1
|
Malik RN, Marigold DS, Chow M, Lam T. Probing the deployment of peripheral visual attention during obstacle-crossing planning. Front Hum Neurosci 2022; 16:1039201. [PMID: 36618994 PMCID: PMC9813236 DOI: 10.3389/fnhum.2022.1039201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Gaze is directed to one location at a time, making peripheral visual input important for planning how to negotiate different terrain during walking. Whether and how the brain attends to this input is unclear. We developed a novel paradigm to probe the deployment of sustained covert visual attention by testing orientation discrimination of a Gabor patch at stepping and non-stepping locations during obstacle-crossing planning. Compared to remaining stationary, obstacle-crossing planning decreased visual performance (percent correct) and sensitivity (d') at only the first of two stepping locations. Given the timing of the first and second steps before obstacle crossing relative to the Gabor patch presentation, the results suggest the brain uses peripheral vision to plan one step at a time during obstacle crossing, in contrast to how it uses central vision to plan two or more steps in advance. We propose that this protocol, along with multiple possible variations, presents a novel behavioral approach to identify the role of covert visual attention during obstacle-crossing planning and other goal-directed walking tasks.
Collapse
Affiliation(s)
- Raza N. Malik
- School of Kinesiology, University of British Columbia, Burnaby, BC, Canada,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada,*Correspondence: Raza N. Malik
| | - Daniel S. Marigold
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada,Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
| | - Mason Chow
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
| | - Tania Lam
- School of Kinesiology, University of British Columbia, Burnaby, BC, Canada,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Coelho DB, Bazán PR, Zimeo Morais GA, Balardin JB, Batista AX, de Oliveira CEN, Los Angeles E, Bernardo C, Sato JR, de Lima-Pardini AC. Frontal Hemodynamic Response During Step Initiation Under Cognitive Conflict in Older and Young Healthy People. J Gerontol A Biol Sci Med Sci 2021; 76:216-223. [PMID: 32427282 DOI: 10.1093/gerona/glaa125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Indexed: 11/14/2022] Open
Abstract
Gait initiation is a daily challenge even for healthy individuals as it requires the timely coupling between the automatic anticipatory postural adjustment (APA) and the voluntary step according to the context. Modulation of this motor event has been thought to involve higher level brain control, including cognitive inhibitory circuitries. Despite the known participation of the supplementary motor area (SMA) in the modulation of some parameters of APA, the participation of areas controlling inhibition during gait initiation still needs to be investigated. In this study, the hemodynamic responses of the SMA and dorsolateral prefrontal cortex (DLPFC) were assessed using functional near-infrared spectroscopy (fNIRS) during a gait initiation task under cognitive conflict to select the foot to step (congruent [CON] and incongruent [INC] conditions). The older group (OG) showed worse inhibitory control than the young group (YG) along with more impairments in APA parameters. OG also had a lower amplitude of hemodynamic responses in both areas than YG in the INC. The INC increased the correlation between SMA and DLPFC only in the YG. Aging seems to impair the interaction between the hemodynamic responses of SMA and DLPFC, which influences APA performance in gait initiation under cognitive conflict.
Collapse
Affiliation(s)
- Daniel Boari Coelho
- Biomedical Engineering, Federal University of ABC, São Bernardo do Campo, São Paulo, Brazil
| | - Paulo Rodrigo Bazán
- Big Data Analytics - Hospital Israelita Albert Einstein, São Paulo, Brazil.,Department of Radiology, Faculty of Medicine, University of Sao Paulo, São Paulo, Brazil
| | | | | | - Alana Xavier Batista
- Department of Radiology, Faculty of Medicine, University of Sao Paulo, São Paulo, Brazil
| | | | - Emanuele Los Angeles
- Biomedical Engineering, Federal University of ABC, São Bernardo do Campo, São Paulo, Brazil
| | - Claudionor Bernardo
- Biomedical Engineering, Federal University of ABC, São Bernardo do Campo, São Paulo, Brazil
| | - João Ricardo Sato
- Center of Mathematics, Computing, and Cognition, Universidade Federal do ABC, São Bernardo do Campo, São Paulo, Brazil
| | - Andrea C de Lima-Pardini
- Laboratory of Integrative Motor Behaviour, Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
3
|
A new paradigm to study the influence of attentional load on cortical activity for motor preparation of step initiation. Exp Brain Res 2020; 238:643-656. [DOI: 10.1007/s00221-020-05739-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 01/23/2020] [Indexed: 12/25/2022]
|
4
|
van der Veen SM, Hammerbeck U, Hollands KL. How accuracy of foot-placement is affected by the size of the base of support and crutch support in stroke survivors and healthy adults. Gait Posture 2020; 76:224-230. [PMID: 31874454 DOI: 10.1016/j.gaitpost.2019.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND The high prevalence of falls due to trips and slips following stroke may signify difficulty controlling balance and adjusting foot-placement in response to the environment. We know very little about how controlling foot-placement is affected by balance requirements and the effects of stroke. Therefore, in this study the research question is how foot-placement control is affected by balance support from crutches and reducing or enlarging the base of support. By understanding how foot-placement control and balance deficits following stroke interact, rehabilitation efforts can be more effectively targeted towards the cause of poor mobility. METHODS Young (N=13, 30±6 years) and older (N=10, 64±8 years) healthy adults and stroke survivors (N=11, 67±9 years) walked to targets on an instrumented treadmill with or without crutch support for balance. Targets were randomized to either reduce or increase the base of support in the antero-posterior (AP) or medio-lateral (ML) direction. Mean and absolute foot-placement error were measured using motion analysis. These outcomes were compared using repeated measures ANCOVA with walking speed as a covariate. RESULTS Overall, stroke survivors missed more targets (9.1±2.3%, p=0.001) than young (1.0±2.5%) and older (0.2±2.1%) healthy adults (p=0.001). However, there were no significant differences between groups in foot-placement error. Crutch support reduced both AP and ML foot-placement error (p=<0.001, AP 5.2±0.5cm unsupported, 4.1±0.4cm supported, ML 2.3±0.2cm unsupported, 1.9±0.2cm supported) for all participants. Interaction effects indicate crutch support reduced foot-placement error more when narrowing (unsupported 2.8±0.2cm, supported 1.8±0.2cm) than widening (unsupported 2.6±0.4cm, supported 2.4±0.4cm) steps (p<0.001), SIGNIFICANCE: Stroke survivors have greater difficulty accurately adjusting steps in response to the environment. Crutch support reduces foot-placement error for all steps, but particularly when narrowing foot-placement. These results provide support for the implication of walking aids, which support balance to improve ability to adjust footplacement in response to the environment.
Collapse
|
5
|
Relationship Between Language Dominance and Stimulus-Stimulus or Stimulus-Response Inhibition in Uyghur-Chinese Bilinguals with an Investigation of Speed-Accuracy Trade-Offs. Behav Sci (Basel) 2019; 9:bs9040041. [PMID: 31003490 PMCID: PMC6523264 DOI: 10.3390/bs9040041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/13/2019] [Accepted: 04/15/2019] [Indexed: 11/17/2022] Open
Abstract
The effect of bilingualism on inhibition control is increasingly under ongoing exploration. The present study primarily investigated the effect of within bilingual factors (i.e., dominance types of Uyghur-Chinese bilinguals) on a Stimulus-Stimulus task (Flanker) and a Stimulus-Response task (Simon). We also compared the bilinguals’ performance on each type of cognitive control task in respect to a possible trade-off between speed and accuracy. The findings showed no explicit differences on performance in response time or accuracy among balanced, L1-dominant and L2-dominant bilinguals but balanced bilinguals demonstrated a significant speed-accuracy trade-off in the overall context switching between non-conflict and conflict trials in both cognitive control tasks where monitoring process is highly demanded. Additionally, all bilinguals across all language dominance types showed a trade-off strategy in inhibition during a Stimulus-Stimulus conflict (flanker task). This evidence indicates that the differences of within bilinguals in cognitive control could lie in the monitoring process, while for all bilinguals, inhibition during a Stimulus-Stimulus conflict could be a major component in the mechanism of bilingual language processing.
Collapse
|
6
|
The interaction between cognition and motor control: A theoretical framework for dual-task interference effects on posture, gait initiation, gait and turning. Neurophysiol Clin 2018; 48:361-375. [DOI: 10.1016/j.neucli.2018.10.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 11/22/2022] Open
|
7
|
Struys E, Duyck W, Woumans E. The Role of Cognitive Development and Strategic Task Tendencies in the Bilingual Advantage Controversy. Front Psychol 2018; 9:1790. [PMID: 30319495 PMCID: PMC6167540 DOI: 10.3389/fpsyg.2018.01790] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/04/2018] [Indexed: 11/13/2022] Open
Abstract
Recent meta-analyses have indicated that the bilingual advantage in cognitive control is not clear-cut. So far, the literature has mainly focussed on behavioral differences and potential differences in strategic task tendencies between monolinguals and bilinguals have been left unexplored. In the present study, two groups of younger and older bilingual Dutch-French children were compared to monolingual controls on a Simon and flanker task. Beside the classical between-group comparison, we also investigated potential differences in strategy choices as indexed by the speed-accuracy trade-off. Whereas we did not find any evidence for an advantage for bilingual over monolingual children, only the bilinguals showed a significant speed-accuracy trade-off across tasks and age groups. Furthermore, in the younger bilingual group, the trade-off effect was only found in the Simon and not the flanker task. These findings suggest that differences in strategy choices can mask variations in performance between bilinguals and monolinguals, and therefore also provide inconsistent findings on the bilingual cognitive control advantage.
Collapse
Affiliation(s)
- Esli Struys
- Centre for Linguistics, Vrije Universiteit Brussel, Brussels, Belgium.,Brussels Institute for Applied Linguistics, Vrije Universiteit Brussel, Brussels, Belgium.,Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Wouter Duyck
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Evy Woumans
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Online adjustments of leg movements in healthy young and old. Exp Brain Res 2017; 235:2329-2348. [DOI: 10.1007/s00221-017-4967-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 04/24/2017] [Indexed: 12/22/2022]
|
9
|
Processes of anticipatory postural adjustment and step movement of gait initiation. Hum Mov Sci 2017; 52:1-16. [PMID: 28088660 DOI: 10.1016/j.humov.2017.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 12/20/2016] [Accepted: 01/05/2017] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to elucidate whether the anticipatory postural adjustment (APA) and focal step movement of gait initiation are produced as a single process or different processes and whether the APA receives an inhibitory drive from the ongoing stop process of gait initiation. Healthy humans initiated gait in response to a first visual cue that instructed the initial swing leg. In some trials, a switch or stop cue was also provided after the first cue. When the stop cue was provided, participants withheld gait initiation. When the switch cue was provided, participants immediately switched the initial swing leg. In both the stop and switch tasks, the APA in response to the first cue, represented by the S1 period of the displacement of the center of pressure, appeared in more than half of the trials in which the withholding of gait initiation or switching of the initial swing leg was successfully completed. These findings indicate that the APA and focal step movement of gait initiation are produced as a dual process. In trials in which the APA in response to the first cue appeared, the amplitude and duration of the APA were decreased when the participants switched the initial swing leg or withheld gait initiation. This finding indicates that the ongoing stop process of gait initiation produces an inhibitory drive over the APA. The decreases in the amplitude and duration of the APA during the switching of the initial swing leg were similar to those during the withholding of gait initiation; moreover, the decreases during the switching of the initial swing leg were positively correlated with the decreases during the withholding of gait initiation. Thus, the stop processes during switching the initial swing leg and withholding gait initiation likely share a common inhibitory mechanism over the APA.
Collapse
|
10
|
Thura D, Guberman G, Cisek P. Trial-to-trial adjustments of speed-accuracy trade-offs in premotor and primary motor cortex. J Neurophysiol 2016; 117:665-683. [PMID: 27852735 DOI: 10.1152/jn.00726.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/10/2016] [Indexed: 11/22/2022] Open
Abstract
Recent studies have shown that activity in sensorimotor structures varies depending on the speed-accuracy trade-off (SAT) context in which a decision is made. Here we tested the hypothesis that the same areas also reflect a more local adjustment of SAT established between individual trials, based on the outcome of the previous decision. Two monkeys performed a reaching decision task in which sensory evidence continuously evolves during the time course of a trial. In two SAT contexts, we compared neural activity in trials following a correct choice vs. those following an error. In dorsal premotor cortex (PMd), we found that 23% of cells exhibited significantly weaker baseline activity after error trials, and for ∼30% of these this effect persisted into the deliberation epoch. These cells also contributed to the process of combining sensory evidence with the growing urgency to commit to a choice. We also found that the activity of 22% of PMd cells was increased after error trials. These neurons appeared to carry less information about sensory evidence and time-dependent urgency. For most of these modulated cells, the effect was independent of whether the previous error was expected or unexpected. We found similar phenomena in primary motor cortex (M1), with 25% of cells decreasing and 34% increasing activity after error trials, but unlike PMd, these neurons showed less clear differences in their response properties. These findings suggest that PMd and M1 belong to a network of brain areas involved in SAT adjustments established using the recent history of reinforcement. NEW & NOTEWORTHY Setting the speed-accuracy trade-off (SAT) is crucial for efficient decision making. Previous studies have reported that subjects adjust their SAT after individual decisions, usually choosing more conservatively after errors, but the neural correlates of this phenomenon are only partially known. Here, we show that neurons in PMd and M1 of monkeys performing a reach decision task support this mechanism by adequately modulating their firing rate as a function of the outcome of the previous decision.
Collapse
Affiliation(s)
- David Thura
- Groupe de Recherche sur le Système Nerveux Central, Département de neurosciences, Université de Montréal, Montreal, Quebec, Canada; and
| | - Guido Guberman
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Paul Cisek
- Groupe de Recherche sur le Système Nerveux Central, Département de neurosciences, Université de Montréal, Montreal, Quebec, Canada; and
| |
Collapse
|
11
|
Uemura K, Hasegawa T, Tougou H, Shuhei T, Uchiyama Y. Analysis of Choice Stepping with Visual Interference Can Detect Prolonged Postural Preparation in Older Adults with Mild Cognitive Impairment at High Risk of Falling. Dement Geriatr Cogn Disord 2016; 40:13-21. [PMID: 25895943 DOI: 10.1159/000375408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS We aimed to clarify postural control deficits in older adults with mild cognitive impairment (MCI) at high risk of falling by addressing the inhibitory process. METHODS This study involved 376 community-dwelling older adults with MCI. Participants were instructed to execute forward stepping on the side indicated by the central arrow while ignoring the 2 flanking arrows on each side (→→→→→, congruent, or →→←→→, incongruent). Initial weight transfer direction errors [anticipatory postural adjustment (APA) errors], step execution times, and divided phases (reaction, APA, and swing phases) were measured from vertical force data. Participants were categorized as fallers (n = 37) and non-fallers (n = 339) based on fall experiences in the last 12 months. RESULTS There were no differences in the step execution times, swing phases, step error rates, and APA error rates between groups, but fallers had a significantly longer APA phase relative to non-fallers in trials of the incongruent condition with APA errors (p = 0.005). Fallers also had a longer reaction phase in trials with the correct APA, regardless of the condition (p = 0.01). CONCLUSION Analyses of choice stepping with visual interference can detect prolonged postural preparation as a specific falling-associated deficit in older adults with MCI.
Collapse
Affiliation(s)
- Kazuki Uemura
- Institute for Innovation for Future Society, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | | | | | | | | |
Collapse
|
12
|
Watanabe T, Koyama S, Tanabe S, Nojima I. Accessory stimulus modulates executive function during stepping task. J Neurophysiol 2015; 114:419-26. [PMID: 25925321 DOI: 10.1152/jn.00222.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/28/2015] [Indexed: 11/22/2022] Open
Abstract
When multiple sensory modalities are simultaneously presented, reaction time can be reduced while interference enlarges. The purpose of this research was to examine the effects of task-irrelevant acoustic accessory stimuli simultaneously presented with visual imperative stimuli on executive function during stepping. Executive functions were assessed by analyzing temporal events and errors in the initial weight transfer of the postural responses prior to a step (anticipatory postural adjustment errors). Eleven healthy young adults stepped forward in response to a visual stimulus. We applied a choice reaction time task and the Simon task, which consisted of congruent and incongruent conditions. Accessory stimuli were randomly presented with the visual stimuli. Compared with trials without accessory stimuli, the anticipatory postural adjustment error rates were higher in trials with accessory stimuli in the incongruent condition and the reaction times were shorter in trials with accessory stimuli in all the task conditions. Analyses after division of trials according to whether anticipatory postural adjustment error occurred or not revealed that the reaction times of trials with anticipatory postural adjustment errors were reduced more than those of trials without anticipatory postural adjustment errors in the incongruent condition. These results suggest that accessory stimuli modulate the initial motor programming of stepping by lowering decision threshold and exclusively under spatial incompatibility facilitate automatic response activation. The present findings advance the knowledge of intersensory judgment processes during stepping and may aid in the development of intervention and evaluation tools for individuals at risk of falls.
Collapse
Affiliation(s)
- Tatsunori Watanabe
- Department of Physical Therapy, Graduate School of Medicine, Nagoya University, Aichi, Japan
| | - Soichiro Koyama
- Department of Rehabilitation, Kawamura Hospital, Gifu, Japan; and
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Aichi, Japan
| | - Ippei Nojima
- Department of Physical Therapy, Graduate School of Medicine, Nagoya University, Aichi, Japan;
| |
Collapse
|
13
|
Sparto PJ, Fuhrman SI, Redfern MS, Perera S, Richard Jennings J, Alghwiri AA, Furman JM. Postural adjustment errors during lateral step initiation in older and younger adults. Exp Brain Res 2014; 232:3977-89. [PMID: 25183162 DOI: 10.1007/s00221-014-4081-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
Abstract
The purpose was to examine age differences and varying levels of step response inhibition on the performance of a voluntary lateral step initiation task. Seventy older adults (70-94 years) and twenty younger adults (21-58 years) performed visually cued step initiation conditions based on direction and spatial location of arrows, ranging from a simple choice reaction time task to a perceptual inhibition task that included incongruous cues about which direction to step (e.g., a left pointing arrow appearing on the right side of a monitor). Evidence of postural adjustment errors and step latencies were recorded from vertical ground reaction forces exerted by the stepping leg. Compared with younger adults, older adults demonstrated greater variability in step behavior, generated more postural adjustment errors during conditions requiring inhibition, and had greater step initiation latencies that increased more than younger adults as the inhibition requirements of the condition became greater. Step task performance was related to clinical balance test performance more than executive function task performance.
Collapse
Affiliation(s)
- Patrick J Sparto
- Department of Physical Therapy, University of Pittsburgh, 6035 Forbes Tower, Pittsburgh, PA, 15260, USA,
| | | | | | | | | | | | | |
Collapse
|