1
|
Mayer RL, Mechtler K. Immunopeptidomics in the Era of Single-Cell Proteomics. BIOLOGY 2023; 12:1514. [PMID: 38132340 PMCID: PMC10740491 DOI: 10.3390/biology12121514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Immunopeptidomics, as the analysis of antigen peptides being presented to the immune system via major histocompatibility complexes (MHC), is being seen as an imperative tool for identifying epitopes for vaccine development to treat cancer and viral and bacterial infections as well as parasites. The field has made tremendous strides over the last 25 years but currently still faces challenges in sensitivity and throughput for widespread applications in personalized medicine and large vaccine development studies. Cutting-edge technological advancements in sample preparation, liquid chromatography as well as mass spectrometry, and data analysis, however, are currently transforming the field. This perspective showcases how the advent of single-cell proteomics has accelerated this transformation of immunopeptidomics in recent years and will pave the way for even more sensitive and higher-throughput immunopeptidomics analyses.
Collapse
Affiliation(s)
- Rupert L. Mayer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, 1030 Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, 1030 Vienna, Austria
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
| |
Collapse
|
2
|
Khoshbakht S, Başkurt D, Vural A, Vural S. Behçet's Disease: A Comprehensive Review on the Role of HLA-B*51, Antigen Presentation, and Inflammatory Cascade. Int J Mol Sci 2023; 24:16382. [PMID: 38003572 PMCID: PMC10671634 DOI: 10.3390/ijms242216382] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Behçet's disease (BD) is a complex, recurring inflammatory disorder with autoinflammatory and autoimmune components. This comprehensive review aims to explore BD's pathogenesis, focusing on established genetic factors. Studies reveal that HLA-B*51 is the primary genetic risk factor, but non-HLA genes (ERAP1, IL-10, IL23R/IL-12RB2), as well as innate immunity genes (FUT2, MICA, TLRs), also contribute. Genome-wide studies emphasize the significance of ERAP1 and HLA-I epistasis. These variants influence antigen presentation, enzymatic activity, and HLA-I peptidomes, potentially leading to distinct autoimmune responses. We conducted a systematic review of the literature to identify studies exploring the association between HLA-B*51 and BD and further highlighted the roles of innate and adaptive immunity in BD. Dysregulations in Th1/Th2 and Th17/Th1 ratios, heightened clonal cytotoxic (CD8+) T cells, and reduced T regulatory cells characterize BD's complex immune responses. Various immune cell types (neutrophils, γδ T cells, natural killer cells) further contribute by releasing cytokines (IL-17, IL-8, GM-CSF) that enhance neutrophil activation and mediate interactions between innate and adaptive immunity. In summary, this review advances our understanding of BD pathogenesis while acknowledging the research limitations. Further exploration of genetic interactions, immune dysregulation, and immune cell roles is crucial. Future studies may unveil novel diagnostic and therapeutic strategies, offering improved management for this complex disease.
Collapse
Affiliation(s)
- Saba Khoshbakht
- Koç University Research Center for Translational Medicine, Istanbul 34010, Turkey; (S.K.); (A.V.)
| | - Defne Başkurt
- School of Medicine, Koç University, Istanbul 34010, Turkey;
| | - Atay Vural
- Koç University Research Center for Translational Medicine, Istanbul 34010, Turkey; (S.K.); (A.V.)
- Department of Neurology, Koç University School of Medicine, Istanbul 34010, Turkey
| | - Seçil Vural
- Koç University Research Center for Translational Medicine, Istanbul 34010, Turkey; (S.K.); (A.V.)
- Department of Dermatology and Venereology, Koç University School of Medicine, Istanbul 34010, Turkey
| |
Collapse
|
3
|
Ruggiero FM, Springer S. Homotypic and heterotypic in cis associations of MHC class I molecules at the cell surface. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:85-99. [PMID: 35647522 PMCID: PMC9133507 DOI: 10.1016/j.crimmu.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
Through the presentation of peptide antigens to cytotoxic T lymphocytes, major histocompatibility complex (MHC) class I molecules mediate the adaptive immune response against tumors and viruses. Additional non-immunological functions include the heterotypic association of class I molecules with cell surface receptors, regulating their activities by unknown mechanisms. Also, homotypic associations resulting in class I dimers and oligomers - of unknown function - have been related to pathological outcomes. In this review, we provide an overview of the current knowledge about the occurrence, biochemical nature, and dynamics of homotypic and heterotypic associations of class I molecules at the cell surface with special focus on the molecular species that take part in the complexes and on the evidence that supports novel biological roles for class I molecules. We show that both heterotypic and homotypic class I associations reported in the literature describe not one but several kinds of oligomers with distinctive stoichiometry and biochemical properties. Major histocompatibility complex class I molecules form homotypic and heterotypic associations at the cell surface. Associations show distinctive stoichiometry and biochemical properties. Associations might regulate immunological and non-immunological processes. Heterotypic association with cell surface receptors might regulate receptor's activity. Homotypic associations have been related to pathological outcomes.
Collapse
|
4
|
Tedeschi V, Paldino G, Paladini F, Mattorre B, Tuosto L, Sorrentino R, Fiorillo MT. The Impact of the 'Mis-Peptidome' on HLA Class I-Mediated Diseases: Contribution of ERAP1 and ERAP2 and Effects on the Immune Response. Int J Mol Sci 2020; 21:ijms21249608. [PMID: 33348540 PMCID: PMC7765998 DOI: 10.3390/ijms21249608] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 01/08/2023] Open
Abstract
The strong association with the Major Histocompatibility Complex (MHC) class I genes represents a shared trait for a group of autoimmune/autoinflammatory disorders having in common immunopathogenetic basis as well as clinical features. Accordingly, the main risk factors for Ankylosing Spondylitis (AS), prototype of the Spondyloarthropathies (SpA), the Behçet's disease (BD), the Psoriasis (Ps) and the Birdshot Chorioretinopathy (BSCR) are HLA-B*27, HLA-B*51, HLA-C*06:02 and HLA-A*29:02, respectively. Despite the strength of the association, the HLA pathogenetic role in these diseases is far from being thoroughly understood. Furthermore, Genome-Wide Association Studies (GWAS) have highlighted other important susceptibility factors such as Endoplasmic Reticulum Aminopeptidase (ERAP) 1 and, less frequently, ERAP2 that refine the peptidome presented by HLA class I molecules to CD8+ T cells. Mass spectrometry analysis provided considerable knowledge of HLA-B*27, HLA-B*51, HLA-C*06:02 and HLA-A*29:02 immunopeptidome. However, the combined effect of several ERAP1 and ERAP2 allelic variants could generate an altered pool of peptides accounting for the "mis-immunopeptidome" that ranges from suboptimal to pathogenetic/harmful peptides able to induce non-canonical or autoreactive CD8+ T responses, activation of NK cells and/or garbling the classical functions of the HLA class I molecules. This review will focus on this class of epitopes as possible elicitors of atypical/harmful immune responses which can contribute to the pathogenesis of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Valentina Tedeschi
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
- Correspondence:
| | - Giorgia Paldino
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
| | - Fabiana Paladini
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
| | - Benedetta Mattorre
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
| | - Loretta Tuosto
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
| | - Rosa Sorrentino
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology ‘Charles Darwin’, Sapienza University, 00185 Rome, Italy; (G.P.); (F.P.); (B.M.); (L.T.); (R.S.); (M.T.F.)
| |
Collapse
|
5
|
Kuznetsov A, Voronina A, Govorun V, Arapidi G. Critical Review of Existing MHC I Immunopeptidome Isolation Methods. Molecules 2020; 25:E5409. [PMID: 33228004 PMCID: PMC7699222 DOI: 10.3390/molecules25225409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Major histocompatibility complex class I (MHC I) plays a crucial role in the development of adaptive immune response in vertebrates. MHC molecules are cell surface protein complexes loaded with short peptides and recognized by the T-cell receptors (TCR). Peptides associated with MHC are named immunopeptidome. The MHC I immunopeptidome is produced by the proteasome degradation of intracellular proteins. The knowledge of the immunopeptidome repertoire facilitates the creation of personalized antitumor or antiviral vaccines. A huge number of publications on the immunopeptidome diversity of different human and mouse biological samples-plasma, peripheral blood mononuclear cells (PBMCs), and solid tissues, including tumors-appeared in the scientific journals in the last decade. Significant immunopeptidome identification efficiency was achieved by advances in technology: the immunoprecipitation of MHC and mass spectrometry-based approaches. Researchers optimized common strategies to isolate MHC-associated peptides for individual tasks. They published many protocols with differences in the amount and type of biological sample, amount of antibodies, type and amount of insoluble support, methods of post-fractionation and purification, and approaches to LC-MS/MS identification of immunopeptidome. These parameters have a large impact on the final repertoire of isolated immunopeptidome. In this review, we summarize and compare immunopeptidome isolation techniques with an emphasis on the results obtained.
Collapse
Affiliation(s)
- Alexandr Kuznetsov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (A.K.); (A.V.); (V.G.)
| | - Alice Voronina
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (A.K.); (A.V.); (V.G.)
| | - Vadim Govorun
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (A.K.); (A.V.); (V.G.)
- Department of Molecular and Translational Medicine, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
| | - Georgij Arapidi
- Department of Molecular and Translational Medicine, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
6
|
Sturm T, Sautter B, Wörner TP, Stevanović S, Rammensee HG, Planz O, Heck AJR, Aebersold R. Mild Acid Elution and MHC Immunoaffinity Chromatography Reveal Similar Albeit Not Identical Profiles of the HLA Class I Immunopeptidome. J Proteome Res 2020; 20:289-304. [PMID: 33141586 PMCID: PMC7786382 DOI: 10.1021/acs.jproteome.0c00386] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
To
understand and treat immunology-related diseases, a comprehensive,
unbiased characterization of major histocompatibility complex (MHC)
peptide ligands is of key importance. Preceding the analysis by mass
spectrometry, MHC class I peptide ligands are typically isolated by
MHC immunoaffinity chromatography (MHC-IAC) and less often by mild
acid elution (MAE). MAE may provide a cheap alternative to MHC-IAC
for suspension cells but has been hampered by the high number of contaminating,
MHC-unrelated peptides. Here, we optimized MAE, yielding MHC peptide
ligand purities of more than 80%. When compared with MHC-IAC, obtained
peptides were similar in numbers, identities, and to a large extent
intensities, while the percentage of cysteinylated peptides was 5
times higher in MAE. The latter benefitted the discovery of MHC-allotype-specific,
distinct cysteinylation frequencies at individual positions of MHC
peptide ligands. MAE revealed many MHC ligands with unmodified, N-terminal
cysteine residues which get lost in MHC-IAC workflows. The results
support the idea that MAE might be particularly valuable for the high-confidence
analysis of post-translational modifications by avoiding the exposure
of the investigated peptides to enzymes and reactive molecules in
the cell lysate. Our improved and carefully documented MAE workflow
represents a high-quality, cost-effective alternative to MHC-IAC for
suspension cells.
Collapse
Affiliation(s)
- Theo Sturm
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland.,Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Centre, 3584 CH Utrecht, The Netherlands.,Philochem AG, 8112 Otelfingen, Switzerland
| | - Benedikt Sautter
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Tobias P Wörner
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Centre, 3584 CH Utrecht, The Netherlands
| | - Stefan Stevanović
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Oliver Planz
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Centre, 3584 CH Utrecht, The Netherlands
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland.,Faculty of Science, University of Zurich, 8057 Zürich, Switzerland
| |
Collapse
|
7
|
Gur M, Golcuk M, Gul A, Erman B. Molecular dynamics simulations provide molecular insights into the role of HLA-B51 in Behçet's disease pathogenesis. Chem Biol Drug Des 2020; 96:644-658. [PMID: 32691964 DOI: 10.1111/cbdd.13658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/06/2019] [Accepted: 12/07/2019] [Indexed: 12/12/2022]
Abstract
Behçet's disease is an inflammatory disorder of unknown etiology. Genetic tendency has an important role in its pathogenesis, and HLA-B51, a class I MHC antigen, has been recognized as the strongest susceptibility factor for Behçet's disease. Despite the confirmation of the association of HLA-B51 with Behçet's disease in different populations, its pathogenic mechanisms remain elusive. HLA-B51 differs in only two amino acids from HLA-B52, other split antigen of HLA-B5, which is not associated with Behçet's disease. These two amino acids are located in the B pocket of the antigen-binding groove, which occupies the second amino acids of the bound peptides. To understand the nature of the HLA-peptide interactions, differences in structure and dynamics of two HLA alleles were investigated by molecular dynamics simulations using YAYDGKDYI, LPRSTVINI, and IPYQDLPHL peptides. For HLA-B51, all bound peptides fluctuated to larger extent than HLA-B52. Free energy profiles of unbinding process for YAYDGKDYI by steered molecular dynamics simulations showed that unbinding from HLA-B52 results in greater free energy differences than HLA-B51. These results suggest the possibility of an instability of HLA-B51 associated with the repertoire of peptides, and this finding may provide significant insight to its pathogenic role in Behçet's disease.
Collapse
Affiliation(s)
- Mert Gur
- Department of Mechanical Engineering, Faculty of Mechanical Engineering, Istanbul Technical University (ITU), Istanbul, Turkey
| | - Mert Golcuk
- Department of Mechanical Engineering, Faculty of Mechanical Engineering, Istanbul Technical University (ITU), Istanbul, Turkey
| | - Ahmet Gul
- Division of Rheumatology, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Burak Erman
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, Istanbul, Turkey
| |
Collapse
|
8
|
Kote S, Pirog A, Bedran G, Alfaro J, Dapic I. Mass Spectrometry-Based Identification of MHC-Associated Peptides. Cancers (Basel) 2020; 12:cancers12030535. [PMID: 32110973 PMCID: PMC7139412 DOI: 10.3390/cancers12030535] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/15/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023] Open
Abstract
Neoantigen-based immunotherapies promise to improve patient outcomes over the current standard of care. However, detecting these cancer-specific antigens is one of the significant challenges in the field of mass spectrometry. Even though the first sequencing of the immunopeptides was done decades ago, today there is still a diversity of the protocols used for neoantigen isolation from the cell surface. This heterogeneity makes it difficult to compare results between the laboratories and the studies. Isolation of the neoantigens from the cell surface is usually done by mild acid elution (MAE) or immunoprecipitation (IP) protocol. However, limited amounts of the neoantigens present on the cell surface impose a challenge and require instrumentation with enough sensitivity and accuracy for their detection. Detecting these neopeptides from small amounts of available patient tissue limits the scope of most of the studies to cell cultures. Here, we summarize protocols for the extraction and identification of the major histocompatibility complex (MHC) class I and II peptides. We aimed to evaluate existing methods in terms of the appropriateness of the isolation procedure, as well as instrumental parameters used for neoantigen detection. We also focus on the amount of the material used in the protocols as the critical factor to consider when analyzing neoantigens. Beyond experimental aspects, there are numerous readily available proteomics suits/tools applicable for neoantigen discovery; however, experimental validation is still necessary for neoantigen characterization.
Collapse
|
9
|
Muhammad JS, Ishaq M, Ahmed K. Genetics and Epigenetics Mechanism in the Pathogenesis of Behçet's Disease. Curr Rheumatol Rev 2019; 15:7-13. [PMID: 29779484 DOI: 10.2174/1573397114666180521090335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 04/20/2018] [Accepted: 05/13/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Behçet's Disease (BD) is characterized by numerous systemic manifestations and is known for its ability to affect both, arteries and the veins. However, the etiology of BD is only partially understood, and previous studies have demonstrated a role for genetic and epigenetic factors that contribute to disease pathophysiology. Several studies have implicated T cells and monocytes in the pathogenesis of BD especially when these cells are stimulated by heat shock proteins and streptococcal antigen. Furthermore, during disease exacerbations adenosine deaminase has an important role in activating lymphocyte proliferation, maturation, and differentiation in BD. This article presents a review of the published literature mainly from the last 20 years. The topics of main concern were the role of genetic and epigenetic factors as contributing factors in disease pathophysiology. RESULT AND CONCLUSION The authors used MeSH terms "Behçet's disease" with "pathophysiology," "pathogenesis," "genetic" or "epigenetic" to search the PubMed database. All the relevant studies identified were included and are described according to the aforementioned subheadings.
Collapse
Affiliation(s)
- Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Muhammad Ishaq
- Department of Internal Medicine, Jinnah Medical College Hospital, Korangi, Karachi, Pakistan
| | - Khalid Ahmed
- Department of Biological and Biomedical Sciences, the Aga Khan University Hospital, Karachi, Pakistan
| |
Collapse
|
10
|
Moss DL, Park HW, Mettu RR, Landry SJ. Deimmunizing substitutions in Pseudomonas exotoxin domain III perturb antigen processing without eliminating T-cell epitopes. J Biol Chem 2019; 294:4667-4681. [PMID: 30683694 DOI: 10.1074/jbc.ra118.006704] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/23/2019] [Indexed: 11/06/2022] Open
Abstract
Effective adaptive immune responses depend on activation of CD4+ T cells via the presentation of antigen peptides in the context of major histocompatibility complex (MHC) class II. The structure of an antigen strongly influences its processing within the endolysosome and potentially controls the identity of peptides that are presented to T cells. A recombinant immunotoxin, comprising exotoxin A domain III (PE-III) from Pseudomonas aeruginosa and a cancer-specific antibody fragment, has been developed to manage cancer, but its effectiveness is limited by the induction of neutralizing antibodies. Here, we observed that this immunogenicity is substantially reduced by substituting six residues within PE-III. Although these substitutions targeted T-cell epitopes, we demonstrate that reduced conformational stability and protease resistance were responsible for the reduced antibody titer. Analysis of mouse T-cell responses coupled with biophysical studies on single-substitution versions of PE-III suggested that modest but comprehensible changes in T-cell priming can dramatically perturb antibody production. The most strongly responsive PE-III epitope was well-predicted by a structure-based algorithm. In summary, single-residue substitutions can drastically alter the processing and immunogenicity of PE-III but have only modest effects on CD4+ T-cell priming in mice. Our findings highlight the importance of structure-based processing constraints for accurate epitope prediction.
Collapse
Affiliation(s)
- Daniel L Moss
- From the Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112 and
| | - Hee-Won Park
- From the Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112 and
| | - Ramgopal R Mettu
- the Department of Computer Science, Tulane University, New Orleans, Louisiana 70118
| | - Samuel J Landry
- From the Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112 and
| |
Collapse
|
11
|
Lanoix J, Durette C, Courcelles M, Cossette É, Comtois-Marotte S, Hardy MP, Côté C, Perreault C, Thibault P. Comparison of the MHC I Immunopeptidome Repertoire of B-Cell Lymphoblasts Using Two Isolation Methods. Proteomics 2018; 18:e1700251. [PMID: 29508533 DOI: 10.1002/pmic.201700251] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/19/2018] [Indexed: 11/10/2022]
Abstract
Significant technological advances in both affinity chromatography and mass spectrometry have facilitated the identification of peptides associated with the major histocompatibility complex class I (MHC I) molecules, and enabled a greater understanding of the dynamic nature of the immunopeptidome of normal and neoplastic cells. While the isolation of MHC I-associated peptides (MIPs) typically used mild acid elution (MAE) or immunoprecipitation (IP), limited information currently exists regarding their respective analytical merits. Here, a comparison of these approaches for the isolation of two different B-cell lymphoblast cell models is presented, and it is reported on the recovery, reproducibility, scalability, and complementarity of identification from each method. Both approaches yielded reproducible datasets for peptide extracts obtained from 2 to 100 million cells, with 2016 to 5093 MIPs, respectively. The IP typically provides up to 6.4-fold increase in MIPs compared to the MAE. The comprehensiveness of these immunopeptidome analyses is extended using personalized genomic database of B-cell lymphoblasts, and it is discovered that 0.4% of their respective MIP repertoire harbored nonsynonymous single nucleotide variations (also known as minor histocompatibility antigens, MiHAs).
Collapse
Affiliation(s)
- Joël Lanoix
- Institute for Research in Immunology and Cancer
| | | | | | | | | | | | | | - Claude Perreault
- Institute for Research in Immunology and Cancer.,Department of Medicine.,Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer.,Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
12
|
Nyambura LW, Jarmalavicius S, Baleeiro RB, Walden P. Diverse HLA-I Peptide Repertoires of the APC Lines MUTZ3-Derived Immature and Mature Dendritic Cells and THP1-Derived Macrophages. THE JOURNAL OF IMMUNOLOGY 2016; 197:2102-9. [PMID: 27543614 DOI: 10.4049/jimmunol.1600762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/15/2016] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DCs) and macrophages are specialized APCs that process and present self-Ags for induction of tolerance and foreign Ags to initiate T cell-mediated immunity. Related to differentiation states they have specific phenotypes and functions. However, the impact of these differentiations on Ag processing and presentation remains poorly defined. To gain insight into this, we analyzed and compared the HLA-I peptidomes of MUTZ3-derived human immature and mature DC lines and THP1-derived macrophages by liquid chromatography tandem mass spectrometry. We found that the HLA-I peptidomes were heterogeneous and individualized and were dominated by nonapeptides with similar HLA-I binding affinities and anchor residues. MUTZ3-derived DCs and THP1-derived macrophages were able to sample peptides from source proteins of almost all subcellular locations and were involved in various cellular functions in similar proportion, with preference to proteins involved in cell communication, signal transduction, protein metabolism, and transcription factor/regulator activity.
Collapse
Affiliation(s)
- Lydon Wainaina Nyambura
- Klinische Forschergruppe Tumorimmunologie, Klinik für Dermatologie, Venerologie and Allergologie, Charité-Universitätsmedizin Berlin, 10098 Berlin, Germany; and Humboldt Universität zu Berlin, Institut für Biologie, Lebenswissenschaftliche Fakultät, 10115 Berlin, Germany
| | - Saulius Jarmalavicius
- Klinische Forschergruppe Tumorimmunologie, Klinik für Dermatologie, Venerologie and Allergologie, Charité-Universitätsmedizin Berlin, 10098 Berlin, Germany; and
| | - Renato Brito Baleeiro
- Klinische Forschergruppe Tumorimmunologie, Klinik für Dermatologie, Venerologie and Allergologie, Charité-Universitätsmedizin Berlin, 10098 Berlin, Germany; and
| | - Peter Walden
- Klinische Forschergruppe Tumorimmunologie, Klinik für Dermatologie, Venerologie and Allergologie, Charité-Universitätsmedizin Berlin, 10098 Berlin, Germany; and
| |
Collapse
|
13
|
Tran TM, Hong S, Edwan JH, Colbert RA. ERAP1 reduces accumulation of aberrant and disulfide-linked forms of HLA-B27 on the cell surface. Mol Immunol 2016; 74:10-7. [PMID: 27107845 PMCID: PMC5425939 DOI: 10.1016/j.molimm.2016.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/03/2016] [Accepted: 04/04/2016] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Endoplasmic reticulum (ER) aminopeptidase 1 (ERAP1) variants contribute to the risk of ankylosing spondylitis in HLA-B27 positive individuals, implying a disease-related interaction between these gene products. The aim of this study was to determine whether reduced ERAP1 expression would alter the cell surface expression of HLA-B27 and the formation of aberrant disulfide-linked forms that have been implicated in the pathogenesis of spondyloarthritis. METHODS ERAP1 expression was knocked down in monocytic U937 cells expressing HLA-B27 and endogenous HLA class I. The effect of ERAP1 knockdown on the accumulation HLA-B alleles (B18, B51, and B27) was assessed using immunoprecipitation, isoelectric focusing, and immunoblotting, as well as flow cytometry with antibodies specific for different forms of HLA-B27. Cell surface expression of aberrant disulfide-linked HLA-B27 dimers was assessed by immunoprecipitation and electrophoresis on non-reducing polyacrylamide gels. RESULTS ERAP1 knockdown increased the accumulation of HLA-B27 on the cell surface including disulfide-linked dimers, but had no effect on levels of HLA-B18 or -B51. Antibodies with unique specificity for HLA-B27 confirmed increased cell surface expression of complexes shown previously to contain long peptides. IFN-γ treatment resulted in striking increases in the expression of disulfide-linked HLA-B27 heavy chains, even in cells with normal ERAP1 expression. CONCLUSIONS Our results suggest that normal levels of ERAP1 reduce the accumulation of aberrant and disulfide-linked forms of HLA-B27 in monocytes, and thus help to maintain the integrity of cell surface HLA-B27 complexes.
Collapse
Affiliation(s)
- Tri M Tran
- Pediatric Translational Research Branch, National Institute of Arthritis Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Sohee Hong
- Pediatric Translational Research Branch, National Institute of Arthritis Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Jehad H Edwan
- Pediatric Translational Research Branch, National Institute of Arthritis Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Robert A Colbert
- Pediatric Translational Research Branch, National Institute of Arthritis Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD 20892, United States.
| |
Collapse
|
14
|
Morishima S, Kashiwase K, Matsuo K, Azuma F, Yabe T, Sato-Otsubo A, Ogawa S, Shiina T, Satake M, Saji H, Kato S, Kodera Y, Sasazuki T, Morishima Y. High-risk HLA alleles for severe acute graft-versus-host disease and mortality in unrelated donor bone marrow transplantation. Haematologica 2016; 101:491-8. [PMID: 26768690 DOI: 10.3324/haematol.2015.136903] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/13/2016] [Indexed: 11/09/2022] Open
Abstract
HLA molecules play an important role for immunoreactivity in allogeneic hematopoietic stem cell transplantation. To elucidate the effect of specific HLA alleles on acute graft-versus-host disease, we conducted a retrospective analysis using 6967 Japanese patients transplanted with T-cell-replete marrow from an unrelated donor. Using unbiased searches of patient and donor HLA alleles, patient and/or donor HLA-B*51:01 (patient: HR, 1.37,P<0.001; donor: HR, 1.35,P<0.001) and patient HLA-C*14:02 (HR, 1.35,P<0.001) were significantly associated with an increased risk of severe acute graft-versus-host disease. The finding that donor HLA-C*14:02 was not associated with severe acute graft-versus-host disease prompted us to elucidate the relation of these high-risk HLA alleles with patient and donor HLA-C allele mismatches. In comparison to HLA-C allele match, patient mismatched HLA-C*14:02 showed the highest risk of severe acute graft-versus-host disease (HR, 3.61,P<0.001) and transplant-related mortality (HR, 2.53,P<0.001) among all patient mismatched HLA-C alleles. Although patient HLA-C*14:02 and donor HLA-C*15:02 mismatch was usually KIR2DL-ligand mismatch in the graft-versus-host direction, the risk of patient mismatched HLA-C*14:02 for severe acute graft-versus-host disease was obvious regardless of KIR2DL-ligand matching. The effect of patient and/or donor HLA-B*51:01 on acute graft-versus-host disease was attributed not only to strong linkage disequilibrium of HLA-C*14:02 and -B*51:01, but also to the effect of HLA-B*51:01 itself. With regard to clinical implications, patient mismatched HLA-C*14:02 proved to be a potent risk factor for severe acute graft-versus-host disease and mortality, and should be considered a non-permissive HLA-C mismatch in donor selection for unrelated donor hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Satoko Morishima
- Department of Hematology, Fujita Health University School of Medicine, Toyoake, Aichi, Tokyo, Japan
| | - Koichi Kashiwase
- Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Tokyo, Japan
| | - Keitaro Matsuo
- Divsion of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Fumihiro Azuma
- Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Tokyo, Japan
| | - Toshio Yabe
- Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Tokyo, Japan
| | - Aiko Sato-Otsubo
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Japan
| | - Takashi Shiina
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Masahiro Satake
- Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Tokyo, Japan
| | | | - Shunichi Kato
- Department of Cell Transplantation and Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yoshihisa Kodera
- Department of Promotion for Blood and Marrow Transplantation, Aichi Medical University School of Medicine, Nagakute, Japan
| | | | - Yasuo Morishima
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | |
Collapse
|
15
|
Petrushkin H, Hasan MS, Stanford MR, Fortune F, Wallace GR. Behçet's Disease: Do Natural Killer Cells Play a Significant Role? Front Immunol 2015; 6:134. [PMID: 25852697 PMCID: PMC4371743 DOI: 10.3389/fimmu.2015.00134] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/10/2015] [Indexed: 11/13/2022] Open
Abstract
Behçet's disease (BD) is a complex inflammatory disease, of unknown etiology. While disease pathogenesis remains unclear, a strong relationship between BD and HLA-B*51 has been established over the last 30 years. A number of theories exist regarding the cause of BD; however, few are able to account for the increased rates of HLA-B*51 positive individuals, particularly around the Mediterranean basin and Middle-East where the prevalence is highest. This review outlines current immunogenetic data on BD and the immunoregulatory role natural killer cells may play. It also describes the interaction of the killer immunoglobulin-like receptor - KIR3DL1 with its ligand Bw4, which is found on HLA-B51. Finally, CD94/NKG2D, MICA, and ERAP are outlined with regard to their potential roles in BD.
Collapse
Affiliation(s)
- Harry Petrushkin
- Clinical and Diagnostic Oral Sciences, Queen Mary University of London , London , UK
| | - Md Samiul Hasan
- Clinical and Diagnostic Oral Sciences, Queen Mary University of London , London , UK
| | - Miles R Stanford
- Academic Unit of Ophthalmology, St Thomas's Hospital , London , UK
| | - Farida Fortune
- Clinical and Diagnostic Oral Sciences, Queen Mary University of London , London , UK
| | - Graham R Wallace
- Centre for Translational Inflammation Research, University of Birmingham , Birmingham , UK
| |
Collapse
|
16
|
Olofinsae SA, Ibeh BO, Ahluwalia J. Increased oxygen consumption observed in phorbol 12-myristate 13-acetate stimulated human cultured promonocytic U937 cell lines treated with calcitriol and retinoic acid. ASIAN PAC J TROP MED 2014; 7S1:S272-7. [PMID: 25312135 DOI: 10.1016/s1995-7645(14)60245-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/07/2014] [Accepted: 06/03/2014] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To investigate the effect of phorbol 12-myristate 13-acetate (PMA) and formyl-methionyl-leucyl-phenylalanine (FMLP) on oxygen consumption of differentiated and non-differentiated immune cell lines by retinoic acid and calcitriol treatment which might be useful in subsequent elicitation of immunological action during immunosuppressive states. METHODS PMA and FMLP were used to artificially stimulate reactive oxygen production in cultured promonocytic U937 cell line. Paralleled samples of the cultured cells were separately prepared with calcitriol (1, 25- dihydroxyvitamin D3) and retinoic acid followed by a 72-hour incubation period. The rate of respiratory burst was measured using the Clark oxygen electrode. RESULTS The average increase in cell concentrations per mL observed was significantly higher in retinoic acid-treated cells (9×10(6) cells/mL) when compared with calcitriol-treated samples (4×10(6) cells/mL). There was a marked increase in oxygen consumption of the calcitriol-treated cell lines against the retinoic acid-treated ones. Exposure of differentiated U937 cells to PMA and FMLP increased significantly (P<0.05) in their oxygen consumption when compared with the control. PMA calcitriol-treated cells resulted in 55% oxygen consumption more than the control while FMLP oxygen consumption increased 78% by comparison with the control. CONCLUSIONS The result demonstrated that calcitriol may serve as a physiological promoter of normal differentiation of precursor cells which may exert an immunological action. This effect could elicit a marker potential and increase immune cell activity of the host especially in immunosuppressed diseased states.
Collapse
Affiliation(s)
| | | | - Jatinder Ahluwalia
- School of Health, Sport and Bioscience, University of East London, United Kingdom
| |
Collapse
|
17
|
Impact of genomic polymorphisms on the repertoire of human MHC class I-associated peptides. Nat Commun 2014; 5:3600. [PMID: 24714562 PMCID: PMC3996541 DOI: 10.1038/ncomms4600] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 03/10/2014] [Indexed: 12/23/2022] Open
Abstract
For decades, the global impact of genomic polymorphisms on the repertoire of peptides presented by major histocompatibility complex (MHC) has remained a matter of speculation. Here we present a novel approach that enables high-throughput discovery of polymorphic MHC class I-associated peptides (MIPs), which play a major role in allorecognition. On the basis of comprehensive analyses of the genomic landscape of MIPs eluted from B lymphoblasts of two MHC-identical siblings, we show that 0.5% of non-synonymous single nucleotide variations are represented in the MIP repertoire. The 34 polymorphic MIPs found in our subjects are encoded by bi-allelic loci with dominant and recessive alleles. Our analyses show that, at the population level, 12% of the MIP-coding exome is polymorphic. Our method provides fundamental insights into the relationship between the genomic self and the immune self and accelerates the discovery of polymorphic MIPs (also known as minor histocompatibility antigens). Mass spectrometry (MS) has furthered our understanding of MHC class I-associated peptides (MIPs), but the technique is inadequate for studying MIP-associated polymorphisms. Here, the authors combine high-throughput MS with exome and transcriptome sequencing to identify polymorphic MIPs from two female siblings.
Collapse
|
18
|
Genome-wide association analysis identifies new susceptibility loci for Behçet's disease and epistasis between HLA-B*51 and ERAP1. Nat Genet 2013; 45:202-7. [PMID: 23291587 PMCID: PMC3810947 DOI: 10.1038/ng.2520] [Citation(s) in RCA: 401] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 12/07/2012] [Indexed: 12/14/2022]
Abstract
Patients with Behçet's disease (BD) suffer from episodic inflammation often affecting the orogenital mucosa, skin, and eyes. To discover new BD-susceptibility loci, we performed a genome-wide association study (GWAS) of 779,465 SNPs with imputed genotypes in 1,209 Turkish BD patients and 1,278 controls. We identified novel associations at CCR1, STAT4, and KLRC4. Additionally, two SNPs in ERAP1, encoding ERAP1 p.Asp575Asn and p.Arg725Gln, recessively conferred disease risk. These findings replicated in 1,468 independent Turkish and/or 1,352 Japanese samples (combined meta-analysis p < 2 × 10−9). We also found evidence for interaction between HLA-B*51 and ERAP1 (p = 9 × 10−4). The CCR1 and STAT4 variants were associated with gene expression differences. Three risk loci shared with ankylosing spondylitis and psoriasis (MHC-I, ERAP1, and IL23R, and the MHC-I-ERAP1 interaction), as well as two loci shared with inflammatory bowel disease (IL23R and IL10) implicate shared pathogenic pathways in the spondyloarthritides and BD.
Collapse
|
19
|
Proteome sampling by the HLA class I antigen processing pathway. PLoS Comput Biol 2012; 8:e1002517. [PMID: 22615552 PMCID: PMC3355062 DOI: 10.1371/journal.pcbi.1002517] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/30/2012] [Indexed: 12/31/2022] Open
Abstract
The peptide repertoire that is presented by the set of HLA class I molecules of an individual is formed by the different players of the antigen processing pathway and the stringent binding environment of the HLA class I molecules. Peptide elution studies have shown that only a subset of the human proteome is sampled by the antigen processing machinery and represented on the cell surface. In our study, we quantified the role of each factor relevant in shaping the HLA class I peptide repertoire by combining peptide elution data, in silico predictions of antigen processing and presentation, and data on gene expression and protein abundance. Our results indicate that gene expression level, protein abundance, and rate of potential binding peptides per protein have a clear impact on sampling probability. Furthermore, once a protein is available for the antigen processing machinery in sufficient amounts, C-terminal processing efficiency and binding affinity to the HLA class I molecule determine the identity of the presented peptides. Having studied the impact of each of these factors separately, we subsequently combined all factors in a logistic regression model in order to quantify their relative impact. This model demonstrated the superiority of protein abundance over gene expression level in predicting sampling probability. Being able to discriminate between sampled and non-sampled proteins to a significant degree, our approach can potentially be used to predict the sampling probability of self proteins and of pathogen-derived proteins, which is of importance for the identification of autoimmune antigens and vaccination targets. HLA class I molecules are expressed on the cell surface of almost all cells of the human body in complex with short fragments (peptides) of cytosolic proteins, thereby providing a snapshot of the intracellular state of a cell to circulating CD8+ T cells. Several processes are involved in shaping the peptide ligand repertoire of an HLA class I molecule, which generally represents only a small fraction of the proteins available in the cytosol. In our work we addressed protein sampling by HLA class I molecules to answer two questions: 1) Which proteins are sampled by the antigen processing pathway and why, and 2) which peptides of a given protein are picked to represent the source protein on the cell surface? To this end we quantified the contribution of each process involved in peptide processing and presentation individually and combined them into a logistic regression model. This simple model enabled us to predict the sampling probability of self proteins and may aid in the identification of autoimmune antigens.
Collapse
|
20
|
|
21
|
Myers CE, Hanavan P, Antwi K, Mahadevan D, Nadeem AJ, Cooke L, Scheck AC, Laughrey Z, Lake DF. CTL recognition of a novel HLA-A*0201-binding peptide derived from glioblastoma multiforme tumor cells. Cancer Immunol Immunother 2011; 60:1319-32. [PMID: 21626031 PMCID: PMC11028898 DOI: 10.1007/s00262-011-1032-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 05/09/2011] [Indexed: 12/22/2022]
Abstract
Genetic instability of tumor cells can result in translation of proteins that are out of frame, resulting in expression of neopeptides. These neopeptides are not self-proteins and therefore should be immunogenic. By eluting peptides from human glioblastoma multiforme (GBM) tumor cell surfaces and subjecting them to tandem mass spectrometry, we identified a novel peptide (KLWGLTPKVTPS) corresponding to a frameshift in the 3' beta-hydroxysteroid dehydrogenase type 7 (HSD3B7) gene. HLA-binding algorithms predicted that a 9-amino acid sequence embedded in this peptide would bind to HLA-A*0201. We confirmed this prediction using an HLA-A*0201 refolding assay followed by live cell relative affinity assays, but also showed that the 12-mer binds to HLA-A*0201. Based on the 9-mer sequence, optimized peptide ligands (OPL) were designed and tested for their affinities to HLA-A*0201 and their abilities to elicit anti-peptide and CTL capable of killing GBM in vitro. Wild-type peptides as well as OPL induced anti-peptide CTL as measured by IFN-γ ELISPOTS. These CTL also killed GBM tumor cells in chromium-51 release assays. This study reports a new CTL target in GBM and further substantiates the concept that rational design and testing of multiple peptides for the same T-cell epitope elicits a broader response among different individuals than single peptide immunization.
Collapse
Affiliation(s)
- Cheryl E. Myers
- School of Life Sciences, Arizona State University, Tempe, AZ 85287 USA
| | - Paul Hanavan
- School of Life Sciences, Arizona State University, Tempe, AZ 85287 USA
| | - Kwasi Antwi
- School of Life Sciences, Arizona State University, Tempe, AZ 85287 USA
| | - Daruka Mahadevan
- Department of Medicine, Arizona Cancer Center, University of Arizona, Tucson, AZ 85724 USA
| | - A. Jamal Nadeem
- Department of Medicine, Arizona Cancer Center, University of Arizona, Tucson, AZ 85724 USA
| | - Laurence Cooke
- Department of Medicine, Arizona Cancer Center, University of Arizona, Tucson, AZ 85724 USA
| | | | - Zachary Laughrey
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287 USA
| | - Douglas F. Lake
- School of Life Sciences, Arizona State University, Tempe, AZ 85287 USA
| |
Collapse
|
22
|
Shetty V, Sinnathamby G, Nickens Z, Shah P, Hafner J, Mariello L, Kamal S, Vlahovic' G, Lyerly HK, Morse MA, Philip R. MHC class I-presented lung cancer-associated tumor antigens identified by immunoproteomics analysis are targets for cancer-specific T cell response. J Proteomics 2011; 74:728-43. [DOI: 10.1016/j.jprot.2011.02.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 01/03/2011] [Accepted: 02/18/2011] [Indexed: 01/14/2023]
|
23
|
Popmihajlov Z, Santori FR, Gebreselassie D, Sandler AD, Vukmanovic S. Effective adoptive therapy of tap-deficient lymphoma using diverse high avidity alloreactive T cells. Cancer Immunol Immunother 2010; 59:629-33. [PMID: 20020123 PMCID: PMC11030666 DOI: 10.1007/s00262-009-0805-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 12/01/2009] [Indexed: 12/15/2022]
Abstract
High avidity for antigen and diversity of T cell receptor (TCR) repertoire are essential for effective immunity against cancer. We have previously created a transgenic mouse strain with increased TCR avidity in a diverse T cell population. In this report, we show that strong alloreactive responses of transgenic T cells against targets with low MHC class I expression can be used for effective adoptive transfer of tumor immunity in vivo. Alloreactive transgenic T cells could be an effective therapeutic approach counteracting tumor evasion of the immune system.
Collapse
Affiliation(s)
- Zoran Popmihajlov
- Michael Heidelberger Division of Immunology, Department of Pathology and NYU Cancer Center, NYU School of Medicine, New York, NY 10016 USA
- Present Address: Division of Immunology, Department of Medicine, Weill Medical College of Cornell University, 515 East 71st Street, S-222, New York, NY 10021 USA
| | - Fabio R. Santori
- Michael Heidelberger Division of Immunology, Department of Pathology and NYU Cancer Center, NYU School of Medicine, New York, NY 10016 USA
- Present Address: Department of Pathology, Skirball Institute for Molecular Medicine, NYU Cancer Center, NYU School of Medicine, 550 First Avenue, New York, NY 10016 USA
| | - Daniel Gebreselassie
- Center for Cancer and Immunology Research, Children’s Research Institute, Children’s National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010-2970 USA
- Present Address: Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3800 Reservoir Rd. N.W, Washington, DC 20057 USA
| | - Anthony D. Sandler
- Center for Cancer and Immunology Research, Children’s Research Institute, Children’s National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010-2970 USA
| | - Stanislav Vukmanovic
- Michael Heidelberger Division of Immunology, Department of Pathology and NYU Cancer Center, NYU School of Medicine, New York, NY 10016 USA
- Center for Cancer and Immunology Research, Children’s Research Institute, Children’s National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010-2970 USA
| |
Collapse
|
24
|
Diagnostic and prognostic biomarker discovery strategies for autoimmune disorders. J Proteomics 2009; 73:1045-60. [PMID: 19995622 DOI: 10.1016/j.jprot.2009.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 11/25/2009] [Accepted: 11/30/2009] [Indexed: 12/28/2022]
Abstract
Current clinical, laboratory or radiological parameters cannot accurately diagnose or predict disease outcomes in a range of autoimmune disorders. Biomarkers which can diagnose at an earlier time point, predict outcome or help guide therapeutic strategies in autoimmune diseases could improve clinical management of this broad group of debilitating disorders. Additionally, there is a growing need for a deeper understanding of multi-factorial autoimmune disorders. Proteomic platforms offering a multiplex approach are more likely to reflect the complexity of autoimmune disease processes. Findings from proteomic based studies of three distinct autoimmune diseases are presented and strategies compared. It is the authors' view that such approaches are likely to be fruitful in the movement of autoimmune disease treatment away from reactive decisions and towards a preventative stand point.
Collapse
|
25
|
Proteomic identification of an MHC-binding peptidome from pancreas and breast cancer cell lines. Mol Immunol 2009; 46:2931-7. [DOI: 10.1016/j.molimm.2009.06.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Revised: 06/10/2009] [Accepted: 06/18/2009] [Indexed: 11/23/2022]
|
26
|
Keogan MT. Clinical Immunology Review Series: an approach to the patient with recurrent orogenital ulceration, including Behçet's syndrome. Clin Exp Immunol 2009; 156:1-11. [PMID: 19210521 PMCID: PMC2673735 DOI: 10.1111/j.1365-2249.2008.03857.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2008] [Indexed: 01/30/2023] Open
Abstract
Patients presenting with recurrent orogenital ulcers may have complex aphthosis, Behçet's disease, secondary complex aphthosis (e.g. Reiter's syndrome, Crohn's disease, cyclical neutropenia) or non-aphthous disease (including bullous disorders, erythema multiforme, erosive lichen planus). Behçet's syndrome is a multi-system vasculitis of unknown aetiology for which there is no diagnostic test. Diagnosis is based on agreed clinical criteria that require recurrent oral ulcers and two of the following: recurrent genital ulcers, ocular inflammation, defined skin lesions and pathergy. The condition can present with a variety of symptoms, hence a high index of suspicion is necessary. The most common presentation is with recurrent mouth ulcers, often with genital ulcers; however, it may take some years before diagnostic criteria are met. All patients with idiopathic orogenital ulcers should be kept under review, with periodic focused assessment to detect evolution into Behçet's disease. There is often a delay of several years between patients fulfilling diagnostic criteria and a diagnosis being made, which may contribute to the morbidity of this condition. Despite considerable research effort, the aetiology and pathogenesis of this condition remains enigmatic.
Collapse
Affiliation(s)
- M T Keogan
- Department of Immunology, Beaumont Hospital, Dublin, Ireland.
| |
Collapse
|
27
|
Sanjanwala B, Draghi M, Norman PJ, Guethlein LA, Parham P. Polymorphic sites away from the Bw4 epitope that affect interaction of Bw4+ HLA-B with KIR3DL1. THE JOURNAL OF IMMUNOLOGY 2009; 181:6293-300. [PMID: 18941220 DOI: 10.4049/jimmunol.181.9.6293] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
KIR3DL1 is a polymorphic, inhibitory NK cell receptor specific for the Bw4 epitope carried by subsets of HLA-A and HLA-B allotypes. The Bw4 epitope of HLA-B*5101 and HLA-B*1513 is determined by the NIALR sequence motif at positions 77, 80, 81, 82, and 83 in the alpha(1) helix. Mutation of these positions to the residues present in the alternative and nonfunctional Bw6 motif showed that the functional activity of the Bw4 epitopes of B*5101 and B*1513 is retained after substitution at positions 77, 80, and 81, but lost after substitution of position 83. Mutation of leucine to arginine at position 82 led to loss of function for B*5101 but not for B*1513. Further mutagenesis, in which B*1513 residues were replaced by their B*5101 counterparts, showed that polymorphisms in all three extracellular domains contribute to this functional difference. Prominent were positions 67 in the alpha(1) domain, 116 in the alpha(2) domain, and 194 in the alpha(3) domain. Lesser contributions were made by additional positions in the alpha(2) domain. These positions are not part of the Bw4 epitope and include residues shaping the B and F pockets that determine the sequence and conformation of the peptides bound by HLA class I molecules. This analysis shows how polymorphism at sites throughout the HLA class I molecule can influence the interaction of the Bw4 epitope with KIR3DL1. This influence is likely mediated by changes in the peptides bound, which alter the conformation of the Bw4 epitope.
Collapse
Affiliation(s)
- Bharati Sanjanwala
- Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
28
|
Fortier MH, Caron E, Hardy MP, Voisin G, Lemieux S, Perreault C, Thibault P. The MHC class I peptide repertoire is molded by the transcriptome. ACTA ACUST UNITED AC 2008; 205:595-610. [PMID: 18299400 PMCID: PMC2275383 DOI: 10.1084/jem.20071985] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Under steady-state conditions, major histocompatibility complex (MHC) I molecules are associated with self-peptides that are collectively referred to as the MHC class I peptide (MIP) repertoire. Very little is known about the genesis and molecular composition of the MIP repertoire. We developed a novel high-throughput mass spectrometry approach that yields an accurate definition of the nature and relative abundance of unlabeled peptides presented by MHC I molecules. We identified 189 and 196 MHC I-associated peptides from normal and neoplastic mouse thymocytes, respectively. By integrating our peptidomic data with global profiling of the transcriptome, we reached two conclusions. The MIP repertoire of primary mouse thymocytes is biased toward peptides derived from highly abundant transcripts and is enriched in peptides derived from cyclins/cyclin-dependent kinases and helicases. Furthermore, we found that approximately 25% of MHC I-associated peptides were differentially expressed on normal versus neoplastic thymocytes. Approximately half of those peptides are derived from molecules directly implicated in neoplastic transformation (e.g., components of the PI3K-AKT-mTOR pathway). In most cases, overexpression of MHC I peptides on cancer cells entailed posttranscriptional mechanisms. Our results show that high-throughput analysis and sequencing of MHC I-associated peptides yields unique insights into the genesis of the MIP repertoire in normal and neoplastic cells.
Collapse
Affiliation(s)
- Marie-Hélène Fortier
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada H3C 3J7
| | | | | | | | | | | | | |
Collapse
|
29
|
Drake RR, Cazares L, Semmes OJ. Mining the low molecular weight proteome of blood. Proteomics Clin Appl 2007; 1:758-68. [DOI: 10.1002/prca.200700175] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Indexed: 01/08/2023]
|