1
|
Liu R, Tian Y, Zhang X, Zhang X, Lin Y. Bidirectional association between abnormal cardiac conditions and epilepsy: A two-sample Mendelian randomization study. Epilepsy Behav 2024; 161:110111. [PMID: 39488097 DOI: 10.1016/j.yebeh.2024.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Observational studies have consistently indicated a significant correlation between abnormal cardiac conditions and epilepsy. However, the association and direction of this relationship remain a subject of debate. This study employs a two-sample bidirectional Mendelian randomization (MR) approach to investigate the association between abnormal cardiac conditions and epilepsy. METHODS Instrumental variables, represented by single nucleotide polymorphisms (SNPs) associated with epilepsy and various abnormal cardiac conditions, were derived from large-scale genome-wide association studies databases, including FinnGen and UK Biobank. Bidirectional MR analysis was conducted to estimate the association between epilepsy and abnormal cardiac conditions. Sensitivity analyses were performed using MR-Egger, weighted median, Inverse Variance Weighted, and MR pleiotropy residual sum and outlier methods. RESULTS The forward MR analysis suggested a potential positive effect of atrial fibrillation and flutter (AF) and valvular heart diseases (VHD) on the risk of epilepsy. Conversely, the reverse MR analysis indicated that epilepsy might increase the susceptibility to AF, VHD, and heart failure. CONCLUSION The findings support a bidirectional relationship between AF, VHD, and epilepsy, indicating that AF and VHD can elevate the risk of developing epilepsy, while epilepsy, in turn, can also increase the risk of developing AF and VHD. Furthermore, the study suggest that epilepsy may contribute to the development of heart failure. These results underscore the importance of screening for cardiac abnormalities in patients with epilepsy and vice versa, to better understand their clinical significance and potential as modifiable risk factors.
Collapse
Affiliation(s)
- Renfu Liu
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, Fujian, China
| | - Yu Tian
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, Fujian, China
| | - Xiangtao Zhang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, Fujian, China
| | - Xiaodan Zhang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, Fujian, China
| | - Yuanxiang Lin
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, Fujian, China; Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China.
| |
Collapse
|
2
|
Singh V, Auerbach DS. Neurocardiac pathologies associated with potassium channelopathies. Epilepsia 2024; 65:2537-2552. [PMID: 39087855 DOI: 10.1111/epi.18066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
Voltage-gated potassium channels are expressed throughout the human body and are essential for physiological functions. These include delayed rectifiers, A-type channels, outward rectifiers, and inward rectifiers. They impact electrical function in the heart (repolarization) and brain (repolarization and stabilization of the resting membrane potential). KCNQx and KCNHx encode Kv7.x and Kv11.x proteins, which form delayed rectifier potassium channels. KCNQx and KCNHx channelopathies are associated with both cardiac and neuronal pathologies. These include electrocardiographic abnormalities, cardiac arrhythmias, sudden cardiac death (SCD), epileptiform discharges, seizures, bipolar disorder, and sudden unexpected death in epilepsy (SUDEP). Due to the ubiquitous expression of KCNQx and KCNHx channels, abnormalities in their function can be particularly harmful, increasing the risk of sudden death. For example, KCNH2 variants have a dual role in both cardiac and neuronal pathologies, whereas KCNQ2 and KCNQ3 variants are associated with severe and refractory epilepsy. Recurrent and uncontrolled seizures lead to secondary abnormalities, which include autonomics, cardiac electrical function, respiratory drive, and neuronal electrical activity. Even with a wide array of anti-seizure therapies available on the market, one-third of the more than 70 million people worldwide with epilepsy have uncontrolled seizures (i.e., intractable/drug-resistant epilepsy), which negatively impact neurodevelopment and quality of life. To capture the current state of the field, this review examines KCNQx and KCNHx expression patterns and electrical function in the brain and heart. In addition, it discusses several KCNQx and KCNHx variants that have been clinically and electrophysiologically characterized. Because these channel variants are associated with multi-system pathologies, such as epileptogenesis, Kv7 channel modulators provide a potential anti-seizure therapy, particularly for people with intractable epilepsy. Ultimately an increased understanding of the role of Kv channels throughout the body will fuel the development of innovative, safe, and effective therapies for people at a high risk of sudden death (SCD and SUDEP).
Collapse
Affiliation(s)
- Veronica Singh
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - David S Auerbach
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
3
|
Zhu W, Bian X, Lv J. From genes to clinical management: A comprehensive review of long QT syndrome pathogenesis and treatment. Heart Rhythm O2 2024; 5:573-586. [PMID: 39263612 PMCID: PMC11385408 DOI: 10.1016/j.hroo.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Background Long QT syndrome (LQTS) is a rare cardiac disorder characterized by prolonged ventricular repolarization and increased risk of ventricular arrhythmias. This review summarizes current knowledge of LQTS pathogenesis and treatment strategies. Objectives The purpose of this study was to provide an in-depth understanding of LQTS genetic and molecular mechanisms, discuss clinical presentation and diagnosis, evaluate treatment options, and highlight future research directions. Methods A systematic search of PubMed, Embase, and Cochrane Library databases was conducted to identify relevant studies published up to April 2024. Results LQTS involves mutations in ion channel-related genes encoding cardiac ion channels, regulatory proteins, and other associated factors, leading to altered cellular electrophysiology. Acquired causes can also contribute. Diagnosis relies on clinical history, electrocardiographic findings, and genetic testing. Treatment strategies include lifestyle modifications, β-blockers, potassium channel openers, device therapy, and surgical interventions. Conclusion Advances in understanding LQTS have improved diagnosis and personalized treatment approaches. Challenges remain in risk stratification and management of certain patient subgroups. Future research should focus on developing novel pharmacological agents, refining device technologies, and conducting large-scale clinical trials. Increased awareness and education are crucial for early detection and appropriate management of LQTS.
Collapse
Affiliation(s)
- Wenjing Zhu
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xueyan Bian
- Department of Pediatrics, Lixia District People's Hospital, Jinan, Shandong, China
| | - Jianli Lv
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
4
|
Cross MR, Savitz ST, Sangaralingham LR, So EL, Ackerman MJ, Noseworthy PA. Sudden Cardiac Death or Ventricular Arrythmia in Patients Taking Levetiracetam or Oxcarbazepine. Neurology 2024; 102:e209177. [PMID: 38560823 DOI: 10.1212/wnl.0000000000209177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 01/05/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Levetiracetam is a widely used antiseizure medication. Recent concerns have been raised regarding the potential prolongation of the QT interval by levetiracetam and increased risk of sudden cardiac death. This could have profound implications for patient safety and for prescribing practice. This study assessed the potential association of levetiracetam with cardiac outcomes related to QT interval prolongation. We compared outcomes of patients taking levetiracetam with those taking oxcarbazepine as a comparator medication that has not been associated with prolongation of the QT interval. METHODS The sample included patients who were newly prescribed levetiracetam or oxcarbazepine from January 31, 2010, to December 31, 2019, using administrative claims data from the OptumLabs Data Warehouse (OLDW). The analysis focused on a combined endpoint of sudden cardiac death or ventricular arrythmia, which are both linked to QT interval prolongation. We used a new user design and selected oxcarbazepine as an active comparator with levetiracetam to minimize bias. We used propensity score weighting to balance the levetiracetam and oxcarbazepine cohorts and then performed weighted Cox regressions to evaluate the association of levetiracetam with the combined endpoint. RESULTS We identified 104,655 enrollees taking levetiracetam and 39,596 enrollees taking oxcarbazepine. At baseline, enrollees taking levetiracetam were older, more likely to have diagnosed epilepsy, and more likely to have diagnosed comorbidities including hypertension, cerebrovascular disease, and coronary artery disease. In the main analysis, we found no significant difference between levetiracetam and oxcarbazepine in the rate of the combined endpoint for the Cox proportional hazards model (hazard ratio [HR] 0.79, 95% CI 0.42-1.47) or Cox regression with time-varying characteristics (HR 0.78, 95% CI 0.41-1.50). DISCUSSION When compared with oxcarbazepine, levetiracetam does not correlate with increased risk of ventricular arrythmia and sudden cardiac death. Our finding does not support the concern for cardiac risk to indicate restriction of levetiracetam use nor the requirement of cardiac monitoring when using it. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that sudden cardiac death and ventricular arrythmia are not more frequent in patients older than 17 years newly prescribed levetiracetam, compared with those prescribed oxcarbazepine.
Collapse
Affiliation(s)
- Madeline R Cross
- From the Department of Neurology (M.R.C.), Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery (S.T.S.), Division of Health Care Delivery Research (L.R.S., P.A.N.), Division of Epilepsy, Department of Neurology (E.L.S.), and Department of Cardiovascular Diseases (M.J.A., P.A.N.), Mayo Clinic, Rochester, MN
| | - Samuel T Savitz
- From the Department of Neurology (M.R.C.), Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery (S.T.S.), Division of Health Care Delivery Research (L.R.S., P.A.N.), Division of Epilepsy, Department of Neurology (E.L.S.), and Department of Cardiovascular Diseases (M.J.A., P.A.N.), Mayo Clinic, Rochester, MN
| | - Lindsey R Sangaralingham
- From the Department of Neurology (M.R.C.), Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery (S.T.S.), Division of Health Care Delivery Research (L.R.S., P.A.N.), Division of Epilepsy, Department of Neurology (E.L.S.), and Department of Cardiovascular Diseases (M.J.A., P.A.N.), Mayo Clinic, Rochester, MN
| | - Elson L So
- From the Department of Neurology (M.R.C.), Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery (S.T.S.), Division of Health Care Delivery Research (L.R.S., P.A.N.), Division of Epilepsy, Department of Neurology (E.L.S.), and Department of Cardiovascular Diseases (M.J.A., P.A.N.), Mayo Clinic, Rochester, MN
| | - Michael J Ackerman
- From the Department of Neurology (M.R.C.), Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery (S.T.S.), Division of Health Care Delivery Research (L.R.S., P.A.N.), Division of Epilepsy, Department of Neurology (E.L.S.), and Department of Cardiovascular Diseases (M.J.A., P.A.N.), Mayo Clinic, Rochester, MN
| | - Peter A Noseworthy
- From the Department of Neurology (M.R.C.), Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery (S.T.S.), Division of Health Care Delivery Research (L.R.S., P.A.N.), Division of Epilepsy, Department of Neurology (E.L.S.), and Department of Cardiovascular Diseases (M.J.A., P.A.N.), Mayo Clinic, Rochester, MN
| |
Collapse
|
5
|
Senapati SG, Bhanushali AK, Lahori S, Naagendran MS, Sriram S, Ganguly A, Pusa M, Damani DN, Kulkarni K, Arunachalam SP. Mapping of Neuro-Cardiac Electrophysiology: Interlinking Epilepsy and Arrhythmia. J Cardiovasc Dev Dis 2023; 10:433. [PMID: 37887880 PMCID: PMC10607576 DOI: 10.3390/jcdd10100433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/10/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
The interplay between neurology and cardiology has gained significant attention in recent years, particularly regarding the shared pathophysiological mechanisms and clinical comorbidities observed in epilepsy and arrhythmias. Neuro-cardiac electrophysiology mapping involves the comprehensive assessment of both neural and cardiac electrical activity, aiming to unravel the intricate connections and potential cross-talk between the brain and the heart. The emergence of artificial intelligence (AI) has revolutionized the field by enabling the analysis of large-scale data sets, complex signal processing, and predictive modeling. AI algorithms have been applied to neuroimaging, electroencephalography (EEG), electrocardiography (ECG), and other diagnostic modalities to identify subtle patterns, classify disease subtypes, predict outcomes, and guide personalized treatment strategies. In this review, we highlight the potential clinical implications of neuro-cardiac mapping and AI in the management of epilepsy and arrhythmias. We address the challenges and limitations associated with these approaches, including data quality, interpretability, and ethical considerations. Further research and collaboration between neurologists, cardiologists, and AI experts are needed to fully unlock the potential of this interdisciplinary field.
Collapse
Affiliation(s)
- Sidhartha G. Senapati
- Department of Internal Medicine, Texas Tech University Health and Sciences Center, El Paso, TX 79905, USA; (S.G.S.); (D.N.D.)
| | - Aditi K. Bhanushali
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (A.K.B.); (S.L.)
| | - Simmy Lahori
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (A.K.B.); (S.L.)
| | | | - Shreya Sriram
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Arghyadeep Ganguly
- Department of Internal Medicine, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI 49007, USA;
| | - Mounika Pusa
- Mamata Medical College, Khammam 507002, Telangana, India;
| | - Devanshi N. Damani
- Department of Internal Medicine, Texas Tech University Health and Sciences Center, El Paso, TX 79905, USA; (S.G.S.); (D.N.D.)
- Department of Cardiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kanchan Kulkarni
- IHU-LIRYC, Heart Rhythm Disease Institute, Fondation Bordeaux Université, Pessac, 33600 Bordeaux, France;
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, U1045, 33000 Bordeaux, France
| | - Shivaram P. Arunachalam
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (A.K.B.); (S.L.)
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Singh V, Ryan JM, Auerbach DS. It is premature for a unified hypothesis of sudden unexpected death in epilepsy: A great amount of research is still needed to understand the multisystem cascade. Epilepsia 2023; 64:2006-2010. [PMID: 37129136 DOI: 10.1111/epi.17636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/10/2023] [Accepted: 05/01/2023] [Indexed: 05/03/2023]
Affiliation(s)
- Veronica Singh
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Justin M Ryan
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - David S Auerbach
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
7
|
Bagnall RD, Perucca P. ILAE Genetic Literacy Series: Postmortem Genetic Testing in Sudden Unexpected Death in Epilepsy. Epileptic Disord 2023; 25:472-479. [PMID: 37340991 DOI: 10.1002/epd2.20090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 06/17/2023] [Indexed: 06/22/2023]
Abstract
A 24-year-old man with non-lesional bitemporal lobe epilepsy since age 16 years was found dead in bed around midday. He was last seen the previous night when he was witnessed to have a tonic-clonic seizure. Before his death, he was experiencing weekly focal impaired awareness seizures and up to two focal-to-bilateral tonic-clonic seizures each year. He had trialed several antiseizure medications and was on levetiracetam 1500 mg/day, lamotrigine 400 mg/day, and clobazam 10 mg/day at the time of death. Other than epilepsy, his medical history was unremarkable. Of note, he had an older brother with a history of febrile seizures and a paternal first cousin with epilepsy. No cause of death was identified following a comprehensive postmortem investigation. The coroner classified the death as "sudden unexpected death in epilepsy" (SUDEP), and it would qualify as "definite SUDEP" using the current definitions.1 This left the family with many questions unanswered; in particular, they wish to know what caused the death and whether it could happen to other family members. Could postmortem genetic testing identify a cause of death, provide closure to the family, and facilitate cascade genetic testing of first-degree family members who may be at risk of sudden death? While grieving family members struggle with uncertainty about the cause of death, we as clinicians also face similar uncertainties about genetic contributions to SUDEP, especially when the literature is sparse, and the utility of genetic testing is still being worked out. We aim to shed some light on this topic, highlighting areas where data is emerging but also areas where uncertainty remains, keeping our case in mind as we examine this clinically important area.
Collapse
Affiliation(s)
- Richard D Bagnall
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Piero Perucca
- Department of Medicine (Austin Health), Epilepsy Research Centre, The University of Melbourne, Melbourne, Victoria, Australia
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Melbourne, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Zhou Y, Hao N, Sander JW, Lin X, Xiong W, Zhou D. KCNH2 variants in a family with epilepsy and long QT syndrome: A case report and literature review. Epileptic Disord 2023; 25:492-499. [PMID: 36946251 DOI: 10.1002/epd2.20046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/23/2023]
Abstract
OBJECTIVE Genes associated with Long QT syndromes (LQTS), such as KCNQ1, KCNH2, and SCN5A, are common causes of epilepsy. The Arg 744* variant of KCNH2 has been previously reported in people with epilepsy or LQTS, but none of these patients were reported to simultaneously suffer from epilepsy and LQTS. Herein, we report the case of a family with epilepsy and cardiac disorders. METHOD The proband, a 25-year-old woman, with a family history of epilepsy and LQTS was followed at West China Hospital. The proband experienced her first seizure at the age of seven. Video electroencephalograms (vEEGs) showed epileptic discharges. Her 24-h dynamic electrocardiograms 2 (ECGs) showed QTc prolongation. The proband's mother, who is 50 years old, had her first generalized tonic-clonic seizure (GTCS) at the age of 18 years old. After she gave birth at the age of 25, the frequency of seizures increased, so antiepileptic therapy was initiated. When she was 28 years old, she complained of palpitations and syncope for the first time, and QTc prolongation was detected on her 24-h dynamic ECGs. The proband's grandmother also had complaints of palpitations and syncope at the age of 73. Her 24-h dynamic ECGs indicated supraventricular arrhythmia, with the lowest heart rate being 41 bpm, so she agreed to a pacemaker. Considering the young patient's family history, blood samples of the patient and her parents were collected for genetic analysis. RESULTS A heterozygous variant of KCNH2 [c.2230 (exon9) C>T, p. Arg744Ter, 416, NM_000238, rs189014161] was found in the proband and her mother. According to the guidelines of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology, we classified the KCNH2 variant as pathogenic. SIGNIFICANCE This study expands the clinical phenotype of the Arg 744* KCNH2 pathogenic variant. In the context of channelopathies, because of the genetic susceptibility of the brain and the heart, the risk of comorbidity should be considered. This also indicates the importance of precise antiepileptic drug (AED) management and regular ECG monitoring for patients with channelopathies.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-inspired technology of West China Hospital, Sichuan University, Chengdu, China
| | - Nanya Hao
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-inspired technology of West China Hospital, Sichuan University, Chengdu, China
| | - Josemir W Sander
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-inspired technology of West China Hospital, Sichuan University, Chengdu, China
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom & Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Xu Lin
- Department of Neurology, The Affiliated Chengdu 363 Hospital of Southwest Medical University, Chengdu, Sichuan, China
| | - Weixi Xiong
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-inspired technology of West China Hospital, Sichuan University, Chengdu, China
| | - Dong Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-inspired technology of West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Remme CA. SCN5A channelopathy: arrhythmia, cardiomyopathy, epilepsy and beyond. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220164. [PMID: 37122208 PMCID: PMC10150216 DOI: 10.1098/rstb.2022.0164] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/31/2022] [Indexed: 05/02/2023] Open
Abstract
Influx of sodium ions through voltage-gated sodium channels in cardiomyocytes is essential for proper electrical conduction within the heart. Both acquired conditions associated with sodium channel dysfunction (myocardial ischaemia, heart failure) as well as inherited disorders secondary to mutations in the gene SCN5A encoding for the cardiac sodium channel Nav1.5 are associated with life-threatening arrhythmias. Research in the last decade has uncovered the complex nature of Nav1.5 distribution, function, in particular within distinct subcellular subdomains of cardiomyocytes. Nav1.5-based channels furthermore display previously unrecognized non-electrogenic actions and may impact on cardiac structural integrity, leading to cardiomyopathy. Moreover, SCN5A and Nav1.5 are expressed in cell types other than cardiomyocytes as well as various extracardiac tissues, where their functional role in, e.g. epilepsy, gastrointestinal motility, cancer and the innate immune response is increasingly investigated and recognized. This review provides an overview of these novel insights and how they deepen our mechanistic knowledge on SCN5A channelopathies and Nav1.5 (dys)function. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Carol Ann Remme
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Yilmaz K, Isikay S, Yavuz S, Baspinar O. Routine Interictal EEG Recording Should be Performed Together with Simultaneous Two-Lead ECG Recording. JOURNAL OF PEDIATRIC EPILEPSY 2022. [DOI: 10.1055/s-0042-1751247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
AbstractWe aimed to evaluate the contribution of simultaneous electrocardiography (ECG) recording during routine interictal electroencephalography (EEG) recording in patients with seizures or epilepsy and therefore to provide evidence-based data on this subject. Patients with interictal cardiac arrhythmia on routine EEG-ECG recordings were determined and evaluated based on cardiologic and neurologic findings. Out of 1,078 patients aged between 5 and 16 years (mean: 10.2 ± 3.2), 9 (0.08%) patients were found to have an arrhythmia. Six patients had both epilepsy and cardiac arrhythmia (premature ventricular contractions [PVCs] in 5; Wolff-Parkinson-White [WPW] in 1 patient) and the remaining three patients had nonepileptic paroxysmal events (NPEs) and arrhythmia (PVC in 2; WPW in 1). Three patients had other diseases (neurofibromatosis type 1, tuberous sclerosis, and congenital heart disease status postsurgery). Cardiac arrhythmia required radiofrequency ablation or antiarrhythmic drug treatment in two patients with epilepsy and also two patients with NPE; however, it improved with no specific treatment in the remaining five patients. NPE was not related to arrhythmia in one of three patients with NPE. Our study suggests that routine interictal EEG-ECG recording provides a valuable and feasible opportunity to reveal unnoticed or new-onset cardiac arrhythmias. Therefore, ECG should be recorded simultaneously during routine interictal EEG recordings. Cardiac arrhythmias detected by routine interictal EEG-ECG recordings would require arrhythmia treatment in nearly half of the patients.
Collapse
Affiliation(s)
- Kutluhan Yilmaz
- Division of Pediatric Neurology, Department of Pediatrics, Medical Faculty, Ordu University, Ordu, Turkey
| | - Sedat Isikay
- Department of Pediatrics, Medical Faculty, Gaziantep University, Gaziantep, Turkey
| | - Sibel Yavuz
- Department of Pediatrics, Adıyaman University Education and Research Hospital, Adıyaman, Turkey
| | - Osman Baspinar
- Department of Pediatrics, Medical Faculty, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
11
|
Trivisano M, Muccioli L, Ferretti A, Lee HF, Chi CS, Bisulli F. Risk of SUDEP during infancy. Epilepsy Behav 2022; 131:107896. [PMID: 33741238 DOI: 10.1016/j.yebeh.2021.107896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/10/2021] [Accepted: 02/23/2021] [Indexed: 11/03/2022]
Abstract
Risk of sudden unexpected death in epilepsy (SUDEP) in children is influenced by different factors such as etiology, seizure type and frequency, treatment, and environment. A greater severity of epilepsy, in terms of seizure frequency, seizures type, especially with nocturnal generalized tonic-clonic seizures (GTCS), and resistance to anti-seizure medication are predisposing factors to SUDEP. Potential mechanisms of SUDEP might involve respiratory, cardiovascular, and central autonomic dysfunctions, either combined or in isolation. Patients with epilepsy carrying mutations in cardiac channelopathy genes might be disposed to seizure-induced arrhythmias. Other than in channelopathies, SUDEP has been reported in further patients with genetic epilepsies due to mutations of genes such as DEPDC5, TBC1D24, FHF1, or 5q14.3 deletion. Age-related electro-clinical differences in GTCS may therefore be relevant in explaining differences in SUDEP between adults and children. Typical GTCS represent a rare seizure type in infants and toddlers, they are characterized by a shorter tonic phase and, in direct proportion, by shorter postictal generalized EEG suppression (PGES). The presence of night-time supervision has been found to reduce SUDEP risk, likely reducing SUDEP incidence in children. Reconsideration of safety protocols in epilepsy monitoring units with the aim of reducing the risk of SUDEP, and the use of devices for seizure detection, might contribute to reduce the risk of death in patients affected by epilepsy. This article is part of the Special Issue "Severe Infantile Epilepsies".
Collapse
Affiliation(s)
- Marina Trivisano
- Rare and Epilepsies Unit, Department of Neurological Science, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy.
| | - Lorenzo Muccioli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alessandro Ferretti
- Rare and Epilepsies Unit, Department of Neurological Science, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Hsiu-Fen Lee
- Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ching-Shiang Chi
- Division of Pediatric Neurology, Department of Pediatrics, Tungs' Taichung Metroharbor Hospital, Taichung, Taiwan
| | - Francesca Bisulli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
12
|
Sanchez-Conde FG, Jimenez-Vazquez EN, Auerbach DS, Jones DK. The ERG1 K+ Channel and Its Role in Neuronal Health and Disease. Front Mol Neurosci 2022; 15:890368. [PMID: 35600076 PMCID: PMC9113952 DOI: 10.3389/fnmol.2022.890368] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
The ERG1 potassium channel, encoded by KCNH2, has long been associated with cardiac electrical excitability. Yet, a growing body of work suggests that ERG1 mediates physiology throughout the human body, including the brain. ERG1 is a regulator of neuronal excitability, ERG1 variants are associated with neuronal diseases (e.g., epilepsy and schizophrenia), and ERG1 serves as a potential therapeutic target for neuronal pathophysiology. This review summarizes the current state-of-the-field regarding the ERG1 channel structure and function, ERG1’s relationship to the mammalian brain and highlights key questions that have yet to be answered.
Collapse
Affiliation(s)
| | - Eric N. Jimenez-Vazquez
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - David S. Auerbach
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, United States
- *Correspondence: David S. Auerbach,
| | - David K. Jones
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
- David K. Jones,
| |
Collapse
|
13
|
De novo mutations in childhood cases of sudden unexplained death that disrupt intracellular Ca2+ regulation. Proc Natl Acad Sci U S A 2021; 118:2115140118. [PMID: 34930847 PMCID: PMC8719874 DOI: 10.1073/pnas.2115140118] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 01/04/2023] Open
Abstract
Approximately 400 United States children 1 y of age and older die suddenly from unexplained causes annually. We studied whole-exome sequence data from 124 “trios” (decedent child and living parents) to identify genetic risk factors. Nonsynonymous mutations, mostly de novo (present in child but absent in both biological parents), were highly enriched in genes associated with cardiac and seizure disorders relative to controls, and contributed to 9% of deaths. We found significant overtransmission of loss-of-function or pathogenic missense variants in cardiac and seizure disorder genes. Most pathogenic variants were de novo in origin, highlighting the importance of trio studies. Many of these pathogenic de novo mutations altered a protein network regulating calcium-related excitability at submembrane junctions in cardiomyocytes and neurons. Sudden unexplained death in childhood (SUDC) is an understudied problem. Whole-exome sequence data from 124 “trios” (decedent child, living parents) was used to test for excessive de novo mutations (DNMs) in genes involved in cardiac arrhythmias, epilepsy, and other disorders. Among decedents, nonsynonymous DNMs were enriched in genes associated with cardiac and seizure disorders relative to controls (odds ratio = 9.76, P = 2.15 × 10−4). We also found evidence for overtransmission of loss-of-function (LoF) or previously reported pathogenic variants in these same genes from heterozygous carrier parents (11 of 14 transmitted, P = 0.03). We identified a total of 11 SUDC proband genotypes (7 de novo, 1 transmitted parental mosaic, 2 transmitted parental heterozygous, and 1 compound heterozygous) as pathogenic and likely contributory to death, a genetic finding in 8.9% of our cohort. Two genes had recurrent missense DNMs, RYR2 and CACNA1C. Both RYR2 mutations are pathogenic (P = 1.7 × 10−7) and were previously studied in mouse models. Both CACNA1C mutations lie within a 104-nt exon (P = 1.0 × 10−7) and result in slowed L-type calcium channel inactivation and lower current density. In total, six pathogenic DNMs can alter calcium-related regulation of cardiomyocyte and neuronal excitability at a submembrane junction, suggesting a pathway conferring susceptibility to sudden death. There was a trend for excess LoF mutations in LoF intolerant genes, where ≥1 nonhealthy sample in denovo-db has a similar variant (odds ratio = 6.73, P = 0.02); additional uncharacterized genetic causes of sudden death in children might be discovered with larger cohorts.
Collapse
|
14
|
Cardiac Channelopathies Masquerading as Seizures. Indian Pediatr 2021. [DOI: 10.1007/s13312-021-2315-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Kang H, Lan L, Jia Y, Li C, Fang Y, Zhu S, Kirsch H. Long QT syndrome with potassium voltage-gated channel subfamily H member 2 gene mutation mimicking refractory epilepsy: case report. BMC Neurol 2021; 21:338. [PMID: 34481479 PMCID: PMC8418736 DOI: 10.1186/s12883-021-02365-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epileptic seizures can be difficult to distinguish from other etiologies that cause cerebral hypoxia, especially cardiac diseases. Long QT syndrome (LQTS), especially LQTS type 2 (LQT2), frequently masquerades as seizures because of the transient cerebral hypoxia caused by ventricular arrhythmia. The high rate of sudden death in LQTS highlights the importance of accurate and early diagnosis; correct diagnosis of LQTS also prevents inappropriate treatment with anti-epileptic drugs (AEDs). CASE PRESENTATION We report a case of congenital LQT2 with potassium voltage-gated channel subfamily H member 2 gene (KCNH2) mutation misdiagnosed as refractory epilepsy and treated with various AEDs for 22 years. The possibility of cardiac arrhythmia was suspected after the patient presented to the emergency room and the electrocardiograph (ECG) monitor showed paroxysmal ventricular tachycardia during attacks. Atypical seizure like attacks with prodromal uncomfortable chest sensation and palpitation, triggered by auditory stimulation, and typical ventricular tachycardia monitored by ECG raised suspicion for LQT2, which was confirmed by exome sequencing and epileptic seizure was ruled out by 24-h EEG monitoring. Although the patient rejected implantation of an implantable cardioverter defibrillator, β blocker was given and the syncope only attacked 1-2 per year when there was an incentive during the 5 years follow up. CONCLUSIONS Our case illustrates how long LQTS can masquerade convincingly as epilepsy and can be treated wrongly with AEDs, putting the patient at high risk of sudden cardiac death. Careful ECG evaluation is recommend for both patients with first seizure and those with refractory epilepsy.
Collapse
Affiliation(s)
- Huicong Kang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Blvd., Wuhan, 430030, Hubei Province, China
| | - Lili Lan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Blvd., Wuhan, 430030, Hubei Province, China
| | - Yuchao Jia
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Blvd., Wuhan, 430030, Hubei Province, China
| | - Cun Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Blvd., Wuhan, 430030, Hubei Province, China
| | - Yongkang Fang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Blvd., Wuhan, 430030, Hubei Province, China
| | - Suiqiang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Blvd., Wuhan, 430030, Hubei Province, China.
| | - Heidi Kirsch
- Department of Neurology and Radiology & Biomedical Imaging, Epilepsy Center, University of California, San Francisco, California, 94143-0628, USA
| |
Collapse
|
16
|
Differential Methylation in the GSTT1 Regulatory Region in Sudden Unexplained Death and Sudden Unexpected Death in Epilepsy. Int J Mol Sci 2021; 22:ijms22062790. [PMID: 33801838 PMCID: PMC7999472 DOI: 10.3390/ijms22062790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Sudden cardiac death (SCD) is a diagnostic challenge in forensic medicine. In a relatively large proportion of the SCDs, the deaths remain unexplained after autopsy. This challenge is likely caused by unknown disease mechanisms. Changes in DNA methylation have been associated with several heart diseases, but the role of DNA methylation in SCD is unknown. In this study, we investigated DNA methylation in two SCD subtypes, sudden unexplained death (SUD) and sudden unexpected death in epilepsy (SUDEP). We assessed DNA methylation of more than 850,000 positions in cardiac tissue from nine SUD and 14 SUDEP cases using the Illumina Infinium MethylationEPIC BeadChip. In total, six differently methylated regions (DMRs) between the SUD and SUDEP cases were identified. The DMRs were located in proximity to or overlapping genes encoding proteins that are a part of the glutathione S-transferase (GST) superfamily. Whole genome sequencing (WGS) showed that the DNA methylation alterations were not caused by genetic changes, while whole transcriptome sequencing (WTS) showed that DNA methylation was associated with expression levels of the GSTT1 gene. In conclusion, our results indicate that cardiac DNA methylation is similar in SUD and SUDEP, but with regional differential methylation in proximity to GST genes.
Collapse
|
17
|
Sharma E, Gannon S, McCauley B, Chu AF. Sudden death in a patient with long QT syndrome presenting with an epileptic phenotype. Ann Noninvasive Electrocardiol 2020; 25:e12753. [PMID: 32198798 PMCID: PMC7679841 DOI: 10.1111/anec.12753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 11/27/2022] Open
Abstract
Patients with epilepsy suffer from a higher mortality rate than the general population, a portion of which is not due to epilepsy itself or comorbid conditions. Sudden unexpected death in epilepsy (SUDEP) is a common but poorly understood cause of death in patients with intractable epilepsy and often afflicts younger patients. The pathophysiology of SUDEP is poorly defined but does not appear to be related to prolonged seizure activity or resultant injury. Interestingly, a subset of patients with confirmed long QT syndrome (LQTS) present with a seizure phenotype and may have concurrent epilepsy. In this case, we present a patient who initially presented with a seizure phenotype. Further workup captured PMVT on an outpatient event monitor, and the patient was subsequently diagnosed with LQTS1. A substantial number of patients with LQTS initially present with a seizure phenotype. These patients may represent a subset of SUDEP cases resulting from ventricular arrhythmias. Appropriate suspicion for ventricular arrhythmias is necessary for proper arrhythmia evaluation and management in patients presenting with epilepsy.
Collapse
Affiliation(s)
- Esseim Sharma
- Department of Electrophysiology Rhode Island Hospital Brown University Providence RI USA
| | - Stephen Gannon
- Department of Cardiology Brigham and Women’s Hospital Harvard University Boston MA USA
| | - Brian McCauley
- Department of Cardiology University of Pennsylvania Philadelphia PA USA
| | - Antony F. Chu
- Department of Electrophysiology Rhode Island Hospital Brown University Providence RI USA
| |
Collapse
|
18
|
DeMaria N, Selmi A, Kashtan S, Xia X, Wang M, Zareba W, Couderc JP, Auerbach DS. Autonomic and Cardiac Repolarization Lability in Long QT Syndrome Patients. Auton Neurosci 2020; 229:102723. [PMID: 32942226 DOI: 10.1016/j.autneu.2020.102723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Long QT-Syndrome (LQTS) patients are at risk of arrhythmias and seizures. We investigated whether autonomic and cardiac repolarization measures differed based on LQTS genotypes, and in LQTS patients with vs. without arrhythmias and seizures. METHODS We used 24-h ECGs from LQTS1 (n = 87), LQTS2 (n = 50), and LQTS genotype negative patients (LQTS(-), n = 16). Patients were stratified by LQTS genotype, and arrhythmias/seizures. Heart rate variability (HRV) and QT variability index (QTVI) measures were compared between groups during specific physiological states (minimum, middle, & maximum sympathovagal balance, LF/HF). Results were further tested using logistic regression for each ECG measure, and all HRV measures in a single multivariate model. RESULTS Across multiple physiological states, total autonomic (SDNN) and vagal (RMSSD, pNN50) function were lower and repolarization dynamics (QTVI) were elevated in LQTS(+), LQTS1, and LQTS2, compared to LQTS(-). Many measures remained significant in the regression models. Multivariate modeling demonstrated that SDNN, RMSSD, and pNN50 were independent markers of LQTS(+) vs. LQTS(-), and SDNN and pNN50 were markers for LQTS1 vs. LQTS(-). During sympathovagal balance (middle LF/HF), RMSSD and pNN50 distinguished LQTS1 vs. LQTS2. LQTS1 patients with arrhythmias had lower total (SDNN) and vagal (RMSSD and pNN50) autonomic function, and SDNN remained significant in the models. In contrast, ECG measures did not differ in LQTS2 patients with vs. without arrhythmias, and LQTS1 and LQTS2 with vs. without seizures. CONCLUSION Autonomic (HRV) and cardiac repolarization (QTVI) ECG measures differ based on LQTS genotype and history of arrhythmias in LQTS1. SDNN, RMSSD, and pNN50 were each independent markers for LQTS genotype.
Collapse
Affiliation(s)
- Natalia DeMaria
- Department of Pharmacology, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY, United States
| | - Ahmed Selmi
- Biomedical Engineering, ,University of Rochester, P.O. Box 270076, Rochester, NY, United States
| | - Samuel Kashtan
- Biomedical Engineering, ,University of Rochester, P.O. Box 270076, Rochester, NY, United States
| | - Xiaojuan Xia
- Medicine-Clinical Cardiology Research Center, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, United States
| | - Matthew Wang
- Department of Pharmacology, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY, United States
| | - Wojciech Zareba
- Medicine-Clinical Cardiology Research Center, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, United States
| | - Jean-Philippe Couderc
- Medicine-Clinical Cardiology Research Center, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, United States
| | - David S Auerbach
- Department of Pharmacology, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY, United States; Medicine-Aab Cardiovascular Research Institute, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, United States; Pharmacology/Physiology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, United States.
| |
Collapse
|
19
|
Sigalas C, Cremer M, Winbo A, Bose SJ, Ashton JL, Bub G, Montgomery JM, Burton RAB. Combining tissue engineering and optical imaging approaches to explore interactions along the neuro-cardiac axis. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200265. [PMID: 32742694 PMCID: PMC7353978 DOI: 10.1098/rsos.200265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/27/2020] [Indexed: 05/05/2023]
Abstract
Interactions along the neuro-cardiac axis are being explored with regard to their involvement in cardiac diseases, including catecholaminergic polymorphic ventricular tachycardia, hypertension, atrial fibrillation, long QT syndrome and sudden death in epilepsy. Interrogation of the pathophysiology and pathogenesis of neuro-cardiac diseases in animal models present challenges resulting from species differences, phenotypic variation, developmental effects and limited availability of data relevant at both the tissue and cellular level. By contrast, tissue-engineered models containing cardiomyocytes and peripheral sympathetic and parasympathetic neurons afford characterization of cellular- and tissue-level behaviours while maintaining precise control over developmental conditions, cellular genotype and phenotype. Such approaches are uniquely suited to long-term, high-throughput characterization using optical recording techniques with the potential for increased translational benefit compared to more established techniques. Furthermore, tissue-engineered constructs provide an intermediary between whole animal/tissue experiments and in silico models. This paper reviews the advantages of tissue engineering methods of multiple cell types and optical imaging techniques for the characterization of neuro-cardiac diseases.
Collapse
Affiliation(s)
| | - Maegan Cremer
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Annika Winbo
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Department of Paediatric and Congenital Cardiac Services, Starship Children's Hospital, Auckland, New Zealand
| | - Samuel J. Bose
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Jesse L. Ashton
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Gil Bub
- Department of Physiology, McGill University, Montreal, Canada
| | | | - Rebecca A. B. Burton
- Department of Pharmacology, University of Oxford, Oxford, UK
- Author for correspondence: Rebecca A. B. Burton e-mail:
| |
Collapse
|
20
|
Strano S, Toni D, Ammirati F, Sanna T, Tomaino M, Brignole M, Mazza A, Nguyen BL, Di Bonaventura C, Ricci RP, Boriani G. Neuro-arrhythmology: a challenging field of action and research: a review from the Task Force of Neuro-arrhythmology of Italian Association of Arrhythmias and Cardiac Pacing. J Cardiovasc Med (Hagerstown) 2020; 20:731-744. [PMID: 31567632 DOI: 10.2459/jcm.0000000000000866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
: There is a growing interest in the study of the mechanisms of heart and brain interactions with the aim to improve the management of high-impact cardiac rhythm disorders, first of all atrial fibrillation. However, there are several topics to which the scientific interests of cardiologists and neurologists converge constituting the basis for enhancing the development of neuro-arrhythmology. This multidisciplinary field should cover a wide spectrum of diseases, even beyond the classical framework corresponding to stroke and atrial fibrillation and include the complex issues of seizures as well as loss of consciousness and syncope. The implications of a more focused interaction between neurologists and cardiologists in the field of neuro-arrhythmology should include in perspective the institution of research networks specifically devoted to investigate 'from bench to bedside' the complex pathophysiological links of the abovementioned diseases, with involvement of scientists in the field of biochemistry, genetics, molecular medicine, physiology, pathology and bioengineering. An investment in the field could have important implications in the perspectives of a more personalized approach to patients and diseases, in the context of 'precision'medicine. Large datasets and electronic medical records, with the approach typical of 'big data' could enhance the possibility of new findings with potentially important clinical implications. Finally, the interaction between neurologists and cardiologists involved in arrythmia management should have some organizational implications, with new models of healthcare delivery based on multidisciplinary assistance, similarly to that applied in the case of syncope units.
Collapse
Affiliation(s)
| | - Danilo Toni
- Emergency Department Stroke Unit, Department of Human Neurosciences, Sapienza University of Rome
| | | | - Tommaso Sanna
- Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Institute of Cardiology, Rome
| | - Marco Tomaino
- Department of Cardiology, Ospedale di Bolzano, Bolzano
| | - Michele Brignole
- Department of Cardiology, Arrhythmologic Centre, Ospedali del Tigullio, Lavagna
| | - Andrea Mazza
- Cardiology Division, Santa Maria della Stella Hospital, Orvieto
| | | | | | | | - Giuseppe Boriani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena University Hospital, Modena, Italy
| |
Collapse
|
21
|
Chahal CAA, Salloum MN, Alahdab F, Gottwald JA, Tester DJ, Anwer LA, So EL, Murad MH, St Louis EK, Ackerman MJ, Somers VK. Systematic Review of the Genetics of Sudden Unexpected Death in Epilepsy: Potential Overlap With Sudden Cardiac Death and Arrhythmia-Related Genes. J Am Heart Assoc 2020; 9:e012264. [PMID: 31865891 PMCID: PMC6988156 DOI: 10.1161/jaha.119.012264] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 09/25/2019] [Indexed: 12/29/2022]
Abstract
Background Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related death. SUDEP shares many features with sudden cardiac death and sudden unexplained death in the young and may have a similar genetic contribution. We aim to systematically review the literature on the genetics of SUDEP. Methods and Results PubMed, MEDLINE Epub Ahead of Print, Ovid Medline In-Process & Other Non-Indexed Citations, MEDLINE, EMBASE, Cochrane Database of Systematic Reviews, and Scopus were searched through April 4, 2017. English language human studies analyzing SUDEP for known sudden death, ion channel and arrhythmia-related pathogenic variants, novel variant discovery, and copy number variant analyses were included. Aggregate descriptive statistics were generated; data were insufficient for meta-analysis. A total of 8 studies with 161 unique individuals were included; mean was age 29.0 (±SD 14.2) years; 61% males; ECG data were reported in 7.5% of cases; 50.7% were found prone and 58% of deaths were nocturnal. Cause included all types of epilepsy. Antemortem diagnosis of Dravet syndrome and autism (with duplication of chromosome 15) was associated with 11% and 9% of cases. The most frequently detected known pathogenic variants at postmortem were in Na+ and K+ ion channel subunits, as were novel potentially pathogenic variants (11%). Overall, the majority of variants were of unknown significance. Analysis of copy number variant was insignificant. Conclusions SUDEP case adjudication and evaluation remains limited largely because of crucial missing data such as ECGs. The most frequent pathogenic/likely pathogenic variants identified by molecular autopsy are in ion channel or arrhythmia-related genes, with an ≈11% discovery rate. Comprehensive postmortem examination should include examination of the heart and brain by specialized pathologists and blood storage.
Collapse
Affiliation(s)
- C. Anwar A. Chahal
- Mayo Clinic College of MedicineMayo ClinicRochesterMN
- Mayo Clinic Graduate School of Biomedical SciencesMayo ClinicRochesterMN
- Department of Cardiovascular MedicineMayo ClinicRochesterMN
| | - Mohammad N. Salloum
- Internal MedicineIcahn School of Medicine at Mount SinaiQueens Hospital CenterNew YorkNY
| | - Fares Alahdab
- Evidence‐Based Practice Research ProgramMayo ClinicRochesterMN
- Division of Preventive, Occupational and Aerospace MedicineMayo ClinicRochesterMN
| | | | - David J. Tester
- Mayo Clinic College of MedicineMayo ClinicRochesterMN
- Department of Cardiovascular MedicineMayo ClinicRochesterMN
- Windland Smith Rice Sudden Death Genomics LaboratoryMayo ClinicRochesterMN
| | - Lucman A. Anwer
- Mayo Clinic College of MedicineMayo ClinicRochesterMN
- Department of Cardiovascular SurgeryMayo ClinicRochesterMN
- General SurgeryUIC/MGHChicagoIL
| | - Elson L. So
- Evidence‐Based Practice Research ProgramMayo ClinicRochesterMN
| | - Mohammad Hassan Murad
- Evidence‐Based Practice Research ProgramMayo ClinicRochesterMN
- Division of Preventive, Occupational and Aerospace MedicineMayo ClinicRochesterMN
| | - Erik K. St Louis
- Mayo Clinic College of MedicineMayo ClinicRochesterMN
- Department of NeurologyMayo ClinicRochesterMN
- Mayo Center for Sleep MedicineMayo ClinicRochesterMN
| | - Michael J. Ackerman
- Mayo Clinic College of MedicineMayo ClinicRochesterMN
- Mayo Clinic Graduate School of Biomedical SciencesMayo ClinicRochesterMN
- Department of Cardiovascular MedicineMayo ClinicRochesterMN
- Windland Smith Rice Sudden Death Genomics LaboratoryMayo ClinicRochesterMN
- Department of PediatricsMayo ClinicRochesterMN
| | - Virend K. Somers
- Mayo Clinic College of MedicineMayo ClinicRochesterMN
- Department of Cardiovascular MedicineMayo ClinicRochesterMN
| |
Collapse
|
22
|
Marstrand P, Theilade J, Andersson C, Bundgaard H, Weeke PE, Tfelt-Hansen J, Jespersen C, Gislason G, Torp-Pedersen C, Kanters JK, Jørgensen ME. Long QT syndrome is associated with an increased burden of diabetes, psychiatric and neurological comorbidities: a nationwide cohort study. Open Heart 2019; 6:e001161. [PMID: 31749975 PMCID: PMC6827808 DOI: 10.1136/openhrt-2019-001161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 12/19/2022] Open
Abstract
Objective Studies have suggested a shared genetic aetiology between congenital long QT syndrome (LQTS) and diabetes, epilepsy and mental disorders. We investigated the prevalence of metabolic, neurological and psychiatric comorbidities in LQTS patients. Methods This retrospective cohort study was based on data from nationwide Danish registries, 2003-2017. LQTS patients were matched 1:5 with controls on sex and age. Results We matched 463 LQTS patients with 2315 controls from the background population. Mean age was 35.7 (SD 21.0) years, and 38% were males in both groups. LQTS patients had a higher prevalence of atrial fibrillation (6.5% vs 2.3%, p<0.001), diabetes (3.7% vs 1.8 %, p=0.011) and hearing loss (3.2% vs 1.7%, p=0.027). LQTS patients had a higher prevalence of psychiatric disorders overall (13.0% vs 9.1%, p=0.01) but the difference could not be attributed to a specific psychiatric disease subgroup. LQTS patients had a higher prevalence of neurological disorders (22.0% vs 13.2%, p<0.001), largely driven by epilepsy (6.7% vs 1.6%, p<0.001). In 20/27 (74%) of the LQTS patients, the epilepsy diagnosis did not reappear in the registries after the LQTS diagnosis was established. Conclusions In this nationwide cohort, patients with LQTS had a significantly increased burden of diabetes, neurological and psychiatric comorbidities, compared with the background population. The higher prevalence of neurological comorbidities was largely driven by epilepsy, despite a high rate of potentially misdiagnosed patients prior to LQTS diagnosis. Our data support that LQTS may be considered a multiorgan disease and suggest that patient management should be adjusted accordingly.
Collapse
Affiliation(s)
- Peter Marstrand
- Department of Cardiology, Herlev-Gentofte Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Juliane Theilade
- Department of Cardiology, Herlev-Gentofte Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Charlotte Andersson
- Department of Cardiology, Herlev-Gentofte Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Henning Bundgaard
- Department of Cardiology, Rigshospitalet, University Hospital Copenhagen, Copenhagen, Denmark
| | - Peter E Weeke
- Department of Cardiology, Rigshospitalet, University Hospital Copenhagen, Copenhagen, Denmark
| | - Jacob Tfelt-Hansen
- Department of Cardiology, Rigshospitalet, University Hospital Copenhagen, Copenhagen, Denmark.,Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Jespersen
- Department of Cardiology, Rigshospitalet, University Hospital Copenhagen, Copenhagen, Denmark
| | - Gunnar Gislason
- Department of Cardiology, Herlev-Gentofte Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Christian Torp-Pedersen
- Department of Health, Science and Technology, Aalborg University and Departments of Cardiology and Biostatistics/epidemiology, Aalborg University Hospital, Aalborg, Denmark
| | - Jørgen K Kanters
- Laboratory of Experimental Cardiology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mads E Jørgensen
- Department of Cardiology, Herlev-Gentofte Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Noebels JL. Brainstem spreading depolarization: rapid descent into the shadow of SUDEP. Brain 2019; 142:231-233. [PMID: 30698758 DOI: 10.1093/brain/awy356] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Jeffrey L Noebels
- Departments of Neurology, Neuroscience, Molecular and Human Genetics, and NIH Center for SUDEP Research, Baylor College of Medicine, Houston, USA
| |
Collapse
|
24
|
Prüss H, Gessner G, Heinemann SH, Rüschendorf F, Ruppert AK, Schulz H, Sander T, Rimpau W. Linkage Evidence for a Two-Locus Inheritance of LQT-Associated Seizures in a Multigenerational LQT Family With a Novel KCNQ1 Loss-of-Function Mutation. Front Neurol 2019; 10:648. [PMID: 31293497 PMCID: PMC6603176 DOI: 10.3389/fneur.2019.00648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 06/03/2019] [Indexed: 12/21/2022] Open
Abstract
Mutations in several genes encoding ion channels can cause the long-QT (LQT) syndrome with cardiac arrhythmias, syncope and sudden death. Recently, mutations in some of these genes were also identified to cause epileptic seizures in these patients, and the sudden unexplained death in epilepsy (SUDEP) was considered to be the pathologic overlap between the two clinical conditions. For LQT-associated KCNQ1 mutations, only few investigations reported the coincidence of cardiac dysfunction and epileptic seizures. Clinical, electrophysiological and genetic characterization of a large pedigree (n = 241 family members) with LQT syndrome caused by a 12-base-pair duplication in exon 8 of the KCNQ1 gene duplicating four amino acids in the carboxyterminal KCNQ1 domain (KCNQ1dup12; p.R360_Q361dupQKQR, NM_000218.2, hg19). Electrophysiological recordings revealed no substantial KCNQ1-like currents. The mutation did not exhibit a dominant negative effect on wild-type KCNQ1 channel function. Most likely, the mutant protein was not functionally expressed and thus not incorporated into a heteromeric channel tetramer. Many LQT family members suffered from syncopes or developed sudden death, often after physical activity. Of 26 family members with LQT, seizures were present in 14 (LQTplus seizure trait). Molecular genetic analyses confirmed a causative role of the novel KCNQ1dup12 mutation for the LQT trait and revealed a strong link also with the LQTplus seizure trait. Genome-wide parametric multipoint linkage analyses identified a second strong genetic modifier locus for the LQTplus seizure trait in the chromosomal region 10p14. The linkage results suggest a two-locus inheritance model for the LQTplus seizure trait in which both the KCNQ1dup12 mutation and the 10p14 risk haplotype are necessary for the occurrence of LQT-associated seizures. The data strongly support emerging concepts that KCNQ1 mutations may increase the risk of epilepsy, but additional genetic modifiers are necessary for the clinical manifestation of epileptic seizures.
Collapse
Affiliation(s)
- Harald Prüss
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE) Berlin, Bonn, Germany
| | - Guido Gessner
- Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena & Jena University Hospital, Jena, Germany
| | - Stefan H Heinemann
- Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena & Jena University Hospital, Jena, Germany
| | | | | | - Herbert Schulz
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Thomas Sander
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Wilhelm Rimpau
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
25
|
Manolis TA, Manolis AA, Melita H, Manolis AS. Sudden unexpected death in epilepsy: The neuro-cardio-respiratory connection. Seizure 2019; 64:65-73. [DOI: 10.1016/j.seizure.2018.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/09/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022] Open
|
26
|
Galtrey CM, Levee V, Arevalo J, Wren D. Long QT syndrome masquerading as epilepsy. Pract Neurol 2018; 19:56-61. [PMID: 30323052 DOI: 10.1136/practneurol-2018-001959] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2018] [Indexed: 11/03/2022]
Abstract
The diagnosis of epilepsy is incorrect in up to 20% of cases so should be revisited if attacks are not responding to treatment. We present a case of long QT syndrome that remained undiagnosed in the epilepsy clinic for 15 years until a near-fatal arrhythmia revealed the diagnosis and allowed effective treatment of her attacks. We hope this near miss raises awareness of long QT syndrome as a potentially fatal, rare but treatable condition that neurologists must consider in people with a label of refractory epilepsy. We provide practical pointers to increase the chance of early diagnosis and explore the impact of a late diagnosis for the patient and her family.
Collapse
Affiliation(s)
- Clare M Galtrey
- Department of Neurology, Frimley Health NHS Foundation Trust, Frimley, UK
| | - Viva Levee
- Department of Neurology, Frimley Health NHS Foundation Trust, Frimley, UK
| | - Jan Arevalo
- Department of Neurology, Frimley Health NHS Foundation Trust, Frimley, UK
| | - Damian Wren
- Department of Neurology, Frimley Health NHS Foundation Trust, Frimley, UK
| |
Collapse
|
27
|
González A, Aurlien D, Larsson PG, Olsen KB, Dahl IT, Edvardsen T, Haugaa KH, Taubøll E. Seizure-like episodes and EEG abnormalities in patients with long QT syndrome. Seizure 2018; 61:214-220. [DOI: 10.1016/j.seizure.2018.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/13/2018] [Accepted: 08/25/2018] [Indexed: 01/05/2023] Open
|
28
|
Mueller SG, Nei M, Bateman LM, Knowlton R, Laxer KD, Friedman D, Devinsky O, Goldman AM. Brainstem network disruption: A pathway to sudden unexplained death in epilepsy? Hum Brain Mapp 2018; 39:4820-4830. [PMID: 30096213 DOI: 10.1002/hbm.24325] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/05/2018] [Accepted: 07/12/2018] [Indexed: 12/16/2022] Open
Abstract
Observations in witnessed Sudden Unexpected Death in Epilepsy (SUDEP) suggest that a fatal breakdown of the central autonomic control could play a major role in SUDEP. A previous MR study found volume losses in the mesencephalon in focal epilepsy that were more severe and extended into the lower brainstem in two patients who later died of SUDEP. The aims of this study were to demonstrate an association (1) between brainstem volume loss and impaired autonomic control (reduced heart rate variability [HRV]); (2) between brainstem damage and time to SUDEP in patients who later died of SUDEP. Two populations were studied: (1) Autonomic system function population (ASF, 18 patients with focal epilepsy, 11 controls) with HRV measurements and standardized 3 T MR exams. (2) SUDEP population (26 SUDEP epilepsy patients) with clinical MRI 1-10 years before SUDEP. Deformation-based morphometry of the brainstem was used to generate profile similarity maps from the resulting Jacobian determinant maps that were further characterized by graph analysis to identify regions with excessive expansion indicating significant volume loss or atrophy. The total number of regions with excessive expansion in ASF was negatively correlated with HRV (r = -.37, p = .03), excessive volume loss in periaqueductal gray/medulla oblongata autonomic nuclei explained most of the HRV associated variation (r/r2 = -.82/.67, p < .001). The total number of regions with excessive expansion in SUDEP was negatively correlated with time to SUDEP (r = -.39, p = .03), excessive volume loss in the raphe/medulla oblongata at the obex level explained most of the variation of the time between MRI to SUDEP (r/r2 = -.60/.35,p = .001). Epilepsy is associated with brainstem atrophy that impairs autonomic control and can increase the risk for SUDEP if it expands into the mesencephalon.
Collapse
Affiliation(s)
- Susanne G Mueller
- Department of Radiology, University of California, San Francisco, California
| | - Maromi Nei
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Robert Knowlton
- Department of Neurology, University of California, San Francisco, California
| | - Kenneth D Laxer
- Pacific Epilepsy Program, California Pacific Medical Center, San Francisco, California
| | | | | | | |
Collapse
|
29
|
Ruthirago D, Julayanont P, Karukote A, Shehabeldin M, Nugent K. Sudden unexpected death in epilepsy: ongoing challenges in finding mechanisms and prevention. Int J Neurosci 2018; 128:1052-1060. [PMID: 29667458 DOI: 10.1080/00207454.2018.1466780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Purpose/aim of the study: To summarize recent studies on the pathophysiology and preventive strategies for SUDEP. Materials and methods: Databases and literature review. Results: Patients with epilepsy have a significantly higher risk of death than the general population. Sudden unexpected death in epilepsy (SUDEP) is the leading cause of sudden death among patients with epilepsy. Despite on-going research, there are still deficits in our knowledge about the mechanisms, genetic factors, and prevention of SUDEP. Current evidence suggests that cardiac arrhythmias, respiratory dysfunction, and brainstem arousal system dysfunction are the major mechanisms of SUDEP, and animal models support the role of neurotransmitters, especially serotonin and adenosine, in pathophysiology of SUDEP. Several mutations in the neurocardiogenic channelopathy genes have been identified as a possible cause of epilepsy and increased SUDEP risk. The lack of awareness that SUDEP can be a potential cause of premature death has been found in several surveys. In addition, medical legal cases demonstrate the need for more education about this condition. Several preventive strategies to reduce SUDEP have been proposed, including effective seizure control, nocturnal supervision, seizure monitoring, devices to protect the airway, and selective serotonin reuptake inhibitors. Further research is needed to determine the efficacy of these interventions. Conclusions: The major mechanisms of SUDEP include cardiac arrhythmias, respiratory dysfunction, and brainstem arousal system dysfunction. Effective control of seizures is the only effective strategy to prevent SUDEP. Other preventive interventions require more research.
Collapse
Affiliation(s)
- Doungporn Ruthirago
- a Department of Neurology , Texas Tech University Health Science Center , Lubbock , TX , USA
| | - Parunyou Julayanont
- a Department of Neurology , Texas Tech University Health Science Center , Lubbock , TX , USA
| | - Amputch Karukote
- b Department of Internal Medicine, Faculty of Medicine, Ramathibodi Hospital , Mahidol University , Bangkok , Thailand
| | - Mohamed Shehabeldin
- a Department of Neurology , Texas Tech University Health Science Center , Lubbock , TX , USA
| | - Kenneth Nugent
- c Department of Internal Medicine , Texas Tech University Health Science Center , Lubbock , TX , USA
| |
Collapse
|
30
|
Auerbach DS, Biton Y, Polonsky B, McNitt S, Gross RA, Dirksen RT, Moss AJ. Risk of cardiac events in Long QT syndrome patients when taking antiseizure medications. Transl Res 2018; 191:81-92.e7. [PMID: 29121487 PMCID: PMC5733703 DOI: 10.1016/j.trsl.2017.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/02/2017] [Accepted: 10/07/2017] [Indexed: 12/29/2022]
Abstract
Many antiseizure medications (ASMs) affect ion channel function. We investigated whether ASMs alter the risk of cardiac events in patients with corrected QT (QTc) prolongation. The study included people from the Rochester-based Long QT syndrome (LQTS) Registry with baseline QTc prolongation and history of ASM therapy (n = 296). Using multivariate Anderson-Gill models, we assessed the risk of recurrent cardiac events associated with ASM therapy. We stratified by LQTS genotype and predominant mechanism of ASM action (Na+ channel blocker and gamma-aminobutyric acid modifier.) There was an increased risk of cardiac events when participants with QTc prolongation were taking vs off ASMs (HR 1.65, 95% confidence interval [CI] 1.36-2.00, P < 0.001). There was an increased risk of cardiac events when LQTS2 (HR 1.49, 95% CI 1.03-2.15, P = 0.036) but not LQTS1 participants were taking ASMs (interaction, P = 0.016). Na+ channel blocker ASMs were associated with an increased risk of cardiac events in participants with QTc prolongation, specifically LQTS2, but decreased risk in LQTS1. The increased risk when taking all ASMs and Na+ channel blocker ASMs was attenuated by concurrent beta-adrenergic blocker therapy (interaction, P < 0.001). Gamma-aminobutyric acid modifier ASMs were associated with an increased risk of events in patients not concurrently treated with beta-adrenergic blockers. Female participants were at an increased risk of cardiac events while taking all ASMs and each class of ASMs. Despite no change in overall QTc duration, pharmacogenomic analyses set the stage for future prospective clinical and mechanistic studies to validate that ASMs with predominantly Na+ channel blocking actions are deleterious in LQTS2, but protective in LQTS1.
Collapse
Affiliation(s)
- David S Auerbach
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY; Department of Pharmacology & Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY.
| | - Yitschak Biton
- Department of Medicine, Heart Research Follow up Program, University of Rochester School of Medicine and Dentistry, Rochester, NY; Department of Cardiology, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Bronislava Polonsky
- Department of Medicine, Heart Research Follow up Program, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Scott McNitt
- Department of Medicine, Heart Research Follow up Program, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Robert A Gross
- Department of Pharmacology & Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY; Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Robert T Dirksen
- Department of Pharmacology & Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Arthur J Moss
- Department of Medicine, Heart Research Follow up Program, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
31
|
Vanhoof-Villalba SL, Gautier NM, Mishra V, Glasscock E. Pharmacogenetics of KCNQ channel activation in 2 potassium channelopathy mouse models of epilepsy. Epilepsia 2017; 59:358-368. [PMID: 29265344 DOI: 10.1111/epi.13978] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2017] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Antiseizure drugs are the leading therapeutic choice for treatment of epilepsy, but their efficacy is limited by pharmacoresistance and the occurrence of unwanted side effects. Here, we examined the therapeutic efficacy of KCNQ channel activation by retigabine in preventing seizures and neurocardiac dysfunction in 2 potassium channelopathy mouse models of epilepsy with differing severity that have been associated with increased risk of sudden unexpected death in epilepsy (SUDEP): the Kcna1-/- model of severe epilepsy and the Kcnq1A340E/A340E model of mild epilepsy. METHODS A combination of behavioral, seizure threshold, electrophysiologic, and gene expression analyses was used to determine the effects of KCNQ activation in mice. RESULTS Behaviorally, Kcna1-/- mice exhibited unexpected hyperexcitability instead of the expected sedative-like response. In flurothyl-induced seizure tests, KCNQ activation decreased seizure latency by ≥50% in Kcnq1 strain mice but had no effect in the Kcna1 strain, suggesting the influence of genetic background. However, in simultaneous electroencephalography and electrocardiography recordings, KCNQ activation significantly reduced spontaneous seizure frequency in Kcna1-/- mice by ~60%. In Kcnq1A340E/A340E mice, KCNQ activation produced adverse cardiac effects including profound bradycardia and abnormal increases in heart rate variability and atrioventricular conduction blocks. Analyses of Kcnq2 and Kcnq3 mRNA levels revealed significantly elevated Kcnq2 expression in Kcna1-/- brains, suggesting that drug target alterations may contribute to the altered drug responses. SIGNIFICANCE This study shows that treatment strategies in channelopathy may have unexpected outcomes and that effective rebalancing of channel defects requires improved understanding of channel interactions at the circuit and tissue levels. The efficacy of KCNQ channel activation and manifestation of adverse effects were greatly affected by genetic background, potentially limiting KCNQ modulation as a way to prevent neurocardiac dysfunction in epilepsy and thereby SUDEP risk. Our data also uncover a potential role for KCNQ2-5 channels in autonomic control of chronotropy.
Collapse
Affiliation(s)
- Stephanie L Vanhoof-Villalba
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Nicole M Gautier
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Vikas Mishra
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Edward Glasscock
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
32
|
Uysal F, Turkgenc B, Toksoy G, Bostan OM, Evke E, Uyguner O, Yakicier C, Kayserili H, Cil E, Temel SG. "Homozygous, and compound heterozygous mutation in 3 Turkish family with Jervell and Lange-Nielsen syndrome: case reports". BMC MEDICAL GENETICS 2017; 18:114. [PMID: 29037160 PMCID: PMC5644177 DOI: 10.1186/s12881-017-0474-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/01/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Jervell and Lange-Nielsen syndrome (JLNS) isa recessive model of long QT syndrome which might also be related to possible hearing loss. Although the syndrome has been demonstrated to be originated from homozygous or compound heterozygous mutations in either the KCNQ1 or KCNE1 genes, additional mutations in other genetic loci should be considered, particularly in malignant course patients. CASE PRESENTATIONS Three patients were admitted into hospital due to recurrent seizures/syncope, intrauterine and postnatal bradycardia respectively; moreover all three patients had congenital sensorineural hearing-loss. Their electrocardiograms showed markedly prolonged QT interval. Implantable defibrillator was implanted and left cardiac sympathetic denervation was performed due to the progressive disease in case 1. She had countless ventricular fibrillation and appropriate shock while using an implantable defibrillator. The DNA sequencing analysis of the KCNQ1 gene disclosed a homozygous c.728G > A (p.Arg243His) missense mutation in case1. Further targeted next generation sequencing of cardiac panel comprising 68 gene revealed a heterozygous c.1346 T > G (p.Ile449Arg) variant in RYR2 gene and a heterozygous c.809G > A (p.Cys270Tyr) variant in NKX2-5 gene in the same patient. Additional gene alterations in RYR2 and NKX2-5 genes were thought to be responsible for progressive and malignant course of the disease. As a result of DNA sequencing analysis of KCNQ1 and KCNE1 genes, a compound heterozygosity for two mutations had been detected in KCNQ1 gene in case 2: a maternally derived c.477 + 1G > A splice site mutation and a paternally derived c.520C > T (p.Arg174Cys) missense mutation. Sanger sequencing of KCNQ1 and KCNE1 genes displayed a homozygous c.1097G > A (p.Arg366Gln) mutation in KCNQ1 gene in case 3. β-blocker therapy was initiated to all the index subjects. CONCLUSIONS Three families of JLNS who presented with long QT and deafness and who carry homozygous, or compound heterozygous mutation in KCNQ1 gene were presented in this report. It was emphasized that broad targeted cardiac panels may be useful to predict the outcome especially in patients with unexplained phenotype-genotype correlation. Clinical presentations and molecular findings will be discussed further to clarify the phenotype genotype associations.
Collapse
Affiliation(s)
- Fahrettin Uysal
- Department of Pediatric Cardiology, University of Uludag, School of Medicine, Bursa, Turkey
| | | | - Guven Toksoy
- Department of Medical Genetics, Istanbul University, Faculty of Medicine, Istanbul, Turkey
| | - Ozlem M. Bostan
- Department of Pediatric, Cardiology, Uludag University, Faculty of Medicine, Bursa, Turkey
| | - Elif Evke
- Bursa Genetic Diagnostic Center, Bursa, Turkey
| | - Oya Uyguner
- Department of Medical Genetics, Istanbul University, Faculty of Medicine, Istanbul, Turkey
| | - Cengiz Yakicier
- Acibadem Genetic Diagnostic Center, Istanbul, Turkey
- Department of Molecular Biology and Genetic, Acibadem University, Faculty of Science, Istanbul, Turkey
| | - Hulya Kayserili
- Department of Medical Genetics, Istanbul University, Faculty of Medicine, Istanbul, Turkey
- Department of Medical Genetics, Koc University, Faculty of Medicine, Istanbul, Turkey
| | - Ergun Cil
- Department of Pediatric, Cardiology, Uludag University, Faculty of Medicine, Bursa, Turkey
| | - Sehime G. Temel
- Department of Histology& Embryology, Near East University, Faculty of Medicine, Nicosia, North Cyprus
- Department of Medical Genetics, Uludag University, Faculty of Medicine, Bursa, Turkey
- Department of Histology & Embryology, Uludag University, Faculty of Medicine, Bursa, Turkey
- Gorukle campuss, Uludag University, School of Medicine, 16059, Nilufer, Bursa, Turkey
| |
Collapse
|
33
|
Bagnall RD, Crompton DE, Semsarian C. Genetic Basis of Sudden Unexpected Death in Epilepsy. Front Neurol 2017; 8:348. [PMID: 28775708 PMCID: PMC5517398 DOI: 10.3389/fneur.2017.00348] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/03/2017] [Indexed: 11/13/2022] Open
Abstract
People with epilepsy are at heightened risk of sudden death compared to the general population. The leading cause of epilepsy-related premature mortality is sudden unexpected death in epilepsy (SUDEP). Postmortem investigation of people with SUDEP, including histological and toxicological analysis, does not reveal a cause of death, and the mechanisms of SUDEP remain largely unresolved. In this review we present the possible mechanisms underlying SUDEP, including respiratory dysfunction, cardiac arrhythmia and postictal generalized electroencephlogram suppression. Emerging studies in humans and animal models suggest there may be an underlying genetic basis to SUDEP in some cases. We will highlight a mounting body of evidence for the involvement of genetic risk factors in SUDEP, with a particular focus on the role of cardiac arrhythmia genes in SUDEP.
Collapse
Affiliation(s)
- Richard D Bagnall
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Douglas E Crompton
- Department of Neurology, Northern Health, Melbourne, VIC, Australia.,Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, VIC, Australia
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|
34
|
Roston TM, Cunningham T, Lehman A, Laksman ZW, Krahn AD, Sanatani S. Beyond the Electrocardiogram: Mutations in Cardiac Ion Channel Genes Underlie Nonarrhythmic Phenotypes. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2017; 11:1179546817698134. [PMID: 28469493 PMCID: PMC5392026 DOI: 10.1177/1179546817698134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/01/2017] [Indexed: 12/19/2022]
Abstract
Cardiac ion channelopathies are an important cause of sudden death in the young and include long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, idiopathic ventricular fibrillation, and short QT syndrome. Genes that encode ion channels have been implicated in all of these conditions, leading to the widespread implementation of genetic testing for suspected channelopathies. Over the past half-century, researchers have also identified systemic pathologies that extend beyond the arrhythmic phenotype in patients with ion channel gene mutations, including deafness, epilepsy, cardiomyopathy, periodic paralysis, and congenital heart disease. A coexisting phenotype, such as cardiomyopathy, can influence evaluation and management. However, prior to recent molecular advances, our understanding and recognition of these overlapping phenotypes were poor. This review highlights the systemic and structural heart manifestations of the cardiac ion channelopathies, including their phenotypic spectrum and molecular basis.
Collapse
Affiliation(s)
- Thomas M Roston
- British Columbia Inherited Arrhythmia Program and University of British Columbia, Vancouver, BC, Canada
| | - Taylor Cunningham
- British Columbia Inherited Arrhythmia Program and University of British Columbia, Vancouver, BC, Canada
| | - Anna Lehman
- British Columbia Inherited Arrhythmia Program and University of British Columbia, Vancouver, BC, Canada
| | - Zachary W Laksman
- British Columbia Inherited Arrhythmia Program and University of British Columbia, Vancouver, BC, Canada
| | - Andrew D Krahn
- British Columbia Inherited Arrhythmia Program and University of British Columbia, Vancouver, BC, Canada
| | - Shubhayan Sanatani
- British Columbia Inherited Arrhythmia Program and University of British Columbia, Vancouver, BC, Canada.,Children's Heart Centre, BC Children's Hospital, Vancouver, BC, Canada
| |
Collapse
|
35
|
Burns C, Ingles J, Davis AM, Connell V, Gray B, Hunt L, McGaughran J, Semsarian C. Clinical and genetic features of Australian families with long QT syndrome: A registry-based study. J Arrhythm 2016; 32:456-461. [PMID: 27920829 PMCID: PMC5129121 DOI: 10.1016/j.joa.2016.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/13/2016] [Accepted: 02/05/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Familial long QT syndrome (LQTS) is a primary arrhythmogenic disorder caused by mutations in ion channel genes. The phenotype ranges from asymptomatic individuals to sudden cardiac arrest and death. LQTS is a rare but significant health problem for which global data should exist. This study sought to provide the first clinical and genetic description of Australian families with LQTS. METHODS We performed a cross-sectional study to evaluate clinical and genetic features of families with LQTS. We recruited individuals from the Australian Genetic Heart Disease Registry and Genetic Heart Disease Clinic, in Sydney, Australia, and included those with a diagnosis of LQTS according to the most recent consensus statement. RESULTS Among 108 families with LQTS, 173 individuals were affected. Twenty-five (32%) probands had a sudden cardiac death (SCD) event (including appropriate implantable cardioverter defibrillator [ICD] therapy, or resuscitated cardiac arrest). There were 64 (82%) probands who underwent genetic testing, and 34 (53%) had a pathogenic or likely pathogenic mutation in. Having a family history of LQTS was significantly associated with identification of a pathogenic result (79% versus 14%, p<0.0001). There were 16 (9%) participants who experienced delay to diagnosis of at least 12 months. CONCLUSIONS This is the first clinical and genetic study in a large cohort of Australian families with LQTS. Findings from this study suggest that the clinical and genetic features in this population are not dissimilar to those described in North American, European, and Asian cohorts. Global-scale information about families with LQTS is an important initiative to ensure diagnostic and management approaches are applicable to different populations and ethnicities.
Collapse
Affiliation(s)
- Charlotte Burns
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, Australia
- School of Medicine, University of Sydney, Sydney, Australia
| | - Jodie Ingles
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, Australia
- School of Medicine, University of Sydney, Sydney, Australia
| | | | | | - Belinda Gray
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Lauren Hunt
- Genetic Health Queensland, Royal Brisbane and Women׳s Hospital, Brisbane, Australia
| | - Julie McGaughran
- Genetic Health Queensland, Royal Brisbane and Women׳s Hospital, Brisbane, Australia
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, Australia
- School of Medicine, University of Sydney, Sydney, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
36
|
The heart of epilepsy: Current views and future concepts. Seizure 2016; 44:176-183. [PMID: 27843098 DOI: 10.1016/j.seizure.2016.10.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/03/2016] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular (CV) comorbidities are common in people with epilepsy. Several mechanisms explain why these conditions tend to co-exist including causal associations, shared risk factors and those resulting from epilepsy or its treatment. Various arrhythmias occurring during and after seizures have been described. Ictal asystole is the most common cause. The converse phenomenon, arrhythmias causing seizures, appears extremely rare and has only been reported in children following cardioinihibitory syncope. Arrhythmias in epilepsy may not only result from seizure activity but also from a shared genetic susceptibility. Various cardiac and epilepsy genes could be implicated but firm evidence is still lacking. Several antiepileptic drugs (AEDs) triggering conduction abnormalities can also explain the co-existence of arrhythmias in epilepsy. Epidemiological studies have consistently shown that people with epilepsy have a higher prevalence of structural cardiac disease and a poorer CV risk profile than those without epilepsy. Shared CV risk factors, genetics and etiological factors can account for a significant part of the relationship between epilepsy and structural cardiac disease. Seizure activity may cause transient myocardial ischaemia and the Takotsubo syndrome. Additionally, certain AEDs may themselves negatively affect CV risk profile in epilepsy. Here we discuss the fascinating borderland of epilepsy and cardiovascular conditions. The review focuses on epidemiology, clinical presentations and possible mechanisms for shared pathophysiology. It concludes with a discussion of future developments and a call for validated screening instruments and guidelines aiding the early identification and treatment of CV comorbidity in epilepsy.
Collapse
|
37
|
Daverio M, Vecchi M. In Reply: Supraventricular Tachycardia During Status Epilepticus in Dravet Syndrome: A Link Between Brain and Heart? Pediatr Neurol 2016; 63:e5. [PMID: 27480955 DOI: 10.1016/j.pediatrneurol.2016.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Marco Daverio
- Department of Woman's and Child's Health, University Hospital of Padua, Padua, Italy
| | - Marilena Vecchi
- Department of Woman's and Child's Health, University Hospital of Padua, Padua, Italy.
| |
Collapse
|
38
|
Devinsky O, Hesdorffer DC, Thurman DJ, Lhatoo S, Richerson G. Sudden unexpected death in epilepsy: epidemiology, mechanisms, and prevention. Lancet Neurol 2016; 15:1075-88. [DOI: 10.1016/s1474-4422(16)30158-2] [Citation(s) in RCA: 369] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/29/2016] [Accepted: 06/29/2016] [Indexed: 12/24/2022]
|
39
|
Ravindran K, Powell KL, Todaro M, O'Brien TJ. The pathophysiology of cardiac dysfunction in epilepsy. Epilepsy Res 2016; 127:19-29. [PMID: 27544485 DOI: 10.1016/j.eplepsyres.2016.08.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 08/07/2016] [Accepted: 08/10/2016] [Indexed: 11/15/2022]
Abstract
Alterations in cardiac electrophysiology are an established consequence of long-standing drug resistant epilepsy. Patients with chronic epilepsy display abnormalities in both sinoatrial node pacemaker current as well as ventricular repolarizing current that places them at a greater risk of developing life-threatening cardiac arrhythmias. The development of cardiac arrhythmias secondary to drug resistant epilepsy is believed to be a key mechanism underlying the phenomenon of Sudden Unexpected Death in EPilepsy (SUDEP). Though an increasing amount of studies examining both animal models and human patients have provided evidence that chronic epilepsy can detrimentally affect cardiac function, the underlying pathophysiology remains unclear. Recent work has shown the expression of several key cardiac ion channels to be altered in animal models of genetic and acquired epilepsies. This has led to the currently held paradigm that cardiac ion channel expression may be secondarily altered as a consequence of seizure activity-resulting in electrophysiological cardiac dysfunction. Furthermore, cortical autonomic dysfunction - resulting from seizure activity-has also been suggested to play a role, whereby seizure activity may indirectly influence cardiac function via altering centrally-mediated autonomic output to the heart. In this review, we discuss various cardiac dysrhythmias associated with seizure events-including tachycardia, bradycardia and QT prolongation, both ictally and inter-ictally, as well as the role of the autonomic nervous system. We further discuss key ion channels expressed in both the heart and the brain that have been shown to be altered in epilepsy and may be responsible for the development of cardiac dysrhythmias secondary to chronic epilepsy.
Collapse
Affiliation(s)
- Krishnan Ravindran
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, Australia.
| | - Kim L Powell
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Marian Todaro
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Terence J O'Brien
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, Australia.
| |
Collapse
|
40
|
Leaky RyR2 channels unleash a brainstem spreading depolarization mechanism of sudden cardiac death. Proc Natl Acad Sci U S A 2016; 113:E4895-903. [PMID: 27482086 DOI: 10.1073/pnas.1605216113] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cardiorespiratory failure is the most common cause of sudden unexplained death in epilepsy (SUDEP). Genetic autopsies have detected "leaky" gain-of-function mutations in the ryanodine receptor-2 (RyR2) gene in both SUDEP and sudden cardiac death cases linked to catecholaminergic polymorphic ventricular tachycardia that feature lethal cardiac arrhythmias without structural abnormality. Here we find that a human leaky RyR2 mutation, R176Q (RQ), alters neurotransmitter release probability in mice and significantly lowers the threshold for spreading depolarization (SD) in dorsal medulla, leading to cardiorespiratory collapse. Rare episodes of sinus bradycardia, spontaneous seizure, and sudden death were detected in RQ/+ mutant mice in vivo; however, when provoked, cortical seizures frequently led to apneas, brainstem SD, cardiorespiratory failure, and death. In vitro studies revealed that the RQ mutation selectively strengthened excitatory, but not inhibitory, synapses and facilitated SD in both the neocortex as well as brainstem dorsal medulla autonomic microcircuits. These data link defects in neuronal intracellular calcium homeostasis to the vulnerability of central autonomic brainstem pathways to hypoxic stress and implicate brainstem SD as a previously unrecognized site and mechanism contributing to premature death in individuals with leaky RYR2 mutations.
Collapse
|
41
|
Auerbach DS, McNitt S, Gross RA, Zareba W, Dirksen RT, Moss AJ. Genetic biomarkers for the risk of seizures in long QT syndrome. Neurology 2016; 87:1660-1668. [PMID: 27466471 DOI: 10.1212/wnl.0000000000003056] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/26/2016] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES The coprevalence, severity, and biomarkers for seizures and arrhythmias in long QT syndrome (LQTS) remain incompletely understood. METHODS Using the Rochester-based LQTS Registry, this study included large cohorts of LQTS1-3 participants (LQTS+, n = 965) and those without a LQTS mutation (LQTS-, n = 936). RESULTS Compared to LQTS- participants, there was a higher prevalence of LQTS1, LQTS2, and LQTS+ participants classified as having seizures (p < 0.001, i.e., history of seizures/epilepsy or antiseizure medication). LQTS+ participants with longer corrected QT interval (QTc) durations were more likely to have seizures. LQTS2 mutations in the KCNH2 pore domain were positive predictors for both arrhythmias and seizures. In contrast, mutations in the cyclic nucleotide binding domain (cNBD) of KCNH2 conferred a negative risk of seizures, but not arrhythmias. LQTS2, KCNH2-pore, KCNH2-cNBD, QTc duration, and sex were independent predictors of seizures. LQTS+ participants with seizures had significantly longer QTc durations, and a history of seizures was the strongest independent predictor of arrhythmias (hazard ratio 4.09, 95% confidence interval 2.63-6.36, p < 0.001). CONCLUSIONS This study highlights potential biomarkers for neurocardiac electrical abnormalities in LQTS.
Collapse
Affiliation(s)
- David S Auerbach
- From the Department of Medicine, Aab Cardiovascular Research Institute (D.S.A.), Department of Medicine, Heart Research Follow-up Program (S.M., W.Z., A.J.M.), and Departments of Neurology (R.A.G.) and Pharmacology & Physiology (R.A.G., R.T.D.), University of Rochester School of Medicine and Dentistry, Rochester, NY.
| | - Scott McNitt
- From the Department of Medicine, Aab Cardiovascular Research Institute (D.S.A.), Department of Medicine, Heart Research Follow-up Program (S.M., W.Z., A.J.M.), and Departments of Neurology (R.A.G.) and Pharmacology & Physiology (R.A.G., R.T.D.), University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Robert A Gross
- From the Department of Medicine, Aab Cardiovascular Research Institute (D.S.A.), Department of Medicine, Heart Research Follow-up Program (S.M., W.Z., A.J.M.), and Departments of Neurology (R.A.G.) and Pharmacology & Physiology (R.A.G., R.T.D.), University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Wojciech Zareba
- From the Department of Medicine, Aab Cardiovascular Research Institute (D.S.A.), Department of Medicine, Heart Research Follow-up Program (S.M., W.Z., A.J.M.), and Departments of Neurology (R.A.G.) and Pharmacology & Physiology (R.A.G., R.T.D.), University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Robert T Dirksen
- From the Department of Medicine, Aab Cardiovascular Research Institute (D.S.A.), Department of Medicine, Heart Research Follow-up Program (S.M., W.Z., A.J.M.), and Departments of Neurology (R.A.G.) and Pharmacology & Physiology (R.A.G., R.T.D.), University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Arthur J Moss
- From the Department of Medicine, Aab Cardiovascular Research Institute (D.S.A.), Department of Medicine, Heart Research Follow-up Program (S.M., W.Z., A.J.M.), and Departments of Neurology (R.A.G.) and Pharmacology & Physiology (R.A.G., R.T.D.), University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
42
|
Ali R. Ictal Cardiac Ryhthym Abnormalities. Open Cardiovasc Med J 2016; 10:105-9. [PMID: 27347227 PMCID: PMC4897004 DOI: 10.2174/1874192401610010105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 09/20/2015] [Accepted: 10/22/2015] [Indexed: 11/22/2022] Open
Abstract
Cardiac rhythm abnormalities in the context of epilepsy are a well-known phenomenon. However, they are under-recognized and often missed. The pathophysiology of these events is unclear. Bradycardia and asystole are preceded by seizure onset suggesting ictal propagation into the cortex impacting cardiac autonomic function, and the insula and amygdala being possible culprits. Sudden unexpected death in epilepsy (SUDEP) refers to the unanticipated death of a patient with epilepsy not related to status epilepticus, trauma, drowning, or suicide. Frequent refractory generalized tonic-clonic seizures, anti-epileptic polytherapy, and prolonged duration of epilepsy are some of the commonly identified risk factors for SUDEP. However, the most consistent risk factor out of these is an increased frequency of generalized tonic–clonic seizures (GTC). Prevention of SUDEP is extremely important in patients with chronic, generalized epilepsy. Since increased frequency of GTCS is the most consistently reported risk factor for SUDEP, effective seizure control is the most important preventive strategy.
Collapse
Affiliation(s)
- Rushna Ali
- Henry Ford Hospital, Department of Neurosurgery, 2799 West Grand Blvd. Detroit, MI 48202, USA
| |
Collapse
|
43
|
Sun AY, Pitt GS. Long QT Syndrome and Seizures. JACC Clin Electrophysiol 2016; 2:277-278. [PMID: 29766884 DOI: 10.1016/j.jacep.2015.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 12/27/2015] [Indexed: 10/22/2022]
Affiliation(s)
- Albert Y Sun
- Division of Cardiology, Duke University Medical Center, Durham, North Carolina, USA; Division of Clinical Pharmacology, Duke University Medical Center, Durham, North Carolina, USA
| | - Geoffrey S Pitt
- Division of Cardiology, Duke University Medical Center, Durham, North Carolina, USA; Ion Channel Research Unit, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
44
|
Miyazaki A, Sakaguchi H, Aiba T, Kumakura A, Matsuoka M, Hayama Y, Shima Y, Tsujii N, Sasaki O, Kurosaki KI, Yoshimatsu J, Miyamoto Y, Shimizu W, Ohuchi H. Comorbid Epilepsy and Developmental Disorders in Congenital Long QT Syndrome With Life-Threatening Perinatal Arrhythmias. JACC Clin Electrophysiol 2016; 2:266-276. [PMID: 29766883 DOI: 10.1016/j.jacep.2015.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/22/2015] [Accepted: 10/29/2015] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Given the association of long QT syndrome (LQTS) and neurological disorders, we speculated that the more severe LQTS phenotype, perinatal LQTS, would exhibit more frequent comorbid neurodevelopmental anomalies than LQTS without perinatal arrhythmias (nonperinatal LQTS). BACKGROUND Congenital LQTS with life-threatening perinatal arrhythmias (perinatal LQTS) has a poor life prognosis. METHODS Twenty-one consecutive LQTS patients diagnosed before 1 year of age at our institution and 3 previously reported perinatal LQTS patients with neurological seizures were enrolled. In total, the clinical course was evaluated in 24 patients. RESULTS Among 21 infantile LQTS patients, 5 of 6 with perinatal LQTS (83%) were diagnosed with epilepsy and 4 (67%) with developmental disorders, but none with nonperinatal LQTS were. The total development quotient by Kinder Infant Development Scale scores was 17 to 72 (median 67) in 5 epileptic perinatal LQTS. In the 8 perinatal LQTS patients with neurological disorders, including 3 previously reported cases, epileptic seizures occurred at 2 days to 2.5 years of age and 5 had developmental disorders. Mutations in these 8 patients were located in the transmembrane loop of KCNH2, and D3/S4-S5 linker, D4/S4, or the D4/S6 segment of SCN5A. CONCLUSIONS A high comorbidity of neurodevelopmental anomalies was observed in perinatal LQTS. Mutations in patients with neurological comorbidities were in loci linked to LQTS with a severe cardiac phenotype. These observations indicate the possibility that neurological disorders in perinatal LQTS are manifested as neurological phenotypes associated with severe cardiac phenotypes, while we could not completely exclude another possibility that those were caused by a brain perfusion injury.
Collapse
Affiliation(s)
- Aya Miyazaki
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Osaka, Japan.
| | - Heima Sakaguchi
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Takeshi Aiba
- Department of Cardiovascular Medicine, Division of Arrhythmias and Electrophysiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Akira Kumakura
- Department of Pediatrics, Kitano Hospital, The Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Michio Matsuoka
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yosuke Hayama
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yuriko Shima
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Nobuyuki Tsujii
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Osamu Sasaki
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Ken-Ichi Kurosaki
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Jun Yoshimatsu
- Department of Perinatology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yoshihiro Miyamoto
- Department of Preventive Cardiology, Department of Preventive Medicine and Epidemiologic Informatics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Division of Arrhythmias and Electrophysiology, National Cerebral and Cardiovascular Center, Osaka, Japan; Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hideo Ohuchi
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
45
|
Goldman AM, Behr ER, Semsarian C, Bagnall RD, Sisodiya S, Cooper PN. Sudden unexpected death in epilepsy genetics: Molecular diagnostics and prevention. Epilepsia 2016; 57 Suppl 1:17-25. [PMID: 26749013 DOI: 10.1111/epi.13232] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2015] [Indexed: 12/19/2022]
Abstract
Epidemiologic studies clearly document the public health burden of sudden unexpected death in epilepsy (SUDEP). Clinical and experimental studies have uncovered dynamic cardiorespiratory dysfunction, both interictally and at the time of sudden death due to epilepsy. Genetic analyses in humans and in model systems have facilitated our current molecular understanding of SUDEP. Many discoveries have been informed by progress in the field of sudden cardiac death and sudden infant death syndrome. It is becoming apparent that SUDEP genomic complexity parallels that of sudden cardiac death, and that there is a pauci1ty of analytically useful postmortem material. Because many challenges remain, future progress in SUDEP research, molecular diagnostics, and prevention rests in international, collaborative, and transdisciplinary dialogue in human and experimental translational research of sudden death.
Collapse
Affiliation(s)
- Alica M Goldman
- Department of Neurology, Baylor College of Medicine, Houston, Texas, U.S.A
| | - Elijah R Behr
- Cardiac Research Centre, ICCS, St George's University of London, London, United Kingdom
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Richard D Bagnall
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Sanjay Sisodiya
- Institute of Neurology, University College London, London, United Kingdom
| | - Paul N Cooper
- Department of Neurology, Greater Manchester Neurosciences Centre, Salford, United Kingdom.,University of Manchester, Manchester, United Kingdom
| |
Collapse
|
46
|
Dlouhy BJ, Gehlbach BK, Richerson GB. Sudden unexpected death in epilepsy: basic mechanisms and clinical implications for prevention. J Neurol Neurosurg Psychiatry 2016; 87:402-13. [PMID: 26979537 DOI: 10.1136/jnnp-2013-307442] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 05/13/2015] [Indexed: 12/14/2022]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the most common cause of death in patients with intractable epilepsy. The substantial lifetime risk of SUDEP and the lack of a clear pathophysiological connection between epilepsy itself and sudden death have fuelled increased attention to this phenomenon. Understanding the mechanisms underlying SUDEP is paramount to developing preventative strategies. In this review, we discuss SUDEP population studies, case-control studies, witnessed and monitored cases, as well as human seizure cardiorespiratory findings related to SUDEP, and SUDEP animal models. We integrate these data to suggest the most probable mechanisms underlying SUDEP. Understanding the modifiable risk factors and pathophysiology allows us to discuss potential preventative strategies.
Collapse
Affiliation(s)
- Brian J Dlouhy
- Department of Neurosurgery, University of Iowa, Iowa City, Iowa, USA
| | - Brian K Gehlbach
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - George B Richerson
- Department of Neurology, University of Iowa, Iowa City, Iowa, USA Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
47
|
Kendirli MT, Aparci M, Kendirli N, Tekeli H, Karaoglan M, Senol MG, Togrol E. Diagnostic Role of ECG Recording Simultaneously With EEG Testing. Clin EEG Neurosci 2015; 46:214-7. [PMID: 25253437 DOI: 10.1177/1550059414551554] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 08/20/2014] [Indexed: 11/16/2022]
Abstract
Arrhythmia is not uncommon in the etiology of syncope which mimics epilepsy. Data about the epilepsy induced vagal tonus abnormalities have being increasingly reported. So we aimed to evaluate what a neurologist may gain by a simultaneous electrocardiogram (ECG) and electroencephalogram (EEG) recording in the patients who underwent EEG testing due to prediagnosis of epilepsy. We retrospectively evaluated and detected ECG abnormalities in 68 (18%) of 376 patients who underwent EEG testing. A minimum of 20 of minutes artifact-free recording were required for each patient. Standard 1-channel ECG was simultaneously recorded in conjunction with the EEG. In all, 28% of females and 14% of males had ECG abnormalities. Females (mean age 49 years, range 18-88 years) were older compared with the male group (mean age 28 years, range 16-83 years). Atrial fibrillation was more frequent in female group whereas bradycardia and respiratory sinus arrhythmia was higher in male group. One case had been detected a critical asystole indicating sick sinus syndrome in the female group and treated with a pacemaker implantation in the following period. Simultaneous ECG recording in conjunction with EEG testing is a clinical prerequisite to detect and to clarify the coexisting ECG and EEG abnormalities and their clinical relevance. Potentially rare lethal causes of syncope that mimic seizure or those that could cause resistance to antiepileptic therapy could effectively be distinguished by detecting ECG abnormalities coinciding with the signs and abnormalities during EEG recording.
Collapse
Affiliation(s)
| | - Mustafa Aparci
- Cardiology Department, Etimesgut Military Hospital, Ankara, Turkey
| | - Nurten Kendirli
- Neurology Department, Erenkoy Physical Therapy and Rehabilitation Center, Istanbul, Turkey
| | - Hakan Tekeli
- Neurology Department, GATA Haydarpasa Training Hospital, Istanbul, Turkey
| | - Mustafa Karaoglan
- Neurology Department, GATA Haydarpasa Training Hospital, Istanbul, Turkey
| | - Mehmet Guney Senol
- Neurology Department, GATA Haydarpasa Training Hospital, Istanbul, Turkey
| | - Erdem Togrol
- Neurology Department, GATA Haydarpasa Training Hospital, Istanbul, Turkey
| |
Collapse
|
48
|
Issa NP, Fisher WG, Narayanan JT. QT interval prolongation in a patient with LQT2 on levetiracetam. Seizure 2015; 29:134-6. [DOI: 10.1016/j.seizure.2015.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 04/17/2015] [Accepted: 04/19/2015] [Indexed: 11/27/2022] Open
|
49
|
|
50
|
Poterucha JT, Bos JM, Cannon BC, Ackerman MJ. Frequency and severity of hypoglycemia in children with beta-blocker-treated long QT syndrome. Heart Rhythm 2015; 12:1815-9. [PMID: 25929701 DOI: 10.1016/j.hrthm.2015.04.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Indexed: 11/18/2022]
Abstract
BACKGROUND Hypoglycemia is a potential side effect of beta-blockers; however, no cases have been reported in children with long QT syndrome (LQTS). OBJECTIVE The purpose of this study was to determine the frequency and severity of hypoglycemia among children with beta-blocker-treated LQTS. METHODS A retrospective study was performed to identify children with LQTS evaluated from 2000 to 2014 who developed symptomatic hypoglycemia while being treated with a beta-blocker. RESULTS Nine children (3%; 7 boys; average corrected QT interval 486 ± 35 ms) developed 13 episodes (0.005 events per 100 treatment years) of beta-blocker-associated hypoglycemia (mean initial glucose 21 ± 7 mg/dL), including 3 of 157 patients with LQTS type 1 (LQT1; 1.9%) and 6 of 105 with LQTS type 2 (LQT2; 5.7%). The mean age at hypoglycemic event was 3.5 ± 2 years (range 7 months to 9 years), involving nadolol in 6 cases (mean dose 1.4 ± 0.2 mg/kg/d) and propranolol in 3 (mean dose 2.7±1 mg/kg/d). Hypoglycemic events were more frequent in patients with LQT2 than in those with LQT1 (10 vs. 3 events; P = .02). Hypoglycemia-triggered seizures were observed in 6 patients, fasting ketoacidosis in 5, and 7 patients required hospitalization (mean of 3 ± 2 days). Decreased caloric intake before the event was identified in all patients and a concomitant viral infection in 3. CONCLUSION This is the largest single-center case series of beta-blocker-induced hypoglycemia. Clinicians should be cognizant of hypoglycemia symptoms in younger children during periods of poor appetite and during viral illness, and parents of these children should be educated about the signs and symptoms of hypoglycemia. A potential LQT2-hypoglycemia genotype-phenotype relationship warrants further investigation.
Collapse
Affiliation(s)
- Joseph T Poterucha
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - J Martijn Bos
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota; Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Bryan C Cannon
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michael J Ackerman
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota; Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota; Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|