1
|
Wang X, Guo J, Yu Q, Zhao L, Gao X, Wang L, Wen M, Yan J, An M, Liu Y. Decellularized Matrices for the Treatment of Tissue Defects: from Matrix Origin to Immunological Mechanisms. Biomol Ther (Seoul) 2024; 32:509-522. [PMID: 39091238 PMCID: PMC11392660 DOI: 10.4062/biomolther.2024.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/07/2024] [Accepted: 05/31/2024] [Indexed: 08/04/2024] Open
Abstract
Decellularized matrix transplantation has emerged as a promising therapeutic approach for repairing tissue defects, with numerous studies assessing its safety and efficacy in both animal models and clinical settings. The host immune response elicited by decellularized matrix grafts of natural biological origin plays a crucial role in determining the success of tissue repair, influenced by matrix heterogeneity and the inflammatory microenvironment of the wound. However, the specific immunologic mechanisms underlying the interaction between decellularized matrix grafts and the host immune system remain elusive. This article reviews the sources of decellularized matrices, available decellularization techniques, and residual immunogenic components. It focuses on the host immune response following decellularized matrix transplantation, with emphasis on the key mechanisms of Toll-like receptor, T-cell receptor, and TGF-β/SMAD signaling in the stages of post-transplantation immunorecognition, immunomodulation, and tissue repair, respectively. Furthermore, it highlights the innovative roles of TLR10 and miR-29a-3p in improving transplantation outcomes. An in-depth understanding of the molecular mechanisms underlying the host immune response after decellularized matrix transplantation provides new directions for the repair of tissue defects.
Collapse
Affiliation(s)
- Xinyue Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China
| | - Jiqiang Guo
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Yu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China
| | - Luyao Zhao
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China
| | - Xiang Gao
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China
| | - Li Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China
| | - Meiling Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China
| | - Junrong Yan
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Meiwen An
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China
| | - Yang Liu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
2
|
Xu Q, Elrefaei M, Taupin JL, Hitchman KMK, Hiho S, Gareau AJ, Iasella CJ, Marrari M, Belousova N, Bettinotti M, Narula T, Alvarez F, Sanchez PG, Levvey B, Westall G, Snell G, Levine DJ, Zeevi A, Roux A. Chronic lung allograft dysfunction is associated with an increased number of non-HLA antibodies. J Heart Lung Transplant 2024; 43:663-672. [PMID: 38141896 DOI: 10.1016/j.healun.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND Chronic lung allograft dysfunction (CLAD) is the major cause of adverse outcomes in lung transplant recipients. Multiple factors, such as infection, alloimmunity, and autoimmunity, may lead to CLAD. Here, we aim to examine the role of non-human leukocytes antigen (HLA) antibodies in CLAD in a large retrospective cohort. METHODS We analyzed non-HLA antibodies in the pre- and post-transplant sera of 226 (100 CLAD, 126 stable) lung transplant recipients from 5 centers, and we used a separate cohort to confirm our findings. RESULTS A panel of 18 non-HLA antibodies was selected for analysis based on their significantly higher positive rates in CLAD vs stable groups. The panel-18 non-HLA antibodies (n > 3) may be positive pre- or post-transplant; the risk for CLAD is higher in the latter. The presence of both non-HLA antibody and HLA donor-specific antibody (DSA) was associated with an augmented risk of CLAD (HR=25.09 [5.52-14.04], p < 0.001), which was higher than that for single-positive patients. In the independent confirmatory cohort of 61 (20 CLAD, 41 stable) lung transplant recipients, the risk for CLAD remained elevated in double-positive patients (HR=10.67 [0.98-115.68], p = 0.052). After adjusting for nonstandard immunosuppression, patients with double-positive DSA/Non-HLA antibodies had an elevated risk for graft loss (HR=2.53 [1.29-4.96], p = 0.007). CONCLUSIONS Circulating non-HLA antibodies (n > 3) were independently associated with a higher risk for CLAD. Furthermore, when non-HLA antibodies and DSA were detected concomitantly, the risk for CLAD and graft loss was significantly increased. These results show that humoral immunity to HLA and non-HLA antigens may contribute to CLAD development.
Collapse
Affiliation(s)
- Qingyong Xu
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| | - Mohamed Elrefaei
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida
| | - Jean-Luc Taupin
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint Louis, Paris, France
| | - Kelley M K Hitchman
- Department of Pathology and Lab Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Steven Hiho
- Australian Red Cross Life Blood, Victorian and Immunogenetics, Melbourne, Victoria, Australia
| | - Alison J Gareau
- Immunogenetics Laboratory, Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Carlo J Iasella
- Department of Pharmacy, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Marilyn Marrari
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | | - Maria Bettinotti
- Immunogenetics Laboratory, Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Tathagat Narula
- Division of Lung Failure and Transplant, Mayo Clinic, Jacksonville, Florida
| | - Francisco Alvarez
- Division of Lung Failure and Transplant, Mayo Clinic, Jacksonville, Florida
| | - Pablo G Sanchez
- Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Bronwyn Levvey
- Lung Transplant Service, Alfred Hospital, Melbourne, Victoria, Australia
| | - Glen Westall
- Lung Transplant Service, Alfred Hospital, Melbourne, Victoria, Australia
| | - Gregory Snell
- Lung Transplant Service, Alfred Hospital, Melbourne, Victoria, Australia
| | - Deborah J Levine
- Department of Medicine, Stanford University, Palo Alto, California
| | - Adriana Zeevi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Antoine Roux
- Department of Pneumology, Hôpital Foch, Suresnes, France
| |
Collapse
|
3
|
Yang W, Lecuona E, Wu Q, Liu X, Sun H, Alam H, Nadig SN, Bharat A. The role of lung-restricted autoantibodies in the development of primary and chronic graft dysfunction. FRONTIERS IN TRANSPLANTATION 2023; 2:1237671. [PMID: 38993924 PMCID: PMC11235341 DOI: 10.3389/frtra.2023.1237671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/18/2023] [Indexed: 07/13/2024]
Abstract
Lung transplantation is a life-saving treatment for both chronic end-stage lung diseases and acute respiratory distress syndrome, including those caused by infectious agents like COVID-19. Despite its increasing utilization, outcomes post-lung transplantation are worse than other solid organ transplants. Primary graft dysfunction (PGD)-a condition affecting more than half of the recipients post-transplantation-is the chief risk factor for post-operative mortality, transplant-associated multi-organ dysfunction, and long-term graft loss due to chronic rejection. While donor-specific antibodies targeting allogenic human leukocyte antigens have been linked to transplant rejection, the role of recipient's pre-existing immunoglobulin G autoantibodies against lung-restricted self-antigens (LRA), like collagen type V and k-alpha1 tubulin, is less understood in the context of lung transplantation. Recent studies have found an increased risk of PGD development in lung transplant recipients with LRA. This review will synthesize past and ongoing research-utilizing both mouse models and human subjects-aimed at unraveling the mechanisms by which LRA heightens the risk of PGD. Furthermore, it will explore prospective approaches designed to mitigate the impact of LRA on lung transplant patients.
Collapse
Affiliation(s)
- Wenbin Yang
- Division of Thoracic Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Emilia Lecuona
- Division of Thoracic Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Qiang Wu
- Division of Thoracic Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Xianpeng Liu
- Division of Thoracic Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Haiying Sun
- Division of Thoracic Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hasan Alam
- Division of Trauma & Acute Care Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Satish N. Nadig
- Division of Abdominal Transplant, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Ankit Bharat
- Division of Thoracic Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
4
|
Gorbacheva V, Fan R, Miyairi S, Fairchild RL, Baldwin WM, Valujskikh A. Autoantibodies against DNA topoisomerase I promote renal allograft rejection by increasing alloreactive T cell responses. Am J Transplant 2023; 23:1307-1318. [PMID: 37084848 PMCID: PMC10524310 DOI: 10.1016/j.ajt.2023.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 03/29/2023] [Indexed: 04/23/2023]
Abstract
Antibodies reactive to self-antigens are an important component of posttransplant immune responses. The generation requirements and functions of autoantibodies, as well as the mechanisms of their influence on alloimmune responses, still remain to be determined. Our study investigated the contribution of autoimmunity during rejection of renal allografts. We have previously characterized a mouse model in which the acute rejection of a life-supporting kidney allograft is mediated by antibodies. At rejection, recipient sera screening against >4000 potential autoantigens revealed DNA topoisomerase I peptide 205-219 (TI-I205-219) as the most prominent epitope. Subsequent analysis showed TI-I205-219-reactive autoantibodies are induced in nonsensitized recipients of major histocompatibility complex-mismatched kidney allografts in a T cell-dependent manner. Immunization with TI-I205-219 broke self-tolerance, elicited TI-I205-219 immunoglobin G autoantibodies, and resulted in acute rejection of allogeneic but not syngeneic renal transplants. The graft loss was associated with increased priming of donor-reactive T cells but not with donor-specific alloantibodies elevation. Similarly, passive transfer of anti-TI-I205-219 sera following transplantation increased donor-reactive T cell activation with minimal effects on donor-specific alloantibody levels. The results identify DNA topoisomerase I as a novel self-antigen in transplant settings and demonstrate that autoantibodies enhance activation of donor-reactive T cells following renal transplantation.
Collapse
Affiliation(s)
- Victoria Gorbacheva
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ran Fan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Satoshi Miyairi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Robert L Fairchild
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - William M Baldwin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anna Valujskikh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
5
|
Yang W, Cerier EJ, Núñez-Santana FL, Wu Q, Yan Y, Kurihara C, Liu X, Yeldandi A, Khurram N, Avella-Patino D, Sun H, Budinger GS, Kreisel D, Mohanakumar T, Lecuona E, Bharat A. IL-1β-dependent extravasation of preexisting lung-restricted autoantibodies during lung transplantation activates complement and mediates primary graft dysfunction. J Clin Invest 2022; 132:157975. [PMID: 36250462 PMCID: PMC9566897 DOI: 10.1172/jci157975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Preexisting lung-restricted autoantibodies (LRAs) are associated with a higher incidence of primary graft dysfunction (PGD), although it remains unclear whether LRAs can drive its pathogenesis. In syngeneic murine left lung transplant recipients, preexisting LRAs worsened graft dysfunction, which was evident by impaired gas exchange, increased pulmonary edema, and activation of damage-associated pathways in lung epithelial cells. LRA-mediated injury was distinct from ischemia-reperfusion injury since deletion of donor nonclassical monocytes and host neutrophils could not prevent graft dysfunction in LRA-pretreated recipients. Whole LRA IgG molecules were necessary for lung injury, which was mediated by the classical and alternative complement pathways and reversed by complement inhibition. However, deletion of Fc receptors in donor macrophages or mannose-binding lectin in recipient mice failed to rescue lung function. LRA-mediated injury was localized to the transplanted lung and dependent on IL-1β-mediated permeabilization of pulmonary vascular endothelium, which allowed extravasation of antibodies. Genetic deletion or pharmacological inhibition of IL-1R in the donor lungs prevented LRA-induced graft injury. In humans, preexisting LRAs were an independent risk factor for severe PGD and could be treated with plasmapheresis and complement blockade. We conclude that preexisting LRAs can compound ischemia-reperfusion injury to worsen PGD for which complement inhibition may be effective.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - G.R. Scott Budinger
- Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniel Kreisel
- Departments of Surgery, Pathology & Immunology, Washington University, St. Louis, Missouri, USA
| | | | | | - Ankit Bharat
- Division of Thoracic Surgery
- Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
6
|
Surviving White-out: How to Manage Severe Noninfectious Acute Lung Allograft Dysfunction of Unknown Etiology. Transplant Direct 2022; 8:e1371. [PMID: 36204187 PMCID: PMC9529053 DOI: 10.1097/txd.0000000000001371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022] Open
|
7
|
Ravichandran R, Bansal S, Rahman M, Sureshbabu A, Sankpal N, Fleming T, Bharat A, Mohanakumar T. Extracellular Vesicles Mediate Immune Responses to Tissue-Associated Self-Antigens: Role in Solid Organ Transplantations. Front Immunol 2022; 13:861583. [PMID: 35572510 PMCID: PMC9094427 DOI: 10.3389/fimmu.2022.861583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Transplantation is a treatment option for patients diagnosed with end-stage organ diseases; however, long-term graft survival is affected by rejection of the transplanted organ by immune and nonimmune responses. Several studies have demonstrated that both acute and chronic rejection can occur after transplantation of kidney, heart, and lungs. A strong correlation has been reported between de novo synthesis of donor-specific antibodies (HLA-DSAs) and development of both acute and chronic rejection; however, some transplant recipients with chronic rejection do not have detectable HLA-DSAs. Studies of sera from such patients demonstrate that immune responses to tissue-associated antigens (TaAgs) may also play an important role in the development of chronic rejection, either alone or in combination with HLA-DSAs. The synergistic effect between HLA-DSAs and antibodies to TaAgs is being established, but the underlying mechanism is yet to be defined. We hypothesize that HLA-DSAs damage the transplanted donor organ resulting in stress and leading to the release of extracellular vesicles, which contribute to chronic rejection. These vesicles express both donor human leukocyte antigen (HLA) and non-HLA TaAgs, which can activate antigen-presenting cells and lead to immune responses and development of antibodies to both donor HLA and non-HLA tissue-associated Ags. Extracellular vesicles (EVs) are released by cells under many circumstances due to both physiological and pathological conditions. Primarily employing clinical specimens obtained from human lung transplant recipients undergoing acute or chronic rejection, our group has demonstrated that circulating extracellular vesicles display both mismatched donor HLA molecules and lung-associated Ags (collagen-V and K-alpha 1 tubulin). This review focuses on recent studies demonstrating an important role of antibodies to tissue-associated Ags in the rejection of transplanted organs, particularly chronic rejection. We will also discuss the important role of extracellular vesicles released from transplanted organs in cross-talk between alloimmunity and autoimmunity to tissue-associated Ags after solid organ transplantation.
Collapse
Affiliation(s)
| | - Sandhya Bansal
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Mohammad Rahman
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Angara Sureshbabu
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Narendra Sankpal
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Timothy Fleming
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Ankit Bharat
- Department of Surgery-Thoracic, Northwestern University, Chicago, IL, United States
| | | |
Collapse
|
8
|
Kaza V, Zhu C, Terada LS, Wang L, Torres F, Bollineni S, Mohanka M, Banga A, Joerns J, Mohanakumar T, Li QZ. Self-reactive antibodies associated with bronchiolitis obliterans syndrome subtype of chronic lung allograft dysfunction. Hum Immunol 2020; 82:25-35. [PMID: 33129576 DOI: 10.1016/j.humimm.2020.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Chronic Lung Allograft Dysfunction (CLAD) remains the major limitation in long term survival after lung transplantation. Our objective is to evaluate for the presence of autoantibodies to self-antigens, which is a pathway along with complex interplay with immune as well as non-immune mechanisms that leads to a fibroproliferative process resulting in CLAD. METHODS Serum profiles of IgG autoantibodies were evaluated using customized proteomic microarray with 124 antigens. Output from microarray analyzed as antibody scores is correlated with bronchiolitis obliterans (BOS) subtype of CLAD using Mann-Whitney U test or Fisher exact test. Autoantibodies were evaluated for their predictive value for progressive BOS using a Cox proportional hazard model. BOS free survival and overall survival was analyzed using Kaplan-Meier survival analysis. RESULTS Forty- two patients included in the study are grouped into "stable BOS" and "progressive BOS" for comparisons. Pulmonary fibrosis is the major indication for lung transplantation in our cohort. Progressive BOS group had significantly worse survival (p < 0.005). Sixteen IgG autoantibodies are significantly elevated at baseline in progressive BOS group. Six among them correlated with worse BOS free survival (p < 0.05). In addition, these six IgG autoantibodies remain elevated at three months and one year after lung transplantation. CONCLUSION Pre-existing IgG autoantibodies correlate with progressive BOS and survival in a single center, small cohort of lung transplant recipients. Further validation with larger sample size, external cohort and confirmation with additional tissue, bronchoalveolar lavage samples are necessary to confirm the preliminary findings in our study.
Collapse
Affiliation(s)
- Vaidehi Kaza
- Division of Pulmonary Critical Care, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Chengsong Zhu
- Department of Immunology, Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lance S Terada
- Division of Pulmonary Critical Care, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Li Wang
- Department of Immunology, Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Fernando Torres
- Division of Pulmonary Critical Care, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Srinivas Bollineni
- Division of Pulmonary Critical Care, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Manish Mohanka
- Division of Pulmonary Critical Care, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Amit Banga
- Division of Pulmonary Critical Care, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John Joerns
- Division of Pulmonary Critical Care, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - T Mohanakumar
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Quan-Zhen Li
- Department of Immunology, Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
9
|
Leino AD, Pai MP. Maintenance Immunosuppression in Solid Organ Transplantation: Integrating Novel Pharmacodynamic Biomarkers to Inform Calcineurin Inhibitor Dose Selection. Clin Pharmacokinet 2020; 59:1317-1334. [PMID: 32720300 DOI: 10.1007/s40262-020-00923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Calcineurin inhibitors, the primary immunosuppressive therapy used to prevent alloreactivity of transplanted organs, have a narrow therapeutic index. Currently, treatment is individualized based on clinical assessment of the risk of rejection or toxicity guided by trough concentration monitoring. Advances in immune monitoring have identified potential markers that may have value in understanding calcineurin inhibitor pharmacodynamics. Integration of these markers has the potential to complement therapeutic drug monitoring. Existing pharmacokinetic-pharmacodynamic (PK-PD) data is largely limited to correlation between the biomarker and trough concentrations at single time points. Immune related gene expression currently has the most evidence supporting PK-PD integration. Novel biomarker-based approaches to pharmacodynamic monitoring including development of enhanced PK-PD models are proposed to realize the full clinical benefit.
Collapse
Affiliation(s)
- Abbie D Leino
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, 428 Church Street, Rm 3569, Ann Arbor, MI, 48109, USA
| | - Manjunath P Pai
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, 428 Church Street, Rm 3569, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
10
|
Compelling scientific and clinical evidence that non-HLA specific antibodies impact graft outcome independently and in concert with donor HLA specific antibodies. Hum Immunol 2019; 80:555-560. [PMID: 31279533 DOI: 10.1016/j.humimm.2019.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|