1
|
Koks S, Wood DJ, Reimann E, Awiszus F, Lohmann CH, Bertrand J, Prans E, Maasalu K, Märtson A. The Genetic Variations Associated With Time to Aseptic Loosening After Total Joint Arthroplasty. J Arthroplasty 2020; 35:981-988. [PMID: 31791832 DOI: 10.1016/j.arth.2019.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/07/2019] [Accepted: 11/04/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Total joint arthroplasty (TJA) is one of the most frequent surgical procedures performed in modern hospitals, and aseptic loosening is the most common indication for revision surgeries. We conducted a systemic exploration of potential genetic determinants for early aseptic loosening. METHODS Data from 423 patients undergoing TJA were collected and analyzed. Three analytical groups were formed based on joint arthroplasty status. Group 1 were TJA patients without symptoms of aseptic loosening of at least 1 year, group 2 were patients with primary TJA, and group 3 were patients receiving revision surgery because of aseptic loosening. Genome-wide genotyping comparing genotype frequencies between patients with and without aseptic loosening (group 3 vs groups 1 and 2) was conducted. A case-control association analysis and linear modeling were applied to identify the impact of the identified genes on implant survival with time to the revision as an outcome measure. RESULTS We identified 52 single-nucleotide polymorphisms (SNPs) with a genome-wide suggestive P value less than 10-5 to be associated with the implant loosening. The most remarkable odds ratios (OR) were found with the variations in the IFIT2/IFIT3 (OR, 21.6), CERK (OR, 12.6), and PAPPA (OR, 14.0) genes. Variations in the genotypes of 4 SNPs-rs115871127, rs16823835, rs13275667, and rs2514486-predicted variability in the time to aseptic loosening. The time to aseptic loosening varied from 8 to 16 years depending on the genotype, indicating a substantial effect of genetic variance. CONCLUSION Development of the aseptic loosening is associated with several genetic variations and we identified at least 4 SNPs with a significant effect on the time for loosening. These data could help to develop a personalized approach for TJA and loosening management.
Collapse
Affiliation(s)
- Sulev Koks
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia; The Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - David J Wood
- Department of Surgery, The University of Western Australia, Nedlands, WA, Australia
| | - Ene Reimann
- Department of Pathophysiology, University of Tartu, Tartu, Estonia
| | - Friedemann Awiszus
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Christoph H Lohmann
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Ele Prans
- Department of Pathophysiology, University of Tartu, Tartu, Estonia
| | - Katre Maasalu
- Department of Traumatology and Orthopaedics, University of Tartu, Tartu, Estonia; Clinic of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia
| | - Aare Märtson
- Department of Traumatology and Orthopaedics, University of Tartu, Tartu, Estonia; Clinic of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia
| |
Collapse
|
2
|
Burnstock G, Knight GE. The potential of P2X7 receptors as a therapeutic target, including inflammation and tumour progression. Purinergic Signal 2018; 14:1-18. [PMID: 29164451 PMCID: PMC5842154 DOI: 10.1007/s11302-017-9593-0] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/01/2017] [Indexed: 12/22/2022] Open
Abstract
Seven P2X ion channel nucleotide receptor subtypes have been cloned and characterised. P2X7 receptors (P2X7R) are unusual in that there are extra amino acids in the intracellular C terminus. Low concentrations of ATP open cation channels sometimes leading to cell proliferation, whereas high concentrations of ATP open large pores that release inflammatory cytokines and can lead to apoptotic cell death. Since many diseases involve inflammation and immune responses, and the P2X7R regulates inflammation, there has been recent interest in the pathophysiological roles of P2X7R and the potential of P2X7R antagonists to treat a variety of diseases. These include neurodegenerative diseases, psychiatric disorders, epilepsy and a number of diseases of peripheral organs, including the cardiovascular, airways, kidney, liver, bladder, skin and musculoskeletal. The potential of P2X7R drugs to treat tumour progression is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK.
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Australia.
- Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia.
| | - Gillian E Knight
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK
| |
Collapse
|
3
|
Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017; 8:661. [PMID: 28993732 PMCID: PMC5622197 DOI: 10.3389/fphar.2017.00661] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990's when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson's disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, United Kingdom
- Department of Pharmacology and Therapeutics, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
4
|
Purinergic signalling in autoimmunity: A role for the P2X7R in systemic lupus erythematosus? Biomed J 2016; 39:326-338. [PMID: 27884379 PMCID: PMC6138817 DOI: 10.1016/j.bj.2016.08.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/29/2016] [Accepted: 08/08/2016] [Indexed: 12/11/2022] Open
Abstract
Purinergic signalling plays a crucial role in immunity and autoimmunity. Among purinergic receptors, the P2X7 receptor (P2X7R) has an undisputed role as it is expressed to high level by immune cells, triggers cytokine release and modulates immune cell differentiation. In this review, we focus on evidence supporting a possible role of the P2X7R in the pathogenesis of systemic lupus erythematosus (SLE).
Collapse
|
5
|
Blockade of NF-κB and MAPK pathways by ulinastatin attenuates wear particle-stimulated osteoclast differentiation in vitro and in vivo. Biosci Rep 2016; 36:BSR20160234. [PMID: 27638499 PMCID: PMC5091469 DOI: 10.1042/bsr20160234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/15/2016] [Indexed: 11/17/2022] Open
Abstract
Ulinastatin, a urinary trypsin inhibitor (UTI), is widely used to clinically treat lipopolysaccharide (LPS)-related inflammatory disorders recently. Adherent pathogen-associated molecular patterns (PAMPs), of which LPS is the best-studied and classical endotoxin produced by Gram-negative bacteria, act to increase the biological activity of osteopedic wear particles such as polymethyl-methacrylate (PMMA) and titanium particles in cell culture and animal models of implant loosening. The present study was designed to explore the inhibitory effect of UTI on osteoclastogenesis and inflammatory osteolysis in LPS/PMMA-mediated Raw264.7 cells and murine osteolysis models, and investigate the potential mechanism. The in vitro study was divided into the control group, LPS-induced group, PMMA-stimulated group and UTI-pretreated group. UTI (500 or 5000 units/ml) pretreatment was followed by PMMA (0.5 mg/ml) with adherent LPS. The levels of inflammatory mediators including tumour necrosis factor-α (TNF-α), matrixmetallo-proteinases-9 (MMP-9) and interleukin-6 (IL-6), receptor activation of nuclear factor NF-κB (RANK), and cathepsin K were examined and the amounts of phosphorylated I-κB, MEK, JNK and p38 were measured. In vivo study, murine osteolysis models were divided into the control group, PMMA-induced group and UTI-treated group. UTI (500 or 5000 units/kg per day) was injected intraperitoneally followed by PMMA suspension with adherent LPS (2×108 particles/25 μl) in the UTI-treated group. The thickness of interfacial membrane and the number of infiltrated inflammatory cells around the implants were assessed, and bone mineral density (BMD), trabecular number (Tb.N.), trabecular thickness (Tb.Th.), trabecular separation (Tb.Sp.), relative bone volume over total volume (BV/TV) of distal femur around the implants were calculated. Our results showed that UTI pretreatment suppressed the secretion of proinflammatory cytokines including MMP-9, IL-6, TNF-α, RANK and cathepsin K through down-regulating the activity of nuclear factor kappa B (NF-κB) and MAPKs partly in LPS/PMMA-mediated Raw264.7 cells. Finally, UTI treatment decreased the inflammatory osteolysis reaction in PMMA-induced murine osteolysis models. In conclusion, these results confirm the anti-inflammatory potential of UTI in the prevention of particle disease.
Collapse
|
6
|
Duan S, Yu J, Han Z, Cheng Z, Liang P. Association Between P2RX7 Gene and Hepatocellular Carcinoma Susceptibility: A Case-Control Study in a Chinese Han Population. Med Sci Monit 2016; 22:1916-23. [PMID: 27272229 PMCID: PMC4915328 DOI: 10.12659/msm.895763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common types of liver cancer. It is hypothesized that P2RX7 genetic polymorphisms have strong association with HCC susceptibility. Therefore, a case-control study was designed and performed to verify the association between P2RX7 gene polymorphisms and HCC susceptibility. Material/Methods A total of 646 subjects were recruited in our study, including 323 HCC patients and 323 healthy controls. Five gene polymorphisms, −762C>T (rs2393799), 946G>A (rs28360457), 1513A>C (rs3751143), 1068G>A (rs1718119), and 1096C>G (rs2230911), were selected. Odds ratio (ORs) and 95% confidence interval (CI) were used to quantify the association between P2RX7 gene polymorphisms and the susceptibility to HCC. All tests were performed using SPSS 20 and a 2-sided P value of less than 0.05 was considered to be statistically significant. Results Our results suggest that allelic frequencies of these 5 SNPs all conformed to Hardy-Weinberg equilibrium (HWE). There was no significant difference in genotype and allele distributions of −762C>T and 1096C>G between the case group and the control group. However, an increased risk of HCC was associated with 946G>A (A vs. G: OR=1.48, 95%CI=1.09–2.01, P=0.013; GA+AA vs. GG: OR=1.46, 95%CI=1.03–2.07, P=0.033). A similar increased risk was associated with 1513A>C polymorphism (C vs. A: OR=1.37, 95%CI=1.05–1.79, P=0.021; AC+CC vs. AA: OR=1.40, 95%CI=1.01–1.93, P=0.041). On the other hand, a decreased risk of HCC was associated with gene polymorphism of 1068G>A (A vs. G: OR=0.68, 95%CI=0.51–0.91, P=0.010; GA+AA vs. GG: OR=0.68, 95%CI=0.49–0.96, P=0.027; AA vs. GG: OR=0.42, 95%CI=0.18–0.99, P=0.048). Conclusions Our results suggest that 3 of the 5 polymorphisms of P2RX7 described above (1513A>C, 946G>A, and 1068G>A) are significantly associated with HCC susceptibility in a Chinese Han population. Studies with larger sample sizes are recommended to confirm whether our results will be applicable to different ethnic populations in China.
Collapse
Affiliation(s)
- Shaobo Duan
- , Medical Center of Tsinghua University, Beijing, China (mainland)
| | - Jie Yu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China (mainland)
| | - Zhiyu Han
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China (mainland)
| | - Zhigang Cheng
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China (mainland)
| | - Ping Liang
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China (mainland)
| |
Collapse
|
7
|
Do genetic susceptibility, Toll-like receptors, and pathogen-associated molecular patterns modulate the effects of wear? Clin Orthop Relat Res 2014; 472:3709-17. [PMID: 25034980 PMCID: PMC4397765 DOI: 10.1007/s11999-014-3786-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Overwhelming evidence supports the concept that wear particles are the primary initiator of aseptic loosening of orthopaedic implants. It is likely, however, that other factors modulate the biologic response to wear particles. This review focuses on three potential other factors: genetic susceptibility, Toll-like receptors (TLRs), and bacterial pathogen-associated molecular patterns (PAMPs). WHERE ARE WE NOW?: Considerable evidence is emerging that both genetic susceptibility and TLR activation are important factors that modulate the biologic response to wear particles, but it remains controversial whether bacterial PAMPs also do so. WHERE DO WE NEED TO GO?: Detailed understanding of the roles of these other factors may lead to identification of novel therapeutic targets for patients with aseptic loosening. HOW DO WE GET THERE?: Highest priority should be given to polymorphism replication studies with large numbers of patients and studies to replicate the reported correlation between bacterial biofilms and the severity of aseptic loosening.
Collapse
|
8
|
Pajarinen J, Lin TH, Sato T, Yao Z, Goodman SB. Interaction of Materials and Biology in Total Joint Replacement - Successes, Challenges and Future Directions. J Mater Chem B 2014; 2:7094-7108. [PMID: 25541591 PMCID: PMC4273175 DOI: 10.1039/c4tb01005a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Total joint replacement (TJR) has revolutionized the treatment of end-stage arthritic disorders. This success is due, in large part, to a clear understanding of the important interaction between the artificial implant and the biology of the host. All surgical procedures in which implants are placed in the body evoke an initial inflammatory reaction, which generally subsides over several weeks. Thereafter, a series of homeostatic events occur leading to progressive integration of the implant within bone and the surrounding musculoskeletal tissues. The eventual outcome of the operation is dependent on the characteristics of the implant, the precision of the surgical technique and operative environment, and the biological milieu of the host. If these factors and events are not optimal, adverse events can occur such as the development of chronic inflammation, progressive bone loss due to increased production of degradation products from the implant (periprosthetic osteolysis), implant loosening or infection. These complications can lead to chronic pain and poor function of the joint reconstruction, and may necessitate revision surgery or removal of the prosthesis entirely. Recent advances in engineering, materials science, and the immunological aspects associated with orthopaedic implants have fostered intense research with the hope that joint replacements will last a lifetime, and facilitate pain-free, normal function.
Collapse
Affiliation(s)
- J Pajarinen
- Department of Orthopaedic Surgery, Orthopaedic Surgery Laboratories, Stanford University, Stanford, CA, USA
| | - T-H Lin
- Department of Orthopaedic Surgery, Orthopaedic Surgery Laboratories, Stanford University, Stanford, CA, USA
| | - T Sato
- Department of Orthopaedic Surgery, Orthopaedic Surgery Laboratories, Stanford University, Stanford, CA, USA
| | - Z Yao
- Department of Orthopaedic Surgery, Orthopaedic Surgery Laboratories, Stanford University, Stanford, CA, USA
| | - S B Goodman
- Department of Orthopaedic Surgery, Orthopaedic Surgery Laboratories, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Orthopaedic Surgery Laboratories, Stanford University, Stanford, CA, USA
| |
Collapse
|
9
|
Burnstock G, Arnett TR, Orriss IR. Purinergic signalling in the musculoskeletal system. Purinergic Signal 2013; 9:541-72. [PMID: 23943493 PMCID: PMC3889393 DOI: 10.1007/s11302-013-9381-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/12/2013] [Indexed: 12/11/2022] Open
Abstract
It is now widely recognised that extracellular nucleotides, signalling via purinergic receptors, participate in numerous biological processes in most tissues. It has become evident that extracellular nucleotides have significant regulatory effects in the musculoskeletal system. In early development, ATP released from motor nerves along with acetylcholine acts as a cotransmitter in neuromuscular transmission; in mature animals, ATP functions as a neuromodulator. Purinergic receptors expressed by skeletal muscle and satellite cells play important pathophysiological roles in their development or repair. In many cell types, expression of purinergic receptors is often dependent on differentiation. For example, sequential expression of P2X5, P2Y1 and P2X2 receptors occurs during muscle regeneration in the mdx model of muscular dystrophy. In bone and cartilage cells, the functional effects of purinergic signalling appear to be largely negative. ATP stimulates the formation and activation of osteoclasts, the bone-destroying cells. Another role appears to be as a potent local inhibitor of mineralisation. In osteoblasts, the bone-forming cells, ATP acts via P2 receptors to limit bone mineralisation by inhibiting alkaline phosphatase expression and activity. Extracellular ATP additionally exerts significant effects on mineralisation via its hydrolysis product, pyrophosphate. Evidence now suggests that purinergic signalling is potentially important in several bone and joint disorders including osteoporosis, rheumatoid arthritis and cancers. Strategies for future musculoskeletal therapies might involve modulation of purinergic receptor function or of the ecto-nucleotidases responsible for ATP breakdown or ATP transport inhibitors.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
10
|
Wesselius A, Bours MJL, Henriksen Z, Syberg S, Petersen S, Schwarz P, Jørgensen NR, van Helden S, Dagnelie PC. Association of P2X7 receptor polymorphisms with bone mineral density and osteoporosis risk in a cohort of Dutch fracture patients. Osteoporos Int 2013; 24:1235-46. [PMID: 22776862 PMCID: PMC3604588 DOI: 10.1007/s00198-012-2059-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/13/2012] [Indexed: 10/29/2022]
Abstract
UNLABELLED The P2X7 receptor is thought to be involved in bone physiology in a pro-osteogenic manner. Therefore, we examined associations between genetic variations in the P2X7 receptor gene and bone mineral density (BMD). We found an association between four non-synonymous polymorphism of the human P2X7 receptor and the risk of osteoporosis. INTRODUCTION The purpose of this study was to determine whether genetic variation in the P2X7 receptor gene (P2RX7) is associated with decreased BMD and risk of osteoporosis in fracture patients. METHODS Six hundred ninety women and 231 men aged≥50 years were genotyped for 15 non-synonymous P2RX7 SNPs. BMD was measured at the total hip, lumbar spine and femoral neck. RESULTS Four non-synonymous SNPs were associated with BMD. The Ala348Thr gain-of-function polymorphism was associated with increased BMD values at the lumbar spine (p=0.012). Decreased hip BMD values were associated with two loss-of-function SNPs in the P2RX7, i.e., in subjects homozygous for the Glu496Ala polymorphism as well as in subjects carrying at least one variant allele of the Gly150Arg polymorphism (p=0.018 and p=0.011; respectively). In men, we showed that subjects either heterozygous or homozygous for the Gln460Arg gain-of-function polymorphism in the P2RX7 had a significantly 40% decrease in risk of a lower T-score value (OR=0.58 [95%CI, 0.33-1.00]). CONCLUSION Thus, genetic aberrations of P2X7R function are associated with lower BMD and increased osteoporosis risk. Therefore, detection of non-synonymous SNPs within the P2RX7 might be useful for osteoporosis risk estimation at an early stage, potentially enabling better osteoporosis prevention and treatment.
Collapse
Affiliation(s)
- A Wesselius
- Department of Epidemiology, School for Public Health and Primary Care (CAPHRI), Maastricht University, Peter Debyeplein 1, P.O. Box 616, 6200, MD, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Husted LB, Harsløf T, Stenkjær L, Carstens M, Jørgensen NR, Langdahl BL. Functional polymorphisms in the P2X7 receptor gene are associated with osteoporosis. Osteoporos Int 2013; 24:949-59. [PMID: 22707062 DOI: 10.1007/s00198-012-2035-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 04/30/2012] [Indexed: 10/28/2022]
Abstract
UNLABELLED The P2X(7) receptor is an ATP-gated cation channel. We investigated the effect of both loss-of-function and gain-of-function polymorphisms in the P2X(7) receptor gene on BMD and risk of vertebral fractures and found that five polymorphisms and haplotypes containing three of these polymorphisms were associated with BMD and fracture risk. INTRODUCTION The P2X(7) receptor is an ATP-gated cation channel. P2X(7) receptor knockout mice have reduced total bone mineral content, and because several functional polymorphisms have been identified in the human P2X(7) receptor gene, we wanted to investigate the effect of these polymorphisms on BMD and risk of vertebral fractures in a case-control study including 798 individuals. METHODS Genotyping was carried out using TaqMan assays. BMD was measured using dual energy X-ray absorptiometry, and vertebral fractures were assessed by lateral spinal X-rays. RESULTS The rare allele of a splice site polymorphism, 151 + 1: G-T, was associated with increased fracture risk and reduced BMD in women. Two other loss-of-function polymorphisms, Glu496Ala and Gly150Arg, were also associated with BMD. The Glu496Ala variant allele was associated with decreased lumbar spine BMD in women and decreased total hip BMD in men. The 150Arg allele was associated with decreased total hip BMD in women and men combined. The minor allele of the gain-of-function polymorphism, Ala348Thr, was associated with reduced fracture risk and increased BMD at all sites in men. The Gln460Arg variant allele, which has been associated with increased receptor function in monocytes, was associated with increased total hip BMD in women. With the exception of His155Tyr for which we found conflicting results in men and women, our results are consistent with the phenotype of the knockout mouse. Analysis of a haplotype containing Ala348Thr, Gln460Arg, and Glu496Ala showed that the effects of the haplotypes on BMD and fracture were driven by Ala348Thr in men and by Gln460Arg and Glu496Ala in women. CONCLUSION In conclusion, we found that functional polymorphisms in the P2X(7) receptor gene and haplotypes containing three of these polymorphisms are associated with osteoporosis.
Collapse
Affiliation(s)
- L B Husted
- Department of Endocrinology and Internal Medicine, THG, Aarhus University Hospital, Tage-Hansens Gade 2, 8000 Aarhus C, Denmark.
| | | | | | | | | | | |
Collapse
|
12
|
Rumney RMH, Wang N, Agrawal A, Gartland A. Purinergic signalling in bone. Front Endocrinol (Lausanne) 2012; 3:116. [PMID: 23049524 PMCID: PMC3446723 DOI: 10.3389/fendo.2012.00116] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 09/04/2012] [Indexed: 12/11/2022] Open
Abstract
Purinergic signaling in bone was first proposed in the early 1990s with the observation that extracellular ATP could modulate events crucial to the normal functioning of bone cells. Since then the expression of nearly all the P2Y and P2X receptors by osteoblasts and osteoclasts has been reported, mediating multiple processes including cell proliferation, differentiation, function, and death. This review will highlight the most recent developments in the field of purinergic signaling in bone, with a special emphasis on recent work resulting from the European Framework 7 funded collaboration ATPBone, as well as Arthritis Research UK and Bone Research Society supported projects.
Collapse
Affiliation(s)
| | | | | | - Alison Gartland
- Department of Human Metabolism, The Mellanby Centre for Bone Research, The University of SheffieldSheffield, UK
| |
Collapse
|
13
|
Navratilova Z, Gallo J, Mrazek F, Petrek M. Genetic variation in key molecules of the Th-17 immune response is not associated with risk for prosthetic joint infection in a Czech population. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2012; 156:248-52. [DOI: 10.5507/bp.2012.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 02/15/2012] [Indexed: 11/23/2022] Open
|
14
|
Gallo J, Goodman SB, Konttinen YT, Raska M. Particle disease: biologic mechanisms of periprosthetic osteolysis in total hip arthroplasty. Innate Immun 2012; 19:213-24. [PMID: 22751380 DOI: 10.1177/1753425912451779] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Numerous studies provide detailed insight into the triggering and amplification mechanisms of the inflammatory response associated with prosthetic wear particles, promoting final dominance of bone resorption over bone formation in multiple bone multicellular units around an implant. In fact, inflammation is a highly regulated process tightly linked to simultaneous stimulation of tissue protective and regenerative mechanisms in order to prevent collateral damage of periprosthetic tissues. A variety of cytokines, chemokines, hormones and specific cell populations, including macrophages, dendritic and stem cells, attempt to balance tissue architecture and minimize inflammation. Based on this fact, we postulate that the local tissue homeostatic mechanisms more effectively regulate the pro-inflammatory/pro-osteolytic cells/pathways in patients with none/mild periprosthetic osteolysis (PPOL) than in patients with severe PPOL. In this line of thinking, 'particle disease theory' can be understood, at least partially, in terms of the failure of local tissue homeostatic mechanisms. As a result, we envision focusing current research on homeostatic mechanisms in addition to traditional efforts to elucidate details of pro-inflammatory/pro-osteolytic pathways. We believe this approach could open new avenues for research and potential therapeutic strategies.
Collapse
Affiliation(s)
- Jiri Gallo
- Department of Orthopaedics, University Hospital, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
| | | | | | | |
Collapse
|
15
|
Wiley JS, Sluyter R, Gu BJ, Stokes L, Fuller SJ. The human P2X7 receptor and its role in innate immunity. ACTA ACUST UNITED AC 2012; 78:321-32. [PMID: 21988719 DOI: 10.1111/j.1399-0039.2011.01780.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The human P2X7 receptor is a two-transmembrane ionotropic receptor which has a ubiquitous distribution and is most highly expressed on immune cells. In macrophages and similar myeloid cells primed by lipopolysaccharide (LPS), activation of P2X7 by extracellular ATP opens a cation channel/pore allowing massive K+ efflux associated with processing and secretion of pro-inflammatory cytokines interleukin (IL)-1β and IL-18. A variety of other downstream effects follows P2X7 activation over several minutes including shedding of certain surface molecules, membrane blebbing, microvesicle/exosome release and apoptosis of the cell. High concentrations of ATP (>100 µM) are required to activate P2X7 but it remains unclear where these levels exist, other than in inflammatory foci or confined spaces such as in bone. A variety of potent selective antagonists of P2X7 activation have recently become available, allowing clinical trials to be undertaken in inflammatory and immune-mediated disorders. Proteomic studies have shown that P2X7 exists as a large multiprotein complex which includes non-muscle myosin heavy chain and other elements of the cytoskeleton. In the absence of its ATP ligand and serum, P2X7 has an alternate function in the recognition and phagocytosis of non-opsonized foreign particles, including bacteria and apoptotic cells. The P2RX7 gene has many polymorphic variants and isoforms which increase or decrease function of the receptor. Genetic association studies have linked loss-of-function polymorphisms with reactivation of latent tuberculosis as well as symptomatic infection with certain other obligate intracellular pathogens. The many roles involving P2X7 suggest that this receptor is essential to fundamental aspects of the innate immune response.
Collapse
Affiliation(s)
- J S Wiley
- Ion Channels and Disease Section, Florey Neuroscience Institutes, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | |
Collapse
|
16
|
Jørgensen NR, Husted LB, Skarratt KK, Stokes L, Tofteng CL, Kvist T, Jensen JEB, Eiken P, Brixen K, Fuller S, Clifton-Bligh R, Gartland A, Schwarz P, Langdahl BL, Wiley JS. Single-nucleotide polymorphisms in the P2X7 receptor gene are associated with post-menopausal bone loss and vertebral fractures. Eur J Hum Genet 2012; 20:675-81. [PMID: 22274585 DOI: 10.1038/ejhg.2011.253] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The purinergic P2X7 receptor has a major role in the regulation of osteoblast and osteoclast activity and changes in receptor function may therefore affect bone mass in vivo. The aim of this study was to determine the association of non-synonymous single-nucleotide polymorphisms in the P2RX7 gene to bone mass and fracture incidence in post-menopausal women. A total of 1694 women (aged 45-58) participating in the Danish Osteoporosis Prevention Study were genotyped for 12 functional P2X7 receptor variants. Bone mineral density was determined at baseline and after 10 years. In addition, vertebral fracture incidence was documented at 10 years. We found that the rate of bone loss was clearly associated with the Arg307Gln amino acid substitution such that individuals heterozygous for this polymorphism had a 40% increased rate of bone loss. Furthermore, individuals carrying the Ile568Asn variant allele had increased bone loss. In contrast, the Gln460Arg polymorphism was associated with protection against bone loss. The Ala348Thr polymorphism was associated with a lower vertebral fracture incidence 10 years after menopause. Finally, we developed a risk model, which integrated P2RX7 genotypes. Using this model, we found a clear association between the low-risk (high-P2X7 function) alleles and low rate of bone loss. Conversely, high-risk (reduced P2X7 function) alleles were associated with a high rate of bone loss. In conclusion, an association was demonstrated between variants that reduce P2X7 receptor function and increased rate of bone loss. These data support that the P2X7 receptor is important in regulation of bone mass.
Collapse
Affiliation(s)
- Niklas R Jørgensen
- Research Center for Ageing and Osteoporosis, Department of Clinical Biochemistry, Glostrup University Hospital, Glostrup, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Polymorphisms in the P2X7 receptor gene are associated with low lumbar spine bone mineral density and accelerated bone loss in post-menopausal women. Eur J Hum Genet 2012; 20:559-64. [PMID: 22234152 PMCID: PMC3330223 DOI: 10.1038/ejhg.2011.245] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The P2X7 receptor gene (P2RX7) is highly polymorphic with five previously described loss-of-function (LOF) single-nucleotide polymorphisms (SNP; c.151+1G>T, c.946G>A, c.1096C>G, c.1513A>C and c.1729T>A) and one gain-of-function SNP (c.489C>T). The purpose of this study was to determine whether the functional P2RX7 SNPs are associated with lumbar spine (LS) bone mineral density (BMD), a key determinant of vertebral fracture risk, in post-menopausal women. We genotyped 506 post-menopausal women from the Aberdeen Prospective Osteoporosis Screening Study (APOSS) for the above SNPs. Lumbar spine BMD was measured at baseline and at 6–7 year follow-up. P2RX7 genotyping was performed by homogeneous mass extension. We found association of c.946A (p.Arg307Gln) with lower LS-BMD at baseline (P=0.004, β=−0.12) and follow-up (P=0.002, β=−0.13). Further analysis showed that a combined group of subjects who had LOF SNPs (n=48) had nearly ninefold greater annualised percent change in LS-BMD than subjects who were wild type at the six SNP positions (n=84; rate of loss=−0.94%/year and −0.11%/year, respectively, P=0.0005, unpaired t-test). This is the first report that describes association of the c.946A (p.Arg307Gln) LOF SNP with low LS-BMD, and that other LOF SNPs, which result in reduced or no function of the P2X7 receptor, may contribute to accelerated bone loss. Certain polymorphic variants of P2RX7 may identify women at greater risk of developing osteoporosis.
Collapse
|
18
|
Del Buono A, Denaro V, Maffulli N. Genetic susceptibility to aseptic loosening following total hip arthroplasty: a systematic review. Br Med Bull 2012; 101:39-55. [PMID: 21652593 DOI: 10.1093/bmb/ldr011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction Aseptic loosening is the most common cause of total hip arthroplasty (THA) failure and revision surgery. Genetic polymorphisms could be determinant factors for implant loosening. Source of data We performed a comprehensive search of Medline, CINAHL, Googlescholar, Embase and Cochrane databases, using various combinations of the keyword terms 'aseptic loosening', 'gene', 'hip arthoplasty', 'genetics', 'loosening'. Twelve studies detailing the genetic investigation of patients with aseptic loosening of a THA were identified. Areas of agreement SNPs of GNAS1, TNF-238 A allele, TNF-α promoter (-308G→A) transition, IL6-174 G allele, interleukin (IL)-6 (-597) and (-572), MMP-1-promoting gene, C/C genotype for the MMP1, MT1-MMP, MMP-2, transforming growth factor-beta1 signal sequence (29T→C) transitions, A/A genotype for the OPG-163, and MBL were overexpressed in patients with aseptic loosening and periprosthetic osteolysis. Areas of controversy Data from single centre studies do not allow one to compare the results of different studies. Conclusion Several gene pathways and genes contribute to the genetic susceptibility to aseptic loosening following THA. Further studies will enhance the understanding of prosthesis failure, and may inform and direct pharmaceutical interventions. Growing points Further multi-centre prospective studies are necessary to confirm the general validity of the findings reported. Single-centre findings should be replicated in other centres and populations to open new avenues for pre-surgical genetic testing and to investigate immune response modulation in THA. Areas timely for developing research Research in this field could lead to better understanding of mechanisms behind aseptic osteolysis, and improve the results of THA.
Collapse
Affiliation(s)
- Angelo Del Buono
- Department of Orthopaedic and Trauma Surgery, Campus Biomedico University of Rome,Via Alvaro del Portillo, Rome, Italy
| | | | | |
Collapse
|
19
|
Abstract
Patient phenotypes in pharmacological pain treatment varies between individuals, which could be partly assigned to their genotypes regarding the targets of classical analgesics (OPRM1, PTGS2) or associated signalling pathways (KCNJ6). Translational and genetic research have identified new targets, for which new analgesics are being developed. This addresses voltage-gated sodium, calcium and potassium channels, for which SCN9A, CACNA1B, KCNQ2 and KCNQ3, respectively, are primary gene candidates because they code for the subunits of the respective channels targeted by analgesics currently in clinical development. Mutations in voltage gated transient receptor potential (TRPV) channels are known from genetic pain research and may modulate the effects of analgesics under development targeting TRPV1 or TRPV3. To this add ligand-gated ion channels including nicotinic acetylcholine receptors, ionotropic glutamate-gated receptors and ATP-gated purinergic P2X receptors with most important subunits coded by CHRNA4, GRIN2B and P2RX7. Among G protein coupled receptors, δ-opioid receptors (coded by OPRD1), cannabinoid receptors (CNR1 and CNR2), metabotropic glutamate receptors (mGluR5 coded by GRM5), bradykinin B(1) (BDKRB1) and 5-HT(1A) (HTR1A) receptors are targeted by new analgesic substances. Finally, nerve growth factor (NGFB), its tyrosine kinase receptor (NTRK1) and the fatty acid amide hydrolase (FAAH) have become targets of interest. For most of these genes, functional variants have been associated with neuro-psychiatric disorders and not yet with analgesia. However, research on the genetic modulation of pain has already identified variants in these genes, relative to pain, which may facilitate the pharmacogenetic assessments of new analgesics. The increased number of candidate pharmacogenetic modulators of analgesic actions may open opportunities for the broader clinical implementation of genotyping information.
Collapse
Affiliation(s)
- Jörn Lötsch
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University, Frankfurt am Main, Germany.
| | | |
Collapse
|