1
|
Choi H, Choi EJ, Kim HJ, Baek IC, Won A, Park SJ, Kim TG, Chung YJ. A walk through the development of human leukocyte antigen typing: from serologic techniques to next-generation sequencing. CLINICAL TRANSPLANTATION AND RESEARCH 2024; 38:294-308. [PMID: 39658458 PMCID: PMC11732764 DOI: 10.4285/ctr.24.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024]
Abstract
Human leukocyte antigen (HLA) is a group of glycoproteins encoded by the major histocompatibility complex (MHC) that plays a pivotal role in the host's immune defense. Given that the MHC represents the most polymorphic region in the human genome, HLA typing is crucial in organ transplantation. It significantly influences graft rejection, graft-versus-host disease, and the overall patient outcome by mediating the discrimination between self and nonself. HLA typing technology began with serological methods and has evolved rapidly alongside advances in molecular technologies, progressing from DNA-based typing to next- or third-generation sequencing. These advancements have increased the accuracy of HLA typing and reduced ambiguities, leading to marked improvements in transplantation outcomes. Additionally, numerous novel HLA alleles have been identified. In this review, we explore the developmental history and future prospects of HLA typing technology, which promises to further benefit the field of transplantation.
Collapse
Affiliation(s)
- Haeyoun Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul, Korea
| | - Eun-Jeong Choi
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyoung-Jae Kim
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - In-Cheol Baek
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Aegyeong Won
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Su Jin Park
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | - Yeun-Jun Chung
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul, Korea
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
2
|
Lai SK, Luo AC, Chiu IH, Chuang HW, Chou TH, Hung TK, Hsu JS, Chen CY, Yang WS, Yang YC, Chen PL. A novel framework for human leukocyte antigen (HLA) genotyping using probe capture-based targeted next-generation sequencing and computational analysis. Comput Struct Biotechnol J 2024; 23:1562-1571. [PMID: 38650588 PMCID: PMC11035020 DOI: 10.1016/j.csbj.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/20/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024] Open
Abstract
Human leukocyte antigen (HLA) genes play pivotal roles in numerous immunological applications. Given the immense number of polymorphisms, achieving accurate high-throughput HLA typing remains challenging. This study aimed to harness the human pan-genome reference consortium (HPRC) resources as a potential benchmark for HLA reference materials. We meticulously annotated specific four field-resolution alleles for 11 HLA genes (HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1, -DRB3, -DRB4 and -DRB5) from 44 high-quality HPRC personal genome assemblies. For sequencing, we crafted HLA-specific probes and conducted capture-based targeted sequencing of the genomic DNA of the HPRC cohort, ensuring focused and comprehensive coverage of the HLA region of interest. We used publicly available short-read whole-genome sequencing (WGS) data from identical samples to offer a comparative perspective. To decipher the vast amount of sequencing data, we employed seven distinct software tools: OptiType, HLA-VBseq, HISAT genotype, SpecHLA, T1K, QzType, and DRAGEN. Each tool offers unique capabilities and algorithms for HLA genotyping, allowing comprehensive analysis and validation of the results. We then compared these results with benchmarks derived from personal genome assemblies. Our findings present a comprehensive four-field-resolution HLA allele annotation for 44 HPRC samples. Significantly, our innovative targeted next-generation sequencing (NGS) approach for HLA genes showed superior accuracy compared with conventional short-read WGS. An integrated analysis involving QzType, T1K, and DRAGEN was developed, achieving 100% accuracy for all 11 HLA genes. In conclusion, our study highlighted the combination of targeted short-read sequencing and astute computational analysis as a robust approach for HLA genotyping. Furthermore, the HPRC cohort has emerged as a valuable assembly-based reference in this realm.
Collapse
Affiliation(s)
- Sheng-Kai Lai
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Allen Chilun Luo
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - I-Hsuan Chiu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Hui-Wen Chuang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Hsuan Chou
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsung-Kai Hung
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jacob Shujui Hsu
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Yu Chen
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Wei-Shiung Yang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ya-Chien Yang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Lung Chen
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
3
|
Devriese M, Rouquie J, Da Silva S, Benassaya N, Maillard L, Dewez M, Caillat-Zucman S, Werner G, Taupin JL. Single locus HLA sequencing with the nanopore technology for HLA disease association diagnosis. HLA 2024; 103:e15424. [PMID: 38516926 DOI: 10.1111/tan.15424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/23/2024]
Abstract
Associations between HLA genotype and disease susceptibility encompass almost all the classic HLA loci. The level of typing resolution enabling a correct identification of an HLA disease susceptibility gene depends on the disease itself and/or on the accumulated knowledge about the molecular involvement of the HLA allele(s) engaged. Therefore, the application of Next Generation Sequencing technologies to HLA disease association, which would improve typing resolution, could prove useful to better understand disease severity. In the present study, we tested a nanopore sequencing approach developed by Omixon Biocomputing Ltd, dedicated to on-demand locus typing for HLA and disease, as an alternative to the conventional widely used sequence specific oligoprobe (SSO) approach. A total of 145 DNA samples used in routine diagnosis by SSO were retrospectively analyzed with nanopore technology, for HLA-A*02 immunotherapy decision for A*29, B*27, B*51, B*57 identification in class I, and DRB1, DQA1, and DQB1 for bullous dermatosis, rheumatoid arthritis, diabetes, and celiac disease requests in class II. Each locus was typed in a separate experiment, except for DQB1 and DQA1, which were analyzed together. Concordance between typings reached 100% for all the loci tested. Ambiguities by nanopore were only found for missing exon coverage. This approach was found to be very well adapted to the routine flow imposed by the SSO technique. This study illustrates the use of the new NanoTYPE MONO kit for single locus HLA sequencing for HLA and disease association diagnosis.
Collapse
Affiliation(s)
- Magali Devriese
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint Louis, Paris, France
- INSERM UMR976, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Julien Rouquie
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint Louis, Paris, France
| | - Sephora Da Silva
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint Louis, Paris, France
| | - Nadine Benassaya
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint Louis, Paris, France
| | - Lucie Maillard
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint Louis, Paris, France
| | - Mathieu Dewez
- Omixon Biocomputing Ltd. H-1117 Budapest, Kaposvár, Hungary
| | - Sophie Caillat-Zucman
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint Louis, Paris, France
- INSERM UMR976, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Gregory Werner
- Omixon Biocomputing Ltd. H-1117 Budapest, Kaposvár, Hungary
| | - Jean-Luc Taupin
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint Louis, Paris, France
- INSERM UMR976, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| |
Collapse
|
4
|
Dapas M, Lee YL, Wentworth-Sheilds W, Im HK, Ober C, Schoettler N. Revealing polygenic pleiotropy using genetic risk scores for asthma. HGG ADVANCES 2023; 4:100233. [PMID: 37663543 PMCID: PMC10474095 DOI: 10.1016/j.xhgg.2023.100233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023] Open
Abstract
In this study we examined how genetic risk for asthma associates with different features of the disease and with other medical conditions and traits. Using summary statistics from two multi-ancestry genome-wide association studies of asthma, we modeled polygenic risk scores (PRSs) and validated their predictive performance in the UK Biobank. We then performed phenome-wide association studies of the asthma PRSs with 371 heritable traits in the UK Biobank. We identified 228 total significant associations across a variety of organ systems, including associations that varied by PRS model, sex, age of asthma onset, ancestry, and human leukocyte antigen region alleles. Our results highlight pervasive pleiotropy between asthma and numerous other traits and conditions and elucidate pathways that contribute to asthma and its comorbidities.
Collapse
Affiliation(s)
- Matthew Dapas
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Yu Lin Lee
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- Biological Sciences Collegiate Division, University of Chicago, Chicago, IL, USA
| | | | - Hae Kyung Im
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Nathan Schoettler
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
5
|
Zhang T, Li Y, Yuan X, Bao X, Chen L, Jiang X, He J. Establishment of NGS-based HLA 9-locus haplotypes in the Eastern Han Chinese population highlights the role of HLA-DP in donor selection for transplantation. HLA 2022; 100:582-596. [PMID: 36054323 DOI: 10.1111/tan.14798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/13/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022]
Abstract
We collected human leukocyte antigen (HLA) typing data from 653 families in the Eastern Han Chinese population. HLA-A, B, C, DRB1, DRB3, DRB4, DRB5, DQA1, DQB1, DPA1, and DPB1 (HLA-11 loci) typing of 1,781 subjects was performed using a commercial next-generation sequencing (NGS) method in our laboratory. The phasing of haplotypes in each family was determined by Mendelian segregation. Haplotype analysis revealed 1,634 different haplotypes among a total of 2,230 haplotypes. The predominant haplotype was A*30:01-C*06:02-B*13:02-DRB1*07:01-DRB4*01:03-DQA1*02:01-DQB1*02:02-DPA1*02:01-DPB1*17:01 (HF = 4.04%), followed by A*02:07-C*01:02-B*46:01-DRB1*09:01-DRB4*01:03-DQA1*03:02-DQB1*03:03-DPA1*02:02-DPB1*05:01 (HF = 1.84%) and A*33:03-C*03:02-B*58:01-DRB1*03:01-DRB3*02:02-DQA1*05:01-DQB1*02:01-DPA1*01:03-DPB1*04:01 (HF = 1.48%), accounting for 7.35% of the total. Meanwhile 76.41% of all haplotypes were observed only once or twice (HF < 0.1%). Different from HLA-DRB3/4/5 and DQA1 loci, DP linkage markedly increased haplotype variation by 34.82% based on the 5-locus haplotype. The much weaker linkage disequilibrium (LD) of DQB1-DPB1 indicated the reason. We observed 10 analyzable recombination events, most of which occurred at DP loci. Even with the same common 5-locus haplotype, HLA-DP linkage alters the haplotype diversity and frequency. Analysis of related haplotype assignment and unrelated recipient-donor pairs matching at the 9-locus haplotype revealed that HLA-DP affects the donor selection strategy. Haplotype study of a large sample size using NGS identified linkage haplotypes beyond the 5 loci. LD, recombination events, and haplotype variation caused by DP loci emphasized that HLA 9-locus haplotype matching should be considered in donor selection, particularly the effect of DP loci. The finding lays the foundation for further studies on the effect of HLA-DP mismatch on transplantation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tengteng Zhang
- Department of HLA Laboratory, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yang Li
- Department of HLA Laboratory, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaoni Yuan
- Department of HLA Laboratory, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaojing Bao
- Department of HLA Laboratory, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Luyao Chen
- Department of HLA Laboratory, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xue Jiang
- Department of HLA Laboratory, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jun He
- Department of HLA Laboratory, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
6
|
Yang J, Liu H, Pan W, Song M, Lu Y, Wang-Ngai Chow F, Hang-Mei Leung P, Deng Y, Hori M, He N, Li S. Recent Advances of Human Leukocyte Antigen (HLA) Typing Technology Based on High-Throughput Sequencing. J Biomed Nanotechnol 2022; 18:617-639. [PMID: 35715925 DOI: 10.1166/jbn.2022.3280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The major histocompatibility complex (MHC) in humans is a genetic region consisting of cell surface proteins located on the short arm of chromosome 6. This is also known as the human leukocyte antigen (HLA) region. The HLA region consists of genes that exhibit complex genetic polymorphisms, and are extensively involved in immune responses. Each individual has a unique set of HLAs. Donor-recipient HLA allele matching is an important factor for organ transplantation. Therefore, an established rapid and accurate HLA typing technology is instrumental to preventing graft-verses-host disease (GVHD) in organ recipients. As of recent, high-throughput sequencing has allowed for an increase read length and higher accuracy and throughput, thus achieving complete and high-resolution full-length typing. With more advanced nanotechnology used in high-throughput sequencing, HLA typing is more widely used in third-generation single-molecule sequencing. This review article summarizes some of the most widely used sequencing typing platforms and evaluates the latest developments in HLA typing kits and their clinical applications.
Collapse
Affiliation(s)
- Jin Yang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Hongna Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Wenjing Pan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Mengru Song
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Yutong Lu
- School of Electrical and Information Engineering, Hunan University, Changsha 410012, Hunan, China
| | - Franklin Wang-Ngai Chow
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Polly Hang-Mei Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Masahi Hori
- 2-16-5 Edagawa, Koto-Ku, Tokyo, 135-0051, Japan
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| |
Collapse
|
7
|
Anzar I, Sverchkova A, Samarakoon P, Ellingsen EB, Gaudernack G, Stratford R, Clancy T. Personalized
HLA
typing leads to the discovery of novel
HLA
alleles and tumor‐specific
HLA
variants. HLA 2022; 99:313-327. [PMID: 35073457 PMCID: PMC9546058 DOI: 10.1111/tan.14562] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/08/2022] [Accepted: 01/21/2022] [Indexed: 11/29/2022]
Abstract
Accurate and full‐length typing of the HLA region is important in many clinical and research settings. With the advent of next generation sequencing (NGS), several HLA typing algorithms have been developed, including many that are applicable to whole exome sequencing (WES). However, most of these solutions operate by providing the closest‐matched HLA allele among the known alleles in IPD‐IMGT/HLA Database. These database‐matching approaches have demonstrated very high performance when typing well characterized HLA alleles. However, as they rely on the completeness of the HLA database, they are not optimal for detecting novel or less well characterized alleles. Furthermore, the database‐matching approaches are also not adequate in the context of cancer, where a comprehensive characterization of somatic HLA variation and expression patterns of a tumor's HLA locus may guide therapy and clinical outcome, because of the pivotal role HLA alleles play in tumor antigen recognition and immune escape. Here, we describe a personalized HLA typing approach applied to WES data that leverages the strengths of database‐matching approaches while simultaneously allowing for the discovery of novel HLA alleles and tumor‐specific HLA variants, through the systematic integration of germline and somatic variant calling. We applied this approach on WES from 10 metastatic melanoma patients and validated the HLA typing results using HLA targeted NGS sequencing from patients where at least one HLA germline candidate was detected on Class I HLA. Targeted NGS sequencing confirmed 100% performance for the 1st and 2nd fields. In total, five out of the six detected HLA germline variants were because of Class I ambiguities at the third or fourth fields, and their detection recovered the correct HLA allele genotype. The sixth germline variant let to the formal discovery of a novel Class I allele. Finally, we demonstrated a substantially improved somatic variant detection accuracy in HLA alleles with a 91% of success rate in simulated experiments. The approach described here may allow the field to genotype more accurately using WES data, leading to the discovery of novel HLA alleles and help characterize the relationship between somatic variation in the HLA region and immunosurveillance.
Collapse
Affiliation(s)
- Irantzu Anzar
- NEC OncoImmunity AS, Oslo Cancer Cluster, Ullernchausseen 64/66, 0379 Oslo Norway
| | - Angelina Sverchkova
- NEC OncoImmunity AS, Oslo Cancer Cluster, Ullernchausseen 64/66, 0379 Oslo Norway
| | - Pubudu Samarakoon
- NEC OncoImmunity AS, Oslo Cancer Cluster, Ullernchausseen 64/66, 0379 Oslo Norway
| | | | - Gustav Gaudernack
- Ultimovacs ASA, Oslo Cancer Cluster, Ullernchausseen 64/66 Oslo Norway
| | - Richard Stratford
- NEC OncoImmunity AS, Oslo Cancer Cluster, Ullernchausseen 64/66, 0379 Oslo Norway
| | - Trevor Clancy
- NEC OncoImmunity AS, Oslo Cancer Cluster, Ullernchausseen 64/66, 0379 Oslo Norway
| |
Collapse
|
8
|
Naito T, Okada Y. HLA imputation and its application to genetic and molecular fine-mapping of the MHC region in autoimmune diseases. Semin Immunopathol 2022; 44:15-28. [PMID: 34786601 PMCID: PMC8837514 DOI: 10.1007/s00281-021-00901-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022]
Abstract
Variations of human leukocyte antigen (HLA) genes in the major histocompatibility complex region (MHC) significantly affect the risk of various diseases, especially autoimmune diseases. Fine-mapping of causal variants in this region was challenging due to the difficulty in sequencing and its inapplicability to large cohorts. Thus, HLA imputation, a method to infer HLA types from regional single nucleotide polymorphisms, has been developed and has successfully contributed to MHC fine-mapping of various diseases. Different HLA imputation methods have been developed, each with its own advantages, and recent methods have been improved in terms of accuracy and computational performance. Additionally, advances in HLA reference panels by next-generation sequencing technologies have enabled higher resolution and a more reliable imputation, allowing a finer-grained evaluation of the association between sequence variations and disease risk. Risk-associated variants in the MHC region would affect disease susceptibility through complicated mechanisms including alterations in peripheral responses and central thymic selection of T cells. The cooperation of reliable HLA imputation methods, informative fine-mapping, and experimental validation of the functional significance of MHC variations would be essential for further understanding of the role of the MHC in the immunopathology of autoimmune diseases.
Collapse
Affiliation(s)
- Tatsuhiko Naito
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Osaka, Suita, 565-0871, Japan.
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Osaka, Suita, 565-0871, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| |
Collapse
|
9
|
Schwartz JC, Maccari G, Heimeier D, Hammond JA. Highly-contiguous bovine genomes underpin accurate functional analyses and updated nomenclature of MHC class I. HLA 2021; 99:167-182. [PMID: 34802191 DOI: 10.1111/tan.14494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/05/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022]
Abstract
The major histocompatibility complex (MHC) class I region of cattle is both highly polymorphic and, unlike many species, highly variable in gene content between haplotypes. Cattle MHC class I alleles were historically grouped by sequence similarity in the more conserved 3' end of the coding sequence to form phylogenetic allele groups. This has formed the basis of current cattle MHC class I nomenclature. We presently describe and compare five fully assembled MHC class I haplotypes using the latest cattle and yak genome assemblies. Of the five previously described "pseudogenes" in the cattle MHC class I region, Pseudogene 3 is putatively functional in all haplotypes and Pseudogene 6 and Pseudogene 7 are putatively functional in some haplotypes. This was reinforced by evidence of transcription. Based on full gene sequences as well as 3' coding sequence, we identified distinct subgroups of BoLA-3 and BoLA-6 that represent distinct genetic loci. We further examined allele-specific expression using transcriptomic data revealing that certain alleles are consistently weakly expressed compared to others. These observations will help to inform further studies into how MHC class I region variability influences T cell and natural killer cell functions in cattle.
Collapse
Affiliation(s)
| | - Giuseppe Maccari
- The Pirbright Institute, Pirbright, UK.,Anthony Nolan Research Institute, London, UK
| | | | | |
Collapse
|
10
|
Teishikata T, Shiraishi K, Shinno Y, Kobayashi Y, Kashima J, Ishiyama T, Yoshida T, Mori T, Yatabe Y. An Alert to Possible False Positives With a Commercial Assay for MET Exon 14 Skipping. J Thorac Oncol 2021; 16:2133-2138. [PMID: 34419686 DOI: 10.1016/j.jtho.2021.07.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/25/2021] [Accepted: 07/16/2021] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Because molecular-targeted drugs against MET exon 14 (METex14) skipping have been approved, molecular testing of the alteration has added to clinical guidelines. There are several such assays, but methodological issues have been reported. METHODS METex14 skipping results from three assays (Oncomine DxTT, ArcherMET, and laboratory-developed reverse-transcriptase polymerase chain reaction test [LDT RT-PCR]) were compared in a relatively small series of the specimens diagnosed as advanced NSCLC (n = 50). RESULTS The ArcherMET and LDT RT-PCR results were identical for all 50 samples, but eight samples had discordant results between Oncomine DxTT and the other two assays. All eight samples had METex14 skipping with Oncomine DxTT and wild-type signals with ArcherMET and LDT RT-PCR. The discordance might be caused by the homopolymeric error of the splice donor site with Oncomine DxTT, and false positives could be distinguished by relatively low read counts. CONCLUSIONS Although the caution in detecting METex14 skipping focuses on false negatives in the literature, false positives were first noted at a relatively high frequency (8 of 26, 30.8%) in this study. According to the results of previous clinical trials using the other tyrosine kinase inhibitors, it could be surmised that MET inhibitor treatment in patients without METex14 skipping is detrimental. Clinicians need to be alert to the false positives that can lead to harmful treatments.
Collapse
Affiliation(s)
- Takashi Teishikata
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuki Shinno
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshihisa Kobayashi
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Jumpei Kashima
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Takako Ishiyama
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Tatsuya Yoshida
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Taisuke Mori
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan; Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan; Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan.
| |
Collapse
|
11
|
Relevance of Polymorphic KIR and HLA Class I Genes in NK-Cell-Based Immunotherapies for Adult Leukemic Patients. Cancers (Basel) 2021; 13:cancers13153767. [PMID: 34359667 PMCID: PMC8345033 DOI: 10.3390/cancers13153767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Immunotherapies are promising approaches to curing different acute leukemias. Natural killer (NK) cells are lymphocytes that are efficient in the elimination of leukemic cells. NK-cell-based immunotherapies are particularly attractive, but the landscape of the heterogeneity of NK cells must be deciphered. This review provides an overview of the polymorphic KIR and HLA class I genes that modulate the NK cell repertoire and how these markers can improve the outcomes of patients with acute leukemia. A better knowledge of these genetic markers that are linked to NK cell subsets that are efficient against hematological diseases will optimize hematopoietic stem-cell donor selection and NK immunotherapy design. Abstract Since the mid-1990s, the biology and functions of natural killer (NK) cells have been deeply investigated in healthy individuals and in people with diseases. These effector cells play a particularly crucial role after allogeneic hematopoietic stem-cell transplantation (HSCT) through their graft-versus-leukemia (GvL) effect, which is mainly mediated through polymorphic killer-cell immunoglobulin-like receptors (KIRs) and their cognates, HLA class I ligands. In this review, we present how KIRs and HLA class I ligands modulate the structural formation and the functional education of NK cells. In particular, we decipher the current knowledge about the extent of KIR and HLA class I gene polymorphisms, as well as their expression, interaction, and functional impact on the KIR+ NK cell repertoire in a physiological context and in a leukemic context. In addition, we present the impact of NK cell alloreactivity on the outcomes of HSCT in adult patients with acute leukemia, as well as a description of genetic models of KIRs and NK cell reconstitution, with a focus on emergent T-cell-repleted haplo-identical HSCT using cyclosphosphamide post-grafting (haplo-PTCy). Then, we document how the immunogenetics of KIR/HLA and the immunobiology of NK cells could improve the relapse incidence after haplo-PTCy. Ultimately, we review the emerging NK-cell-based immunotherapies for leukemic patients in addition to HSCT.
Collapse
|
12
|
Vasoya D, Oliveira PS, Muriel LA, Tzelos T, Vrettou C, Morrison WI, de Miranda Santos IKF, Connelley T. High throughput analysis of MHC-I and MHC-DR diversity of Brazilian cattle populations. HLA 2021; 98:93-113. [PMID: 34102036 DOI: 10.1111/tan.14339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/13/2021] [Accepted: 06/02/2021] [Indexed: 01/16/2023]
Abstract
The major histocompatibility complex (MHC) contains many genes that play key roles in initiating and regulating immune responses. This includes the polymorphic MHCI and MHCII genes that present epitopes to CD8+ and CD4+ T-cells, respectively. Consequently, the characterisation of the repertoire of MHC genes is an important component of improving our understanding of the genetic variation that determines the outcomes of immune responses. In cattle, MHC (BoLA) research has predominantly focused on Holstein-Friesian animals (as the most economically important breed globally), although the development of high-throughput approaches has allowed the BoLA-DRB3 repertoire to be studied in a greater variety of breeds. In a previous study we reported on the development of a MiSeq-based method to enable high-throughput and high-resolution analysis of bovine MHCI repertoires. Herein, we report on the expansion of this methodology to incorporate analysis of the BoLA-DRB3 and its application to analyse MHC diversity in a large cohort of cattle from Brazil (>500 animals), including representatives from the three major Bos indicus breeds present in Brazil - Guzerat, Gir and Nelore. This large-scale description of paired MHCI-DRB3 repertoires in Bos indicus cattle has identified a small number of novel DRB3 alleles, a large number of novel MHCI alleles and haplotypes, and provided novel insights into MHCI-MHCII association - further expanding our knowledge of bovine MHC diversity.
Collapse
Affiliation(s)
- Deepali Vasoya
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Priscila Silva Oliveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
| | - Laura Agundez Muriel
- Translational Synthetic Biology Department, Mammalian genome editing and gene therapy, Parque de Investigación Biomédica, Carrer del Dr, Barcelona, Spain
| | - Thomas Tzelos
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Christina Vrettou
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - W Ivan Morrison
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | - Timothy Connelley
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
13
|
The genetic predisposition to longevity acts through behavioral phenotypes in females. Eur Neuropsychopharmacol 2021; 45:1-14. [PMID: 33730682 DOI: 10.1016/j.euroneuro.2021.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 02/08/2023]
Abstract
The discovery of genetic factors for the predisposition of longevity is promising but their functional role and clinical relevance remain largely unclear. Based on results from a large genome-wide association study (GWAS) on human longevity (N ≈ 390,000) we identified six phenotype categories belonging to behavioral and psychiatric traits showing significant genetic correlations using LD Hub. We validated these genetic correlations on the phenotype level in a general population sample using a polygenic risk score (PRS) based on the longevity GWAS as proxy for longevity (N ≈ 8190; Study of Health in Pomerania). The behavioral phenotypes education, smoking and body mass index (BMI) were highly associated with the PRS for longevity especially in females (peducation=0.003, psmoking=0.049, pBMI=2.0E-4) with increased rates for higher education, lower smoking rates and decrease in BMI attributed to a higher PRS for longevity. Moreover, the psychiatric phenotypes depression and subjective health complaints showed significant associations (pDEPR=0.032, pSHC=0.002) in females only. Generally, a higher genetic predisposition for longevity had a stronger association with behavioral phenotypes in females than in males. It is unclear what causes the higher ``behavioral heterogeneity'' in males but different biological mechanisms might be involved. Sensitivity analyses showed that the association for the PRS for longevity with BMI and smoking were robust against adjustment with the PRS for BMI and smoking. In conclusion, our analyses demonstrated that genetic information obtained from highly powered GWAS for longevity revealed a clear behavioral signature on the phenotype level in a smaller population based sample.
Collapse
|
14
|
Chen D, Shen X, Xu Y, Ding C, Ye Q, Zhong Y, Xu Y, Zhou C. Successful four-factor preimplantation genetic testing: α- and β-thalassemia, human leukocyte antigen typing, and aneuploidy screening. Syst Biol Reprod Med 2021; 67:151-159. [PMID: 33494632 DOI: 10.1080/19396368.2020.1832158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Our study established an effective next-generation sequencing (NGS) protocol for four-factor preimplantation genetic testing (PGT) using α- and β-thalassemia, human leukocyte antigen (HLA) typing, and aneuploidy screening. Three couples, in whom both partners were α- and β-double thalassemia carriers, underwent PGT between 2016 and 2018. These individuals sought an opportunity for hematopoietic stem cell transplantation to save their children from β-thalassemia major. A total of 35 biopsied trophectoderm samples underwent multiple displacement amplification (MDA). PGT for α- and β-thalassemia and HLA typing were performed on MDA products using NGS-based single-nucleotide polymorphism (SNP) haplotyping. Although two samples failed MDA, 94.3% (33/35) of samples were successfully amplified, achieving conclusive PGT results. Furthermore, 51.5% (17/33) of the embryos were diagnosed as unaffected non-carriers or carriers. Of the 17 unaffected embryos, nine (52.9%) were tested further and identified as euploid via NGS-based aneuploid screening, in which five had HLA types matching affected children. One family did not achieve any unaffected euploid embryos. The two other families transferred HLA-matched and unaffected euploid embryos, resulting in two healthy 'savior babies.' NGS-PGT results were confirmed in prenatal diagnosis. Therefore, NGS-SNP was effective in performing PGT for multipurpose detection within a single PGT cycle.
Collapse
Affiliation(s)
- Dongjia Chen
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Xiaoting Shen
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Yan Xu
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Chenhui Ding
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Qingjian Ye
- Department of Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yiping Zhong
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Yanwen Xu
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| | - Canquan Zhou
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, China
| |
Collapse
|
15
|
Cismaru AL, Grimm L, Rudin D, Ibañez L, Liakoni E, Bonadies N, Kreutz R, Hallberg P, Wadelius M, Haschke M, Largiadèr CR, Amstutz U. High-Throughput Sequencing to Investigate Associations Between HLA Genes and Metamizole-Induced Agranulocytosis. Front Genet 2020; 11:951. [PMID: 32973882 PMCID: PMC7473498 DOI: 10.3389/fgene.2020.00951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022] Open
Abstract
Background and Objective: Agranulocytosis is a rare and potentially life-threatening complication of metamizole (dipyrone) intake that is characterized by a loss of circulating neutrophil granulocytes. While the mechanism underlying this adverse drug reaction is not well understood, involvement of the immune system has been suggested. In addition, associations between genetic variants in the Human Leukocyte Antigen (HLA) region and agranulocytosis induced by other drugs have been reported. The aim of the present study was to assess whether genetic variants in classical HLA genes are associated with the susceptibility to metamizole-induced agranulocytosis (MIA) in a European population by targeted resequencing of eight HLA genes. Design: A case-control cohort of Swiss patients with a history of neutropenia or agranulocytosis associated with metamizole exposure (n = 53), metamizole-tolerant (n = 39) and unexposed controls (n = 161) was recruited for this study. A high-throughput resequencing (HTS) and high-resolution typing method was used to sequence and analyze eight HLA loci in a discovery subset of this cohort (n = 31 cases, n = 38 controls). Identified candidate alleles were investigated in the full Swiss cohort as well as in two independent cohorts from Germany and Spain using HLA imputation from genome-wide SNP array data. In addition, variant calling based on HTS data was performed in the discovery subset for the class I genes HLA-A, -B, and -C using the HLA-specific mapper hla-mapper. Results: Eight candidate alleles (p < 0.05) were identified in the discovery subset, of which HLA-C∗04:01 was associated with MIA in the full Swiss cohort (p < 0.01) restricted to agranulocytosis (ANC < 0.5 × 109/L) cases. However, no candidate allele showed a consistent association in the Swiss, German and Spanish cohorts. Analysis of individual sequence variants in class I genes produced consistent results with HLA typing but did not reveal additional small nucleotide variants associated with MIA. Conclusion: Our results do not support an HLA-restricted T cell-mediated immune mechanism for MIA. However, we established an efficient high-resolution (three-field) eight-locus HTS HLA resequencing method to interrogate the HLA region and demonstrated the feasibility of its application to pharmacogenetic studies.
Collapse
Affiliation(s)
- Anca Liliana Cismaru
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Livia Grimm
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Deborah Rudin
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Luisa Ibañez
- Clinical Pharmacology Service, Hospital Universitari Vall d'Hebron, Department of Pharmacology, Therapeutics and Toxicology, Fundació Institut Català de Farmacologia, Autonomous University of Barcelona, Barcelona, Spain
| | - Evangelia Liakoni
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Nicolas Bonadies
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Reinhold Kreutz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Klinische Pharmakologie und Toxikologie, Berlin, Germany
| | - Pär Hallberg
- Department of Medical Sciences, Clinical Pharmacology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mia Wadelius
- Department of Medical Sciences, Clinical Pharmacology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Manuel Haschke
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Carlo R Largiadèr
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ursula Amstutz
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
16
|
Savage AE, Gratwicke B, Hope K, Bronikowski E, Fleischer RC. Sustained immune activation is associated with susceptibility to the amphibian chytrid fungus. Mol Ecol 2020; 29:2889-2903. [PMID: 32700351 DOI: 10.1111/mec.15533] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/06/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022]
Abstract
The disease chytridiomycosis caused by the fungus Bd has devastated amphibian populations worldwide. Functional genomic contributions to host susceptibility remain enigmatic and vary between species and populations. We conducted experimental Bd infections in Rana yavapaiensis, a species with intraspecific variation in chytridiomycosis susceptibility, to assess the skin and spleen transcriptomic response to infection over time. We predicted that increased immune gene expression would be associated with a positive disease outcome, but we instead found that surviving frogs had significantly reduced immune gene expression compared to susceptible frogs and to uninfected controls. MHC class IIβ gene expression was also significantly higher in susceptible frogs compared to surviving frogs. Furthermore, susceptible frogs expressed a significantly larger number of distinct class IIβ alleles, demonstrating a negative correlation between class IIβ expression, functional diversity, and survival. Expression of the MHC class IIβ locus previously associated with Bd disease outcomes was a significant predictor of Bd infection intensity at early infection stages but not at late infection stages, suggesting initial MHC-linked immune processes are important for ultimate disease outcomes. We infer through disease association and phylogenetic analysis that certain MHC variants are linked to the immune expression that was negatively associated with survival, and we hypothesize that frogs that did not express these alleles could better survive infections. Our study finds that MHC expression at early and late infection stages predicts Bd infection intensity, and suggests that generating a sustained immune response against Bd may be counterproductive for surviving chytridiomycosis in this partially susceptible species.
Collapse
Affiliation(s)
- Anna E Savage
- Department of Biology, University of Central Florida, Orlando, FL, USA.,Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Brian Gratwicke
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Katharine Hope
- Center for Animal Care Sciences, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Edward Bronikowski
- Center for Animal Care Sciences, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| |
Collapse
|
17
|
Zhang Y, Chen Y, Xu H, Fang J, Zhao Z, Hu W, Yang X, Ye J, Cheng Y, Wang J, Sun W, Wang J, Yang H, Yan J, Fang L. SOAPTyping: an open-source and cross-platform tool for sequence-based typing for HLA class I and II alleles. BMC Bioinformatics 2020; 21:295. [PMID: 32640979 PMCID: PMC7646500 DOI: 10.1186/s12859-020-03624-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/22/2020] [Indexed: 12/30/2022] Open
Abstract
Background The human leukocyte antigen (HLA) gene family plays a key role in the immune response and thus is crucial in many biomedical and clinical settings. Utilizing Sanger sequencing, the golden standard technology for HLA typing enables accurate identification of HLA alleles in high-resolution. However, only the commercial software, such as uTYPE, SBT-Assign, and SBTEngine, and very few open-source tools could be applied to perform HLA typing based on Sanger sequencing. Results We developed a user-friendly, cross-platform and open-source desktop application, known as SOAPTyping, for Sanger-based typing in HLA class I and II alleles. SOAPTyping can produce accurate results with a comprehensible protocol and featured functions. Moreover, SOAPTyping supports a more advanced group-specific sequencing primers (GSSP) module to solve the ambiguous typing results. We used SOAPTyping to analyze 36 samples with known HLA typing from the University of California Los Angeles (UCLA) International HLA DNA Exchange platform and 100 anonymous clinical samples, and the HLA typing results from SOAPTyping are identical to the golden results and 5.5 times faster than commercial software uTYPE, which shows the usability of SOAPTyping. Conclusions We introduce the SOAPTyping as the first open-source and cross-platform HLA typing software with the capability of producing high-resolution HLA typing predictions from Sanger sequence data.
Collapse
Affiliation(s)
- Yong Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Huixin Xu
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | | | - Weipeng Hu
- BGI-Shenzhen, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | | | - Jia Ye
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yun Cheng
- Zhejiang Hospital, No 12 Lingyin Road, Hangzhou, 310013, Xihu District, China
| | - Jiayin Wang
- Department of Computer Science and Technology, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an, 710048, Shaanxi, China
| | - Weiqiang Sun
- Shanghai Institute for Advanced Communication and Data Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, 518083, China.,James D. Watson Institute of Genome Science, Hangzhou, 310008, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, 518083, China.,James D. Watson Institute of Genome Science, Hangzhou, 310008, China
| | - Jing Yan
- Zhejiang Hospital, No 12 Lingyin Road, Hangzhou, 310013, Xihu District, China.
| | - Lin Fang
- BGI-Shenzhen, Shenzhen, 518083, China. .,Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
18
|
Do MD, Le LGH, Nguyen VT, Dang TN, Nguyen NH, Vu HA, Mai TP. High-Resolution HLA Typing of HLA-A, -B, -C, -DRB1, and -DQB1 in Kinh Vietnamese by Using Next-Generation Sequencing. Front Genet 2020; 11:383. [PMID: 32425978 PMCID: PMC7204072 DOI: 10.3389/fgene.2020.00383] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/27/2020] [Indexed: 12/19/2022] Open
Abstract
Human leukocyte antigen (HLA) genotyping displays the particular characteristics of HLA alleles and haplotype frequencies in each population. Although it is considered the current gold standard for HLA typing, high-resolution sequence-based HLA typing is currently unavailable in Kinh Vietnamese populations. In this study, high-resolution sequence-based HLA typing (3-field) was performed using an amplicon-based next-generation sequencing platform to identify the HLA-A, -B, -C, -DRB1, and -DQB1 alleles of 101 unrelated healthy Kinh Vietnamese individuals from southern Vietnam. A total of 28 HLA-A, 41 HLA-B, 21 HLA-C, 26 HLA-DRB1, and 25 HLA-DQB1 alleles were identified. The most frequently occurring HLA alleles were A∗11:01:01, B∗15:02:01, C∗07:02:01, DRB1∗12:02:01, and DQB1∗03:01:01. Haplotype calculation showed that A∗29:01:01∼B∗07:05:01, DRB1∗12:02:01∼DQB1∗3:01:01, A∗29:01:01∼C∗15:05:02∼B∗07:05:01, A∗33:03:01∼B∗58:01:01∼DRB1∗03:01:01, and A∗29:01:01∼C∗15:05:02∼B∗07:05:01∼DRB1∗10:01:01∼DQB1∗05:01:01 were the most common haplotypes in the southern Kinh Vietnamese population. Allele distribution and haplotype analyses demonstrated that the Vietnamese population shares HLA features with South-East Asians but retains unique characteristics. Data from this study will be potentially applicable in medicine and anthropology.
Collapse
Affiliation(s)
- Minh Duc Do
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Linh Gia Hoang Le
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Vinh The Nguyen
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Tran Ngoc Dang
- Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Nghia Hoai Nguyen
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Hoang Anh Vu
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thao Phuong Mai
- Department of Physiology, Pathophysiology and Immunology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
19
|
Tokić S, Žižkova V, Štefanić M, Glavaš-Obrovac L, Marczi S, Samardžija M, Sikorova K, Petrek M. HLA-A, -B, -C, -DRB1, -DQA1, and -DQB1 allele and haplotype frequencies defined by next generation sequencing in a population of East Croatia blood donors. Sci Rep 2020; 10:5513. [PMID: 32218484 PMCID: PMC7099076 DOI: 10.1038/s41598-020-62175-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Next-generation sequencing (NGS) is increasingly used in transplantation settings, but also as a method of choice for in-depth analysis of population-specific HLA genetic architecture and its linkage to various diseases. With respect to complex ethnic admixture characteristic for East Croatian population, we aimed to investigate class-I (HLA-A, -B, -C) and class-II (HLA-DRB1, -DQA1, -DQB1) HLA diversity at the highest, 4-field resolution level in 120 healthy, unrelated, blood donor volunteers. Genomic DNA was extracted and HLA genotypes of class I and DQA1 genes were defined in full-length, -DQB1 from intron 1 to 3′ UTR, and -DRB1 from intron 1 to intron 4 (Illumina MiSeq platform, Omixon Twin algorithms, IMGT/HLA release 3.30.0_5). Linkage disequilibrium statistics, Hardy-Weinberg departures, and haplotype frequencies were inferred by exact tests and iterative Expectation-Maximization algorithm using PyPop 0.7.0 and Arlequin v3.5.2.2 software. Our data provide first description of 4-field allele and haplotype frequencies in Croatian population, revealing 192 class-I and class-II alleles and extended haplotypic combinations not apparent from the existing 2-field HLA reports from Croatia. This established reference database complements current knowledge of HLA diversity and should prove useful in future population studies, transplantation settings, and disease-associated HLA screening.
Collapse
Affiliation(s)
- Stana Tokić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Osijek, J. Huttlera 4, HR-31000, Osijek, Croatia.
| | - Veronika Žižkova
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacký University, Hnevotinska 3, 775 15, Olomouc, Czech Republic
| | - Mario Štefanić
- Department of Nuclear Medicine and Oncology, Faculty of Medicine, University of Osijek, J. Huttlera 4, HR-31000, Osijek, Croatia.
| | - Ljubica Glavaš-Obrovac
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Osijek, J. Huttlera 4, HR-31000, Osijek, Croatia
| | - Saška Marczi
- Department of Laboratory Diagnostics and Clinical Transfusion Medicine, Clinical Institute of Transfusion Medicine, Osijek University Hospital, J. Huttlera 4, HR-31000, Osijek, Croatia
| | - Marina Samardžija
- Department of Laboratory Diagnostics and Clinical Transfusion Medicine, Clinical Institute of Transfusion Medicine, Osijek University Hospital, J. Huttlera 4, HR-31000, Osijek, Croatia
| | - Katerina Sikorova
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacký University, Hnevotinska 3, 775 15, Olomouc, Czech Republic
| | - Martin Petrek
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacký University, Hnevotinska 3, 775 15, Olomouc, Czech Republic.
| |
Collapse
|
20
|
Single-molecule analysis of nucleic acid biomarkers - A review. Anal Chim Acta 2020; 1115:61-85. [PMID: 32370870 DOI: 10.1016/j.aca.2020.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022]
Abstract
Nucleic acids are important biomarkers for disease detection, monitoring, and treatment. Advances in technologies for nucleic acid analysis have enabled discovery and clinical implementation of nucleic acid biomarkers. However, challenges remain with technologies for nucleic acid analysis, thereby limiting the use of nucleic acid biomarkers in certain contexts. Here, we review single-molecule technologies for nucleic acid analysis that can be used to overcome these challenges. We first discuss the various types of nucleic acid biomarkers important for clinical applications and conventional technologies for nucleic acid analysis. We then discuss technologies for single-molecule in vitro and in situ analysis of nucleic acid biomarkers. Finally, we discuss other ultra-sensitive techniques for nucleic acid biomarker detection.
Collapse
|
21
|
A new set of reagents and related software used for NGS based classical and non-classical HLA typing showing evidence for a greater HLA haplotype diversity. Hum Immunol 2020; 81:202-205. [PMID: 32122686 DOI: 10.1016/j.humimm.2020.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 02/01/2020] [Accepted: 02/12/2020] [Indexed: 01/28/2023]
Abstract
To evaluate the HLA typing performance of a new Long-Range PCR NGS set of reagents and its dedicated software, a panel of 41 reference homozygous cell lines from the International Histocompatibility Working Group (IHWG) and a panel of 376 volunteer bone marrow donors were analyzed for classical and non-classical HLA class I and class II genes. All results, except HLA-DPB1, were obtained without any ambiguities at the 3rd field level. Based on the high resolution performance of the reagents, a number of new alleles have been described not only for classical but also for non-classical HLA class I genes, leading to a more accurate haplotype definition. Linkage disequilibrium between HLA-A and HLA-G genes has been defined at 4th field level of resolution. Moreover, for the first time, HLA-DQA2 and DQB2 polymorphisms and their linkage disequilibrium with DQB1 were described.
Collapse
|
22
|
Sundaram AYM, Garseth ÅH, Maccari G, Grimholt U. An Illumina approach to MHC typing of Atlantic salmon. Immunogenetics 2020; 72:89-100. [PMID: 31713647 PMCID: PMC6970960 DOI: 10.1007/s00251-019-01143-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 01/09/2023]
Abstract
The IPD-MHC Database represents the official repository for non-human major histocompatibility complex (MHC) sequences, overseen and supported by the Comparative MHC Nomenclature Committee, providing access to curated MHC data and associated analysis tools. IPD-MHC gathers allelic MHC class I and class II sequences from classical and non-classical MHC loci from various non-human animals including pets, farmed and experimental model animals. So far, Atlantic salmon and rainbow trout are the only teleost fish species with MHC class I and class II sequences present. For the remaining teleost or ray-finned species, data on alleles originating from given classical locus is scarce hampering their inclusion in the database. However, a fast expansion of sequenced genomes opens for identification of classical loci where high-throughput sequencing (HTS) will enable typing of allelic variants in a variety of new teleost or ray-finned species. HTS also opens for large-scale studies of salmonid MHC diversity challenging the current database nomenclature and analysis tools. Here we establish an Illumina approach to identify allelic MHC diversity in Atlantic salmon, using animals from an endangered wild population, and alter the salmonid MHC nomenclature to accommodate the expected sequence expansions.
Collapse
Affiliation(s)
- Arvind Y M Sundaram
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, 0450, Oslo, Norway
| | - Åse Helen Garseth
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106, Oslo, Norway
| | - Giuseppe Maccari
- The Pirbright Institute, Woking, UK
- Anthony Nolan Research Institute, London, UK
| | - Unni Grimholt
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106, Oslo, Norway.
| |
Collapse
|
23
|
Fürst D, Tsamadou C, Neuchel C, Schrezenmeier H, Mytilineos J, Weinstock C. Next-Generation Sequencing Technologies in Blood Group Typing. Transfus Med Hemother 2019; 47:4-13. [PMID: 32110189 DOI: 10.1159/000504765] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022] Open
Abstract
Sequencing of the human genome has led to the definition of the genes for most of the relevant blood group systems, and the polymorphisms responsible for most of the clinically relevant blood group antigens are characterized. Molecular blood group typing is used in situations where erythrocytes are not available or where serological testing was inconclusive or not possible due to the lack of antisera. Also, molecular testing may be more cost-effective in certain situations. Molecular typing approaches are mostly based on either PCR with specific primers, DNA hybridization, or DNA sequencing. Particularly the transition of sequencing techniques from Sanger-based sequencing to next-generation sequencing (NGS) technologies has led to exciting new possibilities in blood group genotyping. We describe briefly the currently available NGS platforms and their specifications, depict the genetic background of blood group polymorphisms, and discuss applications for NGS approaches in immunohematology. As an example, we delineate a protocol for large-scale donor blood group screening established and in use at our institution. Furthermore, we discuss technical challenges and limitations as well as the prospect for future developments, including long-read sequencing technologies.
Collapse
Affiliation(s)
- Daniel Fürst
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg/Hessen, and University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Chrysanthi Tsamadou
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg/Hessen, and University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Christine Neuchel
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg/Hessen, and University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg/Hessen, and University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Joannis Mytilineos
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg/Hessen, and University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Christof Weinstock
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg/Hessen, and University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| |
Collapse
|
24
|
Geneugelijk K, Spierings E. PIRCHE-II: an algorithm to predict indirectly recognizable HLA epitopes in solid organ transplantation. Immunogenetics 2019; 72:119-129. [PMID: 31741009 PMCID: PMC6971131 DOI: 10.1007/s00251-019-01140-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022]
Abstract
Human leukocyte antigen (HLA) mismatches between donors and recipients may lead to alloreactivity after solid organ transplantation. Over the last few decades, our knowledge of the complexity of the HLA system has dramatically increased, as numerous new HLA alleles have been identified. As a result, the likelihood of alloreactive responses towards HLA mismatches after solid organ transplantation cannot easily be assessed. Algorithms are promising solutions to estimate the risk for alloreactivity after solid organ transplantation. In this review, we show that the recently developed PIRCHE-II (Predicted Indirectly ReCognizable HLA Epitopes) algorithm can be used to minimize alloreactivity towards HLA mismatches. Together with the use of other algorithms and simulation approaches, the PIRCHE-II algorithm aims for a better estimated alloreactive risk for individual patients and eventually an improved graft survival after solid organ transplantation.
Collapse
Affiliation(s)
- Kirsten Geneugelijk
- Laboratory of Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands.
| | - Eric Spierings
- Laboratory of Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands
| |
Collapse
|
25
|
Pradana KA, Widjaya MA, Wahjudi M. Indonesians Human Leukocyte Antigen (HLA) Distributions and Correlations with Global Diseases. Immunol Invest 2019; 49:333-363. [PMID: 31648579 DOI: 10.1080/08820139.2019.1673771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In Human, Major Histocompatibility Complex known as Human Leukocyte Antigen (HLA). The HLA grouped into three subclasses regions: the class I region, the class II region, and the class III region. There are thousands of polymorphic HLAs, many of them are proven to have correlations with diseases. Indonesia consists of diverse ethnicity people and populations. It carries a unique genetic diversity between one and another geographical positions. This paper aims to extract Indonesians HLA allele data, mapping the data, and correlating them with global diseases. From the study, it is found that global diseases, like Crohn's disease, rheumatoid arthritis, Graves' disease, gelatin allergy, T1D, HIV, systemic lupus erythematosus, juvenile chronic arthritis, and Mycobacterial disease (tuberculosis and leprosy) suspected associated with the Indonesian HLA profiles.
Collapse
Affiliation(s)
- Krisnawan Andy Pradana
- Faculty of Biotechnology, University of Surabaya, Surabaya City, Indonesia.,Department of Anatomy and Histology Faculty of Medicine, Airlangga University, Tambaksari, Surabaya City, Indonesia
| | | | - Mariana Wahjudi
- Faculty of Biotechnology, University of Surabaya, Surabaya City, Indonesia
| |
Collapse
|
26
|
Cargou M, Ralazamahaleo M, Blouin L, Top I, Elsermans V, Andreani M, Guidicelli G, Visentin J. Evaluation of the AllType kit for HLA typing using the Ion Torrent S5 XL platform. HLA 2019; 95:30-39. [DOI: 10.1111/tan.13708] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/04/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Marine Cargou
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique Hôpital Pellegrin Bordeaux France
- Immuno ConcEpT Bordeaux France
- Université de Bordeaux Bordeaux France
| | - Mamy Ralazamahaleo
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique Hôpital Pellegrin Bordeaux France
| | - Laura Blouin
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique Hôpital Pellegrin Bordeaux France
| | - Isabelle Top
- CHRU de Lille, Institut d'Immunologie‐HLA Lille France
| | | | - Marco Andreani
- Laboratorio d'Immunogenetica dei Trapianti IRCCS Ospedale Pediatrico Bambino Gesù Roma Italy
| | - Gwendaline Guidicelli
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique Hôpital Pellegrin Bordeaux France
| | - Jonathan Visentin
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique Hôpital Pellegrin Bordeaux France
- Immuno ConcEpT Bordeaux France
- Université de Bordeaux Bordeaux France
| |
Collapse
|
27
|
Rwandamuriye FX, Chopra A, Konvinse KC, Choo L, Trubiano JA, Shaffer CM, Watson M, Mallal SA, Phillips EJ. A Rapid Allele-Specific Assay for HLA-A*32:01 to Identify Patients at Risk for Vancomycin-Induced Drug Reaction with Eosinophilia and Systemic Symptoms. J Mol Diagn 2019; 21:782-789. [PMID: 31158526 PMCID: PMC6734857 DOI: 10.1016/j.jmoldx.2019.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/13/2019] [Accepted: 04/02/2019] [Indexed: 12/17/2022] Open
Abstract
Human leukocyte antigen (HLA) alleles have been implicated as risk factors for immune-mediated adverse drug reactions. The authors recently reported a strong association between HLA-A*32:01 and vancomycin-induced drug reaction with eosinophilia and systemic symptoms. Identification of individuals with the risk allele before or shortly after the initiation of vancomycin therapy is of great clinical importance to prevent morbidity and mortality, and improve drug safety and antibiotic treatment options. A prerequisite to the success of pharmacogenetic screening tests is the development of simple, robust, cost-effective single HLA allele test that can be implemented in routine diagnostic laboratories. In this study, the authors developed a simple, real-time allele-specific PCR for typing the HLA-A*32:01 allele. Four-hundred and fifty-eight DNA samples including 30 HLA-A*32:01-positive samples were typed by allele-specific PCR. Compared with American Society for Histocompatibility and Immunogenetics-accredited, sequence-based, high-resolution, full-allelic HLA typing, this assay demonstrates 100% accuracy, 100% sensitivity (95% CI, 88.43% to 100%), and 100% specificity (95% CI, 99.14% to 100%). The lowest limit of detection of this assay using PowerUp SYBR Green is 10 ng of template DNA. The assay demonstrates a sensitivity and specificity to differentiate the HLA-A*32:01 allele from closely related non-HLA-A*32 alleles and may be used in clinical settings to identify individuals with the risk allele before or during the course of vancomycin therapy.
Collapse
Affiliation(s)
- Francois X Rwandamuriye
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia; Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Katherine C Konvinse
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Linda Choo
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Jason A Trubiano
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Infectious Diseases and Centre for Antibiotic Allergy and Research, Austin Health, Heidelberg, Victoria, Australia; Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Christian M Shaffer
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mark Watson
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Simon A Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia; Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
28
|
Lee W, Plant K, Humburg P, Knight JC. AltHapAlignR: improved accuracy of RNA-seq analyses through the use of alternative haplotypes. Bioinformatics 2019. [PMID: 29514179 PMCID: PMC6041798 DOI: 10.1093/bioinformatics/bty125] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Motivation Reliance on mapping to a single reference haplotype currently limits accurate estimation of allele or haplotype-specific expression using RNA-sequencing, notably in highly polymorphic regions such as the major histocompatibility complex. Results We present AltHapAlignR, a method incorporating alternate reference haplotypes to generate gene- and haplotype-level estimates of transcript abundance for any genomic region where such information is available. We validate using simulated and experimental data to quantify input allelic ratios for major histocompatibility complex haplotypes, demonstrating significantly improved correlation with ground truth estimates of gene counts compared to standard single reference mapping. We apply AltHapAlignR to RNA-seq data from 462 individuals, showing how significant underestimation of expression of the majority of classical human leukocyte antigen genes using conventional mapping can be corrected using AltHapAlignR to allow more accurate quantification of gene expression for individual alleles and haplotypes. Availability and implementation Source code freely available at https://github.com/jknightlab/AltHapAlignR. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Wanseon Lee
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Katharine Plant
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Peter Humburg
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Del Río-Ospina L, Camargo M, Soto-De León SC, Robayo-Calderón KL, Garzón-Ospina D, Patarroyo ME, Patarroyo MA. Using next-generation sequencing for characterising HLA-DRB1 and DQB1 loci in a cohort of Colombian women. HLA 2019; 94:425-434. [PMID: 31441245 DOI: 10.1111/tan.13672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 11/29/2022]
Abstract
The Colombian population is characterised by a high genetic diversity, secondary to the ethnic mixture arising from colonisation. Unfortunately, few reports are available regarding HLA-DRB1 and DQB1 diversity in Colombia to date. HLA-DRB1 and DQB1 diversity was identified in this study using next-generating sequencing (NGS) on a cohort of Colombian women. Cervical samples taken from 276 women were used for typing DRB1 and DQB1 loci by Illumina MiSeq. Allele and haplotype frequencies were calculated using an expectation-maximisation algorithm. Hardy-Weinberg Equilibrium and linkage disequilibrium (LD) between loci were evaluated. Forty-seven DRB1 alleles and 14 DQB1 alleles were identified. DRB1*04:07:01G and DQB1*03:02:01G alleles occurred most frequently in the target population. Significant LD was found in 44 out of the 144 identified haplotypes, within which DRB1*04:07:01G-DQB1*03:02:01G occurred most frequently (6.56%). The alleles and haplotypes found with NGS agreed with that found in previous reports involving lower resolution for the Colombian population, and greater genetic variability was found, especially concerning DRB1. Comparing allele and haplotype frequency distribution in the target population to that of other populations denoted HLA system intra- and inter-population diversity.
Collapse
Affiliation(s)
- Luisa Del Río-Ospina
- Molecular Biology and Inmunology Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,Clínical Research Group, Instituto Nacional de Cancerología E.S.E., Bogotá, Colombia
| | - Milena Camargo
- Molecular Biology and Inmunology Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Sara C Soto-De León
- Molecular Biology and Inmunology Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia
| | - Karen L Robayo-Calderón
- Molecular Biology and Inmunology Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia
| | - Diego Garzón-Ospina
- Molecular Biology and Inmunology Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Manuel E Patarroyo
- Molecular Biology and Inmunology Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Manuel A Patarroyo
- Molecular Biology and Inmunology Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
30
|
Barsakis K, Babrzadeh F, Chi A, Mallempati K, Pickle W, Mindrinos M, Fernández-Viña MA. Complete nucleotide sequence characterization of DRB5 alleles reveals a homogeneous allele group that is distinct from other DRB genes. Hum Immunol 2019; 80:437-448. [PMID: 30954494 PMCID: PMC6622178 DOI: 10.1016/j.humimm.2019.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/23/2019] [Accepted: 04/01/2019] [Indexed: 01/28/2023]
Abstract
Next Generation Sequencing allows for testing and typing of entire genes of the HLA region. A better and comprehensive sequence assessment can be achieved by the inclusion of full gene sequences of all the common alleles at a given locus. The common alleles of DRB5 are under-characterized with the full exon-intron sequence of two alleles available. In the present study the DRB5 genes from 18 subjects alleles were cloned and sequenced; haplotype analysis showed that 17 of them had a single copy of DRB5 and one consanguineous subject was homozygous at all HLA loci. Methodological approaches including robust and efficient long-range PCR amplification, molecular cloning, nucleotide sequencing and de novo sequence assembly were combined to characterize DRB5 alleles. DRB5 sequences covering from 5'UTR to the end of intron 5 were obtained for DRB5*01:01, 01:02 and 02:02; partial coverage including a segment spanning exon 2 to exon 6 was obtained for DRB5*01:03, 01:08N and 02:03. Phylogenetic analysis of the generated sequences showed that the DRB5 alleles group together and have distinctive differences with other DRB loci. Novel intron variants of DRB5*01:01:01, 01:02 and 02:02 were identified. The newly characterized DRB5 intron variants of each DRB5 allele were found in subjects harboring distinct associations with alleles of DRB1, B and/or ethnicity. The new information provided by this study provides reference sequences for HLA typing methodologies. Extending sequence coverage may lead to identify the disease susceptibility factors of DRB5 containing haplotypes while the unexpected intron variations may shed light on understanding of the evolution of the DRB region.
Collapse
Affiliation(s)
- Konstantinos Barsakis
- Stanford Blood Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Biology, University of Crete, Heraklion, Crete 71003, Greece
| | - Farbod Babrzadeh
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Anjo Chi
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Kalyan Mallempati
- Stanford Blood Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - William Pickle
- Stanford Blood Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Michael Mindrinos
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | | |
Collapse
|
31
|
Divito SJ. Screening HLA to Prevent Severe Drug Reactions-A Devil's Advocate Perspective. JAMA Dermatol 2019; 155:655-656. [PMID: 30916720 DOI: 10.1001/jamadermatol.2018.5336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sherrie J Divito
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
32
|
Mocci E, Debeljak M, Klein AP, Eshleman JR. A New Fast Phasing Method Based On Haplotype Subtraction. J Mol Diagn 2019; 21:427-436. [PMID: 30872187 PMCID: PMC6504677 DOI: 10.1016/j.jmoldx.2018.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/26/2018] [Accepted: 12/31/2018] [Indexed: 11/16/2022] Open
Abstract
We developed a novel phasing approach, based solely on molecules and genotype frequency, that does not rely on inference of new alleles. We initiated the project because of errors that were detected in the phased 1000 Genomes Project data. The algorithm first combined identical genotypes into clusters and ranked them by descending frequency. Using alleles defined in homozygotes, it combined them to produce expected genotypes that were dismissed and subtracted them from remaining genotypes to define additional new putative alleles. Putative alleles had to be confirmed by identifying them in independent genotypes, and the process was iterated until all alleles were identified. The new approach was validated using single-molecule sequencing of eight loci, 145 (8 to 35 per locus) alleles were identified, and an average 98.2% (range, 95.0% to 99.9%) of 1000 genome individuals at these loci were explained. The accuracy of the new method was compared with that from PHASE and SHAPEIT2 to the experimentally determined genotypes based on single-molecule sequencing. Our method was comparable to PHASE and SHAPEIT2 in accuracy but was, on average, 14.6- and 10.8-fold faster, respectively.
Collapse
Affiliation(s)
- Evelina Mocci
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center
| | - Marija Debeljak
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Alison P Klein
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center; Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - James R Eshleman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center; Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, Maryland.
| |
Collapse
|
33
|
Goeury T, Creary LE, Brunet L, Galan M, Pasquier M, Kervaire B, Langaney A, Tiercy JM, Fernández-Viña MA, Nunes JM, Sanchez-Mazas A. Deciphering the fine nucleotide diversity of full HLA class I and class II genes in a well-documented population from sub-Saharan Africa. HLA 2019; 91:36-51. [PMID: 29160618 PMCID: PMC5767763 DOI: 10.1111/tan.13180] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/01/2017] [Accepted: 11/15/2017] [Indexed: 01/06/2023]
Abstract
With the aim to understand how next‐generation sequencing (NGS) improves both our assessment of genetic variation within populations and our knowledge on HLA molecular evolution, we sequenced and analysed 8 HLA loci in a well‐documented population from sub‐Saharan Africa (Mandenka). The results of full‐gene NGS‐MiSeq sequencing compared with those obtained by traditional typing techniques or limited sequencing strategies showed that segregating sites located outside exon 2 are crucial to describe not only class I but also class II population diversity. A comprehensive analysis of exons 2, 3, 4 and 5 nucleotide diversity at the 8 HLA loci revealed remarkable differences among these gene regions, notably a greater variation concentrated in the antigen recognition sites of class I exons 3 and some class II exons 2, likely associated with their peptide‐presentation function, a lower diversity of HLA‐C exon 3, possibly related to its role as a KIR ligand, and a peculiar molecular diversity of HLA‐A exon 2, revealing demographic signals. Based on full‐length HLA sequences, we also propose that the most frequent DRB1 allele in the studied population, DRB1*13:04, emerged from an allelic conversion involving 3 potential alleles as donors and DRB1*11:02:01 as recipient. Finally, our analysis revealed a high occurrence of the DRB1*13:04‐DQA1*05:05:01‐DQB1*03:19 haplotype, possibly resulting from a selective sweep due to protection to Onchorcerca volvulus, a prevalent pathogen in West Africa. This study unveils highly relevant information on the molecular evolution of HLA genes in relation to their immune function, calling for similar analyses in other populations living in contrasting environments.
Collapse
Affiliation(s)
- T Goeury
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution - Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - L E Creary
- Department of Pathology, Stanford University School of Medicine, Palo Alto, California
| | - L Brunet
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution - Anthropology Unit, University of Geneva, Geneva, Switzerland.,Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility (UIT/LNRH), Geneva University Hospital, Geneva, Switzerland
| | - M Galan
- INRA, UMR 1062 CBGP, avenue du Campus Agropolis, Montferrier sur Lez, France
| | - M Pasquier
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution - Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - B Kervaire
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution - Anthropology Unit, University of Geneva, Geneva, Switzerland.,Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility (UIT/LNRH), Geneva University Hospital, Geneva, Switzerland
| | - A Langaney
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution - Anthropology Unit, University of Geneva, Geneva, Switzerland
| | - J-M Tiercy
- Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland.,Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility (UIT/LNRH), Geneva University Hospital, Geneva, Switzerland
| | - M A Fernández-Viña
- Department of Pathology, Stanford University School of Medicine, Palo Alto, California
| | - J M Nunes
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution - Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - A Sanchez-Mazas
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution - Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| |
Collapse
|
34
|
Montero-Martín G, Mallempati KC, Gangavarapu S, Sánchez-Gordo F, Herrero-Mata MJ, Balas A, Vicario JL, Sánchez-García F, González-Escribano MF, Muro M, Moya-Quiles MR, González-Fernández R, Ocejo-Vinyals JG, Marín L, Creary LE, Osoegawa K, Vayntrub T, Caro-Oleas JL, Vilches C, Planelles D, Fernández-Viña MA. High-resolution characterization of allelic and haplotypic HLA frequency distribution in a Spanish population using high-throughput next-generation sequencing. Hum Immunol 2019; 80:429-436. [PMID: 30763600 DOI: 10.1016/j.humimm.2019.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 12/25/2022]
Abstract
Next-generation sequencing (NGS) at the HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1 and -DRB3/4/5 loci was performed on 282 healthy unrelated individuals from different major regions of Spain. High-resolution HLA genotypes defined by full sequencing of class I loci and extended coverage of class II loci were obtained to determine allele frequencies and also to estimate extended haplotype frequencies. HLA alleles were typed at the highest resolution level (4-field level, 4FL); with exception of a minor deviation in HLA-DPA1, no statistically significant deviations from expected Hardy Weinberg Equilibrium (HWE) proportions were observed for all other HLA loci. This study provides new 4FL-allele and -haplotype frequencies estimated for the first time in the Spanish population. Furthermore, our results describe extended haplotypes (including the less frequently typed HLA-DPA1 and HLA-DQA1 loci) and show distinctive haplotype associations found at 4FL-allele definition in this Spanish population study. The distinctive allelic and haplotypic diversity found at the 4FL reveals the high level of heterozygosity and specific haplotypic associations displayed that were not apparent at 2-field level (2FL). Overall, these results may contribute as a useful reference source for future population studies, for HLA-disease association studies as a healthy control group dataset and for improving donor recruitment strategies of bone marrow registries. HLA genotyping data of this Spanish population cohort was also included in the 17th International Histocompatibility and Immunogenetics Workshop (IHIW) as part of the study of HLA diversity in unrelated worldwide populations using NGS.
Collapse
Affiliation(s)
| | - Kalyan C Mallempati
- Stanford Blood Center, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sridevi Gangavarapu
- Stanford Blood Center, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | | - Antonio Balas
- Histocompatibility, Centro de Transfusión de la Comunidad de Madrid, Madrid, Spain
| | - Jose L Vicario
- Histocompatibility, Centro de Transfusión de la Comunidad de Madrid, Madrid, Spain
| | | | | | - Manuel Muro
- Immunology, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Maria R Moya-Quiles
- Immunology, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | | | | | - Luis Marín
- Molecular Biology-Hematology, Hospital Clínico Universitario, Salamanca, Spain
| | - Lisa E Creary
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kazutoyo Osoegawa
- Stanford Blood Center, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Tamara Vayntrub
- Stanford Blood Center, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jose L Caro-Oleas
- Histocompatibility and Immunogenetics, Banc de Sang i Teixits, Barcelona, Spain
| | - Carlos Vilches
- Immunogenetics and Histocompatibility, Instituto de Investigación Sanitaria Puerta de Hierro, Madrid, Spain
| | - Dolores Planelles
- Histocompatibility, Centro de Transfusión de la Comunidad Valenciana, Valencia, Spain
| | | |
Collapse
|
35
|
Raghavan M, Yarzabek B, Zaitouna AJ, Krishnakumar S, Ramon DS. Strategies for the measurements of expression levels and half-lives of HLA class I allotypes. Hum Immunol 2019; 80:221-227. [PMID: 30735755 DOI: 10.1016/j.humimm.2019.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/05/2018] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
Abstract
HLA class I molecules are highly polymorphic cell surface proteins that trigger immune responses by CD8+ T cells and natural killer (NK) cells. Most humans express six different HLA class I proteins encoded by the HLA-A, HLA-B and HLA-C genes. HLA class I molecules bind to peptide antigens and present these antigens to T cell receptors (TCR) of CD8+ T cells. HLA class I expression levels also regulate NK cell activation. The presence of individual HLA class I genes is linked to many different disease, transplantation and therapy outcomes. An understanding of HLA class I expression and stability patterns is fundamentally important towards a better understanding of the associations of HLA class I genes with disease and treatment outcomes, and towards HLA class I targeting for vaccine development. Quantitative flow cytometry allows for assessments of variations in expression levels of HLA class I molecules in cells from a single blood donor over time, as well as averaged measurements across donors for the same allotype. Since all HLA class I molecules are structurally-related, cellular measurements of the HLA class I expression levels and stabilities of individual variants in human cells require careful choices of donors and antibodies, which are discussed here.
Collapse
Affiliation(s)
- Malini Raghavan
- Department of Microbiology and Immunology, Michigan Medicine, 1150 W. Medical Center Drive, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Brogan Yarzabek
- Department of Microbiology and Immunology, Michigan Medicine, 1150 W. Medical Center Drive, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anita J Zaitouna
- Department of Microbiology and Immunology, Michigan Medicine, 1150 W. Medical Center Drive, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sujatha Krishnakumar
- Sirona Genomics, Immucor Inc, Suite A, 1916 Old Middlefield Way Mountain View, CA 94043, USA
| | - Daniel S Ramon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 5777 E. Mayo Blvd, Phoenix, AZ 85054, USA
| |
Collapse
|
36
|
González-Quezada BA, Creary LE, Munguia-Saldaña AJ, Flores-Aguilar H, Fernández-Viña MA, Gorodezky C. Exploring the ancestry and admixture of Mexican Oaxaca Mestizos from Southeast Mexico using next-generation sequencing of 11 HLA loci. Hum Immunol 2019; 80:157-162. [PMID: 30708029 DOI: 10.1016/j.humimm.2019.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 12/03/2018] [Accepted: 01/17/2019] [Indexed: 02/01/2023]
Abstract
The Mestizos of Oaxaca resulted from the admixture of Zapotecan Natives with Spaniards and Africans. We selected 112 donors from Oaxaca and applied next-generation sequencing to characterize exon and intron variants in complete or extended HLA genes. Some alleles found, are unique to Mexican Natives and most likely will be absent in most major ethnicities, namely: Caucasians, Africans or Asians. Among these are HLA-A*68:03:01, HLA-A*68:05:01, HLA-C*03:04:01:02, HLA-C*15:09, HLA-C*3:05, HLA-C*03:06:01, HLA-B*39:05:01, HLA-B*35:14:01, HLA-B*35:12:01, HLA-B*35:43:01, HLA-B*40:05, HLA-B:40:08, HLA-B*51:02:01, HLA-B*35:24:01 and HLA-B*39:08. HLA-DQA1*05:05:01:05 and some HLA-DRB1 alleles were only present in Amerindians/Mestizos. Three haplotypes are unique to Mexican Natives, five to Middle-Eastern and Sephardi-Jews. We detected a novel HLA-DQA1*04:01:01 exon 4 variant. Any novel allele may have been positively selected to enlarge the peptide-binding repertoire, and some, like HLA-B*39:02:02 and HLA-B*39:05:01 were found with unique haplotype associations, suggesting convergent evolution events and/or allele lineage diversification. The allele frequencies were fairly evenly distributed in most HLA loci with the exception of HLA-DPB1. The application of NGS in Oaxaca is novel and will lead to better use in the clinical setting. It offers deep knowledge on the population structure, origins, migration, and discovery of new alleles and haplotypes that other techniques did not achieve.
Collapse
Affiliation(s)
- B A González-Quezada
- Dept. of Immunology & Immunogenetics, InDRE, Secretary of Health, Mexico City, Mexico; Fundación Comparte Vida, A.C., Mexico City, Mexico.
| | - L E Creary
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - A J Munguia-Saldaña
- Dept. of Immunology & Immunogenetics, InDRE, Secretary of Health, Mexico City, Mexico.
| | - H Flores-Aguilar
- Dept. of Immunology & Immunogenetics, InDRE, Secretary of Health, Mexico City, Mexico; Fundación Comparte Vida, A.C., Mexico City, Mexico.
| | - M A Fernández-Viña
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - C Gorodezky
- Dept. of Immunology & Immunogenetics, InDRE, Secretary of Health, Mexico City, Mexico; Fundación Comparte Vida, A.C., Mexico City, Mexico.
| |
Collapse
|
37
|
Roura S, Rudilla F, Gastelurrutia P, Enrich E, Campos E, Lupón J, Santiago-Vacas E, Querol S, Bayés-Genís A. Determination of HLA-A, -B, -C, -DRB1 and -DQB1 allele and haplotype frequencies in heart failure patients. ESC Heart Fail 2019; 6:388-395. [PMID: 30672659 PMCID: PMC6437550 DOI: 10.1002/ehf2.12406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/12/2018] [Indexed: 12/19/2022] Open
Abstract
Aims Cell therapy can be used to repair functionally impaired organs and tissues in humans. Although autologous cells have an immunological advantage, it is difficult to obtain high cell numbers for therapy. Well‐characterized banks of cells with human leukocyte antigens (HLA) that are representative of a given population are thus needed. The present study investigates the HLA allele and haplotype frequencies in a cohort of heart failure (HF) patients. Methods and results We carried out the HLA typing and the allele and haplotype frequency analysis in 247 ambulatory HF patients. We determined HLA class I (A, B, and C) and class II (DRB1 and DQB1) using next‐generation sequencing technology. The allele frequencies were obtained using Python for Population Genomics (PyPop) software, and HLA haplotypes were estimated using HaploStats. A total of 30 HLA‐A, 56 HLA‐B, 23 HLA‐C, 36 HLA‐DRB1, and 15 HLA‐DQB1 distinct alleles were identified within the studied cohort. The genotype frequencies of all five HLA loci were in Hardy–Weinberg equilibrium. We detected differences in HLA allele frequencies among patients when the etiological cause of HF was considered. There were a total of 494 five‐loci haplotypes, five of which were present six or more times. Moreover, the most common estimated HLA haplotype was HLA‐A*01:01, HLA‐B*08:01, HLA‐C*07:01, HLA‐DRB1*03:01, and HLA‐DQB1*02:01 (6.07% haplotype frequency per patient). Remarkably, the 11 most frequent haplotypes would cover 31.17% of the patients of the cohort in need of allogeneic cell therapy. Conclusions Our findings could be useful for improving allogeneic cell administration outcomes without concomitant immunosuppression.
Collapse
Affiliation(s)
- Santiago Roura
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain.,CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Francesc Rudilla
- Histocompatibility and Immunogenetics Laboratory, Blood and Tissue Bank, Barcelona, Spain.,Transfusional Medicine Group, Vall d'Hebron Research Institute, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Paloma Gastelurrutia
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain.,CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Emma Enrich
- Histocompatibility and Immunogenetics Laboratory, Blood and Tissue Bank, Barcelona, Spain.,Transfusional Medicine Group, Vall d'Hebron Research Institute, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Eva Campos
- Histocompatibility and Immunogenetics Laboratory, Blood and Tissue Bank, Barcelona, Spain
| | - Josep Lupón
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Spain.,Department of Medicine, UAB, Barcelona, Spain
| | | | - Sergi Querol
- Transfusional Medicine Group, Vall d'Hebron Research Institute, Autonomous University of Barcelona (UAB), Barcelona, Spain.,Cell Therapy Unit, Blood and Tissue Bank, Barcelona, Spain
| | - Antoni Bayés-Genís
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain.,CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Spain.,Department of Medicine, UAB, Barcelona, Spain
| |
Collapse
|
38
|
Kishore A, Petrek M. Next-Generation Sequencing Based HLA Typing: Deciphering Immunogenetic Aspects of Sarcoidosis. Front Genet 2018; 9:503. [PMID: 30410504 PMCID: PMC6210504 DOI: 10.3389/fgene.2018.00503] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/05/2018] [Indexed: 12/31/2022] Open
Abstract
Unraveling of the HLA-related immunogenetic basis of several immune disorders is complex due to the extensive HLA polymorphism and strong linkage-disequilibrium between HLA loci. A lack of in phase sequence information, a relative deficiency of high resolution genotyping including non-coding regions and ambiguous haplotype assignment make it difficult to compare findings across association studies and to attribute a causal role to specific HLA alleles/haplotypes in disease susceptibility and modification of disease phenotypes. Earlier, historical antibody and DNA-based methods of HLA typing, primarily of low resolution at antigen/alellic group levels, yielded "indicative" findings which were partially improved by high-resolution DNA-based typing. Only recently, next-generation sequencing (NGS) approaches based on deep-sequencing of the complete HLA genes combined with bioinformatics tools began to provide the access to complete information at an allelic level. Analyzing HLA with NGS approaches, therefore, promises to provide further insight in the etiopathogenesis of several immune disorders in which HLA associations have been implicated. These range from coeliac disease and rheumatological conditions to even more complex disorders, such as type-1 diabetes, systemic lupus erythematosus and sarcoidosis. A systemic disease of unknown etiology, sarcoidosis has previously been associated with numerous HLA variants and also other gene polymorphisms, often in linkage with the HLA region. To date, the biological significance of these associations has only partially been defined. Therefore, more precise assignments of HLA alleles/haplotypes using NGS approaches could help to elucidate the exact role of HLA variation in the multifaceted etiopathogenesis of sarcoidosis, including epigenetic mechanisms. NGS-based HLA analyses may be also relevant for defining variable clinical phenotypes and for predicting the disease course or the response to current/plausible novel therapies.
Collapse
Affiliation(s)
- Amit Kishore
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - Martin Petrek
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| |
Collapse
|
39
|
Montemayor-Garcia C, Westhoff CM. The "next generation" reference laboratory? Transfusion 2018; 58:277-279. [PMID: 29411394 DOI: 10.1111/trf.14483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/15/2022]
|
40
|
Gabrieli T, Sharim H, Nifker G, Jeffet J, Shahal T, Arielly R, Levi-Sakin M, Hoch L, Arbib N, Michaeli Y, Ebenstein Y. Epigenetic Optical Mapping of 5-Hydroxymethylcytosine in Nanochannel Arrays. ACS NANO 2018; 12:7148-7158. [PMID: 29924591 PMCID: PMC6114841 DOI: 10.1021/acsnano.8b03023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/20/2018] [Indexed: 05/25/2023]
Abstract
The epigenetic mark 5-hydroxymethylcytosine (5-hmC) is a distinct product of active DNA demethylation that is linked to gene regulation, development, and disease. In particular, 5-hmC levels dramatically decline in many cancers, potentially serving as an epigenetic biomarker. The noise associated with next-generation 5-hmC sequencing hinders reliable analysis of low 5-hmC containing tissues such as blood and malignant tumors. Additionally, genome-wide 5-hmC profiles generated by short-read sequencing are limited in providing long-range epigenetic information relevant to highly variable genomic regions, such as the 3.7 Mbp disease-related Human Leukocyte Antigen (HLA) region. We present a long-read, highly sensitive single-molecule mapping technology that generates hybrid genetic/epigenetic profiles of native chromosomal DNA. The genome-wide distribution of 5-hmC in human peripheral blood cells correlates well with 5-hmC DNA immunoprecipitation (hMeDIP) sequencing. However, the long single-molecule read-length of 100 kbp to 1 Mbp produces 5-hmC profiles across variable genomic regions that failed to show up in the sequencing data. In addition, optical 5-hmC mapping shows a strong correlation between the 5-hmC density in gene bodies and the corresponding level of gene expression. The single-molecule concept provides information on the distribution and coexistence of 5-hmC signals at multiple genomic loci on the same genomic DNA molecule, revealing long-range correlations and cell-to-cell epigenetic variation.
Collapse
Affiliation(s)
- Tslil Gabrieli
- School
of Chemistry, Center for Nanoscience and Nanotechnology, Center for
Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hila Sharim
- School
of Chemistry, Center for Nanoscience and Nanotechnology, Center for
Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gil Nifker
- School
of Chemistry, Center for Nanoscience and Nanotechnology, Center for
Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jonathan Jeffet
- School
of Chemistry, Center for Nanoscience and Nanotechnology, Center for
Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Shahal
- School
of Chemistry, Center for Nanoscience and Nanotechnology, Center for
Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Rani Arielly
- School
of Chemistry, Center for Nanoscience and Nanotechnology, Center for
Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michal Levi-Sakin
- School
of Chemistry, Center for Nanoscience and Nanotechnology, Center for
Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Lily Hoch
- School
of Chemistry, Center for Nanoscience and Nanotechnology, Center for
Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nissim Arbib
- Department
of Obstetrics and Gynecology, Meir Hospital, Kfar Saba, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Michaeli
- School
of Chemistry, Center for Nanoscience and Nanotechnology, Center for
Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Ebenstein
- School
of Chemistry, Center for Nanoscience and Nanotechnology, Center for
Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
41
|
Sanchez-Mazas A, Nunes JM, Middleton D, Sauter J, Buhler S, McCabe A, Hofmann J, Baier DM, Schmidt AH, Nicoloso G, Andreani M, Grubic Z, Tiercy JM, Fleischhauer K. Common and well-documented HLA alleles over all of Europe and within European sub-regions: A catalogue from the European Federation for Immunogenetics. HLA 2018; 89:104-113. [PMID: 28102034 DOI: 10.1111/tan.12956] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/30/2016] [Accepted: 12/19/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND A catalogue of common and well-documented (CWD) human leukocyte antigen (HLA), previously established by the American Society for Histocompatibility and Immunogenetics (ASHI), is widely used as indicator for typing ambiguities to be resolved in tissue transplantation or for checking the universality of any HLA allele in the world. However, European population samples, which are characterized by a substantial level of genetic variation, are underrepresented in the ASHI catalogue. Therefore, the Population Genetics Working Group of the European Federation for Immunogenetics (EFI) has facilitated data collection for an European CWD catalogue. MATERIALS AND METHODS To this end, 2nd-field HLA-A, -B, -C,- DRB1,- DQA1,- DQB1 and -DPB1 data of 77 to 121 European population samples (21 571-3 966 984 individuals) from 3 large databases, HLA-net/Gene[VA], allelefrequencies.net and DKMS, were analysed. RESULTS The total number of CWD alleles is similar in the EFI (N = 1048) and ASHI (N = 1031) catalogues, but the former counts less common (N = 236 vs 377) and more well-documented (N = 812 vs 654) alleles than the latter, possibly reflecting differences in sample numbers and sizes. Interestingly, approximately half of the CWD alleles reported by EFI were not reported by ASHI and vice-versa, underlining the distinct features of the two catalogues. Also, although 78 common alleles are widely distributed across Europe, some alleles are only common within specific sub-regions, showing regional variability. CONCLUSION Although the definition of CWD alleles itself is affected by different parameters, calling for current updates of the list, the EFI CWD catalogue provides new insights into European population genetics and will be a very useful tool for tissue-typing laboratories in and beyond Europe.
Collapse
Affiliation(s)
- A Sanchez-Mazas
- Laboratory of Anthropology, Genetics and Peopling history (AGP), Department of Genetics and Evolution-Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva Medical Center (CMU), Geneva, Switzerland.,Population Genetics Working Group of the European Federation for Immunogenetics (EFI), EFI Central Office, Leiden, The Netherlands
| | - J M Nunes
- Laboratory of Anthropology, Genetics and Peopling history (AGP), Department of Genetics and Evolution-Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva Medical Center (CMU), Geneva, Switzerland.,Population Genetics Working Group of the European Federation for Immunogenetics (EFI), EFI Central Office, Leiden, The Netherlands
| | - D Middleton
- Population Genetics Working Group of the European Federation for Immunogenetics (EFI), EFI Central Office, Leiden, The Netherlands.,Transplant Immunology Laboratory, Royal Liverpool and Broadgreen University Hospital, Liverpool, UK
| | - J Sauter
- DKMS, German Bone Marrow Center, Tübingen, Germany
| | - S Buhler
- Laboratory of Anthropology, Genetics and Peopling history (AGP), Department of Genetics and Evolution-Anthropology Unit, University of Geneva, Geneva, Switzerland.,Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility (UIT/LNRH), Department of Genetic and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - A McCabe
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - J Hofmann
- DKMS, German Bone Marrow Center, Tübingen, Germany
| | - D M Baier
- DKMS, German Bone Marrow Center, Tübingen, Germany
| | - A H Schmidt
- DKMS, German Bone Marrow Center, Tübingen, Germany
| | - G Nicoloso
- Swiss Transfusion Swiss Red Cross (SRC)/Swiss Blood Stem Cells, Bern, Switzerland
| | - M Andreani
- Population Genetics Working Group of the European Federation for Immunogenetics (EFI), EFI Central Office, Leiden, The Netherlands.,Laboratory of Immunogenetics and Transplant Biology, IME Foundation, Policlinic of the University of Tor Vergata, Rome, Italy
| | - Z Grubic
- Population Genetics Working Group of the European Federation for Immunogenetics (EFI), EFI Central Office, Leiden, The Netherlands.,Tissue Typing Center, University Hospital Center Zagreb, Zagreb, Croatia
| | - J-M Tiercy
- Population Genetics Working Group of the European Federation for Immunogenetics (EFI), EFI Central Office, Leiden, The Netherlands.,Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility (UIT/LNRH), Department of Genetic and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - K Fleischhauer
- Population Genetics Working Group of the European Federation for Immunogenetics (EFI), EFI Central Office, Leiden, The Netherlands.,Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
42
|
Ton KNT, Cree SL, Gronert-Sum SJ, Merriman TR, Stamp LK, Kennedy MA. Multiplexed Nanopore Sequencing of HLA-B Locus in Māori and Pacific Island Samples. Front Genet 2018; 9:152. [PMID: 29760718 PMCID: PMC5936980 DOI: 10.3389/fgene.2018.00152] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/12/2018] [Indexed: 11/13/2022] Open
Abstract
The human leukocyte antigen (HLA) system encodes the human major histocompatibility complex (MHC). HLA-B is the most polymorphic gene in the MHC class I region and many HLA-B alleles have been associated with adverse drug reactions (ADRs) and disease susceptibility. The frequency of such HLA-B alleles varies by ethnicity, and therefore it is important to understand the prevalence of such alleles in different population groups. Research into HLA involvement in ADRs would be facilitated by improved methods for genotyping key HLA-B alleles. Here, we describe an approach to HLA-B typing using next generation sequencing (NGS) on the MinION™ nanopore sequencer, combined with data analysis with the SeqNext-HLA software package. The nanopore sequencer offers the advantages of long-read capability and single molecule reads, which can facilitate effective haplotyping. We developed this method using reference samples as well as individuals of New Zealand Māori or Pacific Island descent, because HLA-B diversity in these populations is not well understood. We demonstrate here that nanopore sequencing of barcoded, pooled, 943 bp polymerase chain reaction (PCR) amplicons of 49 DNA samples generated ample read depth for all samples. HLA-B alleles were assigned to all samples at high-resolution with very little ambiguity. Our method is a scaleable and efficient approach for genotyping HLA-B and potentially any other HLA locus. Finally, we report our findings on HLA-B genotypes of this cohort, which adds to our understanding of HLA-B allele frequencies among Māori and Pacific Island people.
Collapse
Affiliation(s)
- Kim N T Ton
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Simone L Cree
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | | | - Tony R Merriman
- Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Lisa K Stamp
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Martin A Kennedy
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
43
|
Geneugelijk K, Spierings E. Matching donor and recipient based on predicted indirectly recognizable human leucocyte antigen epitopes. Int J Immunogenet 2018; 45:41-53. [PMID: 29464898 DOI: 10.1111/iji.12359] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/21/2017] [Accepted: 02/01/2018] [Indexed: 12/27/2022]
Abstract
The predicted indirectly recognizable human leucocyte antigen (HLA) epitopes (PIRCHE) algorithm is a novel in silico algorithm to determine donor-recipient compatibility. The PIRCHE algorithm determines donor-recipient compatibility by counting the number of mismatched HLA-derived epitopes that are involved in indirect T-cell alloimmune responses; these epitopes are designated as PIRCHE. Over the last few years, the PIRCHE algorithm has been investigated in both hematopoietic stem cell transplantation and solid organ transplantation. This review describes the theory of the algorithm, its application in transplantation, and highlights the future perspectives on the clinical application of the PIRCHE algorithm.
Collapse
Affiliation(s)
- K Geneugelijk
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - E Spierings
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
44
|
Jiao Y, Li R, Wu C, Ding Y, Liu Y, Jia D, Wang L, Xu X, Zhu J, Zheng M, Jia J. High-sensitivity HLA typing by Saturated Tiling Capture Sequencing (STC-Seq). BMC Genomics 2018; 19:50. [PMID: 29334893 PMCID: PMC5769328 DOI: 10.1186/s12864-018-4431-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/03/2018] [Indexed: 12/04/2022] Open
Abstract
Background Highly polymorphic human leukocyte antigen (HLA) genes are responsible for fine-tuning the adaptive immune system. High-resolution HLA typing is important for the treatment of autoimmune and infectious diseases. Additionally, it is routinely performed for identifying matched donors in transplantation medicine. Although many HLA typing approaches have been developed, the complexity, low-efficiency and high-cost of current HLA-typing assays limit their application in population-based high-throughput HLA typing for donors, which is required for creating large-scale databases for transplantation and precision medicine. Results Here, we present a cost-efficient Saturated Tiling Capture Sequencing (STC-Seq) approach to capturing 14 HLA class I and II genes. The highly efficient capture (an approximately 23,000-fold enrichment) of these genes allows for simplified allele calling. Tests on five genes (HLA-A/B/C/DRB1/DQB1) from 31 human samples and 351 datasets using STC-Seq showed results that were 98% consistent with the known two sets of digitals (field1 and field2) genotypes. Additionally, STC can capture genomic DNA fragments longer than 3 kb from HLA loci, making the library compatible with the third-generation sequencing. Conclusions STC-Seq is a highly accurate and cost-efficient method for HLA typing which can be used to facilitate the establishment of population-based HLA databases for the precision and transplantation medicine. Electronic supplementary material The online version of this article (10.1186/s12864-018-4431-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Jiao
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Ran Li
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Chao Wu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Yibin Ding
- School of Mathematical Science, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Danmei Jia
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Lifeng Wang
- Beijing Ming-tian Genetics Ltd, Beijing, 100070, People's Republic of China
| | - Xiang Xu
- School of Mathematical Science, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Jing Zhu
- Beijing Ming-tian Genetics Ltd, Beijing, 100070, People's Republic of China.
| | - Min Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China. .,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China.
| | - Junling Jia
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China. .,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China.
| |
Collapse
|
45
|
Meyer D, C Aguiar VR, Bitarello BD, C Brandt DY, Nunes K. A genomic perspective on HLA evolution. Immunogenetics 2018; 70:5-27. [PMID: 28687858 PMCID: PMC5748415 DOI: 10.1007/s00251-017-1017-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 06/16/2017] [Indexed: 12/20/2022]
Abstract
Several decades of research have convincingly shown that classical human leukocyte antigen (HLA) loci bear signatures of natural selection. Despite this conclusion, many questions remain regarding the type of selective regime acting on these loci, the time frame at which selection acts, and the functional connections between genetic variability and natural selection. In this review, we argue that genomic datasets, in particular those generated by next-generation sequencing (NGS) at the population scale, are transforming our understanding of HLA evolution. We show that genomewide data can be used to perform robust and powerful tests for selection, capable of identifying both positive and balancing selection at HLA genes. Importantly, these tests have shown that natural selection can be identified at both recent and ancient timescales. We discuss how findings from genomewide association studies impact the evolutionary study of HLA genes, and how genomic data can be used to survey adaptive change involving interaction at multiple loci. We discuss the methodological developments which are necessary to correctly interpret genomic analyses involving the HLA region. These developments include adapting the NGS analysis framework so as to deal with the highly polymorphic HLA data, as well as developing tools and theory to search for signatures of selection, quantify differentiation, and measure admixture within the HLA region. Finally, we show that high throughput analysis of molecular phenotypes for HLA genes-namely transcription levels-is now a feasible approach and can add another dimension to the study of genetic variation.
Collapse
Affiliation(s)
- Diogo Meyer
- Department of Genetics and Evolutionary Biology, University of São Paulo, 05508-090, São Paulo, SP, Brazil.
| | - Vitor R C Aguiar
- Department of Genetics and Evolutionary Biology, University of São Paulo, 05508-090, São Paulo, SP, Brazil
| | - Bárbara D Bitarello
- Department of Genetics and Evolutionary Biology, University of São Paulo, 05508-090, São Paulo, SP, Brazil
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Débora Y C Brandt
- Department of Genetics and Evolutionary Biology, University of São Paulo, 05508-090, São Paulo, SP, Brazil
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Kelly Nunes
- Department of Genetics and Evolutionary Biology, University of São Paulo, 05508-090, São Paulo, SP, Brazil
| |
Collapse
|
46
|
Abstract
Inferring HLA types from genome-wide sequencing data has gained growing attention with the development of new cost-efficient sequencing technologies and the increasing need to integrate HLA types with transcriptomic or other genomic information for insights into immune-mediated diseases, vaccination, and cancer immunotherapy. PHLAT is a computational tool designed for high-resolution (4-digit) typing of the major class I and class II HLA genes using RNAseq or exome sequencing data as input. We illustrate here how PHLAT can be installed, configured, and executed. This document also provides guidance for how to read and interpret the output results. Finally, the best practices of using PHLAT are also discussed.
Collapse
|
47
|
Yin Y, Lan J, Zhang Q. Application of High-Throughput Next-Generation Sequencing for HLA Typing on Buccal Extracted DNA. Methods Mol Biol 2018; 1802:101-113. [PMID: 29858804 DOI: 10.1007/978-1-4939-8546-3_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Next-generation sequencing (NGS) is increasingly recognized for its ability to deliver high-resolution and high-throughput HLA genotyping. As a result, there is active interest in applying NGS technologies to perform high volume bone marrow donor recruitment typing. Currently, buccal-based DNA specimens are considered a noninvasive and cost-effective method for registry typing. Here, we describe the feasibility of using long-range PCR and clonal sequencing by Illumina MiSeq to deliver unambiguous HLA typing on buccal-based donor recruitment samples.
Collapse
Affiliation(s)
- Yuxin Yin
- Department of Pathology & Laboratory Medicine, UCLA Immunogenetics Center, Los Angeles, CA, USA
| | - James Lan
- Nephrology and Kidney Transplantation, University of British Columbia, Vancouver General Hospital, Vancouver, BC, Canada
| | - Qiuheng Zhang
- Department of Pathology & Laboratory Medicine, UCLA Immunogenetics Center, Los Angeles, CA, USA.
| |
Collapse
|
48
|
Hemadou A, Giudicelli V, Smith ML, Lefranc MP, Duroux P, Kossida S, Heiner C, Hepler NL, Kuijpers J, Groppi A, Korlach J, Mondon P, Ottones F, Jacobin-Valat MJ, Laroche-Traineau J, Clofent-Sanchez G. Pacific Biosciences Sequencing and IMGT/HighV-QUEST Analysis of Full-Length Single Chain Fragment Variable from an In Vivo Selected Phage-Display Combinatorial Library. Front Immunol 2017; 8:1796. [PMID: 29326697 PMCID: PMC5742356 DOI: 10.3389/fimmu.2017.01796] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/30/2017] [Indexed: 12/14/2022] Open
Abstract
Phage-display selection of immunoglobulin (IG) or antibody single chain Fragment variable (scFv) from combinatorial libraries is widely used for identifying new antibodies for novel targets. Next-generation sequencing (NGS) has recently emerged as a new method for the high throughput characterization of IG and T cell receptor (TR) immune repertoires both in vivo and in vitro. However, challenges remain for the NGS sequencing of scFv from combinatorial libraries owing to the scFv length (>800 bp) and the presence of two variable domains [variable heavy (VH) and variable light (VL) for IG] associated by a peptide linker in a single chain. Here, we show that single-molecule real-time (SMRT) sequencing with the Pacific Biosciences RS II platform allows for the generation of full-length scFv reads obtained from an in vivo selection of scFv-phages in an animal model of atherosclerosis. We first amplified the DNA of the phagemid inserts from scFv-phages eluted from an aortic section at the third round of the in vivo selection. From this amplified DNA, 450,558 reads were obtained from 15 SMRT cells. Highly accurate circular consensus sequences from these reads were generated, filtered by quality and then analyzed by IMGT/HighV-QUEST with the functionality for scFv. Full-length scFv were identified and characterized in 348,659 reads. Full-length scFv sequencing is an absolute requirement for analyzing the associated VH and VL domains enriched during the in vivo panning rounds. In order to further validate the ability of SMRT sequencing to provide high quality, full-length scFv sequences, we tracked the reads of an scFv-phage clone P3 previously identified by biological assays and Sanger sequencing. Sixty P3 reads showed 100% identity with the full-length scFv of 767 bp, 53 of them covering the whole insert of 977 bp, which encompassed the primer sequences. The remaining seven reads were identical over a shortened length of 939 bp that excludes the vicinity of primers at both ends. Interestingly these reads were obtained from each of the 15 SMRT cells. Thus, the SMRT sequencing method and the IMGT/HighV-QUEST functionality for scFv provides a straightforward protocol for characterization of full-length scFv from combinatorial phage libraries.
Collapse
Affiliation(s)
| | - Véronique Giudicelli
- IMGT®, The International ImMunoGeneTics Information System®, Laboratoire d'ImmunoGénétique Moléculaire, LIGM, Institut de Génétique Humaine, IGH, UMR 9002, CNRS, Montpellier University, Montpellier, France
| | | | - Marie-Paule Lefranc
- IMGT®, The International ImMunoGeneTics Information System®, Laboratoire d'ImmunoGénétique Moléculaire, LIGM, Institut de Génétique Humaine, IGH, UMR 9002, CNRS, Montpellier University, Montpellier, France
| | - Patrice Duroux
- IMGT®, The International ImMunoGeneTics Information System®, Laboratoire d'ImmunoGénétique Moléculaire, LIGM, Institut de Génétique Humaine, IGH, UMR 9002, CNRS, Montpellier University, Montpellier, France
| | - Sofia Kossida
- IMGT®, The International ImMunoGeneTics Information System®, Laboratoire d'ImmunoGénétique Moléculaire, LIGM, Institut de Génétique Humaine, IGH, UMR 9002, CNRS, Montpellier University, Montpellier, France
| | | | | | | | - Alexis Groppi
- Université de Bordeaux, Centre de Bioinformatique de Bordeaux (CBiB), Bordeaux, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Segawa H, Kukita Y, Kato K. HLA genotyping by next-generation sequencing of complementary DNA. BMC Genomics 2017; 18:914. [PMID: 29179676 PMCID: PMC5704545 DOI: 10.1186/s12864-017-4300-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/13/2017] [Indexed: 12/23/2022] Open
Abstract
Background Genotyping of the human leucocyte antigen (HLA) is indispensable for various medical treatments. However, unambiguous genotyping is technically challenging due to high polymorphism of the corresponding genomic region. Next-generation sequencing is changing the landscape of genotyping. In addition to high throughput of data, its additional advantage is that DNA templates are derived from single molecules, which is a strong merit for the phasing problem. Although most currently developed technologies use genomic DNA, use of cDNA could enable genotyping with reduced costs in data production and analysis. We thus developed an HLA genotyping system based on next-generation sequencing of cDNA. Methods Each HLA gene was divided into 3 or 4 target regions subjected to PCR amplification and subsequent sequencing with Ion Torrent PGM. The sequence data were then subjected to an automated analysis. The principle of the analysis was to construct candidate sequences generated from all possible combinations of variable bases and arrange them in decreasing order of the number of reads. Upon collecting candidate sequences from all target regions, 2 haplotypes were usually assigned. Cases not assigned 2 haplotypes were forwarded to 4 additional processes: selection of candidate sequences applying more stringent criteria, removal of artificial haplotypes, selection of candidate sequences with a relaxed threshold for sequence matching, and countermeasure for incomplete sequences in the HLA database. Results The genotyping system was evaluated using 30 samples; the overall accuracy was 97.0% at the field 3 level and 98.3% at the G group level. With one sample, genotyping of DPB1 was not completed due to short read size. We then developed a method for complete sequencing of individual molecules of the DPB1 gene, using the molecular barcode technology. Conclusion The performance of the automatic genotyping system was comparable to that of systems developed in previous studies. Thus, next-generation sequencing of cDNA is a viable option for HLA genotyping. Electronic supplementary material The online version of this article (10.1186/s12864-017-4300-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hidenobu Segawa
- Department of Molecular and Medical Genetics, Research Institute, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka, 537-8511, Japan
| | - Yoji Kukita
- Department of Molecular and Medical Genetics, Research Institute, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka, 537-8511, Japan
| | - Kikuya Kato
- Laboratory of Medical Genomics, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0101, Japan.
| |
Collapse
|
50
|
|