzschrittmacherther Elektrophysiol 2017; 29:14-23. [PMID: 29242981 DOI: 10.1007/s00399-017-0546-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/24/2017] [Indexed: 01/20/2023]
Abstract
The development and successful implementation of cutting-edge imaging technologies to visualise cardiac anatomy and function is a key component of effective diagnostic efforts in cardiology. Here, we describe a number of recent exciting advances in the field of cardiology spanning from macro- to micro- to nano-scales of observation, including magnetic resonance imaging, computed tomography, optical mapping, photoacoustic imaging, and electron tomography. The methodologies discussed are currently making the transition from scientific research to routine clinical use, albeit at different paces. We discuss the most likely trajectory of this transition into clinical research and standard diagnostics, and highlight the key challenges and opportunities associated with each of the methodologies.
Collapse
Affiliation(s)
- C M Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Center, Medical Center - University of Freiburg, and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - A J Krafft
- Department of Radiology, Medical Physics, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - M F Russe
- Department of Radiology, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - E A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center, Medical Center - University of Freiburg, and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
23
|
Jiménez MAV, Nascimento JHM, Monnerat G, Maciel L, Paiva CN, Pedrosa RC, Campos de Carvalho AC, Medei E. Autoantibodies with beta-adrenergic activity from chronic chagasic patients induce cardiac arrhythmias and early afterdepolarization in a drug-induced LQT2 rabbit hearts. Int J Cardiol 2017; 240:354-359. [PMID: 28320606 DOI: 10.1016/j.ijcard.2017.02.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/07/2017] [Accepted: 02/13/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Cardiac arrhythmias are one of the main causes of death in ChCP and other dilated cardiomyopathies. Previous studies demonstrated that ventricular arrhythmias are associated with the presence of autoantibodies with beta-adrenergic activity, Ab-β. OBJECTIVES The aim of this study was to investigate whether Ab-β, present in chronic chagasic patients (ChCP), induce cardiac arrhythmias in the pharmacological type-2 long QT syndrome model (LQTS-2). METHODS/RESULTS The LQTS2 was established by perfusion of Tyrode saline solution with a potassium channel blocker E-4031 (5μM) in isolated rabbit hearts or in rabbit cardiac strips, in order to record ECG or action potential, respectively. Autoantibodies from ChCP activating (Ab-β) or not (Ab-NR) cardiac beta 1-adrenergic receptors were used. Ab-β, but not Ab-NR, were able to significantly shorten QT, QTc and increase Tpeak-Tend interval in the LQTS-2. A positive correlation between higher QTc and Tpeak-Tend was found after Ab-β perfusion in the same model. In addition, in the LQTS-2 model, in almost 75% (11/15) of the hearts perfused with Ab-β, ventricular and atrio-ventricular electrical disturbances were observed. Atenolol abolished all Ab-β-induced arrhythmias. Ab-β, when perfused in a cellular LQTS-2, drastically reduced the action potential duration and evoked early afterdepolarization (EAD's), while Ab-NR did not modulate the AP properties in the LQTS-2. CONCLUSION The results indicate that Ab-β were able to induce cardiac arrhythmias and EAD's. This phenomenon can explain, at least in part, the cellular mechanism of Ab-β-induced arrhythmias. Furthermore, atenolol is effective for the treatment of Ab-β-induced arrhythmias.
Collapse
Affiliation(s)
| | - José H M Nascimento
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Monnerat
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Maciel
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia N Paiva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto Coury Pedrosa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Emiliano Medei
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
24
|
Osadchii OE. Role of abnormal repolarization in the mechanism of cardiac arrhythmia. Acta Physiol (Oxf) 2017; 220 Suppl 712:1-71. [PMID: 28707396 DOI: 10.1111/apha.12902] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In cardiac patients, life-threatening tachyarrhythmia is often precipitated by abnormal changes in ventricular repolarization and refractoriness. Repolarization abnormalities typically evolve as a consequence of impaired function of outward K+ currents in cardiac myocytes, which may be caused by genetic defects or result from various acquired pathophysiological conditions, including electrical remodelling in cardiac disease, ion channel modulation by clinically used pharmacological agents, and systemic electrolyte disorders seen in heart failure, such as hypokalaemia. Cardiac electrical instability attributed to abnormal repolarization relies on the complex interplay between a provocative arrhythmic trigger and vulnerable arrhythmic substrate, with a central role played by the excessive prolongation of ventricular action potential duration, impaired intracellular Ca2+ handling, and slowed impulse conduction. This review outlines the electrical activity of ventricular myocytes in normal conditions and cardiac disease, describes classical electrophysiological mechanisms of cardiac arrhythmia, and provides an update on repolarization-related surrogates currently used to assess arrhythmic propensity, including spatial dispersion of repolarization, activation-repolarization coupling, electrical restitution, TRIaD (triangulation, reverse use dependence, instability, and dispersion), and the electromechanical window. This is followed by a discussion of the mechanisms that account for the dependence of arrhythmic vulnerability on the location of the ventricular pacing site. Finally, the review clarifies the electrophysiological basis for cardiac arrhythmia produced by hypokalaemia, and gives insight into the clinical importance and pathophysiology of drug-induced arrhythmia, with particular focus on class Ia (quinidine, procainamide) and Ic (flecainide) Na+ channel blockers, and class III antiarrhythmic agents that block the delayed rectifier K+ channel (dofetilide).
Collapse
Affiliation(s)
- O. E. Osadchii
- Department of Health Science and Technology; University of Aalborg; Aalborg Denmark
| |
Collapse
|
25
|
Dressler FF, Bodi I, Menza M, Moss R, Bugger H, Bode C, Behrends JC, Seemann G, Odening KE. Interregional electro-mechanical heterogeneity in the rabbit myocardium. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:344-355. [PMID: 28655649 DOI: 10.1016/j.pbiomolbio.2017.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Increased electrical heterogeneity has been causatively linked to arrhythmic disorders, yet the knowledge about physiological heterogeneity remains incomplete. This study investigates regional electro-mechanical heterogeneities in rabbits, one of the key animal models for arrhythmic disorders. METHODS AND FINDINGS 7 wild-type rabbits were examined by phase-contrast magnetic resonance imaging in vivo to assess cardiac wall movement velocities. Using a novel data-processing algorithm regional contraction-like profiles were calculated. Contraction started earlier and was longer in left ventricular (LV) apex than base. Patch clamp recordings showed longer action potentials (AP) in LV apex compared to the base of LV, septum, and right ventricle. Western blots of cardiac ion channels and calcium handling proteins showed lower expression of Cav1.2, KvLQT1, Kv1.4, NCX and Phospholamban in LV apex vs. base. A single-cell in silico model integrating the quantitative regional differences in ion channels reproduced a longer contraction and longer AP in apex vs. base. CONCLUSIONS Apico-basal electro-mechanical heterogeneity is physiologically present in the healthy rabbit heart. An apico-basal electro-mechanical gradient exists with longer APD and contraction duration in the apex and associated regionally heterogeneous expression of five key proteins. This pattern of apical mechanical dominance probably serves to increase pumping efficiency.
Collapse
Affiliation(s)
- Franz F Dressler
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacher Strasse 153, 79110 Freiburg, Germany
| | - Ilona Bodi
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacher Strasse 153, 79110 Freiburg, Germany
| | - Marius Menza
- Faculty of Medicine, University of Freiburg, Breisacher Strasse 153, 79110 Freiburg, Germany; Department of Medical Physics, Medical Center - University of Freiburg, Breisacher Straße 60a, 79106 Freiburg, Germany
| | - Robin Moss
- Faculty of Medicine, University of Freiburg, Breisacher Strasse 153, 79110 Freiburg, Germany; Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76128 Karlsruhe, Germany; Institute for Experimental Cardiovascular Medicine, Heart Center University of Freiburg, Medical Center - University of Freiburg, Elsaesserstrasse 2q, 79110 Freiburg, Germany
| | - Heiko Bugger
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacher Strasse 153, 79110 Freiburg, Germany
| | - Christoph Bode
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacher Strasse 153, 79110 Freiburg, Germany
| | - Jan C Behrends
- Faculty of Medicine, University of Freiburg, Breisacher Strasse 153, 79110 Freiburg, Germany; Department of Physiology, Laboratory for Membrane Physiology and -Technology, University of Freiburg, Hermann-Herder-Strasse 7, 79104 Freiburg, Germany
| | - Gunnar Seemann
- Faculty of Medicine, University of Freiburg, Breisacher Strasse 153, 79110 Freiburg, Germany; Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76128 Karlsruhe, Germany; Institute for Experimental Cardiovascular Medicine, Heart Center University of Freiburg, Medical Center - University of Freiburg, Elsaesserstrasse 2q, 79110 Freiburg, Germany
| | - Katja E Odening
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, Breisacher Strasse 153, 79110 Freiburg, Germany; Institute for Experimental Cardiovascular Medicine, Heart Center University of Freiburg, Medical Center - University of Freiburg, Elsaesserstrasse 2q, 79110 Freiburg, Germany.
| |
Collapse
|
26
|
|
27
|
Brado J, Dechant MJ, Menza M, Komancsek A, Lang CN, Bugger H, Foell D, Jung BA, Stiller B, Bode C, Odening KE. Phase-contrast magnet resonance imaging reveals regional, transmural, and base-to-apex dispersion of mechanical dysfunction in patients with long QT syndrome. Heart Rhythm 2017; 14:1388-1397. [PMID: 28479515 DOI: 10.1016/j.hrthm.2017.04.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Indexed: 01/23/2023]
Abstract
BACKGROUND Regional dispersion of prolonged repolarization is a hallmark of long QT syndrome (LQTS). We have also revealed regional heterogeneities in mechanical dysfunction in transgenic rabbit models of LQTS. OBJECTIVE In this clinical pilot study, we investigated whether patients with LQTS exhibit dispersion of mechanical/diastolic dysfunction. METHODS Nine pediatric patients with genotyped LQTS (12.2 ± 3.3 years) and 9 age- and sex-matched healthy controls (10.6 ± 1.5 years) were subjected to phase-contrast magnetic resonance imaging to analyze radial (Vr) and longitudinal (Vz) myocardial velocities during systole and diastole in the left ventricle (LV) base, mid, and apex. Twelve-lead electrocardiograms were recorded to assess the heart rate-corrected QT (QTc) interval. RESULTS The QTc interval was longer in patients with LQTS than in controls (469.1 ± 39.4 ms vs 417.8 ± 24.4 ms; P < .01). Patients with LQTS demonstrated prolonged radial and longitudinal time-to-diastolic peak velocities (TTP), a marker for prolonged contraction duration, in the LV base, mid, and apex. The longer QTc interval positively correlated with longer time-to-diastolic peak velocities (correlation coefficient 0.63; P < .01). Peak diastolic velocities were reduced in LQTS in the LV mid and apex, indicating impaired diastolic relaxation. In patients with LQTS, regional (TTPmax-min) and transmural (TTPVz-Vr) dispersion of contraction duration was increased in the LV apex (TTPVz_max-min: 38.9 ± 25.5 ms vs 20.2 ± 14.7 ms; P = .07; TTPVz-Vr: -21.7 ± 14.5 ms vs -8.7 ± 11.3 ms; P < .05). The base-to-apex longitudinal relaxation sequence was reversed in patients with LQTS compared with controls (TTPVz_base-apex: 14.4 ± 14.9 ms vs -10.1 ± 12.7 ms; P < .01). CONCLUSION Patients with LQTS exhibit diastolic dysfunction with reduced diastolic velocities and prolonged contraction duration. Mechanical dispersion is increased in LQTS with an increased regional and transmural dispersion of contraction duration and altered apicobasal longitudinal relaxation sequence. LQTS is an electromechanical disorder, and phase-contrast magnetic resonance imaging Heterogeneity in mechanical dysfunction enables a detailed assessment of mechanical consequences of LQTS.
Collapse
Affiliation(s)
- Johannes Brado
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markus J Dechant
- Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Pediatric Cardiology, Heart Center, University of Freiburg, Freiburg, Germany
| | - Marius Menza
- Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Radiology and Medical Physics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Adriana Komancsek
- Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Radiology and Medical Physics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Corinna N Lang
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heiko Bugger
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniela Foell
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd A Jung
- Department of Diagnostic and Pediatric Radiology, University Hospital of Bern, Bern, Switzerland
| | - Brigitte Stiller
- Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Pediatric Cardiology, Heart Center, University of Freiburg, Freiburg, Germany
| | - Christoph Bode
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katja E Odening
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Institute for Experimental Cardiovascular Medicine, Heart Center, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
28
|
Chiamvimonvat N, Chen-Izu Y, Clancy CE, Deschenes I, Dobrev D, Heijman J, Izu L, Qu Z, Ripplinger CM, Vandenberg JI, Weiss JN, Koren G, Banyasz T, Grandi E, Sanguinetti MC, Bers DM, Nerbonne JM. Potassium currents in the heart: functional roles in repolarization, arrhythmia and therapeutics. J Physiol 2017; 595:2229-2252. [PMID: 27808412 DOI: 10.1113/jp272883] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/11/2016] [Indexed: 12/19/2022] Open
Abstract
This is the second of the two White Papers from the fourth UC Davis Cardiovascular Symposium Systems Approach to Understanding Cardiac Excitation-Contraction Coupling and Arrhythmias (3-4 March 2016), a biennial event that brings together leading experts in different fields of cardiovascular research. The theme of the 2016 symposium was 'K+ channels and regulation', and the objectives of the conference were severalfold: (1) to identify current knowledge gaps; (2) to understand what may go wrong in the diseased heart and why; (3) to identify possible novel therapeutic targets; and (4) to further the development of systems biology approaches to decipher the molecular mechanisms and treatment of cardiac arrhythmias. The sessions of the Symposium focusing on the functional roles of the cardiac K+ channel in health and disease, as well as K+ channels as therapeutic targets, were contributed by Ye Chen-Izu, Gideon Koren, James Weiss, David Paterson, David Christini, Dobromir Dobrev, Jordi Heijman, Thomas O'Hara, Crystal Ripplinger, Zhilin Qu, Jamie Vandenberg, Colleen Clancy, Isabelle Deschenes, Leighton Izu, Tamas Banyasz, Andras Varro, Heike Wulff, Eleonora Grandi, Michael Sanguinetti, Donald Bers, Jeanne Nerbonne and Nipavan Chiamvimonvat as speakers and panel discussants. This article summarizes state-of-the-art knowledge and controversies on the functional roles of cardiac K+ channels in normal and diseased heart. We endeavour to integrate current knowledge at multiple scales, from the single cell to the whole organ levels, and from both experimental and computational studies.
Collapse
Affiliation(s)
- Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California, Davis, Genome and Biomedical Science Facility, Rm 6315, Davis, CA, 95616, USA.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA, 95655, USA
| | - Ye Chen-Izu
- Department of Internal Medicine, University of California, Davis, Genome and Biomedical Science Facility, Rm 6315, Davis, CA, 95616, USA.,Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA.,Department of Biomedical Engineering, University of California, Davis, Genome and Biomedical Science Facility, Rm 2303, Davis, CA, 95616, USA
| | - Colleen E Clancy
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Isabelle Deschenes
- Department of Physiology and Biophysics, and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44109, USA.,Heart and Vascular Research Center, MetroHealth Medical Center, Cleveland, OH, 44109, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Leighton Izu
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Zhilin Qu
- Division of Cardiology, Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, 3645 MRL, Los Angeles, CA, 90095, USA
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Jamie I Vandenberg
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia
| | - James N Weiss
- Division of Cardiology, Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, 3645 MRL, Los Angeles, CA, 90095, USA
| | - Gideon Koren
- Cardiovascular Research Center, Rhode Island Hospital and the Cardiovascular Institute, The Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Tamas Banyasz
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eleonora Grandi
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Michael C Sanguinetti
- Department of Internal Medicine, University of Utah, Nora Eccles Harrison Cardiovascular Research & Training Institute, Salt Lake City, UT, 84112, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, Genome and Biomedical Science Facility, Rm 3503, Davis, CA, 95616, USA
| | - Jeanne M Nerbonne
- Departments of Developmental Biology and Internal Medicine, Cardiovascular Division, Washington University Medical School, St Louis, MO, 63110, USA
| |
Collapse
|
29
|
Quinn TA, Kohl P. Rabbit models of cardiac mechano-electric and mechano-mechanical coupling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:110-22. [PMID: 27208698 PMCID: PMC5067302 DOI: 10.1016/j.pbiomolbio.2016.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/01/2016] [Indexed: 12/11/2022]
Abstract
Cardiac auto-regulation involves integrated regulatory loops linking electrics and mechanics in the heart. Whereas mechanical activity is usually seen as 'the endpoint' of cardiac auto-regulation, it is important to appreciate that the heart would not function without feed-back from the mechanical environment to cardiac electrical (mechano-electric coupling, MEC) and mechanical (mechano-mechanical coupling, MMC) activity. MEC and MMC contribute to beat-by-beat adaption of cardiac output to physiological demand, and they are involved in various pathological settings, potentially aggravating cardiac dysfunction. Experimental and computational studies using rabbit as a model species have been integral to the development of our current understanding of MEC and MMC. In this paper we review this work, focusing on physiological and pathological implications for cardiac function.
Collapse
Affiliation(s)
- T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada.
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany; National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
30
|
Lang CN, Koren G, Odening KE. Transgenic rabbit models to investigate the cardiac ion channel disease long QT syndrome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:142-56. [PMID: 27210307 DOI: 10.1016/j.pbiomolbio.2016.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/01/2016] [Indexed: 12/13/2022]
Abstract
Long QT syndrome (LQTS) is a rare inherited channelopathy caused mainly by different mutations in genes encoding for cardiac K(+) or Na(+) channels, but can also be caused by commonly used ion-channel-blocking and QT-prolonging drugs, thus affecting a much larger population. To develop novel diagnostic and therapeutic strategies to improve the clinical management of these patients, a thorough understanding of the pathophysiological mechanisms of arrhythmogenesis and potential pharmacological targets is needed. Drug-induced and genetic animal models of various species have been generated and have been instrumental for identifying pro-arrhythmic triggers and important characteristics of the arrhythmogenic substrate in LQTS. However, due to species differences in features of cardiac electrical function, these different models do not entirely recapitulate all aspects of the human disease. In this review, we summarize advantages and shortcomings of different drug-induced and genetically mediated LQTS animal models - focusing on mouse and rabbit models since these represent the most commonly used small animal models for LQTS that can be subjected to genetic manipulation. In particular, we highlight the different aspects of arrhythmogenic mechanisms, pro-arrhythmic triggering factors, anti-arrhythmic agents, and electro-mechanical dysfunction investigated in transgenic LQTS rabbit models and their translational application for the clinical management of LQTS patients in detail. Transgenic LQTS rabbits have been instrumental to increase our understanding of the role of spatial and temporal dispersion of repolarization to provide an arrhythmogenic substrate, genotype-differences in the mechanisms for early afterdepolarization formation and arrhythmia maintenance, mechanisms of hormonal modification of arrhythmogenesis and regional heterogeneities in electro-mechanical dysfunction in LQTS.
Collapse
Affiliation(s)
- C N Lang
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - G Koren
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - K E Odening
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
31
|
Electro-mechanical dysfunction in long QT syndrome: Role for arrhythmogenic risk prediction and modulation by sex and sex hormones. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 120:255-69. [PMID: 26718598 DOI: 10.1016/j.pbiomolbio.2015.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/26/2015] [Accepted: 12/15/2015] [Indexed: 12/24/2022]
Abstract
Long QT syndrome (LQTS) is a congenital arrhythmogenic channelopathy characterized by impaired cardiac repolarization. Increasing evidence supports the notion that LQTS is not purely an "electrical" disease but rather an "electro-mechanical" disease with regionally heterogeneously impaired electrical and mechanical cardiac function. In the first part, this article reviews current knowledge on electro-mechanical (dys)function in LQTS, clinical consequences of the observed electro-mechanical dysfunction, and potential underlying mechanisms. Since several novel imaging techniques - Strain Echocardiography (SE) and Magnetic Resonance Tissue Phase Mapping (TPM) - are applied in clinical and experimental settings to assess the (regional) mechanical function, advantages of these non-invasive techniques and their feasibility in the clinical routine are particularly highlighted. The second part provides novel insights into sex differences and sex hormone effects on electro-mechanical cardiac function in a transgenic LQT2 rabbit model. Here we demonstrate that female LQT2 rabbits exhibit a prolonged time to diastolic peak - as marker for contraction duration and early relaxation - compared to males. Chronic estradiol-treatment enhances these differences in time to diastolic peak even more and additionally increases the risk for ventricular arrhythmia. Importantly, time to diastolic peak is particularly prolonged in rabbits exhibiting ventricular arrhythmia - regardless of hormone treatment - contrasting with a lack of differences in QT duration between symptomatic and asymptomatic LQT2 rabbits. This indicates the potential added value of the assessment of mechanical dysfunction in future risk stratification of LQTS patients.
Collapse
|
32
|
Quinn TA. Cardiac mechano-electric coupling: a role in regulating normal function of the heart? Cardiovasc Res 2015. [PMID: 26209252 DOI: 10.1093/cvr/cvv203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, 5850 College Street, Lab 3F, Halifax, NS, Canada B3H 4R2
| |
Collapse
|
33
|
Feng Y, Bogaert J, Oyen R, Ni Y. An overview on development and application of an experimental platform for quantitative cardiac imaging research in rabbit models of myocardial infarction. Quant Imaging Med Surg 2014; 4:358-75. [PMID: 25392822 PMCID: PMC4213418 DOI: 10.3978/j.issn.2223-4292.2013.09.01] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/05/2013] [Indexed: 12/28/2022]
Abstract
To exploit the advantages of using rabbits for cardiac imaging research and to tackle the technical obstacles, efforts have been made under the framework of a doctoral research program. In this overview article, by cross-referencing the current literature, we summarize how we have developed a preclinical cardiac research platform based on modified models of reperfused myocardial infarction (MI) in rabbits; how the in vivo manifestations of cardiac imaging could be closely matched with those ex vivo macro- and microscopic findings; how these imaging outcomes could be quantitatively analyzed, validated and demonstrated; and how we could apply this cardiac imaging platform to provide possible solutions to certain lingering diagnostic and therapeutic problems in experimental cardiology. In particular, tissue components in acute cardiac ischemia have been stratified and characterized, post-infarct lipomatous metaplasia (LM) as a common but hardly illuminated clinical pathology has been identified in rabbit models, and a necrosis avid tracer as well as an anti-ischemic drug have been successfully assessed for their potential utilities in clinical cardiology. These outcomes may interest the researchers in the related fields and help strengthen translational research in cardiovascular diseases.
Collapse
Affiliation(s)
- Yuanbo Feng
- KU Leuven, Department of Imaging and Pathology, Theragnostic Laboratory, Radiology Section, University Hospital Gasthuisberg, Leuven, Belgium
| | - Jan Bogaert
- KU Leuven, Department of Imaging and Pathology, Theragnostic Laboratory, Radiology Section, University Hospital Gasthuisberg, Leuven, Belgium
| | - Raymond Oyen
- KU Leuven, Department of Imaging and Pathology, Theragnostic Laboratory, Radiology Section, University Hospital Gasthuisberg, Leuven, Belgium
| | - Yicheng Ni
- KU Leuven, Department of Imaging and Pathology, Theragnostic Laboratory, Radiology Section, University Hospital Gasthuisberg, Leuven, Belgium
| |
Collapse
|
34
|
Terentyev D, Rees CM, Li W, Cooper LL, Jindal HK, Peng X, Lu Y, Terentyeva R, Odening KE, Daley J, Bist K, Choi BR, Karma A, Koren G. Hyperphosphorylation of RyRs underlies triggered activity in transgenic rabbit model of LQT2 syndrome. Circ Res 2014; 115:919-28. [PMID: 25249569 DOI: 10.1161/circresaha.115.305146] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Loss-of-function mutations in human ether go-go (HERG) potassium channels underlie long QT syndrome type 2 (LQT2) and are associated with fatal ventricular tachyarrhythmia. Previously, most studies focused on plasma membrane-related pathways involved in arrhythmogenesis in long QT syndrome, whereas proarrhythmic changes in intracellular Ca(2+) handling remained unexplored. OBJECTIVE We investigated the remodeling of Ca(2+) homeostasis in ventricular cardiomyocytes derived from transgenic rabbit model of LQT2 to determine whether these changes contribute to triggered activity in the form of early after depolarizations (EADs). METHODS AND RESULTS Confocal Ca(2+) imaging revealed decrease in amplitude of Ca(2+) transients and sarcoplasmic reticulum Ca(2+) content in LQT2 myocytes. Experiments using sarcoplasmic reticulum-entrapped Ca(2+) indicator demonstrated enhanced ryanodine receptor (RyR)-mediated sarcoplasmic reticulum Ca(2+) leak in LQT2 cells. Western blot analyses showed increased phosphorylation of RyR in LQT2 myocytes versus controls. Coimmunoprecipitation experiments demonstrated loss of protein phosphatases type 1 and type 2 from the RyR complex. Stimulation of LQT2 cells with β-adrenergic agonist isoproterenol resulted in prolongation of the plateau of action potentials accompanied by aberrant Ca(2+) releases and EADs, which were abolished by inhibition of Ca(2+)/calmodulin-dependent protein kinase type 2. Computer simulations showed that late aberrant Ca(2+) releases caused by RyR hyperactivity promote EADs and underlie the enhanced triggered activity through increased forward mode of Na(+)/Ca(2+) exchanger type 1. CONCLUSIONS Hyperactive, hyperphosphorylated RyRs because of reduced local phosphatase activity enhance triggered activity in LQT2 syndrome. EADs are promoted by aberrant RyR-mediated Ca(2+) releases that are present despite a reduction of sarcoplasmic reticulum content. Those releases increase forward mode Na(+)/Ca(2+) exchanger type 1, thereby slowing repolarization and enabling L-type Ca(2+) current reactivation.
Collapse
Affiliation(s)
- Dmitry Terentyev
- From the Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence (D.T., W.L., L.L.C., H.K.J., Y.L., R.T., J.D., K.B., B.-R.C., G.K.); Physics Department, Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA (C.M.R., A.K.); Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey (X.P.); and Department of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany (K.E.O.).
| | - Colin M Rees
- From the Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence (D.T., W.L., L.L.C., H.K.J., Y.L., R.T., J.D., K.B., B.-R.C., G.K.); Physics Department, Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA (C.M.R., A.K.); Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey (X.P.); and Department of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany (K.E.O.)
| | - Weiyan Li
- From the Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence (D.T., W.L., L.L.C., H.K.J., Y.L., R.T., J.D., K.B., B.-R.C., G.K.); Physics Department, Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA (C.M.R., A.K.); Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey (X.P.); and Department of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany (K.E.O.)
| | - Leroy L Cooper
- From the Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence (D.T., W.L., L.L.C., H.K.J., Y.L., R.T., J.D., K.B., B.-R.C., G.K.); Physics Department, Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA (C.M.R., A.K.); Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey (X.P.); and Department of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany (K.E.O.)
| | - Hitesh K Jindal
- From the Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence (D.T., W.L., L.L.C., H.K.J., Y.L., R.T., J.D., K.B., B.-R.C., G.K.); Physics Department, Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA (C.M.R., A.K.); Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey (X.P.); and Department of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany (K.E.O.)
| | - Xuwen Peng
- From the Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence (D.T., W.L., L.L.C., H.K.J., Y.L., R.T., J.D., K.B., B.-R.C., G.K.); Physics Department, Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA (C.M.R., A.K.); Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey (X.P.); and Department of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany (K.E.O.)
| | - Yichun Lu
- From the Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence (D.T., W.L., L.L.C., H.K.J., Y.L., R.T., J.D., K.B., B.-R.C., G.K.); Physics Department, Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA (C.M.R., A.K.); Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey (X.P.); and Department of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany (K.E.O.)
| | - Radmila Terentyeva
- From the Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence (D.T., W.L., L.L.C., H.K.J., Y.L., R.T., J.D., K.B., B.-R.C., G.K.); Physics Department, Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA (C.M.R., A.K.); Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey (X.P.); and Department of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany (K.E.O.)
| | - Katja E Odening
- From the Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence (D.T., W.L., L.L.C., H.K.J., Y.L., R.T., J.D., K.B., B.-R.C., G.K.); Physics Department, Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA (C.M.R., A.K.); Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey (X.P.); and Department of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany (K.E.O.)
| | - Jean Daley
- From the Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence (D.T., W.L., L.L.C., H.K.J., Y.L., R.T., J.D., K.B., B.-R.C., G.K.); Physics Department, Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA (C.M.R., A.K.); Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey (X.P.); and Department of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany (K.E.O.)
| | - Kamana Bist
- From the Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence (D.T., W.L., L.L.C., H.K.J., Y.L., R.T., J.D., K.B., B.-R.C., G.K.); Physics Department, Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA (C.M.R., A.K.); Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey (X.P.); and Department of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany (K.E.O.)
| | - Bum-Rak Choi
- From the Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence (D.T., W.L., L.L.C., H.K.J., Y.L., R.T., J.D., K.B., B.-R.C., G.K.); Physics Department, Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA (C.M.R., A.K.); Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey (X.P.); and Department of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany (K.E.O.)
| | - Alain Karma
- From the Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence (D.T., W.L., L.L.C., H.K.J., Y.L., R.T., J.D., K.B., B.-R.C., G.K.); Physics Department, Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA (C.M.R., A.K.); Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey (X.P.); and Department of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany (K.E.O.)
| | - Gideon Koren
- From the Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence (D.T., W.L., L.L.C., H.K.J., Y.L., R.T., J.D., K.B., B.-R.C., G.K.); Physics Department, Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA (C.M.R., A.K.); Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey (X.P.); and Department of Cardiology and Angiology I, Heart Center Freiburg University, Freiburg, Germany (K.E.O.).
| |
Collapse
|
35
|
Ziupa D, Beck J, Franke G, Perez Feliz S, Hartmann M, Koren G, Zehender M, Bode C, Brunner M, Odening KE. Pronounced effects of HERG-blockers E-4031 and erythromycin on APD, spatial APD dispersion and triangulation in transgenic long-QT type 1 rabbits. PLoS One 2014; 9:e107210. [PMID: 25244401 PMCID: PMC4170956 DOI: 10.1371/journal.pone.0107210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/04/2014] [Indexed: 12/13/2022] Open
Abstract
Background Prolongation of action potential duration (APD), increased spatial APD dispersion, and triangulation are major factors promoting drug-induced ventricular arrhythmia. Preclinical identification of HERG/IKr-blocking drugs and their pro-arrhythmic potential, however, remains a challenge. We hypothesize that transgenic long-QT type 1 (LQT1) rabbits lacking repolarizing IKs current may help to sensitively detect HERG/IKr-blocking properties of drugs. Methods Hearts of adult female transgenic LQT1 and wild type littermate control (LMC) rabbits were Langendorff-perfused with increasing concentrations of HERG/IKr-blockers E-4031 (0.001–0.1 µM, n = 9/7) or erythromycin (1–300 µM, n = 9/7) and APD, APD dispersion, and triangulation were analyzed. Results At baseline, APD was longer in LQT1 than in LMC rabbits in LV apex and RV mid. Erythromycin and E-4031 prolonged APD in LQT1 and LMC rabbits in all positions. However, erythromycin-induced percentaged APD prolongation related to baseline (%APD) was more pronounced in LQT1 at LV base-lateral and RV mid positions (100 µM, LQT1, +40.6±9.7% vs. LMC, +24.1±10.0%, p<0.05) and E-4031-induced %APD prolongation was more pronounced in LQT1 at LV base-lateral (0.01 µM, LQT1, +29.6±10.6% vs. LMC, +19.1±3.8%, p<0.05) and LV base-septal positions. Moreover, erythromycin significantly increased spatial APD dispersion only in LQT1 and increased triangulation only in LQT1 in LV base-septal and RV mid positions. Similarly, E-4031 increased triangulation only in LQT1 in LV apex and base-septal positions. Conclusions E-4031 and erythromycin prolonged APD and increased triangulation more pronouncedly in LQT1 than in LMC rabbits. Moreover, erythromycin increased APD dispersion only in LQT1, indicating that transgenic LQT1 rabbits could serve as sensitive model to detect HERG/IKr-blocking properties of drugs.
Collapse
Affiliation(s)
- David Ziupa
- Heart Center University of Freiburg, Department of Cardiology and Angiology I, Freiburg, Germany
| | - Julia Beck
- Heart Center University of Freiburg, Department of Cardiology and Angiology I, Freiburg, Germany
| | - Gerlind Franke
- Heart Center University of Freiburg, Department of Cardiology and Angiology I, Freiburg, Germany
| | - Stefanie Perez Feliz
- Heart Center University of Freiburg, Department of Cardiology and Angiology I, Freiburg, Germany
| | - Maximilian Hartmann
- Heart Center University of Freiburg, Department of Cardiology and Angiology I, Freiburg, Germany
| | - Gideon Koren
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Manfred Zehender
- Heart Center University of Freiburg, Department of Cardiology and Angiology I, Freiburg, Germany
| | - Christoph Bode
- Heart Center University of Freiburg, Department of Cardiology and Angiology I, Freiburg, Germany
| | - Michael Brunner
- Heart Center University of Freiburg, Department of Cardiology and Angiology I, Freiburg, Germany
| | - Katja E. Odening
- Heart Center University of Freiburg, Department of Cardiology and Angiology I, Freiburg, Germany
- * E-mail:
| |
Collapse
|
36
|
Images as drivers of progress in cardiac computational modelling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:198-212. [PMID: 25117497 PMCID: PMC4210662 DOI: 10.1016/j.pbiomolbio.2014.08.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/02/2014] [Indexed: 11/28/2022]
Abstract
Computational models have become a fundamental tool in cardiac research. Models are evolving to cover multiple scales and physical mechanisms. They are moving towards mechanistic descriptions of personalised structure and function, including effects of natural variability. These developments are underpinned to a large extent by advances in imaging technologies. This article reviews how novel imaging technologies, or the innovative use and extension of established ones, integrate with computational models and drive novel insights into cardiac biophysics. In terms of structural characterization, we discuss how imaging is allowing a wide range of scales to be considered, from cellular levels to whole organs. We analyse how the evolution from structural to functional imaging is opening new avenues for computational models, and in this respect we review methods for measurement of electrical activity, mechanics and flow. Finally, we consider ways in which combined imaging and modelling research is likely to continue advancing cardiac research, and identify some of the main challenges that remain to be solved.
Collapse
|
37
|
Cardiac mechano-electric coupling research: Fifty years of progress and scientific innovation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:71-5. [DOI: 10.1016/j.pbiomolbio.2014.06.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 06/19/2014] [Indexed: 12/22/2022]
|
38
|
The importance of non-uniformities in mechano-electric coupling for ventricular arrhythmias. J Interv Card Electrophysiol 2013; 39:25-35. [DOI: 10.1007/s10840-013-9852-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/16/2013] [Indexed: 12/31/2022]
|
39
|
Kohl P. From ion channel to organismic phenotype: an example of integrative translational research into cardiac electromechanics. Heart Rhythm 2013; 10:1542-3. [PMID: 23933297 DOI: 10.1016/j.hrthm.2013.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Indexed: 11/16/2022]
Affiliation(s)
- Peter Kohl
- National Heart and Lung Institute, Imperial College, London, United Kingdom.
| |
Collapse
|