1
|
Jin Z, Xing Y, Duan P, Bi Y, Li X, Feng W, Zhang B. Revealing the molecular links between coronary heart disease and cognitive impairment: the role of aging-related genes and therapeutic potential of stellate ganglion block. Biogerontology 2024; 26:16. [PMID: 39609308 PMCID: PMC11604741 DOI: 10.1007/s10522-024-10159-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
Coronary heart disease (CHD) and cognitive impairment frequently co-occur in aging populations, yet the molecular mechanisms linking these conditions remain unclear. This study aims to elucidate the roles of key aging-related genes (ARGs), specifically FKBP5 and DDIT3, in the pathophysiology of CHD and cognitive impairment, and to evaluate the therapeutic potential of stellate ganglion block (SGB). Using single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing (bulk RNA-seq) data, we identified FKBP5 and DDIT3 as pivotal genes upregulated in both conditions. Experimental findings show that SGB effectively modulates these ARG-related pathways through autonomic regulation, specifically suppressing estrogen and NF-κB signaling pathways, thereby reducing the expression of pro-inflammatory cytokines such as SRC, MMP2, FKBP5, IRAK1, and MYD88, while upregulating the vasodilation-related gene NOS3. This modulation improved endothelial and cardiac function and enhanced cerebral blood flow (CBF), leading to cognitive improvement. Behavioral assessments, including novel object recognition (NOR) and Morris water maze (MWM) tests, demonstrated that SGB-treated rats outperformed untreated MI rats, with significant cognitive recovery over time. Further support from laser Doppler flowmetry (LDF) and electroencephalogram (EEG) analyses revealed increased left frontal blood flow and stabilized neural activity, indicating a favorable neurophysiological environment for cognitive rehabilitation. Our findings suggest that left stellate ganglion block (LSGB) provides both cardiac and cognitive benefits through targeted gene modulation, establishing its therapeutic potential for addressing the intersecting pathologies of CHD and cognitive impairment.
Collapse
Affiliation(s)
- Zhehao Jin
- Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Yuling Xing
- Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, China
| | - Pengyu Duan
- Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, China
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, China
| | - Yonghong Bi
- Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, China
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Xiaoyan Li
- Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, China
| | - Weiyu Feng
- Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, China
| | - Bing Zhang
- Heilongjiang Province Key Laboratory of Research on Anesthesiology and Critical Care Medicine, Harbin, China.
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
2
|
Tan W, Cheng S, Qiu Q, Huang J, Xie M, Song L, Zhou Z, Wang Y, Guo F, Jin X, Li Z, Xu X, Jiang H, Zhou X. Celastrol exerts antiarrhythmic effects in chronic heart failure via NLRP3/Caspase-1/IL-1β signaling pathway. Biomed Pharmacother 2024; 177:117121. [PMID: 39002443 DOI: 10.1016/j.biopha.2024.117121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024] Open
Abstract
OBJECTIVES Celastrol has widespread therapeutic applications in various pathological conditions, including chronic inflammation. Previous studies have demonstrated the potent cardioprotective effects of celastrol. Nevertheless, limited attention has been given to its potential in reducing ventricular arrhythmias (VAs) following myocardial infarction (MI). Hence, this study aimed to elucidate the potential mechanisms underlying the regulatory effects of celastrol on VAs and cardiac electrophysiological parameters in rats after MI. METHODS Sprague-Dawley rats were divided at random: the sham, MI, and MI + celastrol groups. The left coronary artery was occluded in the MI and MI + Cel groups. Electrocardiogram, heart rate variability (HRV), ventricular electrophysiological parameters analysis, histology staining of ventricles, Enzyme-linked immunosorbent assay (ELISA), western blotting and Quantitative real-time polymerase chain reaction (qRT-PCR) were performed to elucidate the underlying mechanism of celastrol. Besides, H9c2 cells were subjected to hypoxic conditions to create an in vitro model of MI and then treated with celastrol for 24 hours. Nigericin was used to activate the NLRP3 inflammasome. RESULTS Compared with that MI group, cardiac electrophysiology instability was significantly alleviated in the MI + celastrol group. Additionally, celastrol improved HRV, upregulated the levels of Cx43, Kv.4.2, Kv4.3 and Cav1.2, mitigated myocardial fibrosis, and inhibited the NLRP3 inflammasome pathway. In vitro conditions also supported the regulatory effects of celastrol on the NLRP3 inflammasome pathway. CONCLUSIONS Celastrol could alleviate the adverse effects of VAs after MI partially by promoting autonomic nerve remodeling, ventricular electrical reconstruction and ion channel remodeling, and alleviating ventricular fibrosis and inflammatory responses partly by through inhibiting the NLRP3/Caspase-1/IL-1β pathway.
Collapse
Affiliation(s)
- Wuping Tan
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Siyi Cheng
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Qinfang Qiu
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Jiaxing Huang
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Mengjie Xie
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Lingpeng Song
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Zhen Zhou
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Yijun Wang
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Fuding Guo
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Xiaoxing Jin
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Zeyan Li
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Xiao Xu
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Hong Jiang
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China.
| | - Xiaoya Zhou
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China.
| |
Collapse
|
3
|
Wang C, Zhou L, Liu C, Qiao J, Han X, Wang L, Liu Y, Xu B, Qiu Q, Zhang Z, Wang J, Zhou X, Zeng M, Yu L, Fu L. Pt nanoshells with a high NIR-II photothermal conversion efficiency mediates multimodal neuromodulation against ventricular arrhythmias. Nat Commun 2024; 15:6362. [PMID: 39069566 DOI: 10.1038/s41467-024-50557-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024] Open
Abstract
Autonomic nervous system disorders play a pivotal role in the pathophysiology of cardiovascular diseases. Regulating it is essential for preventing and treating acute ventricular arrhythmias (VAs). Photothermal neuromodulation is a nonimplanted technique, but the response temperature ranges of transient receptor potential vanilloid 1 (TRPV1) and TWIK-related K+ Channel 1 (TREK1) exhibit differences while being closely aligned, and the acute nature of VAs require that it must be rapid and precise. However, the low photothermal conversion efficiency (PCE) still poses limitations in achieving rapid and precise treatment. Here, we achieve a nearly perfect blackbody absorption and a high PCE in the second near infrared (NIR-II) window (73.7% at 1064 nm) via a Pt nanoparticle shell (PtNP-shell). By precisely manipulating the photothermal effect, we successfully achieve rapid and precise multimodal neuromodulation encompassing neural activation (41.0-42.9 °C) and inhibition (45.0-46.9 °C) in a male canine model. The NIR-II photothermal modulation additionally achieves multimodal reversible autonomic modulation and confers protection against acute VAs associated with myocardial ischemia and reperfusion injury in interventional therapy.
Collapse
Affiliation(s)
- Chenlu Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Liping Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chengzhe Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiaming Qiao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinrui Han
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Luyang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Yaxi Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Bi Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Qinfang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zizhuo Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiale Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, China
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoya Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, China.
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China.
- Hubei Key Laboratory of Cardiology, Wuhan, China.
- Cardiovascular Research Institute, Wuhan University, Wuhan, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
- Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Lilei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
- Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, China.
- Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, China.
- Hubei Key Laboratory of Cardiology, Wuhan, China.
- Cardiovascular Research Institute, Wuhan University, Wuhan, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
- Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
- Institute of Molecular Medicine, Renmin Hospital of Wuhan University, Wuhan, China.
- The Institute for Advanced Studies, Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Habecker BA, Bers DM, Birren SJ, Chang R, Herring N, Kay MW, Li D, Mendelowitz D, Mongillo M, Montgomery JM, Ripplinger CM, Tampakakis E, Winbo A, Zaglia T, Zeltner N, Paterson DJ. Molecular and cellular neurocardiology in heart disease. J Physiol 2024:10.1113/JP284739. [PMID: 38778747 PMCID: PMC11582088 DOI: 10.1113/jp284739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
This paper updates and builds on a previous White Paper in this journal that some of us contributed to concerning the molecular and cellular basis of cardiac neurobiology of heart disease. Here we focus on recent findings that underpin cardiac autonomic development, novel intracellular pathways and neuroplasticity. Throughout we highlight unanswered questions and areas of controversy. Whilst some neurochemical pathways are already demonstrating prognostic viability in patients with heart failure, we also discuss the opportunity to better understand sympathetic impairment by using patient specific stem cells that provides pathophysiological contextualization to study 'disease in a dish'. Novel imaging techniques and spatial transcriptomics are also facilitating a road map for target discovery of molecular pathways that may form a therapeutic opportunity to treat cardiac dysautonomia.
Collapse
Affiliation(s)
- Beth A Habecker
- Department of Chemical Physiology & Biochemistry, Department of Medicine Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | - Susan J Birren
- Department of Biology, Volen Center for Complex Systems, Brandeis University, Waltham, MA, USA
| | - Rui Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Matthew W Kay
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Dan Li
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Johanna M Montgomery
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California, Davis School of Medicine, Davis, CA, USA
| | | | - Annika Winbo
- Department of Physiology and Manaaki Manawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Nadja Zeltner
- Departments of Biochemistry and Molecular Biology, Cell Biology, and Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Zheng M, Chen S, Zeng Z, Cai H, Zhang H, Yu X, Wang W, Li X, Li CZ, He B, Deng KQ, Lu Z. Targeted ablation of the left middle cervical ganglion prevents ventricular arrhythmias and cardiac injury induced by AMI. Basic Res Cardiol 2024; 119:57-74. [PMID: 38151579 DOI: 10.1007/s00395-023-01026-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023]
Abstract
Cardiac sympathetic overactivation is a critical driver in the progression of acute myocardial infarction (AMI). The left middle cervical ganglion (LMCG) is an important extracardiac sympathetic ganglion. However, the regulatory effects of LMCG on AMI have not yet been fully documented. In the present study, we detected that the LMCG was innervated by abundant sympathetic components and exerted an excitatory effect on the cardiac sympathetic nervous system in response to stimulation. In canine models of AMI, targeted ablation of LMCG reduced the sympathetic indexes of heart rate variability and serum norepinephrine, resulting in suppressed cardiac sympathetic activity. Moreover, LMCG ablation could improve ventricular electrophysiological stability, evidenced by the prolonged ventricular effective refractory period, elevated action potential duration, increased ventricular fibrillation threshold, and enhanced connexin43 expression, consequently showing antiarrhythmic effects. Additionally, compared with the control group, myocardial infarction size, circulating cardiac troponin I, and myocardial apoptosis were significantly reduced, accompanied by preserved cardiac function in canines subjected to LMCG ablation. Finally, we performed the left stellate ganglion (LSG) ablation and compared its effects with LMCG destruction. The results indicated that LMCG ablation prevented ventricular electrophysiological instability, cardiac sympathetic activation, and AMI-induced ventricular arrhythmias with similar efficiency as LSG denervation. In conclusion, this study demonstrated that LMCG ablation suppressed cardiac sympathetic activity, stabilized ventricular electrophysiological properties and mitigated cardiomyocyte death, resultantly preventing ischemia-induced ventricular arrhythmias, myocardial injury, and cardiac dysfunction. Neuromodulation therapy targeting LMCG represented a promising strategy for the treatment of AMI.
Collapse
Affiliation(s)
- Meng Zheng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430000, Hubei, China
- Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Siyu Chen
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430000, Hubei, China
- Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Ziyue Zeng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430000, Hubei, China
- Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Huanhuan Cai
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430000, Hubei, China
- Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Hanyu Zhang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430000, Hubei, China
- Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Xiaomei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weina Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430000, Hubei, China
- Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Xianqing Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430000, Hubei, China
- Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Chen-Ze Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430000, Hubei, China
- Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Bo He
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430000, Hubei, China
- Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Ke-Qiong Deng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430000, Hubei, China.
- Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China.
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430000, Hubei, China.
- Cardiovascular Institute, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Tsai W, Hung TC, Kusayama T, Han S, Fishbein MC, Chen LS, Chen PS. Autonomic Modulation of Atrial Fibrillation. JACC Basic Transl Sci 2023; 8:1398-1410. [PMID: 38094692 PMCID: PMC10714180 DOI: 10.1016/j.jacbts.2023.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 01/13/2024]
Abstract
The autonomic nervous system plays a vital role in cardiac arrhythmias, including atrial fibrillation (AF). Therefore, reducing the sympathetic tone via neuromodulation methods may be helpful in AF control. Myocardial ischemia is associated with increased sympathetic tone and incidence of AF. It is an excellent disease model to understand the neural mechanisms of AF and the effects of neuromodulation. This review summarizes the relationship between autonomic nervous system and AF and reviews methods and mechanisms of neuromodulation. This review proposes that noninvasive or minimally invasive neuromodulation methods will be most useful in the future management of AF.
Collapse
Affiliation(s)
- Wei–Chung Tsai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tien-Chi Hung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Takashi Kusayama
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences Kanazawa, Kanazawa, Japan
| | - Seongwook Han
- Department of Cardiology, Keimyung University Dongsan Medical Center, Daegu, Korea
| | - Michael C. Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California, USA
| | - Lan S. Chen
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Peng-Sheng Chen
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
7
|
Abstract
Cardiac arrhythmias remain a common cause of death and disability. Antiarrhythmic drugs (AADs) and antiarrhythmic agents remain a cornerstone of current cardiac arrhythmia management, despite moderate efficacy and the potential for significant adverse proarrhythmic effects. Due to conceptual, regulatory and financial considerations, the number of novel antiarrhythmic targets and agents in the development pipeline has decreased substantially during the last few decades. However, several promising candidates remain and there are exciting developments in repurposing and reformulating already existing drugs for indications related to cardiac arrhythmias. This review discusses the key conceptual considerations for the development of new antiarrhythmic agents, summarizes new compounds and formulations currently in clinical development for rhythm control of atrial fibrillation, and highlights the potential for drug repurposing. Finally, future directions in AAD development are discussed. Together with an ever-increasing understanding of the molecular mechanisms underlying cardiac arrhythmias, these components support a cautiously optimistic outlook towards improved pharmacological treatment opportunities for patients suffering from cardiac arrhythmias.
Collapse
Affiliation(s)
- Arnela Saljic
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Jordi Heijman
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Dobromir Dobrev
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Montréal Heart Institute and University de Montréal, Medicine and Research Center, Montréal, Canada.
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, USA.
- , Hufelandstrasse 55, 45122, Essen, Germany.
| |
Collapse
|
8
|
Turin L, Piccione MM, Crosa F, Dall'Ara P, Filipe J, Zarucco L. Therapeutic Applications of Botulinum Neurotoxins in Veterinary Medicine. Vet Sci 2023; 10:460. [PMID: 37505863 PMCID: PMC10386576 DOI: 10.3390/vetsci10070460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are emerging as multipurpose therapeutic compounds for the treatment of several different syndromes involving peripheral and central nervous systems, and muscular and musculoskeletal disorders both in human and veterinary medicine. Therefore, the study of BoNTs is rapidly developing and identifying newly produced BoNT variants. Efforts should be made to clarify the biological and pharmacological characteristics of these novel BoNTs as well as the natural ones. The high potential of BoNTs as a therapeutic compound for medical syndromes lies in its ability to reach a specific cell type while bypassing other cells, thus having mild or no side effects. In this paper the recent developments in BoNTs are reviewed with the aim of analyzing the current knowledge on BoNTs' biological mechanisms of action, immunogenicity, formulations, and therapeutic applications in the veterinary field, highlighting advantages and drawbacks and identifying the gaps to be filled in order to address research priorities.
Collapse
Affiliation(s)
- Lauretta Turin
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via dell'Università 6, 26900 Lodi, LO, Italy
| | - Marina Michela Piccione
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via dell'Università 6, 26900 Lodi, LO, Italy
| | - Fabio Crosa
- Department of Veterinary Sciences (DSV), University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Paola Dall'Ara
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via dell'Università 6, 26900 Lodi, LO, Italy
| | - Joel Filipe
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via dell'Università 6, 26900 Lodi, LO, Italy
| | - Laura Zarucco
- Department of Veterinary Sciences (DSV), University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| |
Collapse
|
9
|
Steinberg JS, Romanov A. The emerging therapeutic potential of botulinum toxin in cardiology. Heart Rhythm 2022; 19:2105-2106. [PMID: 36075531 DOI: 10.1016/j.hrthm.2022.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Jonathan S Steinberg
- Clinical Cardiovascular Research Center, University of Rochester School of Medicine & Dentistry, Rochester, New York.
| | - Alexander Romanov
- Meshalkin National Medical Research Center, Novosibirsk, Russian Federation
| |
Collapse
|