1
|
Koh CC, Neves EGA, de Souza-Silva TG, Carvalho AC, Pinto CHR, Sobreira Galdino A, Gollob KJ, Dutra WO. Cytokine Networks as Targets for Preventing and Controlling Chagas Heart Disease. Pathogens 2023; 12:171. [PMID: 36839443 PMCID: PMC9966322 DOI: 10.3390/pathogens12020171] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Chagas disease, a neglected disease caused by the protozoan Trypanosoma cruzi, is endemic in 21 Latin American countries, affecting 6-8 million people. Increasing numbers of Chagas disease cases have also been reported in non-endemic countries due to migration, contamination via blood transfusions or organ transplantation, characterizing Chagas as an emerging disease in such regions. While most individuals in the chronic phase of Chagas disease remain in an asymptomatic clinical form named indeterminate, approximately 30% of the patients develop a cardiomyopathy that is amongst the deadliest cardiopathies known. The clinical distinctions between the indeterminate and the cardiac clinical forms are associated with different immune responses mediated by innate and adaptive cells. In this review, we present a collection of studies focusing on the human disease, discussing several aspects that demonstrate the association between chemokines, cytokines, and cytotoxic molecules with the distinct clinical outcomes of human infection with Trypanosoma cruzi. In addition, we discuss the role of gene polymorphisms in the transcriptional control of these immunoregulatory molecules. Finally, we discuss the potential application of cytokine expression and gene polymorphisms as markers of susceptibility to developing the severe form of Chagas disease, and as targets for disease control.
Collapse
Affiliation(s)
- Carolina Cattoni Koh
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Eula G. A. Neves
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Thaiany Goulart de Souza-Silva
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Ana Carolina Carvalho
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Cecília Horta Ramalho Pinto
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Alexsandro Sobreira Galdino
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis 35501-296, MG, Brazil
| | - Kenneth J. Gollob
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil
- Instituto Nacional de Ciências e Tecnologia em Doenças Tropicais, INCT-DT, Salvador 40110-160, BA, Brazil
| | - Walderez Ornelas Dutra
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Instituto Nacional de Ciências e Tecnologia em Doenças Tropicais, INCT-DT, Salvador 40110-160, BA, Brazil
| |
Collapse
|
2
|
Acosta-Herrera M, Strauss M, Casares-Marfil D, Martín J. Genomic medicine in Chagas disease. Acta Trop 2019; 197:105062. [PMID: 31201776 DOI: 10.1016/j.actatropica.2019.105062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023]
Abstract
Genetic approaches have been proposed for improving the understanding of the causes of differential susceptibility to Trypanosoma cruzi infection and Chagas disease outcome. Polymorphisms in genes involved in the immune/inflammatory response are being studied in order to clarify their possible role in the occurrence or severity of the cardiac and/or gastrointestinal complications. However still today, the number of significant associated genes is limited and the pathophysiological mechanisms underlying this condition are unknown. This article review the information currently available from the published scientific literature regarding the genetic variants of molecules of the immune system and other variants that can contribute to the clinical presentation of the disease. Genomic medicine will improve our knowledge about the molecular basis of Chagas disease, will open new avenues for developing biomarkers of disease progression, new therapeutic strategies to suit the requirements of individual patients, and will contribute to the control of one of the infections with the greatest socio-economic impact in the Americas.
Collapse
|
3
|
Kang I, Bucala R. The immunobiology of MIF: function, genetics and prospects for precision medicine. Nat Rev Rheumatol 2019; 15:427-437. [DOI: 10.1038/s41584-019-0238-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2019] [Indexed: 01/01/2023]
|
4
|
Investigation of the role of IL17A gene variants in Chagas disease. Genes Immun 2015; 16:536-40. [PMID: 26468780 DOI: 10.1038/gene.2015.42] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/01/2015] [Accepted: 09/08/2015] [Indexed: 11/08/2022]
Abstract
Human host genetic factors have been suggested to be determinants of the prevalence and clinical forms of Chagas disease. In this regard, IL-17A is believed to control parasitemia and protect against heart disease. In this work, we assessed whether IL17A gene polymorphisms are related to infection and/or development of the cardiac form of Chagas disease by genotyping for five IL17A SNPs (rs4711998, rs8193036, rs3819024, rs2275913 and rs7747909) in 1171 individuals from a Colombian region endemic for Chagas disease, classified as seronegative (n=595), seropositive asymptomatic (n=175) and chronic Chagas cardiomyopathy (n=401). Our results showed that SNP rs8193036, which is located upstream of the coding region of the gene, was slightly associated with protection against T. cruzi infection (P=0.0170, P(FDR)=0.0851, odds ratio (OR)=0.80, confidence interval (CI)=0.66-0.96) and associated with protection against the development of cardiomyopathy (P=0.0065, P(FDR)=0.0324, OR=0.75, CI=0.60-0.92). This finding suggests that this IL17A polymorphism could be associated with Trypanosoma cruzi infection and the development of chronic cardiomyopathy due to differential expression of cytokine IL-17A.
Collapse
|
5
|
Yazdani N, Kakavand Hamidi A, Ghazavi H, Rikhtegar MJ, Motesadi Zarandi M, Qorbani M, Amoli MM. Association between Macrophage Migration Inhibitory Factor Gene Variation and Response to Glucocorticoid Treatment in Sudden Sensorineural Hearing Loss. Audiol Neurootol 2015; 20:376-82. [PMID: 26426302 DOI: 10.1159/000438741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 07/15/2015] [Indexed: 11/19/2022] Open
Abstract
Several lines of evidence suggest the role of the immune system in the pathogenesis of sudden sensorineural hearing loss (SSNHL). Macrophage migration inhibitory factor (MIF) mediates its role in various immune and inflammatory conditions by the regulation of immune reactions. Several studies have confirmed an association between MIF gene polymorphisms and susceptibility to various inflammatory and autoimmune disorders. The aim of this study was to explore the association between the MIF (-173 G/C) polymorphism (rs755622) and SSNHL in an Iranian population. In this case-control association study, SSNHL cases (n = 77) were included. Normal healthy subjects (n = 100) were also recruited from the same region. Genotyping for MIF (-173 G/C) polymorphism was carried out using the polymerase chain reaction-restriction fragment length polymorphism technique. The frequency of the MIF -173 C allele carriers (GC + CC genotype) was significantly elevated in SSNHL patients who responded to glucocorticoid treatment compared with the patients with no response to treatment. These results suggest that the MIF gene polymorphism is associated with a response to glucocorticoid treatment in patients with SSNHL.
Collapse
Affiliation(s)
- Nasrin Yazdani
- Otorhinolaryngology Research Center, Amir-Alam Hospital, Department of Otolaryngology - Head and Neck Surgery, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
6
|
Nogueira LG, Frade AF, Ianni BM, Laugier L, Pissetti CW, Cabantous S, Baron M, de Lima Peixoto G, de Melo Borges A, Donadi E, Marin-Neto JA, Schmidt A, Dias F, Saba B, Wang HTL, Fragata A, Sampaio M, Hirata MH, Buck P, Mady C, Martinelli M, Lensi M, Siqueira SF, Pereira AC, Rodrigues V, Kalil J, Chevillard C, Cunha-Neto E. Functional IL18 polymorphism and susceptibility to Chronic Chagas Disease. Cytokine 2015; 73:79-83. [DOI: 10.1016/j.cyto.2015.01.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/28/2015] [Accepted: 01/29/2015] [Indexed: 01/09/2023]
|
7
|
Cunha-Neto E, Chevillard C. Chagas disease cardiomyopathy: immunopathology and genetics. Mediators Inflamm 2014; 2014:683230. [PMID: 25210230 PMCID: PMC4152981 DOI: 10.1155/2014/683230] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/05/2014] [Accepted: 08/05/2014] [Indexed: 02/06/2023] Open
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, is endemic in Latin America and affects ca. 10 million people worldwide. About 30% of Chagas disease patients develop chronic Chagas disease cardiomyopathy (CCC), a particularly lethal inflammatory cardiomyopathy that occurs decades after the initial infection, while most patients remain asymptomatic. Mortality rate is higher than that of noninflammatory cardiomyopathy. CCC heart lesions present a Th1 T-cell-rich myocarditis, with cardiomyocyte hypertrophy and prominent fibrosis. Data suggest that the myocarditis plays a major pathogenetic role in disease progression. Major unmet goals include the thorough understanding of disease pathogenesis and therapeutic targets and identification of prognostic genetic factors. Chagas disease thus remains a neglected disease, with no vaccines or antiparasitic drugs proven efficient in chronically infected adults, when most patients are diagnosed. Both familial aggregation of CCC cases and the fact that only 30% of infected patients develop CCC suggest there might be a genetic component to disease susceptibility. Moreover, previous case-control studies have identified some genes associated to human susceptibility to CCC. In this paper, we will review the immunopathogenesis and genetics of Chagas disease, highlighting studies that shed light on the differential progression of Chagas disease patients to CCC.
Collapse
Affiliation(s)
- Edecio Cunha-Neto
- Heart Institute (InCor), University of São Paulo School of Medicine, Avenida Dr. Enéas de Carvalho Aguiar, 44 Bloco 2 9° Andar, 05406-000 São Paulo, SP, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, SP, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo School of Medicine, 05406-000 São Paulo, SP, Brazil
| | | |
Collapse
|
8
|
Frade AF, Pissetti CW, Ianni BM, Saba B, Lin-Wang HT, Nogueira LG, de Melo Borges A, Buck P, Dias F, Baron M, Ferreira LRP, Schmidt A, Marin-Neto JA, Hirata M, Sampaio M, Fragata A, Pereira AC, Donadi E, Kalil J, Rodrigues V, Cunha-Neto E, Chevillard C. Genetic susceptibility to Chagas disease cardiomyopathy: involvement of several genes of the innate immunity and chemokine-dependent migration pathways. BMC Infect Dis 2013; 13:587. [PMID: 24330528 PMCID: PMC3866603 DOI: 10.1186/1471-2334-13-587] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 12/04/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Chagas disease, caused by the protozoan Trypanosoma cruzi is endemic in Latin America. Thirty percent of infected individuals develop chronic Chagas cardiomyopathy (CCC), an inflammatory dilated cardiomyopathy that is, by far, the most important clinical consequence of T. cruzi infection. The others remain asymptomatic (ASY). A possible genetic component to disease progression was suggested by familial aggregation of cases and the association of markers of innate and adaptive immunity genes with CCC development. Migration of Th1-type T cells play a major role in myocardial damage. METHODS Our genetic analysis focused on CCR5, CCL2 and MAL/TIRAP genes. We used the Tag SNPs based approach, defined to catch all the genetic information from each gene. The study was conducted on a large Brazilian population including 315 CCC cases and 118 ASY subjects. RESULTS The CCL2rs2530797A/A and TIRAPrs8177376A/A were associated to an increase susceptibility whereas the CCR5rs3176763C/C genotype is associated to protection to CCC. These associations were confirmed when we restricted the analysis to severe CCC, characterized by a left ventricular ejection fraction under 40%. CONCLUSIONS Our data show that polymorphisms affecting key molecules involved in several immune parameters (innate immunity signal transduction and T cell/monocyte migration) play a role in genetic susceptibility to CCC development. This also points out to the multigenic character of CCC, each polymorphism imparting a small contribution. The identification of genetic markers for CCC will provide information for pathogenesis as well as therapeutic targets.
Collapse
Affiliation(s)
- Amanda Farage Frade
- Heart Institute (InCor), University of São Paulo School of Medicine (FMUSP), Av. Dr. Enéas de Carvalho Aguiar, 44 Bloco 2 9º andar, São Paulo, SP 06504-000, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, SP, Brazil
- Aix-Marseille Université, INSERM, GIMP UMR_S906, Faculté de médecine, 27 bd Jean Moulin, Marseille, cedex 05 13385, France
| | - Cristina Wide Pissetti
- Laboratory of Immunology, Universidade Federal do Triângulo Mineiro (UFTM), 40 Frei Paulino, Uberaba, MG 48036-180, Brazil
| | - Barbara Maria Ianni
- Heart Institute (InCor), University of São Paulo School of Medicine (FMUSP), Av. Dr. Enéas de Carvalho Aguiar, 44 Bloco 2 9º andar, São Paulo, SP 06504-000, Brazil
| | - Bruno Saba
- Instituto de Cardiologia Dante Pazzanese (IDPC), Avenida Dante Pazzanese 500 - Ibirapuera, Sâo Paulo, SP 04012-909, Brazil
| | - Hui Tzu Lin-Wang
- Instituto de Cardiologia Dante Pazzanese (IDPC), Avenida Dante Pazzanese 500 - Ibirapuera, Sâo Paulo, SP 04012-909, Brazil
| | - Luciana Gabriel Nogueira
- Heart Institute (InCor), University of São Paulo School of Medicine (FMUSP), Av. Dr. Enéas de Carvalho Aguiar, 44 Bloco 2 9º andar, São Paulo, SP 06504-000, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, SP, Brazil
| | - Ariana de Melo Borges
- Laboratory of Immunology, Universidade Federal do Triângulo Mineiro (UFTM), 40 Frei Paulino, Uberaba, MG 48036-180, Brazil
| | - Paula Buck
- Heart Institute (InCor), University of São Paulo School of Medicine (FMUSP), Av. Dr. Enéas de Carvalho Aguiar, 44 Bloco 2 9º andar, São Paulo, SP 06504-000, Brazil
| | - Fabrício Dias
- School of Medicine of Ribeirão Preto (FMRP), University of São Paulo, Av. Bandeirantes, 4900 - Monte Alegre 15059-900, Ribeirão Preto, SP, Brazil
| | - Monique Baron
- Heart Institute (InCor), University of São Paulo School of Medicine (FMUSP), Av. Dr. Enéas de Carvalho Aguiar, 44 Bloco 2 9º andar, São Paulo, SP 06504-000, Brazil
| | - Ludmila Rodrigues Pinto Ferreira
- Heart Institute (InCor), University of São Paulo School of Medicine (FMUSP), Av. Dr. Enéas de Carvalho Aguiar, 44 Bloco 2 9º andar, São Paulo, SP 06504-000, Brazil
| | - Andre Schmidt
- School of Medicine of Ribeirão Preto (FMRP), University of São Paulo, Av. Bandeirantes, 4900 - Monte Alegre 15059-900, Ribeirão Preto, SP, Brazil
| | - José Antonio Marin-Neto
- School of Medicine of Ribeirão Preto (FMRP), University of São Paulo, Av. Bandeirantes, 4900 - Monte Alegre 15059-900, Ribeirão Preto, SP, Brazil
| | - Mario Hirata
- Instituto de Cardiologia Dante Pazzanese (IDPC), Avenida Dante Pazzanese 500 - Ibirapuera, Sâo Paulo, SP 04012-909, Brazil
| | - Marcelo Sampaio
- Instituto de Cardiologia Dante Pazzanese (IDPC), Avenida Dante Pazzanese 500 - Ibirapuera, Sâo Paulo, SP 04012-909, Brazil
| | - Abílio Fragata
- Instituto de Cardiologia Dante Pazzanese (IDPC), Avenida Dante Pazzanese 500 - Ibirapuera, Sâo Paulo, SP 04012-909, Brazil
| | - Alexandre Costa Pereira
- Heart Institute (InCor), University of São Paulo School of Medicine (FMUSP), Av. Dr. Enéas de Carvalho Aguiar, 44 Bloco 2 9º andar, São Paulo, SP 06504-000, Brazil
| | - Eduardo Donadi
- School of Medicine of Ribeirão Preto (FMRP), University of São Paulo, Av. Bandeirantes, 4900 - Monte Alegre 15059-900, Ribeirão Preto, SP, Brazil
| | - Jorge Kalil
- Heart Institute (InCor), University of São Paulo School of Medicine (FMUSP), Av. Dr. Enéas de Carvalho Aguiar, 44 Bloco 2 9º andar, São Paulo, SP 06504-000, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, SP, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo School of Medicine, São Paulo, SP 06504-000, Brazil
| | - Virmondes Rodrigues
- Laboratory of Immunology, Universidade Federal do Triângulo Mineiro (UFTM), 40 Frei Paulino, Uberaba, MG 48036-180, Brazil
| | - Edecio Cunha-Neto
- Heart Institute (InCor), University of São Paulo School of Medicine (FMUSP), Av. Dr. Enéas de Carvalho Aguiar, 44 Bloco 2 9º andar, São Paulo, SP 06504-000, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, SP, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo School of Medicine, São Paulo, SP 06504-000, Brazil
| | - Christophe Chevillard
- Aix-Marseille Université, INSERM, GIMP UMR_S906, Faculté de médecine, 27 bd Jean Moulin, Marseille, cedex 05 13385, France
| |
Collapse
|
9
|
Xavier-Carvalho C, Gibson G, Brasil P, Ferreira RX, de Souza Santos R, Gonçalves Cruz O, de Oliveira SA, de Sá Carvalho M, Pacheco AG, Kubelka CF, Moraes MO. Single nucleotide polymorphisms in candidate genes and dengue severity in children: A case–control, functional and meta-analysis study. INFECTION GENETICS AND EVOLUTION 2013; 20:197-205. [DOI: 10.1016/j.meegid.2013.08.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/13/2013] [Accepted: 08/21/2013] [Indexed: 12/31/2022]
|
10
|
Ayo CM, Dalalio MMDO, Visentainer JEL, Reis PG, Sippert EÂ, Jarduli LR, Alves HV, Sell AM. Genetic susceptibility to Chagas disease: an overview about the infection and about the association between disease and the immune response genes. BIOMED RESEARCH INTERNATIONAL 2013; 2013:284729. [PMID: 24069594 PMCID: PMC3771244 DOI: 10.1155/2013/284729] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/09/2013] [Accepted: 05/31/2013] [Indexed: 01/05/2023]
Abstract
Chagas disease, which is caused by the flagellate parasite Trypanosoma cruzi, affects 8-10 million people in Latin America. The disease is endemic and is characterised by acute and chronic phases that develop in the indeterminate, cardiac, and/or gastrointestinal forms. The immune response during human T. cruzi infection is not completely understood, despite its role in driving the development of distinct clinical manifestations of chronic infection. Polymorphisms in genes involved in the innate and specific immune response are being widely studied in order to clarify their possible role in the occurrence or severity of disease. Here we review the role of classic and nonclassic MHC, KIR, and cytokine host genetic factors on the infection by T. cruzi and the clinical course of Chagas disease.
Collapse
Affiliation(s)
- Christiane Maria Ayo
- Program of Biosciences Applied to Pharmacy, Department of Clinical Analysis and Biomedicine, Maringa State University, Avenida Colombo 5790, 87020900 Maringa, PR, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhang K, Pan X, Shu X, Cao H, Chen L, Zou Y, Deng H, Li G, Xu Q. Relationship between MIF-173 G/C polymorphism and susceptibility to chronic hepatitis B and HBV-induced liver cirrhosis. Cell Immunol 2013; 282:113-6. [PMID: 23770720 DOI: 10.1016/j.cellimm.2013.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/15/2013] [Accepted: 04/24/2013] [Indexed: 11/27/2022]
Abstract
Macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine, played an important role in immune-mediated diseases. The promoter region of MIF, which had functional polymorphisms, controlled MIF expression. MIF polymorphism was associated with many inflammatory diseases. But the association of MIF polymorphism with chronic hepatitis B (CHB) or HBV-induced liver cirrhosis (HC) had not yet been reported. In present study, polymorphism of MIF-173 was genotyped in 95 CHB patients, 73 HC patients and 90 healthy controls in southern China. The frequency of MIF-173 C/C genotype in patients with CHB or HC was statistically significantly higher than that in healthy controls, respectively. Moreover, difference in the distribution of MIF-173 C allele between CHB patients and healthy controls was statistically significant. However, there was no statistical relationship between MIF-173 genotype and clinical features in patients with CHB or HC. Our results suggest that MIF-173 C/C polymorphism might be associated with increased risk of CHB or HC in Chinese southern population.
Collapse
Affiliation(s)
- Ka Zhang
- Department of Infectious Diseases, The 3rd Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Candidate gene case-control and functional study shows macrophage inhibitory factor (MIF) polymorphism is associated with cutaneous leishmaniasis. Cytokine 2013; 61:168-72. [DOI: 10.1016/j.cyto.2012.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 08/23/2012] [Accepted: 09/18/2012] [Indexed: 11/22/2022]
|
13
|
Henao-Martínez AF, Schwartz DA, Yang IV. Chagasic cardiomyopathy, from acute to chronic: is this mediated by host susceptibility factors? Trans R Soc Trop Med Hyg 2012; 106:521-7. [DOI: 10.1016/j.trstmh.2012.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 06/13/2012] [Accepted: 06/13/2012] [Indexed: 01/06/2023] Open
|
14
|
Teixeira PC, Frade AF, Nogueira LG, Kalil J, Chevillard C, Cunha-Neto E. Pathogenesis of Chagas disease cardiomyopathy. World J Clin Infect Dis 2012; 2:39-53. [DOI: 10.5495/wjcid.v2.i3.39] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chagas disease, or American trypanosomiasis, is a parasitic infection caused by the flagellate protozoan Trypanosoma cruzi. Chagas disease is mainly affecting rural populations in Mexico and Central and South America. The World Health Organization estimates that 300 000 new cases of Chagas disease occur every year and approximately 20 000 deaths are attributable to Chagas. However, this organisation classified Chagas disease as a neglected tropical disease. The economic burden of this disease is significant. In many Latin American countries, the direct and indirect costs, including the cost of health care in dollars and loss of productivity, attributable to Chagas disease ranges from $40 million to in excess of $800 million per nation per annum. So, it remains a contemporary public health concern. In chronic phase, mortality is primarily due to the rhythm disturbances and congestive heart failure that result from the chronic inflammatory cardiomyopathy (CCC) due to the persistence presence of parasites in the heart tissue. Mechanisms underlying differential progression to CCC are still incompletely understood. In the last decades immunological proteomic genetic approaches lead to significant results which help to disperse the veil covering the knowledge of the pathogenic process. Here, we reported these significant progresses.
Collapse
|
15
|
Vasconcelos RHT, Montenegro SML, Azevedo EAN, Gomes YM, Morais CNL. Genetic susceptibility to chronic Chagas disease: an overview of single nucleotide polymorphisms of cytokine genes. Cytokine 2012; 59:203-8. [PMID: 22595647 DOI: 10.1016/j.cyto.2012.04.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/11/2012] [Accepted: 04/23/2012] [Indexed: 01/07/2023]
Abstract
Chagas disease is a parasitic infection that is a significant public health problem in Latin America. The mechanisms responsible for susceptibility to the infection and the mechanisms involved in the development of cardiac and digestive forms of chronic Chagas disease remain poorly understood. However, there is growing evidence that differences in susceptibility in endemic areas may be attributable to host genetic factors. The aim of this overview was to analyze the genetic susceptibility to human Chagas disease, particularly that of single nucleotide polymorphisms of cytokine genes. A review of the literature was conducted on the following databases: PubMed/MEDLINE and Scopus. The search strategy included using the following terms: "Cytokines", "Single Nucleotide Polymorphisms" and "Chagas Disease". After screening 25 citations from the databases, 19 studies were selected for the overview. A critical analysis of the data presented in the articles suggests that genetic susceptibility to Chagas disease and chronic Chagas cardiomyopathy is highly influenced by the complexity of the immune response of the host. Follow-up studies based on other populations where Chagas disease is endemic (with distinct ethnic and genetic backgrounds) need to be conducted. These should use a large sample population so as to establish what cytokine genes are involved in susceptibility to and/or progression of the disease.
Collapse
|
16
|
Genetic polymorphisms in TNFA/TNFR2 genes and Chagas disease in a Colombian endemic population. Cytokine 2012; 57:398-401. [DOI: 10.1016/j.cyto.2011.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 12/11/2011] [Accepted: 12/12/2011] [Indexed: 02/07/2023]
|
17
|
Macrophage migration inhibitory factor in protozoan infections. J Parasitol Res 2012; 2012:413052. [PMID: 22496958 PMCID: PMC3306950 DOI: 10.1155/2012/413052] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/01/2011] [Accepted: 11/07/2011] [Indexed: 12/12/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a cytokine that plays a central role in immune and inflammatory responses. In the present paper, we discussed the participation of MIF in the immune response to protozoan parasite infections. As a general trend, MIF participates in the control of parasite burden at the expense of promoting tissue damage due to increased inflammation.
Collapse
|
18
|
Flórez O, Martín J, González CI. Interleukin 4, interleukin 4 receptor-α and interleukin 10 gene polymorphisms in Chagas disease. Parasite Immunol 2011; 33:506-11. [PMID: 21729106 DOI: 10.1111/j.1365-3024.2011.01314.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we investigated the association between single-nucleotide polymorphisms (SNPs) of the interleukin-4 (IL4), interleukin-4 receptor-α (IL4RA) and interleukin-10 (IL10) genes with the development of chagasic heart disease. This study included 260 patients from Colombia who were serologically positive for Trypanosoma cruzi antigens (cardiomyopathic, n=130; asymptomatic, n=130). Genotypes were determined by polymerase chain reaction (PCR)-restriction fragment length polymorphism or sequence-specific primer methods. We found statistically significant differences in the distribution of the IL4RA +148 AA (P=0·025, OR=1·89, CI=1·04-3·43) genotype when comparing asymptomatic and symptomatic patients. No statistically significant differences in the genotype and allele frequency of IL4 and IL10 gene polymorphisms between symptomatic and asymptomatic patients were observed. Our experimental evidence suggests that the IL4RA +148 AA genotype has a weak association with the development of chagasic cardiomyopathy in the population under study.
Collapse
Affiliation(s)
- O Flórez
- Grupo de Inmunología y Epidemiología Molecular, GIEM, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga, Colombia Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Granada, Spain
| | | | | |
Collapse
|
19
|
Torres OA, Calzada JE, Beraún Y, Morillo CA, González A, González CI, Martín J. Role of the IFNG +874T/A polymorphism in Chagas disease in a Colombian population. INFECTION GENETICS AND EVOLUTION 2010; 10:682-5. [PMID: 20359550 PMCID: PMC7106279 DOI: 10.1016/j.meegid.2010.03.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 03/17/2010] [Accepted: 03/20/2010] [Indexed: 12/18/2022]
Abstract
Genetic susceptibility to Trypanosoma cruzi infection and the development of cardiomyopathy is complex, heterogeneous, and likely involves several genes. Previous studies have implicated cytokine and chemokine genes in susceptibility to Chagas disease. Here we investigated the association between the interferon-gamma gene (IFNG) +874T/A polymorphism and Chagas disease, focusing on susceptibility and severity. This study included 236 chagasic patients (asymptomatic, n=116; cardiomyopathic, n=120) and 282 healthy controls from a Colombian population where T. cruzi is highly endemic. Individuals were genotyped for functional single nucleotide polymorphism (SNP; rs2430561; A/T) of the IFNG gene by amplification refractory mutational system PCR (ARMS-PCR). Moreover, clinical manifestations of Chagas in patients were analyzed. We found a significant difference in the distribution of the IFNG +874 "A" allele between patients and healthy controls (P=0.003; OR=1.46, 95% CI, 1.13-1.89). The frequency of the IFNG +874 genotype A/A, which is associated with reduced production of interferon-gamma, was increased in the patients relative to controls (38.1% vs. 26.6%). We compared the frequencies of IFNG alleles and genotypes between asymptomatic patients and those with chagasic cardiomyopathy and found no significant difference. Our data suggest that the IFNG +874T/A genetic polymorphism may be involved in susceptibility but not in the progression of Chagas disease in this Colombian population.
Collapse
Affiliation(s)
- Orlando A Torres
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Torres OA, Calzada JE, Beraún Y, Morillo CA, González A, González CI, Martín J. Lack of association between IL-6-174G/C gene polymorphism and Chagas disease. ACTA ACUST UNITED AC 2010; 76:131-4. [PMID: 20331841 DOI: 10.1111/j.1399-0039.2010.01478.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of this study was to investigate the role of the IL-6-174G/C gene polymorphism in susceptibility/resistance to Trypanosoma cruzi infection in two independent cohorts from Colombia and Peru. We determined the IL-6-174G/C genotypes in a sample of 399 seronegative individuals and 317 serologically positive patients from Colombia and Peru. All individuals are from regions where T. cruzi infection is endemic. No statistically significant differences in the frequency of IL-6-174G/C gene polymorphism between chagasic patients and controls or between asymptomatic and individuals with cardiomyopathy were observed. Our results do not support an evidence for a major role contribution of this IL-6 gene polymorphism in the susceptibility to or clinical manifestations of Chagas disease in these studied cohorts.
Collapse
Affiliation(s)
- O A Torres
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|