6
|
Norrish G, Topriceanu C, Qu C, Field E, Walsh H, Ziółkowska L, Olivotto I, Passantino S, Favilli S, Anastasakis A, Vlagkouli V, Weintraub R, King I, Biagini E, Ragni L, Prendiville T, Duignan S, McLeod K, Ilina M, Fernández A, Bökenkamp R, Baban A, Drago F, Kubuš P, Daubeney PEF, Chivers S, Sarquella-Brugada G, Cesar S, Marrone C, Medrano C, Alvarez Garcia-Roves R, Uzun O, Gran F, Castro FJ, Gimeno JR, Barriales-Villa R, Rueda F, Adwani S, Searle J, Bharucha T, Siles A, Usano A, Rasmussen TB, Jones CB, Kubo T, Mogensen J, Reinhardt Z, Cervi E, Elliott PM, Omar RZ, Kaski JP. The role of the electrocardiographic phenotype in risk stratification for sudden cardiac death in childhood hypertrophic cardiomyopathy. Eur J Prev Cardiol 2021; 29:645-653. [PMID: 33772274 PMCID: PMC8967480 DOI: 10.1093/eurjpc/zwab046] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 11/13/2022]
Abstract
AIMS The 12-lead electrocardiogram (ECG) is routinely performed in children with hypertrophic cardiomyopathy (HCM). An ECG risk score has been suggested as a useful tool for risk stratification, but this has not been independently validated. This aim of this study was to describe the ECG phenotype of childhood HCM in a large, international, multi-centre cohort and investigate its role in risk prediction for arrhythmic events. METHODS AND RESULTS Data from 356 childhood HCM patients with a mean age of 10.1 years (±4.5) were collected from a retrospective, multi-centre international cohort. Three hundred and forty-seven (97.5%) patients had ECG abnormalities at baseline, most commonly repolarization abnormalities (n = 277, 77.8%); left ventricular hypertrophy (n = 240, 67.7%); abnormal QRS axis (n = 126, 35.4%); or QT prolongation (n = 131, 36.8%). Over a median follow-up of 3.9 years (interquartile range 2.0-7.7), 25 (7%) had an arrhythmic event, with an overall annual event rate of 1.38 (95% CI 0.93-2.04). No ECG variables were associated with 5-year arrhythmic event on univariable or multivariable analysis. The ECG risk score threshold of >5 had modest discriminatory ability [C-index 0.60 (95% CI 0.484-0.715)], with corresponding negative and positive predictive values of 96.7% and 6.7. CONCLUSION In a large, international, multi-centre cohort of childhood HCM, ECG abnormalities were common and varied. No ECG characteristic, either in isolation or combined in the previously described ECG risk score, was associated with 5-year sudden cardiac death risk. This suggests that the role of baseline ECG phenotype in improving risk stratification in childhood HCM is limited.
Collapse
Affiliation(s)
- Gabrielle Norrish
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, Great Ormond Street, London WC1N 3JH, UK.,Institute of Cardiovascular Sciences, University College London, London, UK
| | | | - Chen Qu
- Department of Statistical Science, University College London, London, UK
| | - Ella Field
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, Great Ormond Street, London WC1N 3JH, UK.,Institute of Cardiovascular Sciences, University College London, London, UK
| | - Helen Walsh
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, Great Ormond Street, London WC1N 3JH, UK
| | - Lidia Ziółkowska
- Department of Cardiology, The Children's Memorial Health Institute, Warsaw, Poland
| | | | | | - Silvia Favilli
- Cardiology Unit, A Meyer Pediatric Hospital, Florence, Italy
| | | | | | - Robert Weintraub
- The Royal Children's Hospital, Melbourne, Australia.,The Murdoch Children's Research Institute.,University of Melbourne, Australia
| | | | | | - Luca Ragni
- S. Orsola-Malpighi Hospital, Bologna, Italy
| | | | | | | | | | - Adrian Fernández
- Favaloro Foundation University Hospital, Buenos Aires, Argentina
| | | | | | | | - Peter Kubuš
- University Hospital Motol, Prague, Czech Republic
| | | | - Sian Chivers
- Royal Brompton and Harefield NHS Trust, London, UK
| | - Georgia Sarquella-Brugada
- Arrhythmia and Inherited Cardiac Diseases Unit, Hospital Sant Joan de Déu, University of Barcelona, Spain.,Medical Sciences Department, School of Medicine, University of Girona
| | - Sergi Cesar
- Arrhythmia and Inherited Cardiac Diseases Unit, Hospital Sant Joan de Déu, University of Barcelona, Spain
| | | | | | | | - Orhan Uzun
- University Hospital of Wales, Cardiff, UK
| | - Ferran Gran
- Val d'Hebron University Hospital, Barcelona, Spain
| | | | - Juan R Gimeno
- University Hospital Virgen de la Arrixaca, Murcia, Spain
| | | | - Fernando Rueda
- Complexo Hospitalario Universitario A Coruña, CIBERCV, A Coruña, Spain
| | | | | | | | - Ana Siles
- Hospital Universitario Puerta de Hierro Majadahonda, CIBERCV, Madrid, Spain.,University Francisco de Vitoria, Pozuelo de Alarcon, Spain
| | - Ana Usano
- Hospital Universitario Puerta de Hierro Majadahonda, CIBERCV, Madrid, Spain.,University Francisco de Vitoria, Pozuelo de Alarcon, Spain
| | | | | | - Toru Kubo
- Department of Cardiology and Geriatrics, Kochi Medical School, Kochi University, Japan
| | | | | | - Elena Cervi
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, Great Ormond Street, London WC1N 3JH, UK.,Institute of Cardiovascular Sciences, University College London, London, UK
| | - Perry M Elliott
- Institute of Cardiovascular Sciences, University College London, London, UK.,St Bartholomew's Centre for Inherited Cardiovascular Diseases, St Bartholomew's Hospital, West Smithfield, London, UK
| | - Rumana Z Omar
- Department of Statistical Science, University College London, London, UK
| | - Juan P Kaski
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, Great Ormond Street, London WC1N 3JH, UK.,Institute of Cardiovascular Sciences, University College London, London, UK
| |
Collapse
|
9
|
Wallner M, Eaton DM, Berretta RM, Liesinger L, Schittmayer M, Gindlhuber J, Wu J, Jeong MY, Lin YH, Borghetti G, Baker ST, Zhao H, Pfleger J, Blass S, Rainer PP, von Lewinski D, Bugger H, Mohsin S, Graier WF, Zirlik A, McKinsey TA, Birner-Gruenberger R, Wolfson MR, Houser SR. HDAC inhibition improves cardiopulmonary function in a feline model of diastolic dysfunction. Sci Transl Med 2020; 12:eaay7205. [PMID: 31915304 PMCID: PMC7065257 DOI: 10.1126/scitranslmed.aay7205] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/23/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major health problem without effective therapies. This study assessed the effects of histone deacetylase (HDAC) inhibition on cardiopulmonary structure, function, and metabolism in a large mammalian model of pressure overload recapitulating features of diastolic dysfunction common to human HFpEF. Male domestic short-hair felines (n = 31, aged 2 months) underwent a sham procedure (n = 10) or loose aortic banding (n = 21), resulting in slow-progressive pressure overload. Two months after banding, animals were treated daily with suberoylanilide hydroxamic acid (b + SAHA, 10 mg/kg, n = 8), a Food and Drug Administration-approved pan-HDAC inhibitor, or vehicle (b + veh, n = 8) for 2 months. Echocardiography at 4 months after banding revealed that b + SAHA animals had significantly reduced left ventricular hypertrophy (LVH) (P < 0.0001) and left atrium size (P < 0.0001) versus b + veh animals. Left ventricular (LV) end-diastolic pressure and mean pulmonary arterial pressure were significantly reduced in b + SAHA (P < 0.01) versus b + veh. SAHA increased myofibril relaxation ex vivo, which correlated with in vivo improvements of LV relaxation. Furthermore, SAHA treatment preserved lung structure, compliance, blood oxygenation, and reduced perivascular fluid cuffs around extra-alveolar vessels, suggesting attenuated alveolar capillary stress failure. Acetylation proteomics revealed that SAHA altered lysine acetylation of mitochondrial metabolic enzymes. These results suggest that acetylation defects in hypertrophic stress can be reversed by HDAC inhibitors, with implications for improving cardiac structure and function in patients.
Collapse
Affiliation(s)
- Markus Wallner
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Division of Cardiology, Medical University of Graz, Graz 8036, Austria
- Center for Biomarker Research in Medicine, CBmed GmbH, Graz 8010, Austria
| | - Deborah M Eaton
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Remus M Berretta
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Laura Liesinger
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8036, Austria
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz 8036, Austria
- Omics Center Graz, BioTechMed-Graz, Graz 8010, Austria
| | - Matthias Schittmayer
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8036, Austria
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz 8036, Austria
- Omics Center Graz, BioTechMed-Graz, Graz 8010, Austria
| | - Juergen Gindlhuber
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8036, Austria
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz 8036, Austria
- Omics Center Graz, BioTechMed-Graz, Graz 8010, Austria
| | - Jichuan Wu
- CENTRe: Consortium for Environmental and Neonatal Therapeutics Research, Lewis Katz School of Medicine, Department of Physiology, Department of Thoracic Medicine and Surgery, Pediatrics, Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, PA 19140, USA
| | - Mark Y Jeong
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ying H Lin
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Giulia Borghetti
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Sandy T Baker
- CENTRe: Consortium for Environmental and Neonatal Therapeutics Research, Lewis Katz School of Medicine, Department of Physiology, Department of Thoracic Medicine and Surgery, Pediatrics, Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, PA 19140, USA
| | - Huaqing Zhao
- Department of Clinical Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Jessica Pfleger
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Sandra Blass
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8036, Austria
| | - Peter P Rainer
- Division of Cardiology, Medical University of Graz, Graz 8036, Austria
| | - Dirk von Lewinski
- Division of Cardiology, Medical University of Graz, Graz 8036, Austria
| | - Heiko Bugger
- Division of Cardiology, Medical University of Graz, Graz 8036, Austria
| | - Sadia Mohsin
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Wolfgang F Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8036, Austria
| | - Andreas Zirlik
- Division of Cardiology, Medical University of Graz, Graz 8036, Austria
| | - Timothy A McKinsey
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ruth Birner-Gruenberger
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8036, Austria
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz 8036, Austria
- Omics Center Graz, BioTechMed-Graz, Graz 8010, Austria
- Institute of Chemical Technology and Analytical Chemistry, Vienna University of Technology, Vienna 1060, Austria
| | - Marla R Wolfson
- CENTRe: Consortium for Environmental and Neonatal Therapeutics Research, Lewis Katz School of Medicine, Department of Physiology, Department of Thoracic Medicine and Surgery, Pediatrics, Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, PA 19140, USA
| | - Steven R Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
14
|
Chowdhury SK, Liu W, Zi M, Li Y, Wang S, Tsui H, Prehar S, Castro S, Zhang H, Ji Y, Zhang X, Xiao R, Zhang R, Lei M, Cyganek L, Guan K, Millar CB, Liao X, Jain MK, Boyett MR, Cartwright EJ, Shiels HA, Wang X. Stress-Activated Kinase Mitogen-Activated Kinase Kinase-7 Governs Epigenetics of Cardiac Repolarization for Arrhythmia Prevention. Circulation 2016; 135:683-699. [PMID: 27899394 DOI: 10.1161/circulationaha.116.022941] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/16/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Ventricular arrhythmia is a leading cause of cardiac mortality. Most antiarrhythmics present paradoxical proarrhythmic side effects, culminating in a greater risk of sudden death. METHODS We describe a new regulatory mechanism linking mitogen-activated kinase kinase-7 deficiency with increased arrhythmia vulnerability in hypertrophied and failing hearts using mouse models harboring mitogen-activated kinase kinase-7 knockout or overexpression. The human relevance of this arrhythmogenic mechanism is evaluated in human-induced pluripotent stem cell-derived cardiomyocytes. Therapeutic potentials by targeting this mechanism are explored in the mouse models and human-induced pluripotent stem cell-derived cardiomyocytes. RESULTS Mechanistically, hypertrophic stress dampens expression and phosphorylation of mitogen-activated kinase kinase-7. Such mitogen-activated kinase kinase-7 deficiency leaves histone deacetylase-2 unphosphorylated and filamin-A accumulated in the nucleus to form a complex with Krüppel-like factor-4. This complex leads to Krüppel-like factor-4 disassociation from the promoter regions of multiple key potassium channel genes (Kv4.2, KChIP2, Kv1.5, ERG1, and Kir6.2) and reduction of their transcript levels. Consequent repolarization delays result in ventricular arrhythmias. Therapeutically, targeting the repressive function of the Krüppel-like factor-4/histone deacetylase-2/filamin-A complex with the histone deacetylase-2 inhibitor valproic acid restores K+ channel expression and alleviates ventricular arrhythmias in pathologically remodeled hearts. CONCLUSIONS Our findings unveil this new gene regulatory avenue as a new antiarrhythmic target where repurposing of the antiepileptic drug valproic acid as an antiarrhythmic is supported.
Collapse
Affiliation(s)
- Sanjoy K Chowdhury
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Wei Liu
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Min Zi
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Yatong Li
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Shunyao Wang
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Hoyee Tsui
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Sukhpal Prehar
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Simon Castro
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Henggui Zhang
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Yong Ji
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Xiuqin Zhang
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Ruiping Xiao
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Rongli Zhang
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Ming Lei
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Lukas Cyganek
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Kaomei Guan
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Catherine B Millar
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Xudong Liao
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Mukesh K Jain
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Mark R Boyett
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Elizabeth J Cartwright
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Holly A Shiels
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.)
| | - Xin Wang
- From Faculty of Biology, Medicine and Health (S.K.C., W.L., M.Z., Y.L., S.W., H.T., S.P., C.B.M., M.R.B., E.J.C., H.A.S., X.W.) and School of Physics and Astronomy (S.C., H.Z.), University of Manchester, United Kingdom; Atherosclerosis Research Centre, Nanjing Medical University, Jiangsu, China (Y.J.); Institute of Molecular Medicine, Peking University, Beijing, China (X.Z., R.X.); Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH (R.Z., X.L., M.K.J.); Department of Pharmacology, University of Oxford, United Kingdom (M.L.); and Department of Cardiology and Pneumology, University Medical Center Göttingen, Germany (L.C., K.G.).
| |
Collapse
|