1
|
Alipour S, Kazemi T, Sadeghi MR, Heris JA, Masoumi J, Naseri B, Baghbani E, Sohrabi S, Baradaran B. Glyburide-treated human monocyte-derived dendritic cells loaded with insulin represent tolerogenic features with anti-inflammatory responses and modulate autologous T cell responses in vitro. Int Immunopharmacol 2024; 126:111230. [PMID: 37979448 DOI: 10.1016/j.intimp.2023.111230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Tolerogenic dendritic cells (TolDCs) are attractive therapeutic options for autoimmune disorders because they suppress autologous T-cell responses. Dendritic cells (DCs) are equipped with pattern recognition receptors (PRR), including nucleotide-binding and oligomerization domain-like receptors (NLRs) such as NLRP3. Abnormal NLRP3 activation has been reported to be correlated with the occurrence of autoimmune disorders. Accordingly, we hypothesized that glyburide treatment of DCs by blocking the ATP-sensitive K+ (kATP) channels generates TolDCs by inhibiting NLRP3. Insulin was even loaded on a group of glyburide-treated mature DCs (mDCs) to investigate the antigen (Ag) loading effects on glyburide-treated mDCs' phenotypical and functional features. Consequently, T lymphocytes' mediated responses ensuing co-culture of them with control mDCs, insulin loaded and unloaded glyburide treated mDCs were evaluated to determine generated TolDCs' capacity in inhibition of T cell responses that are inducer of destruction in insulin-producing pancreatic beta cells in Type 1 Diabetes Mellitus (T1DM). Our findings indicated that glyburide generates desirable TolDCs with decreased surface expression of maturation and Ag presentation related markers and diminished level of inflammatory but increased level of anti-inflammatory cytokines, which even insulin loading demonstrated more anti-inflammatory functions. In addition, co-cultured T cells showed regulatory or T helper 2 phenotype instead of T helper 1 features. Our findings suggested that insulin-loaded and unloaded glyburide-treated DCs are promising therapeutic approaches for autoimmune patients, specifically DCs loaded with insulin for T1DM patients. However, further research is required before this technique can be applied in clinical practice.
Collapse
Affiliation(s)
- Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Sadeghi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Sohrabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Bertheloot D, Wanderley CW, Schneider AH, Schiffelers LD, Wuerth JD, Tödtmann JM, Maasewerd S, Hawwari I, Duthie F, Rohland C, Ribeiro LS, Jenster LM, Rosero N, Tesfamariam YM, Cunha FQ, Schmidt FI, Franklin BS. Nanobodies dismantle post-pyroptotic ASC specks and counteract inflammation in vivo. EMBO Mol Med 2022; 14:e15415. [PMID: 35438238 PMCID: PMC9174887 DOI: 10.15252/emmm.202115415] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammasomes sense intracellular clues of infection, damage, or metabolic imbalances. Activated inflammasome sensors polymerize the adaptor ASC into micron‐sized “specks” to maximize caspase‐1 activation and the maturation of IL‐1 cytokines. Caspase‐1 also drives pyroptosis, a lytic cell death characterized by leakage of intracellular content to the extracellular space. ASC specks are released among cytosolic content, and accumulate in tissues of patients with chronic inflammation. However, if extracellular ASC specks contribute to disease, or are merely inert remnants of cell death remains unknown. Here, we show that camelid‐derived nanobodies against ASC (VHHASC) target and disassemble post‐pyroptotic inflammasomes, neutralizing their prionoid, and inflammatory functions. Notably, pyroptosis‐driven membrane perforation and exposure of ASC specks to the extracellular environment allowed VHHASC to target inflammasomes while preserving pre‐pyroptotic IL‐1β release, essential to host defense. Systemically administrated mouse‐specific VHHASC attenuated inflammation and clinical gout, and antigen‐induced arthritis disease. Hence, VHHASC neutralized post‐pyroptotic inflammasomes revealing a previously unappreciated role for these complexes in disease. VHHASC are the first biologicals that disassemble pre‐formed inflammasomes while preserving their functions in host defense.
Collapse
Affiliation(s)
- Damien Bertheloot
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Carlos Ws Wanderley
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil.,Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Ayda H Schneider
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil.,Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Lisa Dj Schiffelers
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jennifer D Wuerth
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jan Mp Tödtmann
- Core Facility Nanobodies, Medical Faculty, University of Bonn, Bonn, Germany
| | - Salie Maasewerd
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Ibrahim Hawwari
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Fraser Duthie
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Cornelia Rohland
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Lucas S Ribeiro
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Lea-Marie Jenster
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Nathalia Rosero
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Yonas M Tesfamariam
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Fernando Q Cunha
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil.,Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Florian I Schmidt
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany.,Core Facility Nanobodies, Medical Faculty, University of Bonn, Bonn, Germany
| | - Bernardo S Franklin
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
3
|
Purinergic Signaling Within the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:73-87. [PMID: 33123994 DOI: 10.1007/978-3-030-47189-7_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Accumulating studies have clearly demonstrated high concentrations of extracellular ATP (eATP) within the tumor microenvironment (TME). Implications of these findings are multifold as ATP-mediated purinergic signaling has been shown to mediate a variety of cancer-related processes, including cell migration, resistance to cytotoxic therapy, and immune regulation. Broad roles of ATP within the tumor microenvironment are linked to the abundance of ATP-regulated purinergic receptors on cancer and stromal and various immune cell types, as well as on the importance of ATP release and signaling in the regulation of multiple cellular processes. ATP release and downstream purinergic signaling are emerging as a central regulator of tumor growth and an important target for therapeutic intervention. In this chapter, we summarize the major roles of purinergic signaling in the tumor microenvironment with a specific focus on its critical roles in the induction of immunogenic cancer cell death and immune modulation.
Collapse
|
4
|
Lecoeur H, Rosazza T, Kokou K, Varet H, Coppée JY, Lari A, Commère PH, Weil R, Meng G, Milon G, Späth GF, Prina E. Leishmania amazonensis Subverts the Transcription Factor Landscape in Dendritic Cells to Avoid Inflammasome Activation and Stall Maturation. Front Immunol 2020; 11:1098. [PMID: 32582184 PMCID: PMC7295916 DOI: 10.3389/fimmu.2020.01098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Leishmania parasites are the causative agents of human leishmaniases. They infect professional phagocytes of their mammalian hosts, including dendritic cells (DCs) that are essential for the initiation of adaptive immune responses. These immune functions strictly depend on the DC's capacity to differentiate from immature, antigen-capturing cells to mature, antigen-presenting cells—a process accompanied by profound changes in cellular phenotype and expression profile. Only little is known on how intracellular Leishmania affects this important process and DC transcriptional regulation. Here, we investigate these important open questions analyzing phenotypic, cytokine profile and transcriptomic changes in murine, immature bone marrow-derived DCs (iBMDCs) infected with antibody-opsonized and non-opsonized Leishmania amazonensis (L.am) amastigotes. DCs infected by non-opsonized amastigotes remained phenotypically immature whereas those infected by opsonized parasites displayed a semi-mature phenotype. The low frequency of infected DCs in culture led us to use DsRed2-transgenic parasites allowing for the enrichment of infected BMDCs by FACS. Sorted infected DCs were then subjected to transcriptomic analyses using Affymetrix GeneChip technology. Independent of parasite opsonization, Leishmania infection induced expression of genes related to key DC processes involved in MHC Class I-restricted antigen presentation and alternative NF-κB activation. DCs infected by non-opsonized parasites maintained an immature phenotype and showed a small but significant down-regulation of gene expression related to pro-inflammatory TLR signaling, the canonical NF-kB pathway and the NLRP3 inflammasome. This transcriptomic profile was further enhanced in DCs infected with opsonized parasites that displayed a semi-mature phenotype despite absence of inflammasome activation. This paradoxical DC phenotype represents a Leishmania-specific signature, which to our knowledge has not been observed with other opsonized infectious agents. In conclusion, systems-analyses of our transcriptomics data uncovered important and previously unappreciated changes in the DC transcription factor landscape, thus revealing a novel Leishmania immune subversion strategy directly acting on transcriptional control of gene expression. Our data raise important questions on the dynamic and reciprocal interplay between trans-acting and epigenetic regulators in establishing permissive conditions for intracellular Leishmania infection and polarization of the immune response.
Collapse
Affiliation(s)
- Hervé Lecoeur
- Institut Pasteur, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Département des Parasites et Insectes Vecteurs, Paris, France.,Pasteur Institute of Shanghai, Innate Immunity Unit, Key Laboratory of Molecular Virology and Immunology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| | - Thibault Rosazza
- Institut Pasteur, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Département des Parasites et Insectes Vecteurs, Paris, France.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| | - Kossiwa Kokou
- Institut Pasteur, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Département des Parasites et Insectes Vecteurs, Paris, France.,Pasteur Institute of Shanghai, Innate Immunity Unit, Key Laboratory of Molecular Virology and Immunology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| | - Hugo Varet
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Jean-Yves Coppée
- Institut Pasteur - Transcriptome and Epigenome Platform - Biomics Pole - C2RT, Paris, France
| | - Arezou Lari
- Systems Biomedicine Unit, Institut Pasteur of Iran, Teheran, Iran
| | | | - Robert Weil
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CIMI, Paris, France
| | - Guangxun Meng
- Pasteur Institute of Shanghai, Innate Immunity Unit, Key Laboratory of Molecular Virology and Immunology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| | - Genevieve Milon
- Institut Pasteur, Laboratoire Immunophysiologie et Parasitisme, Département des Parasites et Insectes Vecteurs, Paris, France
| | - Gerald F Späth
- Institut Pasteur, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Département des Parasites et Insectes Vecteurs, Paris, France.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| | - Eric Prina
- Institut Pasteur, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Département des Parasites et Insectes Vecteurs, Paris, France.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| |
Collapse
|
5
|
Abstract
Inflammasomes are the central signaling hubs of the inflammatory response. They process cytosolic evidence of infection, cell damage, or metabolic disturbances, and elicit a pro-inflammatory response mediated by members of the interleukin-1 family of cytokines and pyroptotoic cell death. On the molecular level, this is accomplished by the sensor-nucleated recruitment and oligomerization of the adapter protein ASC. Once a tunable threshold is reached, cooperative assembly of ASC into linear filaments and their condensation into macromolecular ASC specks promotes an all-or-none response. These structures are highly regulated and provide a unique signaling platform or compartment to control the activity of caspase-1 and likely other effectors. Emerging evidence indicates that ASC specks are also released from inflammasome-activated cells and accumulate in inflamed tissues, where they can continue to mature cytokines or be internalized by surrounding cells to further nucleate ASC specks in their cytosol. Little is known about the mechanisms governing ASC speck release, uptake, and endosomal escape, as well as its contribution to inflammation and disease. Here, we describe the different outcomes of inflammasome activation and discuss the potential function of extracellular ASC specks. We highlight gaps in our understanding of this central process of inflammation, which may have direct consequences on the modulation of host responses and chronic inflammation.
Collapse
Affiliation(s)
- Bernardo S Franklin
- Institute of Innate Immunity, University Hospitals, University of Bonn, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospitals, University of Bonn, Bonn, Germany.,Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA.,German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Florian Ingo Schmidt
- Institute of Innate Immunity, University Hospitals, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Liu CL, Guo J, Zhang X, Sukhova GK, Libby P, Shi GP. Cysteine protease cathepsins in cardiovascular disease: from basic research to clinical trials. Nat Rev Cardiol 2018; 15:351-370. [DOI: 10.1038/s41569-018-0002-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Demirci FY, Wang X, Morris DL, Feingold E, Bernatsky S, Pineau C, Clarke A, Ramsey-Goldman R, Manzi S, Vyse TJ, Kamboh MI. Multiple signals at the extended 8p23 locus are associated with susceptibility to systemic lupus erythematosus. J Med Genet 2017; 54:381-389. [PMID: 28289186 DOI: 10.1136/jmedgenet-2016-104247] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/16/2016] [Accepted: 01/03/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND A major systemic lupus erythematosus (SLE) susceptibility locus lies within a common inversion polymorphism region (encompassing 3.8 - 4.5 Mb) located at 8p23. Initially implicated genes included FAM167A-BLK and XKR6, of which BLK received major attention due to its known role in B-cell biology. Recently, additional SLE risk carried in non-inverted background was also reported. OBJECTIVE AND METHODS In this case -control study, we further investigated the 'extended' 8p23 locus (~ 4 Mb) where we observed multiple SLE signals and assessed these signals for their relation to the inversion affecting this region. The study involved a North American discovery data set (~ 1200 subjects) and a replication data set (> 10 000 subjects) comprising European-descent individuals. RESULTS Meta-analysis of 8p23 SNPs, with p < 0.05 in both data sets, identified 51 genome-wide significant SNPs (p < 5.0 × 10-8). While most of these SNPs were related to previously implicated signals (XKR6-FAM167A-BLK subregion), our results also revealed two 'new' SLE signals, including SGK223-CLDN23-MFHAS1 (6.06 × 10-9 ≤ meta p ≤ 4.88 × 10-8) and CTSB (meta p = 4.87 × 10-8) subregions that are located > 2 Mb upstream and ~ 0.3 Mb downstream from previously reported signals. Functional assessment of relevant SNPs indicated putative cis-effects on the expression of various genes at 8p23. Additional analyses in discovery sample, where the inversion genotypes were inferred, replicated the association of non-inverted status with SLE risk and suggested that a number of SLE risk alleles are predominantly carried in non-inverted background. CONCLUSIONS Our results implicate multiple (known+novel) SLE signals/genes at the extended 8p23 locus, beyond previously reported signals/genes, and suggest that this broad locus contributes to SLE risk through the effects of multiple genes/pathways.
Collapse
Affiliation(s)
- F Yesim Demirci
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - Xingbin Wang
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - David L Morris
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, UK
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - Sasha Bernatsky
- Division of Rheumatology, Department of Medicine, McGill University, Montreal, Canada
| | - Christian Pineau
- Division of Rheumatology, Department of Medicine, McGill University, Montreal, Canada
| | - Ann Clarke
- Division of Rheumatology, Department of Medicine, University of Calgary, Calgary, Canada
| | - Rosalind Ramsey-Goldman
- Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Susan Manzi
- Department of Medicine, Lupus Center of Excellence, Allegheny Health Network, Pittsburgh, USA
| | - Timothy J Vyse
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, UK
| | - M I Kamboh
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
8
|
Zhang CX, Wen PH, Sun YL. Withdrawal of immunosuppression in liver transplantation and the mechanism of tolerance. Hepatobiliary Pancreat Dis Int 2015; 14:470-6. [PMID: 26459722 DOI: 10.1016/s1499-3872(15)60411-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Immunosuppression reagents have side effects and cause considerable long-term morbidity and mortality in patients after liver transplantation. Sufficient evidences showed that minimization or withdrawal of immunosuppression reagents does not deteriorate the recipient's immune response and physiological function and therefore, is feasible in some recipients of liver transplantation. However, the mechanisms are not clear. The present review was to update the current status of immunosuppression in liver transplantation and the mechanism of minimization or withdrawal of immunosuppression in liver recipients. DATA SOURCES We searched articles in English on minimization or withdrawal of immunosuppression in liver transplantation in PubMed. We focused on the basic mechanisms of immune tolerance in liver transplantation. Studies on immunosuppression minimization or withdrawal protocols and biomarker in tolerant recipients were also analyzed. RESULTS Minimization or withdrawal of immunosuppression can be achieved by the induction of immune tolerance, which may not be permanent and can be affected by various factors. However, accurately evaluating immune status post-transplant is a prerequisite to achieve individualized immunosuppression. Numerous mechanisms for immune tolerance have been found, including immunophenotypic shift of memory CD8+ T cells and CD4+ T cell subsets. Activation of the inflammasome through apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC) in dendritic cells is associated with rejection after liver transplantation. CONCLUSIONS Minimization or withdrawal of immunosuppression can be achieved by the induction of immune tolerance via different mechanisms. This process could be affected by immunophenotypic shift of memory CD8+ T cells and CD4+ T cell subsets, which may be correlated with activation of the inflammasome through ASC in dendritic cells.
Collapse
Affiliation(s)
- Chi-Xian Zhang
- Institute of Hepatobiliary and Pancreatic Diseases, Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhengzhou University, School of Medicine, Zhengzhou 450052, China.
| | | | | |
Collapse
|
9
|
Sahillioğlu AC, Özören N. Artificial Loading of ASC Specks with Cytosolic Antigens. PLoS One 2015; 10:e0134912. [PMID: 26258904 PMCID: PMC4530869 DOI: 10.1371/journal.pone.0134912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/15/2015] [Indexed: 12/14/2022] Open
Abstract
Inflammasome complexes form upon interaction of Nod Like Receptor (NLR) proteins with pathogen associated molecular patterns (PAPMS) inside the cytosol. Stimulation of a subset of inflammasome receptors including NLRP3, NLRC4 and AIM2 triggers formation of the micrometer-sized spherical supramolecular complex called the ASC speck. The ASC speck is thought to be the platform of inflammasome activity, but the reason why a supramolecular complex is preferred against oligomeric platforms remains elusive. We observed that a set of cytosolic proteins, including the model antigen ovalbumin, tend to co-aggregate on the ASC speck. We suggest that co-aggregation of antigenic proteins on the ASC speck during intracellular infection might be instrumental in antigen presentation.
Collapse
Affiliation(s)
- Ali Can Sahillioğlu
- Apoptosis and Cancer Immunology Laboratory (AKiL), Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey
| | - Nesrin Özören
- Apoptosis and Cancer Immunology Laboratory (AKiL), Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey
- Life Sciences and Technologies Research Center, Bogazici University, Istanbul, Turkey
- * E-mail:
| |
Collapse
|