1
|
Ganguly N, Das T, Bhuniya A, Guha I, Chakravarti M, Dhar S, Sarkar A, Bera S, Dhar J, Dasgupta S, Saha A, Ghosh T, Das J, Sk UH, Banerjee S, Laskar S, Bose A, Baral R. Neem leaf glycoprotein binding to Dectin-1 receptors on dendritic cell induces type-1 immunity through CARD9 mediated intracellular signal to NFκB. Cell Commun Signal 2024; 22:237. [PMID: 38649988 PMCID: PMC11036628 DOI: 10.1186/s12964-024-01576-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/16/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND A water-soluble ingredient of mature leaves of the tropical mahogany 'Neem' (Azadirachta indica), was identified as glycoprotein, thus being named as 'Neem Leaf Glycoprotein' (NLGP). This non-toxic leaf-component regressed cancerous murine tumors (melanoma, carcinoma, sarcoma) recurrently in different experimental circumstances by boosting prime antitumor immune attributes. Such antitumor immunomodulation, aid cytotoxic T cell (Tc)-based annihilation of tumor cells. This study focused on identifying and characterizing the signaling gateway that initiate this systemic immunomodulation. In search of this gateway, antigen-presenting cells (APCs) were explored, which activate and induce the cytotoxic thrust in Tc cells. METHODS Six glycoprotein-binding C-type lectins found on APCs, namely, MBR, Dectin-1, Dectin-2, DC-SIGN, DEC205 and DNGR-1 were screened on bone marrow-derived dendritic cells from C57BL/6 J mice. Fluorescence microscopy, RT-PCR, flow cytometry and ELISA revealed Dectin-1 as the NLGP-binding receptor, followed by verifications through RNAi. Following detection of β-Glucans in NLGP, their interactions with Dectin-1 were explored in silico. Roles of second messengers and transcription factors in the downstream signal were studied by co-immunoprecipitation, western blotting, and chromatin-immunoprecipitation. Intracellularization of FITC-coupled NLGP was observed by processing confocal micrographs of DCs. RESULTS Considering extents of hindrance in NLGP-driven transcription rates of the cytokines IL-10 and IL-12p35 by receptor-neutralization, Dectin-1 receptors on dendritic cells were found to bind NLGP through the ligand's peripheral β-Glucan chains. The resulting signal phosphorylates PKCδ, forming a trimolecular complex of CARD9, Bcl10 and MALT1, which in turn activates the canonical NFκB-pathway of transcription-regulation. Consequently, the NFκB-heterodimer p65:p50 enhances Il12a transcription and the p50:p50 homodimer represses Il10 transcription, bringing about a cytokine-based systemic-bias towards type-1 immune environment. Further, NLGP gets engulfed within dendritic cells, possibly through endocytic activities of Dectin-1. CONCLUSION NLGP's binding to Dectin-1 receptors on murine dendritic cells, followed by the intracellular signal, lead to NFκB-mediated contrasting regulation of cytokine-transcriptions, initiating a pro-inflammatory immunopolarization, which amplifies further by the responding immune cells including Tc cells, alongside their enhanced cytotoxicity. These insights into the initiation of mammalian systemic immunomodulation by NLGP at cellular and molecular levels, may help uncovering its mode of action as a novel immunomodulator against human cancers, following clinical trials.
Collapse
Affiliation(s)
- Nilanjan Ganguly
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Tapasi Das
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Ipsita Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Mohona Chakravarti
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Sukanya Dhar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Anirban Sarkar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Saurav Bera
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Jesmita Dhar
- Jubilant Biosys Limited, 96, Digital Park Rd, Yesvantpur Industrial Suburb, Bengaluru, Karnataka, 560022, India
| | - Shayani Dasgupta
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Akata Saha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Tithi Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Juhina Das
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Ugir Hossain Sk
- Department of Clinical and Translational Research, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Saptak Banerjee
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Subrata Laskar
- Department of Chemistry, University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India.
- Department of Pharmaceutical Technology-Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER),-S.A.S. Nagar, Mohali, Punjab, 160062, India.
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India.
| |
Collapse
|
2
|
Nagini S, Palrasu M, Bishayee A. Limonoids from neem (Azadirachta indica A. Juss.) are potential anticancer drug candidates. Med Res Rev 2024; 44:457-496. [PMID: 37589457 DOI: 10.1002/med.21988] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/06/2023] [Accepted: 08/06/2023] [Indexed: 08/18/2023]
Abstract
Neem (Azadirachta indica A. Juss.), a versatile evergreen tree recognized for its ethnopharmacological value, is a rich source of limonoids of the triterpenoid class, endowed with potent medicinal properties. Extracts of neem have been documented to display anticancer effects in diverse malignant cell lines as well as in preclinical animal models that has largely been attributed to the constituent limonoids. Of late, neem limonoids have become the cynosure of research attention as potential candidate agents for cancer prevention and therapy. Among the various limonoids found in neem, azadirachtin, epoxyazadiradione, gedunin, and nimbolide, have been extensively investigated for anticancer activity. Azadirachtin, a potent biodegradable pesticide, exhibits profound antiproliferative effects by preventing mitotic spindle formation and cell division. The antiproliferative activity of gedunin has been demonstrated to be mediated primarily via inhibition of heat shock protein90 and its client proteins. Epoxyazadiradione inhibits pro-inflammatory and kinase-driven signaling pathways to block tumorigenesis. Nimbolide, the most potent cytotoxic neem limonoid, inhibits the growth of cancer cells by regulating the phosphorylation of keystone kinases that drive oncogenic signaling besides modulating the epigenome. There is overwhelming evidence to indicate that neem limonoids exert anticancer effects by preventing the acquisition of hallmark traits of cancer, such as cell proliferation, apoptosis evasion, inflammation, invasion, angiogenesis, and drug resistance. Neem limonoids are value additions to the armamentarium of natural compounds that target aberrant oncogenic signaling to inhibit cancer development and progression.
Collapse
Affiliation(s)
- Siddavaram Nagini
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Manikandan Palrasu
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
3
|
Singh A, Chatterjee A, Rakshit S, Shanmugam G, Mohanty LM, Sarkar K. Neem Leaf Glycoprotein in immunoregulation of cancer. Hum Immunol 2022; 83:768-777. [DOI: 10.1016/j.humimm.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/04/2022]
|
4
|
Li Y, Qu J, Liu L, Sun Y, Zhang J, Han S, Zhang Y. Apogossypolone Inhibits Cell Proliferation and Epithelial-Mesenchymal Transition in Cervical Cancer via Activating DKK3. Front Oncol 2022; 12:948023. [PMID: 35924156 PMCID: PMC9341244 DOI: 10.3389/fonc.2022.948023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Apogossypolone (ApoG2), a novel derivative of gossypol lacking of two aldehyde groups, exhibits anti-tumor effects. However, the mechanisms by which ApoG2 regulates cervical cancer (CC) cells remain unclear. In this study, we treated two CC cell lines (CaSki and HeLa) with an increasing concentration of ApoG2 for 24 h. Cell Counting Kit-8 (CCK-8) assay, colony formation assay, flow cytometry and transwell invasion assay were utilized to detect cell proliferation, apoptosis and invasion in vitro. We first observed that ApoG2 inhibited cell proliferation, invasion and epithelial-to-mesenchymal transition (EMT) process in CC cells, along with upregulation of Dickkopf Wnt signaling pathway inhibitor 3 (DKK3) in a dose-dependent manner. The immunohistochemistry confirmed the downregulation of DKK3 in tumor tissues. Moreover, DKK3 was correlated with FIGO stage and lymph node metastasis. Functionally, DKK3 overexpression significantly suppressed cell viability, colony formation and invasion, but promoted apoptosis in CaSki and HeLa cells. Overexpression of DKK3 upregulated the protein levels of cleaved caspase-3 and E-cadherin, but downregulated the protein levels of Bcl-2, N-cadherin and Vimentin. Furthermore, DKK3 knockdown reversed the suppressive effects of ApoG2 on CaSki cell proliferation, invasion and EMT markers, while DKK3 overexpression enhanced these effects. In addition, ApoG2 treatment inhibited CC xenograft tumor growth and upregulated the protein levels of DKK3, cleaved caspase-3 and E-cadherin. In conclusions, these findings suggested that ApoG2 could effectively inhibit the growth and invasion of CC cells at least partly by activating DKK3.
Collapse
Affiliation(s)
- Yuling Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Department of Obstetrics and Gynecology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jinfeng Qu
- Department of Obstetrics and Gynecology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Yu Sun
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Junhua Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Sai Han
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Youzhong Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Youzhong Zhang,
| |
Collapse
|
5
|
Dasgupta S, Saha A, Ganguly N, Bhuniya A, Dhar S, Guha I, Ghosh T, Sarkar A, Ghosh S, Roy K, Das T, Banerjee S, Pal C, Baral R, Bose A. NLGP regulates RGS5-TGFβ axis to promote pericyte-dependent vascular normalization during restricted tumor growth. FASEB J 2022; 36:e22268. [PMID: 35363396 DOI: 10.1096/fj.202101093r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/05/2022] [Accepted: 03/09/2022] [Indexed: 12/25/2022]
Abstract
Altered RGS5-associated intracellular pericyte signaling and its abnormal crosstalk with endothelial cells (ECs) result chaotic tumor-vasculature, prevent effective drug delivery, promote immune-evasion and many more to ensure ultimate tumor progression. Moreover, the frequency of lethal-RGS5high pericytes within tumor was found to increase with disease progression, which signifies the presence of altered cell death pathway within tumor microenvironment (TME). In this study, we checked whether and how neem leaf glycoprotein (NLGP)-immunotherapy-mediated tumor growth restriction is associated with modification of pericytes' signaling, functions and its interaction with ECs. Analysis of pericytes isolated from tumors of NLGP treated mice suggested that NLGP treatment promotes apoptosis of NG2+ RGS5high -fuctionally altered pericytes by downregulating intra-tumoral TGFβ, along with maintenance of more matured RGS5neg pericytes. NLGP-mediated inhibition of TGFβ within TME rescues binding of RGS5 with Gαi and thereby termination of PI3K-AKT mediated survival signaling by downregulating Bcl2 and initiating pJNK mediated apoptosis. Limited availability of TGFβ also prevents complex-formation between RGS5 and Smad2 and rapid RGS5 nuclear translocation to mitigate alternate immunoregulatory functions of RGS5high tumor-pericytes. We also observed binding of Ang1 from pericytes with Tie2 on ECs in NLGP-treated tumor, which support re-association of pericytes with endothelium and subsequent vessel stabilization. Furthermore, NLGP-therapy- associated RGS5 deficiency relieved CD4+ and CD8+ T cells from anergy by regulating 'alternate-APC-like' immunomodulatory characters of tumor-pericytes. Taken together, present study described the mechanisms of NLGP's effectiveness in normalizing tumor-vasculature by chiefly modulating pericyte-biology and EC-pericyte interactions in tumor-host to further strengthen its translational potential as single modality treatment.
Collapse
Affiliation(s)
- Shayani Dasgupta
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Akata Saha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Nilanjan Ganguly
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sukanya Dhar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Ipsita Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Tithi Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anirban Sarkar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sarbari Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Kamalika Roy
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, India
| | - Tapasi Das
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Saptak Banerjee
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Chiranjib Pal
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
6
|
Huang H, Li S, Tang Q, Zhu G. Metabolic Reprogramming and Immune Evasion in Nasopharyngeal Carcinoma. Front Immunol 2021; 12:680955. [PMID: 34566954 PMCID: PMC8458828 DOI: 10.3389/fimmu.2021.680955] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/25/2021] [Indexed: 01/31/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor of the nasopharynx mainly characterized by geographic distribution and EBV infection. Metabolic reprogramming, one of the cancer hallmarks, has been frequently reported in NPCs to adapt to internal energy demands and external environmental pressures. Inevitably, the metabolic reprogramming within the tumor cell will lead to a decreased pH value and diverse nutritional supplements in the tumor-infiltrating micro-environment incorporating immune cells, fibroblasts, and endothelial cells. Accumulated evidence indicates that metabolic reprogramming derived from NPC cells may facilitate cancer progression and immunosuppression by cell-cell communications with their surrounding immune cells. This review presents the dysregulated metabolism processes, including glucose, fatty acid, amino acid, nucleotide metabolism, and their mutual interactions in NPC. Moreover, the potential connections between reprogrammed metabolism, tumor immunity, and associated therapy would be discussed in this review. Accordingly, the development of targets on the interactions between metabolic reprogramming and immune cells may provide assistances to overcome the current treatment resistance in NPC patients.
Collapse
Affiliation(s)
- Huimei Huang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shisheng Li
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qinglai Tang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Gangcai Zhu
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Moga MA, Bălan A, Anastasiu CV, Dimienescu OG, Neculoiu CD, Gavriș C. An Overview on the Anticancer Activity of Azadirachta indica (Neem) in Gynecological Cancers. Int J Mol Sci 2018; 19:ijms19123898. [PMID: 30563141 PMCID: PMC6321405 DOI: 10.3390/ijms19123898] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/02/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022] Open
Abstract
In recent years, a wide range of studies have pointed out the importance of nutraceuticals as reservoirs of therapeutic compounds for several diseases, including cancer. This study is centered on the role of some nutraceuticals as anticancer agents and on their efficiency in the oncological gynecological field. Gynecological cancers include cervical, ovarian, and breast neoplasia and these are the major causes of morbidity and mortality in the female population. Cervical neoplasia affects sexually active women aged between 30 and 40 years and is considered the second leading cause of death for women worldwide. Epidemiological studies have shown a strong association of this cancer with human papilloma virus (HPV) infection, independent of any others risk factors. Ovarian cancer represents about 4% of all women’s cancers and breast neoplasia registers 52.8 new cases per 100,000 women annually. Since ancient times, herbal therapies have shown a wide range of beneficial effects and a high potential for safeguarding human health. Azadirachta indica (Neem) is a medicinal plant of Indian origin, a tree with more of 140 isolated compounds and at least 35 biologically active principles that have shown an important influence as tumor suppressors by interfering with the carcinogenesis process. Used for centuries in Asia as a natural remedy for cancer, neem compounds present in bark, leaves, flowers, and seed oil have been shown to possess properties such as chemopreventive capacity, apoptotic activities, immunomodulatory effects, and induction of p53-independent apoptosis. The current study is a systematic literature review based on the anticarcinogenic potential of neem compounds in gynecological cancers.
Collapse
Affiliation(s)
- Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500019 Brasov, Romania.
| | - Andreea Bălan
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500019 Brasov, Romania.
| | - Costin Vlad Anastasiu
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500019 Brasov, Romania.
| | - Oana Gabriela Dimienescu
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500019 Brasov, Romania.
| | - Carmen Daniela Neculoiu
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, University Transilvania Braşov, 500019 Brasov, Romania.
| | - Claudia Gavriș
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500019 Brasov, Romania.
| |
Collapse
|
8
|
Ao C, Zeng K. The role of regulatory T cells in pathogenesis and therapy of human papillomavirus-related diseases, especially in cancer. INFECTION GENETICS AND EVOLUTION 2018; 65:406-413. [PMID: 30172014 DOI: 10.1016/j.meegid.2018.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 12/19/2022]
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted agent in the world. It can cause condyloma acuminatum, anogenital malignancies, and head and neck cancers. The host immune responses to HPV involve multiple cell types that have regulatory functions, and HPV-mediated changes to regulatory T cells (Tregs) in both the local lesion tissues and the circulatory system of patients have received considerable attention. The role of Tregs in HPV infections ranges from suppression of effector T cell (Teff) responses to protection of tissues from immune-mediated injury in different anatomic subsites. In this review, we explore the influence of Tregs in the immunopathology of HPV-related diseases and therapies targeting Tregs as novel approaches against HPV.
Collapse
Affiliation(s)
- Chunping Ao
- Department of Dermatology and Venereology, Nanfang hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kang Zeng
- Department of Dermatology and Venereology, Nanfang hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
9
|
Zulfiqar B, Mahroo A, Nasir K, Farooq RK, Jalal N, Rashid MU, Asghar K. Nanomedicine and cancer immunotherapy: focus on indoleamine 2,3-dioxygenase inhibitors. Onco Targets Ther 2017; 10:463-476. [PMID: 28176942 PMCID: PMC5268369 DOI: 10.2147/ott.s119362] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nanomedicine application in cancer immunotherapy is currently one of the most challenging areas in cancer therapeutic intervention. Innovative solutions have been provided by nanotechnology to deliver cytotoxic agents to the cancer cells partially affecting the healthy cells of the body during the process. Nanoparticle-based drug delivery is an emerging approach to stimulate the immune responses against cancer. The inhibition of indoleamine 2,3-dioxygenase (IDO) is a pivotal area of research in cancer immunotherapy. IDO is a heme-containing immunosuppressive enzyme, which is responsible for the degradation of tryptophan while increasing the concentration of kynurenine metabolites. Various preclinical studies showed that IDO inhibition in certain diseases may result in significant therapeutic effects. Here, we provide a review of the natural and synthetic inhibitors of IDO. These inhibitors are classified according to their source, inhibitory concentrations, the chemical structure, and the mechanism of action. Tumor-targeted chemotherapy is an advanced technique and has more advantages as compared to the conventional chemotherapy. Search for more efficient and less toxic nanoparticles in conjunction with compounds to inhibit IDO is still an area of interest for several research groups worldwide, especially revealing to be an extensive and a promising area in cancer therapeutic innovations.
Collapse
Affiliation(s)
- Bilal Zulfiqar
- Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad
| | - Amnah Mahroo
- Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad
| | - Kaenat Nasir
- Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad
| | - Rai Khalid Farooq
- Department of Physiology, Army Medical College, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Nasir Jalal
- Department of Molecular and Cellular Pharmacology, Health Sciences Platform, Tianjin University, Tianjin, People's Republic of China
| | - Muhammad Usman Rashid
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Kashif Asghar
- Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad; Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| |
Collapse
|
10
|
Neem leaf glycoprotein regulates function of tumor associated M2 macrophages in hypoxic tumor core: Critical role of IL-10/STAT3 signaling. Mol Immunol 2016; 80:1-10. [DOI: 10.1016/j.molimm.2016.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/04/2016] [Accepted: 10/17/2016] [Indexed: 01/01/2023]
|
11
|
Cucurbitacin D exhibits potent anti-cancer activity in cervical cancer. Sci Rep 2016; 6:36594. [PMID: 27824155 PMCID: PMC5100479 DOI: 10.1038/srep36594] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/11/2016] [Indexed: 01/01/2023] Open
Abstract
In this study, we for the first time, investigated the potential anti-cancer effects of a novel analogue of cucurbitacin (Cucurbitacin D) against cervical cancer in vitro and in vivo. Cucurbitacin D inhibited viability and growth of cervical cancer cells (CaSki and SiHa) in a dose-dependent manner. IC50 of Cucurbitacin D was recorded at 400 nM and 250 nM in CaSki and SiHa cells, respectively. Induction of apoptosis was observed in Cucurbitacin D treated cervical cancer cells as measured by enhanced Annexin V staining and cleavage in PARP protein. Cucurbitacin D treatment of cervical cancer cells arrested the cell cycle in G1/S phase, inhibited constitutive expression of E6, Cyclin D1, CDK4, pRb, and Rb and induced the protein levels of p21 and p27. Cucurbitacin D also inhibited phosphorylation of STAT3 at Ser727 and Tyr705 residues as well as its downstream target genes c-Myc, and MMP9. Cucurbitacin D enhanced the expression of tumor suppressor microRNAs (miR-145, miRNA-143, and miRNA34a) in cervical cancer cells. Cucurbitacin D treatment (1 mg/kg body weight) effectively inhibited growth of cervical cancer cells derived orthotopic xenograft tumors in athymic nude mice. These results demonstrate the potential therapeutic efficacy of Cucurbitacin D against cervical cancer.
Collapse
|
12
|
Potential of neem ( Azadirachta indica L.) for prevention and treatment of oncologic diseases. Semin Cancer Biol 2016; 40-41:100-115. [DOI: 10.1016/j.semcancer.2016.03.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/19/2016] [Accepted: 03/21/2016] [Indexed: 01/05/2023]
|
13
|
Ghosh S, Sarkar M, Ghosh T, Guha I, Bhuniya A, Biswas J, Mallick A, Bose A, Baral R. Absence of CD4(+) T cell help generates corrupt CD8(+) effector T cells in sarcoma-bearing Swiss mice treated with NLGP vaccine. Immunol Lett 2016; 175:31-9. [PMID: 27178306 DOI: 10.1016/j.imlet.2016.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 12/19/2022]
Abstract
One of the prime objectives of cancer immunology and immunotherapy is to study the issues related to rescue and/or maintenance of the optimum effector CD8(+) T cell functions by minimizing tumor-induced negative factors. In this regard the influence of host intrinsic CD4(+) helper T cells towards generation and maintenance of CD8(+) effector T cells appears controversial in different experimental settings. Therefore, the present study was aimed to re-analyze the influence of CD4(+) helper T cells towards effector T cells during neem leaf glycoprotein (NLGP)-vaccine-mediated tumor growth restriction. CD4 depletion (mAb; Clone GK1.5) surprisingly resulted in significant increase in CD8(+) T cells in different immune organs from NLGP-treated sarcoma-bearing mice. However, such CD8 surge could not restrict the sarcoma growth in NLGP-treated CD4-depleted mice. Furthermore, CD4 depletion in early phase hinders CD8(+) T cell activation and terminal differentiation by targeting crucial transcription factor Runx3. CD4 depletion decreases accumulation of CD8α(+) dendritic cells within tumor draining lymph node, hampers antigen cross priming and CD86-CD28 interactions for optimum CD8(+) T cell functions. In order to search the mechanism of CD4(+) T cell help on NLGP-mediated CD8 effector functions, the role of CD4(+) helper T cell-derived IL-2 on optimization of CD8 functions was found using STAT5 signaling, but complete response requires physical contact of CD4(+) helper T cells with its CD8 counterpart. In conclusion, it was found that CD4(+) T cell help is not required to generate CD8(+) T cells but was found to be an integral phenomenon in maintenance of its anti-tumor functions even in NLGP-vaccine-mediated sarcoma growth restriction.
Collapse
Affiliation(s)
- Sarbari Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Madhurima Sarkar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Tithi Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Ipsita Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Jaydip Biswas
- Department of Surgical Oncology and Medical Oncology, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Atanu Mallick
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India.
| |
Collapse
|
14
|
Aldahlawi AM. Modulation of dendritic cell immune functions by plant components. J Microsc Ultrastruct 2016; 4:55-62. [PMID: 30023210 PMCID: PMC6014213 DOI: 10.1016/j.jmau.2016.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 12/24/2015] [Accepted: 01/01/2016] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) are the key linkage between innate and adoptive immune response. DCs are classified as specialized antigen-presenting cells that initiate T-cell immune responses during infection and hypersensitivity, and maintain immune tolerance to self-antigens. Initiating T-cell immune responses may be beneficial in infectious diseases or cancer management, while, immunosuppressant or tolerogenic responses could be useful in controlling autoimmunity, allergy or inflammatory diseases. Several types of plant-derived components show promising properties in influencing DC functions. Various types of these components have been proven useful in clinical application and immune-based therapy. Therefore, focusing on the benefits of plant-based medicine regulating DC functions may be useful, low-cost, and accessible strategies for human health. This review illustrates recent studies, investigating the role of plant components in manipulating DC phenotype and function towards immunostimulating or immunosuppressing effects either in vitro or in vivo.
Collapse
Affiliation(s)
- Alia M Aldahlawi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
15
|
Yuan HL, Liu XL, Dai QC, Song H. Exogenous natural glycoprotein multiple mechanisms of anti-tumor activity. Asian Pac J Cancer Prev 2015; 16:1331-6. [PMID: 25743794 DOI: 10.7314/apjcp.2015.16.4.1331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Natural glycoproteins can induce apoptosis of tumor cells and exert anti-tumor activity by immunomodulatory functions, cytotoxic and anti-inflammation effects, and inhibition of endothelial growth factor. Given their prospects as novel agents, sources of natural antitumor glycoproteins have attracted attention and new research directions in glycoprotein biology are gradually shifting to the direction of cancer treatment and prevention of neoplastic disease. In this review, we summarize the latest findings with regard to the tumor suppressor signature of glycoproteins and underlying regulatory mechanisms.
Collapse
Affiliation(s)
- Hong-Liang Yuan
- Harbin Commercial University Life Science and Environmental Science Research Center, Harbin, China E-mail :
| | | | | | | |
Collapse
|
16
|
Ebadi P, Karimi MH, Amirghofran Z. Plant components for immune modulation targeting dendritic cells: implication for therapy. Immunotherapy 2014; 6:1037-53. [DOI: 10.2217/imt.14.77] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Medicinal plant utilization is as old as human life. There are thousands of herbs consumed for medicinal purposes all over the world, especially in east. Their value has not decreased over time and many modern pharmaceuticals have originated from traditional medicinal plants. Studying the reason for their influence is an attractive field of medicine. Among various types of herbs, some function via their immunomodulatory effects. Experiments have shown the regulatory influences of several plants on each type of immune cell, including T cells, B cells, dendritic cells (DCs), macrophages and NK cells. Because of the prominent role of DCs in antigen presentation as the major APC, this review summarizes the immunomodulatory effects of some plants performed through DC effects.
Collapse
Affiliation(s)
- Padideh Ebadi
- Islamic Azad University, Kazerun Branch, Kazerun, Iran
| | | | - Zahra Amirghofran
- Immunology Departments, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Hao F, Kumar S, Yadav N, Chandra D. Neem components as potential agents for cancer prevention and treatment. Biochim Biophys Acta Rev Cancer 2014; 1846:247-57. [PMID: 25016141 DOI: 10.1016/j.bbcan.2014.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/08/2014] [Accepted: 07/03/2014] [Indexed: 02/05/2023]
Abstract
Azadirachta indica, also known as neem, is commonly found in many semi-tropical and tropical countries including India, Pakistan, and Bangladesh. The components extracted from neem plant have been used in traditional medicine for the cure of multiple diseases including cancer for centuries. The extracts of seeds, leaves, flowers, and fruits of neem have consistently shown chemopreventive and antitumor effects in different types of cancer. Azadirachtin and nimbolide are among the few bioactive components in neem that have been studied extensively, but research on a great number of additional bioactive components is warranted. The key anticancer effects of neem components on malignant cells include inhibition of cell proliferation, induction of cell death, suppression of cancer angiogenesis, restoration of cellular reduction/oxidation (redox) balance, and enhancement of the host immune responses against tumor cells. While the underlying mechanisms of these effects are mostly unclear, the suppression of NF-κB signaling pathway is, at least partially, involved in the anticancer functions of neem components. Importantly, the anti-proliferative and apoptosis-inducing effects of neem components are tumor selective as the effects on normal cells are significantly weaker. In addition, neem extracts sensitize cancer cells to immunotherapy and radiotherapy, and enhance the efficacy of certain cancer chemotherapeutic agents. This review summarizes the current updates on the anticancer effects of neem components and their possible impact on managing cancer incidence and treatment.
Collapse
Affiliation(s)
- Fang Hao
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Sandeep Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Neelu Yadav
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| |
Collapse
|