1
|
Koskela S, Tammi S, Clancy J, Lucas JAM, Turner TR, Hyvärinen K, Ritari J, Partanen J. MICA and MICB allele assortment in Finland. HLA 2023. [PMID: 36919857 DOI: 10.1111/tan.15023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/01/2023] [Accepted: 03/04/2023] [Indexed: 03/16/2023]
Abstract
Genetic variation in the MICA and MICB genes located within the major histocompatibility complex region has been reported to be associated with transplantation outcome and susceptibility to autoimmune diseases and infections. Only limited data of polymorphism in these genes in different populations are available. We here report allelic variation at 2-field resolution and the haplotypes of the MICA and MICB genes in Finland (n = 1032 individuals), a north European population with historical bottleneck and founder effects. Altogether 24 MICA and 18 MICB alleles were found, forming 70 estimated MICA-MICB haplotypes. As compared to other populations frequency differences were found, for example, MICA*010:01 was found to be at an allele frequency of 0.133 in Finland which is higher than in other European populations (0.021-0.077), but close to Asian populations (0.151-0.220). Three novel alleles with amino acid change are described. The results demonstrate a relatively high level of polymorphism and population differences in MICA and MICB allele distribution.
Collapse
Affiliation(s)
- Satu Koskela
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland.,Finnish Red Cross Blood Service Biobank, Helsinki, Finland
| | - Silja Tammi
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland.,Finnish Red Cross Blood Service Biobank, Helsinki, Finland
| | - Jonna Clancy
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland.,Finnish Red Cross Blood Service Biobank, Helsinki, Finland
| | | | - Thomas R Turner
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK.,UCL Cancer Institute, Royal Free Campus, London, UK
| | - Kati Hyvärinen
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Jarmo Ritari
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Jukka Partanen
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland.,Finnish Red Cross Blood Service Biobank, Helsinki, Finland
| |
Collapse
|
2
|
Al Hadra B, Lukanov TI, Ivanova MI. HLA class I chain-related MICA and MICB genes polymorphism in healthy individuals from the Bulgarian population. Hum Immunol 2022; 83:551-555. [PMID: 35525711 DOI: 10.1016/j.humimm.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 11/26/2022]
Abstract
Although human leukocyte antigen (HLA) gene polymorphism has been investigated in many populations around the world, the data on MHC class I chain-related (MIC) genes are still limited. The present study is aimed to analyze the allelic polymorphism of MICA and MICB genes and haplotype associations with HLA-B locus in 132 healthy, unrelated individuals from the Bulgarian population by next generation sequencing (NGS). A total of 36 MICA and 16 MICB alleles were observed with the highest frequency detected for MICA*008:01 (17.1%) and MICB*005:02 (32.4%). Further, two and three-loci haplotype frequencies and pairwise linkage disequilibrium were estimated. Highly significant global linkage disequilibrium was found between either HLA-B and MICA and MICB genes. This is the first study on MICA and MICB allelic polymorphism, linkage disequilibrium, and haplotype polymorphism in the Bulgarian population. These results will allow for better characterization of the genetic heterogeneity of the Bulgarian population and could contribute to further analyses on MICA and MICB clinical significance.
Collapse
Affiliation(s)
- Bushra Al Hadra
- Department of Clinical Immunology, Medical University, Sofia, Bulgaria; Department of Clinical Immunology and Stem Cell Bank, Alexandrovska University Hospital, Sofia, Bulgaria.
| | - Tsvetelin I Lukanov
- Department of Clinical Immunology, Medical University, Sofia, Bulgaria; Department of Clinical Immunology and Stem Cell Bank, Alexandrovska University Hospital, Sofia, Bulgaria
| | - Milena I Ivanova
- Department of Clinical Immunology, Medical University, Sofia, Bulgaria; Department of Clinical Immunology and Stem Cell Bank, Alexandrovska University Hospital, Sofia, Bulgaria
| |
Collapse
|
3
|
Zou Y, Duke JL, Ferriola D, Luo Q, Wasserman J, Mosbruger TL, Luo W, Cai L, Zou K, Tairis N, Damianos G, Pagkrati I, Kukuruga D, Huang Y, Monos DS. Genomic characterization of MICA gene using multiple next generation sequencing platforms: A validation study. HLA 2020; 96:430-444. [PMID: 32681760 PMCID: PMC7589345 DOI: 10.1111/tan.13998] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/14/2020] [Accepted: 06/25/2020] [Indexed: 01/10/2023]
Abstract
We have developed a protocol regarding the genomic characterization of the MICA gene by next generation sequencing (NGS). The amplicon includes the full length of the gene and is about 13 kb. A total of 156 samples were included in the study. Ninety‐seven of these samples were previously characterized at MICA by legacy methods (Sanger or sequence specific oligonucleotide) and were used to evaluate the accuracy, precision, specificity, and sensitivity of the assay. An additional 59 DNA samples of unknown ethnicity volunteers from the United States were only genotyped by NGS. Samples were chosen to contain a diverse set of alleles. Our NGS approach included a first round of sequencing on the Illumina MiSeq platform and a second round of sequencing on the MinION platform by Oxford Nanopore Technology (ONT), on selected samples for the purpose of either characterizing new alleles or setting phase among multiple polymorphisms to resolve ambiguities or generate complete sequence for alleles that were only partially reported in the IMGT/HLA database. Complete consensus sequences were generated for every allele sequenced with ONT, extending from the 5′ untranslated region (UTR) to the 3′ UTR of the MICA gene. Thirty‐two MICA sequences were submitted to the IMGT/HLA database including either new alleles or filling up the gaps (exonic, intronic and/or UTRs) of already reported alleles. Some of the challenges associated with the characterization of these samples are discussed.
Collapse
Affiliation(s)
- Yizhou Zou
- Department of Immunology, Central South University Xiangya School of Medicine, Changsha, Hunan, China
| | - Jamie L Duke
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Deborah Ferriola
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Qizhi Luo
- Department of Immunology, Central South University Xiangya School of Medicine, Changsha, Hunan, China
| | - Jenna Wasserman
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Timothy L Mosbruger
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Weiguang Luo
- Department of Immunology, Central South University Xiangya School of Medicine, Changsha, Hunan, China
| | - Liang Cai
- Department of Immunology, Central South University Xiangya School of Medicine, Changsha, Hunan, China
| | - Kevin Zou
- Department of Immunology, Central South University Xiangya School of Medicine, Changsha, Hunan, China
| | - Nikolaos Tairis
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Georgios Damianos
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ioanna Pagkrati
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Debra Kukuruga
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yanping Huang
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Dimitri S Monos
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Positive association between MIC gene polymorphism and tuberculosis in Chinese population. Immunol Lett 2019; 213:62-69. [PMID: 31400356 DOI: 10.1016/j.imlet.2019.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 11/23/2022]
Abstract
The disease progression and morbidity of tuberculosis (TB) infections are determined by virulence of the micro-organism, host genetic factors and environmental factors. The highly polymorphic MHC class I chain-related gene (MIC) could serve as a potential host genetic candidate. To investigate the association of MIC polymorphism with TB infection, 124 patients and 191 ethnically matched controls from Hunan province, Southern China, were genotyped for the MIC polymorphism using polymerase chain reaction-sequence specific priming and sequencing-based typing. The results showed that allele frequencies of MIC-sequence and MICA-STR were different in TB patients in comparison to normal controls (both P < 0.05). MICA-A4 and MICA*012:01 alleles were positive associated (OR = 2.42, 95% CI: 1.69-3.87; OR = 3.41, 95% CI: 2.19-5.33, respectively, both Pc < 0.05) while MICA -A5 were inversely associated (OR = 0.59, 95%CI: 0.41-0.94, Pc < 0.05) with TB. Homozygote MICA*012:01/012:01 was observed to have significant risk effects on TB (OR = 4.76, 95% CI: 1.94-11.69, Pc0000-0001-5151-1853 < 0.05). Additionally, MICB*008 allele conduct a significant risk effect for TB (OR = 3.17, 95%CI: 1.80-5.61, Pc < 0.05). All the data showed that MIC polymorphism was associated with the variable susceptibility to TB in Chinese population.
Collapse
|
5
|
Liu X, Chen X, Wei X, Meng Y, Liu L, Dai S. Genetic polymorphism analysis of MICB gene in Jing ethnic minority of Southern China. HLA 2018; 92:224-230. [PMID: 29934983 DOI: 10.1111/tan.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/08/2018] [Accepted: 06/17/2018] [Indexed: 12/01/2022]
Abstract
In the present study, the polymorphism in the 5'-upstream regulation region (5'-URR), coding region (exons 2-4), and the 3'-untranslated region (3'-UTR) of MICB gene were investigated for 150 healthy unrelated Jing individuals in Guangxi Zhuang Autonomous Region, by using PCR-SBT method. A total of 14 variation sites in the 5'-URR, 9 in coding region, and 6 in the 3'-UTR were detected in the Jing population. The MICB gene seems to present two different lineages showing functional variations mainly in nucleotides of the promoter region. Nineteen different MICB extended haplotypes (EHs) encompassing the 5'-URR, exons 2-4, and 3'-UTR were found in this population, and the most frequent was EH2 (20.33%). The findings here are of importance for future studies on the potential role of regulation region of MICB gene in disease association, transplantation, viral infection, and tumor progression among Jing population.
Collapse
Affiliation(s)
- Xuexiang Liu
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, 545005, China
| | - Xiang Chen
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, 545005, China
| | - Xiaomou Wei
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, 545005, China
| | - Yuming Meng
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, 545005, China
| | - Limin Liu
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, 545005, China
| | - Shengming Dai
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, 545005, China
| |
Collapse
|
6
|
Zou Y, Luo W, Guo J, Luo Q, Deng M, Lu Z, Fang Y, Zhang CC. NK cell-mediated anti-leukemia cytotoxicity is enhanced using a NKG2D ligand MICA and anti-CD20 scfv chimeric protein. Eur J Immunol 2018; 48:1750-1763. [PMID: 30063799 DOI: 10.1002/eji.201847550] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 07/06/2018] [Accepted: 07/30/2018] [Indexed: 01/08/2023]
Abstract
NK cells are important innate cytotoxic lymphocytes that have potential in treatment of leukemia. Engagement of NKG2D receptor on NK cells enhances the target cytotoxicity. Here, we produced a fusion protein consisting of the extracellular domain of the NKG2D ligand MICA and the anti-CD20 single-chain variable fragment (scfv). This recombinant protein is capable of binding both NK cells and CD20+ tumor cells. Using a human NKG2D reporter cell system we developed, we showed that this fusion protein could decorate CD20+ tumor cells with MICA extracellular domain and activate NK through NKG2D. We further demonstrated that this protein could specifically induce the ability of a NK cell line (NKL) and primary NK cells to lyse CD20+ leukemia cells. Moreover, we found that downregulation of surface HLA class I expression in the target cells improved NKL-mediated killing. Our results demonstrated that this recombinant protein specifically lyses leukemia cells by NK cells, which may lead to development of a novel strategy for treating leukemia and other tumors.
Collapse
Affiliation(s)
- Yizhou Zou
- Department of Immunology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Weiguang Luo
- Department of Immunology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Department of Physiology, UT Southwestern Medical Center at Dallas, TX, USA
| | - Jing Guo
- Department of Immunology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Qizhi Luo
- Department of Immunology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Mi Deng
- Department of Physiology, UT Southwestern Medical Center at Dallas, TX, USA
| | - Zhigang Lu
- Department of Physiology, UT Southwestern Medical Center at Dallas, TX, USA
| | - Yi Fang
- Department of Physiology, UT Southwestern Medical Center at Dallas, TX, USA
| | - Cheng Cheng Zhang
- Department of Physiology, UT Southwestern Medical Center at Dallas, TX, USA
| |
Collapse
|
7
|
Association Between Major Histocompatibility Complex Class I Chain-Related Gene Polymorphisms and Susceptibility of Systemic Lupus Erythematosus. Am J Med Sci 2017; 354:430-435. [DOI: 10.1016/j.amjms.2017.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/04/2017] [Accepted: 06/10/2017] [Indexed: 01/06/2023]
|
8
|
MICB gene diversity and balancing selection on its promoter region in Yao population in southern China. Hum Immunol 2016; 77:1187-1193. [DOI: 10.1016/j.humimm.2016.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 08/09/2016] [Accepted: 08/30/2016] [Indexed: 11/19/2022]
|
9
|
Abstract
Human and mouse NKG2D ligands (NKG2DLs) are absent or only poorly expressed by most normal cells but are upregulated by cell stress, hence, alerting the immune system in case of malignancy or infection. Although these ligands are numerous and highly variable (at genetic, genomic, structural, and biochemical levels), they all belong to the major histocompatibility complex class I gene superfamily and bind to a single, invariant, receptor: NKG2D. NKG2D (CD314) is an activating receptor expressed on NK cells and subsets of T cells that have a key role in the recognition and lysis of infected and tumor cells. Here, we review the molecular diversity of NKG2DLs, discuss the increasing appreciation of their roles in a variety of medical conditions, and propose several explanations for the evolutionary force(s) that seem to drive the multiplicity and diversity of NKG2DLs while maintaining their interaction with a single invariant receptor.
Collapse
Affiliation(s)
- Raphael Carapito
- ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx TRANSPLANTEX, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Laboratoire International Associé (LIA) INSERM, Strasbourg (France) - Nagano (Japan), Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Strasbourg, France
| | - Seiamak Bahram
- ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx TRANSPLANTEX, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Laboratoire International Associé (LIA) INSERM, Strasbourg (France) - Nagano (Japan), Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Strasbourg, France.,Laboratoire Central d'Immunologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
10
|
Allele polymorphism and haplotype diversity of MICA/B in Tujia nationality of Zhangjiajie, Hunan Province, China. Hum Immunol 2016; 77:411-7. [DOI: 10.1016/j.humimm.2016.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 06/14/2015] [Accepted: 03/10/2016] [Indexed: 11/23/2022]
|