1
|
Song G, Liu D, Ma J, Zhan Y, Ma F, Liu G. Cardiac Lymphatics and Therapeutic Prospects in Cardiovascular Disease: New Perspectives and Hopes. Cardiol Rev 2024:00045415-990000000-00289. [PMID: 39150263 DOI: 10.1097/crd.0000000000000743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The lymphatic system is the same reticular fluid system as the circulatory system found throughout the body in vascularized tissues. Lymphatic vessels are low-pressure, blind-ended tubular structures that play a crucial role in maintaining tissue fluid homeostasis, immune cell transport, and lipid absorption. The heart also has an extensive lymphatic network, and as research on cardiac lymphatics has progressed in recent years, more and more studies have found that cardiac lymphangiogenesis may ameliorate certain cardiovascular diseases, and therefore stimulation of cardiac lymphangiogenesis may be an important tool in the future treatment of cardiovascular diseases. This article briefly reviews the development and function of cardiac lymphatic vessels, the interaction of cardiac lymphatic vessels with cardiovascular diseases (including atrial fibrillation, coronary atherosclerosis, and heart failure), and finally discusses the therapeutic potential of targeted cardiac lymphatic therapy for cardiovascular diseases.
Collapse
Affiliation(s)
- Guoyuan Song
- From the Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Da Liu
- From the Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jianwei Ma
- Gastrointestinal Disease Diagnosis and Treatment Center, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yinge Zhan
- From the Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fangfang Ma
- From the Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Gang Liu
- From the Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
2
|
Fowler JWM, Song L, Tam K, Roth Flach RJ. Targeting lymphatic function in cardiovascular-kidney-metabolic syndrome: preclinical methods to analyze lymphatic function and therapeutic opportunities. Front Cardiovasc Med 2024; 11:1412857. [PMID: 38915742 PMCID: PMC11194411 DOI: 10.3389/fcvm.2024.1412857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024] Open
Abstract
The lymphatic vascular system spans nearly every organ in the body and serves as an important network that maintains fluid, metabolite, and immune cell homeostasis. Recently, there has been a growing interest in the role of lymphatic biology in chronic disorders outside the realm of lymphatic abnormalities, lymphedema, or oncology, such as cardiovascular-kidney-metabolic syndrome (CKM). We propose that enhancing lymphatic function pharmacologically may be a novel and effective way to improve quality of life in patients with CKM syndrome by engaging multiple pathologies at once throughout the body. Several promising therapeutic targets that enhance lymphatic function have already been reported and may have clinical benefit. However, much remains unclear of the discreet ways the lymphatic vasculature interacts with CKM pathogenesis, and translation of these therapeutic targets to clinical development is challenging. Thus, the field must improve characterization of lymphatic function in preclinical mouse models of CKM syndrome to better understand molecular mechanisms of disease and uncover effective therapies.
Collapse
Affiliation(s)
| | | | | | - Rachel J. Roth Flach
- Internal Medicine Research Unit, Pfizer Research and Development, Cambridge, MA, United States
| |
Collapse
|
3
|
Michalaki E, Surya VN, Rodríguez-Hakim M, Fuller GG, Dunn AR. Response of lymphatic endothelial cells to combined spatial and temporal variations in fluid flow. FASEB J 2023; 37:e23240. [PMID: 37902497 DOI: 10.1096/fj.201902205rrrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/02/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023]
Abstract
One-way valves within lymphatic vessels are required for the efficient drainage of lymphatic fluids. Fluid flow is proposed to be a key cue in regulating both the formation and maintenance of lymphatic valves. However, to our knowledge, no previous study has systematically examined the response of LECs to the complex combination of spatially and temporally varying fluid flows that occur at lymphatic valves in vivo. We built an in vitro microfluidic device that reproduces key aspects of the flow environment found at lymphatic valves. Using this device, we found that a combination of spatially and temporally varying wall shear stresses (WSSs) led to upregulated transcription of PROX1 and FOXC2. In addition, we observed that combined spatial and temporal variations in WSS-modulated Ca2+ signaling and led to increased cellular levels of NFATc1. These observations suggest that the physical cues generated by the flow environment present within lymphatic valves may act to activate key regulatory pathways that contribute to valve maintenance.
Collapse
Affiliation(s)
- Eleftheria Michalaki
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
| | - Vinay N Surya
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
| | | | - Gerald G Fuller
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
4
|
Michalaki E, Rudd JM, Liebman L, Wadhwani R, Wood LB, Willett NJ, Dixon JB. Lentiviral overexpression of VEGFC in transplanted MSCs leads to resolution of swelling in a mouse tail lymphedema model. Microcirculation 2023; 30:e12792. [PMID: 36369987 PMCID: PMC10680019 DOI: 10.1111/micc.12792] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/12/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
Abstract
BACKGROUND Dysfunction of the lymphatic system following injury, disease, or cancer treatment can lead to lymphedema, a debilitating condition with no cure. Despite the various physical therapy and surgical options available, most treatments are palliative and fail to address the underlying lymphatic vascular insufficiency driving lymphedema progression. Stem cell therapy provides a promising alternative in the treatment of various chronic diseases with a wide range of therapeutic effects that reduce inflammation, fibrosis, and oxidative stress, while promoting lymphatic vessel (LV) regeneration. Specifically, stem cell transplantation is suggested to promote LV restoration, rebuild lymphatic circulation, and thus potentially be utilized towards an effective lymphedema treatment. In addition to stem cells, studies have proposed the administration of vascular endothelial growth factor C (VEGFC) to promote lymphangiogenesis and decrease swelling in lymphedema. AIMS Here, we seek to combine the benefits of stem cell therapy, which provides a cellular therapeutic approach that can respond to the tissue environment, and VEGFC administration to restore lymphatic drainage. MATERIALS & METHODS Specifically, we engineered mesenchymal stem cells (MSCs) to overexpress VEGFC using a lentiviral vector (hVEGFC MSC) and investigated their therapeutic efficacy in improving LV function and tissue swelling using near infrared (NIR) imaging, and lymphatic regeneration in a single LV ligation mouse tail lymphedema model. RESULTS First, we showed that overexpression of VEGFC using lentiviral transduction led to an increase in VEGFC protein synthesis in vitro. Then, we demonstrated hVEGFC MSC administration post-injury significantly increased the lymphatic contraction frequency 14-, 21-, and 28-days post-surgery compared to the control animals (MSC administration) in vivo, while also reducing tail swelling 28-days post-surgery compared to controls. CONCLUSION Our results suggest a therapeutic potential of hVEGFC MSC in alleviating the lymphatic dysfunction observed during lymphedema progression after secondary injury and could provide a promising approach to enhancing autologous cell therapy for treating lymphedema.
Collapse
Affiliation(s)
- Eleftheria Michalaki
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Josephine M Rudd
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Lauren Liebman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Rahul Wadhwani
- Neuroscience Department, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Levi B Wood
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nick J Willett
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon, USA
- The Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - J Brandon Dixon
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Huuska N, Netti E, Lehti S, Kovanen PT, Niemelä M, Tulamo R. Lymphatic vessels are present in human saccular intracranial aneurysms. Acta Neuropathol Commun 2022; 10:130. [PMID: 36064651 PMCID: PMC9446758 DOI: 10.1186/s40478-022-01430-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/14/2022] [Indexed: 11/10/2022] Open
Abstract
Saccular intracranial aneurysm (sIA) rupture leads to subarachnoid haemorrhage and is preceded by chronic inflammation and atherosclerotic changes of the sIA wall. Increased lymphangiogenesis has been detected in atherosclerotic extracranial arteries and in abdominal aortic aneurysms, but the presence of lymphatic vessels in sIAs has remained unexplored. Here we studied the presence of lymphatic vessels in 36 intraoperatively resected sIAs (16 unruptured and 20 ruptured), using immunohistochemical and immunofluorescence stainings for lymphatic endothelial cell (LEC) markers. Of these LEC-markers, both extracellular and intracellular LYVE-1-, podoplanin-, VEGFR-3-, and Prox1-positive stainings were detected in 83%, 94%, 100%, and 72% of the 36 sIA walls, respectively. Lymphatic vessels were identified as ring-shaped structures positive for one or more of the LEC markers. Of the sIAs, 78% contained lymphatic vessels positive for at least one LEC marker. The presence of LECs and lymphatic vessels were associated with the number of CD68+ and CD163+ cells in the sIA walls, and with the expression of inflammation indicators such as serum amyloid A, myeloperoxidase, and cyclo-oxygenase 2, with the presence of a thrombus, and with the sIA wall rupture. Large areas of VEGFR-3 and α-smooth muscle actin (αSMA) double-positive cells were detected in medial parts of the sIA walls. Also, a few podoplanin and αSMA double-positive cells were discovered. In addition, LYVE-1 and CD68 double-positive cells were detected in the sIA walls and in the thrombus revealing that certain CD68+ macrophages are capable of expressing LEC markers. This study demonstrates for the first time the presence of lymphatic vessels in human sIA walls. Further studies are needed to understand the role of lymphatic vessels in the pathogenesis of sIA.
Collapse
Affiliation(s)
- Nora Huuska
- Neurosurgery Research Group, Room B410b, Biomedicum 1, Haartmaninkatu 8, 00290, Helsinki, Finland.
| | - Eliisa Netti
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Topeliuksenkatu 5, 00260, Helsinki, Finland
| | - Satu Lehti
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Rautpohjankatu 8, 40700, Jyväskylä, Finland
| | - Petri T Kovanen
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Haartmaninkatu 8, Biomedicum 1, Helsinki, Finland
| | - Mika Niemelä
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Topeliuksenkatu 5, 00260, Helsinki, Finland
| | - Riikka Tulamo
- Department of Vascular Surgery, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, 00290, Helsinki, Finland
| |
Collapse
|
6
|
Singla B, Aithabathula RV, Kiran S, Kapil S, Kumar S, Singh UP. Reactive Oxygen Species in Regulating Lymphangiogenesis and Lymphatic Function. Cells 2022; 11:1750. [PMID: 35681445 PMCID: PMC9179518 DOI: 10.3390/cells11111750] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
The lymphatic system is pivotal for immunosurveillance and the maintenance of tissue homeostasis. Lymphangiogenesis, the formation of new lymphatic vessels from pre-existing vessels, has both physiological and pathological roles. Recent advances in the molecular mechanisms regulating lymphangiogenesis have opened a new area of research on reparative lymphangiogenesis for the treatment of various pathological disorders comprising neurological disorders, cardiac repair, autoimmune disease, obesity, atherosclerosis, etc. Reactive oxygen species (ROS) produced by the various cell types serve as signaling molecules in several cellular mechanisms and regulate various aspects of growth-factor-mediated responses, including lymphangiogenesis. The ROS, including superoxide anion, hydrogen peroxide, and nitric oxide, play both beneficial and detrimental roles depending upon their levels and cellular microenvironment. Low ROS levels are essential for lymphangiogenesis. On the contrary, oxidative stress due to enhanced ROS generation and/or reduced levels of antioxidants suppresses lymphangiogenesis via promoting lymphatic endothelial cell apoptosis and death. In this review article, we provide an overview of types and sources of ROS, discuss the role of ROS in governing lymphangiogenesis and lymphatic function, and summarize the role of lymphatics in various diseases.
Collapse
Affiliation(s)
- Bhupesh Singla
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38017, USA; (R.V.A.); (S.K.); (S.K.); (U.P.S.)
| | - Ravi Varma Aithabathula
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38017, USA; (R.V.A.); (S.K.); (S.K.); (U.P.S.)
| | - Sonia Kiran
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38017, USA; (R.V.A.); (S.K.); (S.K.); (U.P.S.)
| | - Shweta Kapil
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children′s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38017, USA; (R.V.A.); (S.K.); (S.K.); (U.P.S.)
| | - Udai P. Singh
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38017, USA; (R.V.A.); (S.K.); (S.K.); (U.P.S.)
| |
Collapse
|
7
|
Phillippi JA. On vasa vasorum: A history of advances in understanding the vessels of vessels. SCIENCE ADVANCES 2022; 8:eabl6364. [PMID: 35442731 PMCID: PMC9020663 DOI: 10.1126/sciadv.abl6364] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/01/2022] [Indexed: 05/09/2023]
Abstract
The vasa vasorum are a vital microvascular network supporting the outer wall of larger blood vessels. Although these dynamic microvessels have been studied for centuries, the importance and impact of their functions in vascular health and disease are not yet fully realized. There is now rich knowledge regarding what local progenitor cell populations comprise and cohabitate with the vasa vasorum and how they might contribute to physiological and pathological changes in the network or its expansion via angiogenesis or vasculogenesis. Evidence of whether vasa vasorum remodeling incites or governs disease progression or is a consequence of cardiovascular pathologies remains limited. Recent advances in vasa vasorum imaging for understanding cardiovascular disease severity and pathophysiology open the door for theranostic opportunities. Approaches that strive to control angiogenesis and vasculogenesis potentiate mitigation of vasa vasorum-mediated contributions to cardiovascular diseases and emerging diseases involving the microcirculation.
Collapse
Affiliation(s)
- Julie A. Phillippi
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Sano M, Sasaki T, Baba S, Inuzuka K, Katahashi K, Kayama T, Yamanaka Y, Tsuyuki H, Endo Y, Sato K, Takeuchi H, Unno N. Differences in Vasa Vasorum Distribution in Human Aortic Aneurysms and Atheromas. Angiology 2022; 73:546-556. [DOI: 10.1177/00033197211063655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The pathophysiological difference between aortic atheromas and aneurysms is unknown. We focused on the vasa vasorum (VV), which play a critical role in maintaining aortic homeostasis and are also involved in vascular diseases. We investigated the differences in VV between the atheromas and aneurysms. Human abdominal aortic samples were obtained from patients with abdominal aortic aneurysm during surgery or autopsy cases. Autopsy cases were divided into 2 groups according to atheromas. The VV were evaluated using immunohistochemical staining for von Willebrand factor. Intimal VV increased in both the atheroma and aneurysm groups, medial VV increased, and adventitial VV decreased only in the aneurysm group. We also observed that the medial VV were connected to the adventitial VV in the atheroma group and to intimal VV in the aneurysm group. We suggest the outside-in VV or inside-out VV theories. Atheroma induces hypoxia of aortic walls, and angiogenic factors might induce an increase of intimal VV derived from adventitial VV (outside-in VV). However, adventitial VV decrease induces hypoxia of aortic walls, and angiogenic factors might induce an increase of intimal VV derived from aortic lumen (inside-out VV). These differences of VV may contribute in elucidating the pathophysiology of aortic diseases.
Collapse
Affiliation(s)
- Masaki Sano
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Takeshi Sasaki
- Department of Anatomy and Neuroscience, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Satoshi Baba
- Department of Diagnostic Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Kazunori Inuzuka
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Kazuto Katahashi
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Takafumi Kayama
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Yuta Yamanaka
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Hajime Tsuyuki
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Yusuke Endo
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Kohji Sato
- Department of Anatomy and Neuroscience, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Hiroya Takeuchi
- Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Naoki Unno
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Vascular Surgery, Hamamatsu Medical Center, Hamamatsu 432-8580, Japan
| |
Collapse
|
9
|
Isolating and characterizing lymphatic endothelial progenitor cells for potential therapeutic lymphangiogenic applications. Acta Biomater 2021; 135:191-202. [PMID: 34384911 DOI: 10.1016/j.actbio.2021.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022]
Abstract
Lymphatic dysfunction is associated with the progression of several vascular disorders, though currently, there are limited strategies to promote new lymphatic vasculature (i.e., lymphangiogenesis) to restore lost lymphatic function. One promising approach to stimulate lymphangiogenesis involves delivering endothelial progenitor cells (EPCs), which are naturally involved in de novo blood vessel formation and have recently been identified to include a lymphatic subpopulation. However, the contribution of lymphatic EPCs in lymphangiogenesis is not clear and challenges with maintaining the activity of transplanted EPCs remain. Thus, the objective of this study was to isolate lymphatic EPCs from human umbilical cord blood and characterize their role in the initial stages of blood or lymphatic vasculature formation. Furthermore, this study also tested the applicability of alginate hydrogels to deliver lymphatic EPCs for a possible therapeutic application. We postulated and confirmed that blood and lymphatic EPC colonies could be isolated from human umbilical cord blood. Additionally, EPC populations responded to either angiogenic or lymphangiogenic growth factors and could stimulate their respective mature endothelial cells in vasculature models in vitro. Finally, lymphatic EPCs maintained their ability to promote lymphatic sprouts after prolonged interactions with the alginate hydrogel microenvironment. These results suggest EPCs have both a blood and a lymphatic population that have specific roles in promoting revascularization and highlight the potential of alginate hydrogels for the delivery of lymphatic EPCs. STATEMENT OF SIGNIFICANCE: Despite the potential therapeutic benefit of promoting lymphatic vasculature, lymphangiogenesis remains understudied. One appealing strategy for promoting lymphangiogenesis involves delivering lymphatic endothelial progenitor cells (EPCs), which are a subpopulation of EPCs involved in de novo vessel formation. Here, we investigate the role of isolated blood and lymphatic EPC subpopulations in promoting the early stages of vascularization and the utility of alginate hydrogels to deliver lymphatic EPCs. We determined that EPCs had two populations that expressed either blood or lymphatic markers, could stimulate their respective mature vasculature in tissue constructs and that alginate hydrogels maintained the therapeutic potential of lymphatic EPCs. We anticipate this work could support promising biomaterial applications of EPCs to promote revascularization, which could have many therapeutic applications.
Collapse
|
10
|
Feng X, Du M, Zhang Y, Ding J, Wang Y, Liu P. The Role of Lymphangiogenesis in Coronary Atherosclerosis. Lymphat Res Biol 2021; 20:290-301. [PMID: 34714136 DOI: 10.1089/lrb.2021.0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lymphatic circulation, a one-way channel system independent of blood circulation, collects interstitial fluid in a blind-end way. Existing widely in various organs and tissues, lymphatic vessels play important roles in maintaining tissue fluid homeostasis, regulating immune function, and promoting lipid transport. Recent studies have shown clear evidence that lymphangiogenesis has a strong mutual effect on coronary atherosclerosis (AS). In this study, we focus on this topic, especially in the aspects of relevant ligand/receptor, inflammation, and adipose metabolism. For the moment, however, the role of lymphangiogenesis and remodeling in coronary AS still remains controversial. The studies of our group and accumulating published evidence show that the pathological remodeling of lymphatic vessels in coronary AS may have a negative effect, but normal functional lymphangiogenesis is probably beneficial to the regression of coronary AS. Thus, the conclusion of this review is that lymphatic vessel function rather than its quantity determines its influence in AS, which needs more evidence to support.
Collapse
Affiliation(s)
- Xiaoteng Feng
- Department of Cardiology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Du
- Department of Cardiology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifan Zhang
- Department of Cardiology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ding
- Department of Cardiology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiru Wang
- Department of Cardiology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Liu
- Department of Cardiology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Miyazaki T, Miyazaki A. Hypercholesterolemia and Lymphatic Defects: The Chicken or the Egg? Front Cardiovasc Med 2021; 8:701229. [PMID: 34250049 PMCID: PMC8262609 DOI: 10.3389/fcvm.2021.701229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022] Open
Abstract
Lymphatic vessels are necessary for maintaining tissue fluid balance, trafficking of immune cells, and transport of dietary lipids. Growing evidence suggest that lymphatic functions are limited under hypercholesterolemic conditions, which is closely related to atherosclerotic development involving the coronary and other large arteries. Indeed, ablation of lymphatic systems by Chy-mutation as well as depletion of lymphangiogenic factors, including vascular endothelial growth factor-C and -D, in mice perturbs lipoprotein composition to augment hypercholesterolemia. Several investigations have reported that periarterial microlymphatics were attracted by atheroma-derived lymphangiogenic factors, which facilitated lymphatic invasion into the intima of atherosclerotic lesions, thereby modifying immune cell trafficking. In contrast to the lipomodulatory and immunomodulatory roles of the lymphatic systems, the critical drivers of lymphangiogenesis and the details of lymphatic insults under hypercholesterolemic conditions have not been fully elucidated. Interestingly, cholesterol-lowering trials enable hypercholesterolemic prevention of lymphatic drainage in mice; however, a causal relationship between hypercholesterolemia and lymphatic defects remains elusive. In this review, the contribution of aberrant lymphangiogenesis and lymphatic cholesterol transport to hypercholesterolemic atherosclerosis was highlighted. The causal relationship between hypercholesterolemia and lymphatic insults as well as the current achievements in the field were discussed.
Collapse
Affiliation(s)
- Takuro Miyazaki
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| | - Akira Miyazaki
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Yeo KP, Lim HY, Angeli V. Leukocyte Trafficking via Lymphatic Vessels in Atherosclerosis. Cells 2021; 10:cells10061344. [PMID: 34072313 PMCID: PMC8229118 DOI: 10.3390/cells10061344] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 02/03/2023] Open
Abstract
In recent years, lymphatic vessels have received increasing attention and our understanding of their development and functional roles in health and diseases has greatly improved. It has become clear that lymphatic vessels are critically involved in acute and chronic inflammation and its resolution by supporting the transport of immune cells, fluid, and macromolecules. As we will discuss in this review, the involvement of lymphatic vessels has been uncovered in atherosclerosis, a chronic inflammatory disease of medium- and large-sized arteries causing deadly cardiovascular complications worldwide. The progression of atherosclerosis is associated with morphological and functional alterations in lymphatic vessels draining the diseased artery. These defects in the lymphatic vasculature impact the inflammatory response in atherosclerosis by affecting immune cell trafficking, lymphoid neogenesis, and clearance of macromolecules in the arterial wall. Based on these new findings, we propose that targeting lymphatic function could be considered in conjunction with existing drugs as a treatment option for atherosclerosis.
Collapse
|
13
|
Simone S, Chieti A, Pontrelli P, Rascio F, Castellano G, Stallone G, Infante B, Gesualdo L, Grandaliano G, Pertosa G. On-line hemodiafiltration modulates atherosclerosis signaling in peripheral lymphomonocytes of hemodialysis patients. J Nephrol 2021; 34:1989-1997. [PMID: 33761122 PMCID: PMC8610953 DOI: 10.1007/s40620-020-00958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/27/2020] [Indexed: 11/18/2022]
Abstract
Background Hemodialysis patients present a dramatic increase in cardiovascular morbidity/mortality. Circulating immune cells, activated by both uremic milieu and dialysis, play a key role in the pathogenesis of dialysis-related vascular disease. The aim of our study was to identify, through a high-throughput approach, differences in gene expression profiles in the peripheral blood mononuclear cells (PBMCs) of patients treated with on-line hemodiafiltration and bicarbonate hemodialysis. Methods The transcriptomic profile was investigated in PBMCs isolated from eight patients on on-line hemodiafiltration and eight patients on bicarbonate hemodialysis by microarray analysis. The results were evaluated by statistical and functional pathway analysis and validated by real time PCR (qPCR) in an independent cohort of patients (on-line hemodiafiltration N = 20, bicarbonate hemodialysis n = 20). Results Eight hundred and forty-seven genes were differentially expressed in patients treated with on-line hemodiafiltration and bicarbonate hemodialysis. Thirty-seven functional gene networks were identified and atherosclerosis signaling was the top canonical pathway regulated by on-line hemodiafiltration. Among the genes of this pathway, on-line hemodiafiltration was associated with a reduced expression of Platelet-derived growth factor A chain (PDGF A), Clusterin, Monoamine Oxidase A, Interleukin-6 (IL-6) and Vascular Endothelial Growth
Factor C (VEGF-)C and with an increase of Apolipoprotein E. qPCR confirmed the microarray results. Platelet derived growth factor AA (PDGF-AA), IL-6 and VEGF-C serum levels were significantly lower in the on-line hemodiafiltration group. Finally, 10 patients previously on bicarbonate hemodialysis were switched to on-line hemodiafiltration and PBMCs were harvested after 6 months. The qPCR results from this perspective group confirmed the modulation of atherosclerotic genes observed in the cross-sectional analysis. Conclusions Our data suggest that type of dialysis (on-line hemodiafiltration versus bicarbonate hemodialysis) may modulate the expression of several genes involved in the pathogenesis of atherosclerotic disease.
Collapse
Affiliation(s)
- Simona Simone
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari "A. Moro", Piazza G. Cesare 11, 70122, Bari, Italy.
| | - Annarita Chieti
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari "A. Moro", Piazza G. Cesare 11, 70122, Bari, Italy
| | - Paola Pontrelli
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari "A. Moro", Piazza G. Cesare 11, 70122, Bari, Italy
| | - Federica Rascio
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Barbara Infante
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari "A. Moro", Piazza G. Cesare 11, 70122, Bari, Italy
| | - Giuseppe Grandaliano
- Nephrology Unit, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy.,Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Pertosa
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari "A. Moro", Piazza G. Cesare 11, 70122, Bari, Italy
| |
Collapse
|
14
|
Nakano T, Mizumasa T, Kuroki Y, Eriguchi M, Yoshida H, Taniguchi M, Masutani K, Tsuruya K, Kitazono T. Advanced glycation end products are associated with immature angiogenesis and peritoneal dysfunction in patients on peritoneal dialysis. Perit Dial Int 2021; 40:67-75. [PMID: 32063152 DOI: 10.1177/0896860819878344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Deposition of advanced glycation end products (AGEs) is frequently found in the peritoneum of patients on peritoneal dialysis (PD). Angiogenesis is also observed in the peritoneum. However, the clinical significance of AGEs and angiogenesis in the peritoneum is not fully understood. We evaluated the maturation of capillary vessels and investigated whether AGEs are associated with angiogenesis and peritoneal function in the peritoneal membrane. METHODS Peritoneum obtained when PD catheters were removed from 61 patients with PD was analyzed. The peritoneum was immunohistochemically stained with anti-CD34 (for endothelial cells), anti-alpha smooth muscle actin (αSMA) (for pericytes), and anti-AGE antibodies. We defined CD34-positive and αSMA-negative vessels as immature capillary vessels in peritoneal membranes using serial sections. We evaluated the associations between vessel density, peritoneal function (dialysate-to-plasma ratio for creatinine (D/P creatinine)), and the degree of AGE deposition. RESULTS AGE accumulation in the interstitium was positively associated with the duration of PD (p < 0.01). AGE accumulation in the interstitium and vascular wall was positively correlated with the use of acidic solution (p < 0.05) and the maximum value of D/P creatinine (p < 0.05). AGE accumulation in the vascular wall was significantly associated with immature capillary density (CD34+/αSMA-) in the peritoneum (p < 0.01). Vessel density was not significantly correlated with the last measurement of D/P creatinine (p = 0.126, r = 0.202), However, immature capillary density was positively correlated with the last measurement of D/P creatinine (p < 0.05, r = 0.278). CONCLUSIONS AGE accumulation is significantly associated with immature angiogenesis and peritoneal dysfunction in patients undergoing PD.
Collapse
Affiliation(s)
- Toshiaki Nakano
- Department of Integrated Therapy for Chronic Kidney Disease, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tohru Mizumasa
- Department of Nephrology, Fukuoka Red Cross Hospital, Japan.,Department of Nephrology, Kyushu Central Hospital, Fukuoka, Japan
| | - Yusuke Kuroki
- Department of Nephrology, Fukuoka Red Cross Hospital, Japan
| | - Masahiro Eriguchi
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hisako Yoshida
- Department of Integrated Therapy for Chronic Kidney Disease, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatomo Taniguchi
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Masutani
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhiko Tsuruya
- Department of Integrated Therapy for Chronic Kidney Disease, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Nephrology, Nara Medical University, Kashihara, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
15
|
Yeo KP, Lim HY, Thiam CH, Azhar SH, Tan C, Tang Y, See WQ, Koh XH, Zhao MH, Phua ML, Balachander A, Tan Y, Lim SY, Chew HS, Ng LG, Angeli V. Efficient aortic lymphatic drainage is necessary for atherosclerosis regression induced by ezetimibe. SCIENCE ADVANCES 2020; 6:6/50/eabc2697. [PMID: 33310846 PMCID: PMC7732200 DOI: 10.1126/sciadv.abc2697] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/22/2020] [Indexed: 05/24/2023]
Abstract
A functional lymphatic vasculature is essential for tissue fluid homeostasis, immunity, and lipid clearance. Although atherosclerosis has been linked to adventitial lymphangiogenesis, the functionality of aortic lymphatic vessels draining the diseased aorta has never been assessed and the role of lymphatic drainage in atherogenesis is not well understood. We develop a method to measure aortic lymphatic transport of macromolecules and show that it is impaired during atherosclerosis progression, whereas it is ameliorated during lesion regression induced by ezetimibe. Disruption of aortic lymph flow by lymphatic ligation promotes adventitial inflammation and development of atherosclerotic plaque in hypercholesterolemic mice and inhibits ezetimibe-induced atherosclerosis regression. Thus, progression of atherosclerotic plaques may result not only from increased entry of atherogenic factors into the arterial wall but also from reduced lymphatic clearance of these factors as a result of aortic lymph stasis. Our findings suggest that promoting lymphatic drainage might be effective for treating atherosclerosis.
Collapse
Affiliation(s)
- Kim Pin Yeo
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Hwee Ying Lim
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Chung Hwee Thiam
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Syaza Hazwany Azhar
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Caris Tan
- Histology Core Facility, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Ya Tang
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Wei Qiang See
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Xuan Han Koh
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Ming Hao Zhao
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Meow Ling Phua
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Akhila Balachander
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Yingrou Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Sheau Yng Lim
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Hui Shang Chew
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Lai Guan Ng
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Veronique Angeli
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
16
|
Zhou Y, Huang C, Hu Y, Xu Q, Hu X. Lymphatics in Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2020; 40:e275-e283. [PMID: 33085520 DOI: 10.1161/atvbaha.120.314735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yijiang Zhou
- From the Department of Cardiology, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Chengchen Huang
- From the Department of Cardiology, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Yanhua Hu
- From the Department of Cardiology, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Qingbo Xu
- From the Department of Cardiology, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Xiaosheng Hu
- From the Department of Cardiology, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Campbell KT, Silva EA. Biomaterial Based Strategies for Engineering New Lymphatic Vasculature. Adv Healthc Mater 2020; 9:e2000895. [PMID: 32734721 PMCID: PMC8985521 DOI: 10.1002/adhm.202000895] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/08/2020] [Indexed: 12/15/2022]
Abstract
The lymphatic system is essential for tissue regeneration and repair due to its pivotal role in resolving inflammation, immune cell surveillance, lipid transport, and maintaining tissue homeostasis. Loss of functional lymphatic vasculature is directly implicated in a variety of diseases, including lymphedema, obesity, and the progression of cardiovascular diseases. Strategies that stimulate the formation of new lymphatic vessels (lymphangiogenesis) could provide an appealing new approach to reverse the progression of these diseases. However, lymphangiogenesis is relatively understudied and stimulating therapeutic lymphangiogenesis faces challenges in precise control of lymphatic vessel formation. Biomaterial delivery systems could be used to unleash the therapeutic potential of lymphangiogenesis for a variety of tissue regenerative applications due to their ability to achieve precise spatial and temporal control of multiple therapeutics, direct tissue regeneration, and improve the survival of delivered cells. In this review, the authors begin by introducing therapeutic lymphangiogenesis as a target for tissue regeneration, then an overview of lymphatic vasculature will be presented followed by a description of the mechanisms responsible for promoting new lymphatic vessels. Importantly, this work will review and discuss current biomaterial applications for stimulating lymphangiogenesis. Finally, challenges and future directions for utilizing biomaterials for lymphangiogenic based treatments are considered.
Collapse
Affiliation(s)
- Kevin T Campbell
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, USA
| | - Eduardo A Silva
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
18
|
Oliver G, Kipnis J, Randolph GJ, Harvey NL. The Lymphatic Vasculature in the 21 st Century: Novel Functional Roles in Homeostasis and Disease. Cell 2020; 182:270-296. [PMID: 32707093 PMCID: PMC7392116 DOI: 10.1016/j.cell.2020.06.039] [Citation(s) in RCA: 368] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/17/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022]
Abstract
Mammals have two specialized vascular circulatory systems: the blood vasculature and the lymphatic vasculature. The lymphatic vasculature is a unidirectional conduit that returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays major roles in immune cell trafficking and lipid absorption. As we discuss in this review, the molecular characterization of lymphatic vascular development and our understanding of this vasculature's role in pathophysiological conditions has greatly improved in recent years, changing conventional views about the roles of the lymphatic vasculature in health and disease. Morphological or functional defects in the lymphatic vasculature have now been uncovered in several pathological conditions. We propose that subtle asymptomatic alterations in lymphatic vascular function could underlie the variability seen in the body's response to a wide range of human diseases.
Collapse
Affiliation(s)
- Guillermo Oliver
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
19
|
Korneva YS, Ukrainets RV. The role of the cardiac lymphatic system in the development and progression of heart failure and novel therapeutic approaches for its management in post-infarction cardiac remodeling. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2020. [DOI: 10.15829/1728-8800-2020-2281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Cardiac lymphatic vessels play a vital role in maintaining homeostasis in both physiological and pathological conditions, providing outflow of metabolites. It has been shown that myocardial infarction and postinfarction cardiac remodeling is accompanied by the lymphatic remodeling, which entails functional disorders and is of great importance in heart failure pathogenesis. As a result of progressive myocardial edema, hypoxia and fibrosis of the interstitial space increase, aggravating edema. Other pathways of additional myocardial damage and contractility reduction are triggered. Lymphatic efflux is associated with arrhythmias. Experimental models showed the positive effect of exogenous activation of lymphangiogenesis in relation to the prevention and treatment of heart failure, which can be further used to improve treatment regimens. This review discusses cardiac lymphatic remodeling after myocardial infarction, as well as the pathogenesis of related complications.
Collapse
Affiliation(s)
- Yu. S. Korneva
- Smolensk State Medical University;
Smolensk Regional Institute of Pathology
| | | |
Collapse
|
20
|
Perpendicular alignment of lymphatic endothelial cells in response to spatial gradients in wall shear stress. Commun Biol 2020; 3:57. [PMID: 32029852 PMCID: PMC7005002 DOI: 10.1038/s42003-019-0732-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/27/2019] [Indexed: 02/05/2023] Open
Abstract
One-way valves in the lymphatic system form from lymphatic endothelial cells (LECs) during embryonic development and are required for efficient tissue drainage. Although fluid flow is thought to guide both valve formation and maintenance, how this occurs at a mechanistic level remains incompletely understood. We built microfluidic devices that reproduce critical aspects of the fluid flow patterns found at sites of valvulogenesis. Using these devices, we observed that LECs replicated aspects of the early steps in valvulogenesis: cells oriented perpendicular to flow in the region of maximum wall shear stress (WSS) and exhibited enhanced nuclear localization of FOXC2, a transcription factor required for valvulogenesis. Further experiments revealed that the cell surface protein E-selectin was required for both of these responses. Our observations suggest that spatial gradients in WSS help to demarcate the locations of valve formation, and implicate E-selectin as a component of a mechanosensory process for detecting WSS gradients. Using microfluidic systems, Michalaki et al show that lymphatic endothelial cells exposed to wall shear stress orient in the direction perpendicular to flow and show increased nuclear FOXC2 levels in a manner dependent on E-selectin, a transmembrane adhesion protein. These data provide insights into how lymphatic vessels respond to local flow-mediated mechanical cues.
Collapse
|
21
|
Bletsa A, Abdalla H, Løes S, Berggreen E. Lymphatic growth factors are expressed in human gingiva and upregulated in gingival fibroblasts after stimulation. J Periodontol 2019. [PMID: 29520843 DOI: 10.1002/jper.17-0400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND The lymphatic growth factors vascular endothelial growth factor (VEGF)-C and -D are important for maintenance and growth of lymphatic vessels (lymphangiogenesis), but their localization in human gingiva is unknown. This study investigated the expression of VEGF-C and -D in human gingiva and isolated human gingival fibroblasts (HGFs). In addition, the localization of their main receptor VEGFR-3 was explored. METHODS Non-inflamed gingiva from six donors was used for immunohistochemistry or isolation of HGFs. HGFs were stimulated with either E.coli lipopolysaccharide (LPS) or IL-6/soluble IL-6 receptor (sIL-6R) complex for 1, 6, and 24 hours. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to quantify the relative changes in gene expression of VEGF-A, -C, and -D and enzyme-linked immunosorbent assay (ELISA) for quantification of protein levels. RESULTS VEGF-C, -D and VEGFR-3 were seen in keratinocytes, blood vessels and in scattered single cells in gingiva. VEGFR-3 was also found in lymphatic vessels and VEGF-C in cells with fibroblastic appearance. Gene analysis showed no expression of VEGF-D in the HGFs, but showed constitutive expression of VEGF-C and -A. Stimulation of HGFs with LPS or IL-6/sIL-6R complex was followed by gene upregulation of VEGF-C and -A and increased protein levels in cell culture supernatant (P ≤0.05). CONCLUSIONS The localization of VEGF-C, -D, and VEGFR-3 expression imply that signaling via VEGFR-3 is linked to vascular homeostasis and keratinocyte function under normal conditions in gingiva. Inflammatory stimulation of HGFs upregulates VEGF-C and -A expression and may contribute to angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Athanasia Bletsa
- Department of Clinical Dentistry, University of Bergen, Norway.,Oral Health Center of Expertise, Western Norway, Hordaland County, Bergen, Norway
| | | | - Sigbjørn Løes
- Department of Clinical Dentistry, University of Bergen, Norway.,Oral and Maxillofacial Surgery, Haukeland University Hospital, Bergen, Norway
| | - Ellen Berggreen
- Oral Health Center of Expertise, Western Norway, Hordaland County, Bergen, Norway.,Department of Biomedicine, University of Bergen, Norway
| |
Collapse
|
22
|
Abstract
The lymphatic vasculature, which accompanies the blood vasculature in most organs, is indispensable in the maintenance of tissue fluid homeostasis, immune cell trafficking, and nutritional lipid uptake and transport, as well as in reverse cholesterol transport. In this Review, we discuss the physiological role of the lymphatic system in the heart in the maintenance of cardiac health and describe alterations in lymphatic structure and function that occur in cardiovascular pathology, including atherosclerosis and myocardial infarction. We also briefly discuss the role that immune cells might have in the regulation of lymphatic growth (lymphangiogenesis) and function. Finally, we provide examples of how the cardiac lymphatics can be targeted therapeutically to restore lymphatic drainage in the heart to limit myocardial oedema and chronic inflammation.
Collapse
Affiliation(s)
- Ebba Brakenhielm
- Normandy University, UniRouen, INSERM (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France.
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Biomedicum Helsinki, Helsinki, Finland.
| |
Collapse
|
23
|
Serum sLYVE-1 is not associated with coronary disease but with renal dysfunction: a retrospective study. Sci Rep 2019; 9:10816. [PMID: 31346234 PMCID: PMC6658538 DOI: 10.1038/s41598-019-47367-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 07/16/2019] [Indexed: 01/14/2023] Open
Abstract
Recent evidence has indicated that the lymphatic vessel endothelial hyaluronan receptor (LYVE-1) is implicated in chronic inflammation and the lymphatic immune response. The soluble form of LYVE-1 (sLYVE-1) is produced by ectodomain shedding of LYVE-1 under pathological conditions including cancer and chronic inflammation. In this study, 1014 consecutive patients who underwent coronary angiography from May 2015 to September 2015 were included to investigate whether serum sLYVE-1 is associated with coronary artery disease (CAD) and its concomitant diseases includes chronic kidney disease (CKD). Results showed that there was no significant difference in sLYVE-1 levels between patients with CAD and without. However, a significantly higher level of sLYVE-1 was seen in patients with renal dysfunction compared to those with a normal eGFR. Results were validated in a separate cohort of 259 patients who were divided into four groups based on their kidney function assessed by estimated glomerular filtration rate (eGFR). Simple bivariate correlation analysis revealed that Lg[sLYVE-1] was negatively correlated with eGFR (r = −0.358, p < 0.001) and cystatin C (r = 0.303, p < 0.001). Multivariable logistic regression analysis revealed that the increase in Lg[sLYVE-1] was an independent determinant of renal dysfunction (odds ratio = 1.633, p = 0.007). Therefore, renal function should be considered when serum sLYVE-1 is used as a biomarker for the detection of pathological conditions such as chronic inflammation and cancer. Further study is required to elucidate the exact role of sLYVE-1 in renal function.
Collapse
|
24
|
Increased Lymphangiogenesis and Lymphangiogenic Growth Factor Expression in Perivascular Adipose Tissue of Patients with Coronary Artery Disease. J Clin Med 2019; 8:jcm8071000. [PMID: 31324038 PMCID: PMC6678243 DOI: 10.3390/jcm8071000] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/17/2022] Open
Abstract
Experimental and human autopsy studies have associated adventitial lymphangiogenesis with atherosclerosis. An analysis of perivascular lymphangiogenesis in patients with coronary artery disease is lacking. Here, we examined lymphangiogenesis and its potential regulators in perivascular adipose tissue (PVAT) surrounding the heart (C-PVAT) and compared it with PVAT of the internal mammary artery (IMA-PVAT). Forty-six patients undergoing coronary artery bypass graft surgery were included. Perioperatively collected C-PVAT and IMA-PVAT were analyzed using histology, immunohistochemistry, real time PCR, and PVAT-conditioned medium using cytokine arrays. C-PVAT exhibited increased PECAM-1 (platelet endothelial cell adhesion molecule 1)-positive vessel density. The number of lymphatic vessels expressing lymphatic vessel endothelial hyaluronan receptor-1 or podoplanin was also elevated in C-PVAT and associated with higher inflammatory cell numbers, increased intercellular adhesion molecule 1 (ICAM1) expression, and fibrosis. Significantly higher expression of regulators of lymphangiogenesis such as vascular endothelial growth factor (VEGF)-C, VEGF-D, and VEGF receptor-3 was observed in C-PVAT compared to IMA-PVAT. Cytokine arrays identified angiopoietin-2 as more highly expressed in C-PVAT vs. IMA-PVAT. Findings were confirmed histologically and at the mRNA level. Stimulation of human lymphatic endothelial cells with recombinant angiopoietin-2 in combination with VEGF-C enhanced sprout formation. Our study shows that PVAT surrounding atherosclerotic arteries exhibits more extensive lymphangiogenesis, inflammation, and fibrosis compared to PVAT surrounding a non-diseased vessel, possibly due to local angiopoietin-2, VEGF-C, and VEGF-D overexpression.
Collapse
|
25
|
Hu D, Li L, Li S, Wu M, Ge N, Cui Y, Lian Z, Song J, Chen H. Lymphatic system identification, pathophysiology and therapy in the cardiovascular diseases. J Mol Cell Cardiol 2019; 133:99-111. [PMID: 31181226 DOI: 10.1016/j.yjmcc.2019.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/02/2019] [Accepted: 06/05/2019] [Indexed: 12/20/2022]
Abstract
The mammalian circulatory system comprises both the cardiovascular system and the lymphatic system. In contrast to the closed, high-pressure and circular blood vascular circulation, the lymphatic system forms an open, low-pressure and unidirectional transit network from the extracellular space to the venous system. It plays a key role in regulating tissue fluid homeostasis, absorption of gastrointestinal lipids, and immune surveillance throughout the body. Despite the critical physiological functions of the lymphatic system, a complete understanding of the lymphatic vessels lags far behind that of the blood vasculatures due to the challenge of their visualization. During the last 20 years, discoveries of underlying genes responsible for lymphatic vessel biology, combined with state-of-the-art lymphatic function imaging and quantification techniques, have established the importance of the lymphatic vasculature in the pathogenesis of cardiovascular diseases including lymphedema, obesity and metabolic diseases, dyslipidemia, hypertension, inflammation, atherosclerosis and myocardial infraction. In this review, we highlight the most recent advances in the field of lymphatic vessel biology, with an emphasis on the new identification techniques of lymphatic system, pathophysiological mechanisms of atherosclerosis and myocardial infarction, and new therapeutic perspectives of lymphangiogenesis.
Collapse
Affiliation(s)
- Dan Hu
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Long Li
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Sufang Li
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Manyan Wu
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Nana Ge
- Department of Geriatrics, Beijing Renhe Hospital, Beijing, China
| | - Yuxia Cui
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Zheng Lian
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Junxian Song
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China
| | - Hong Chen
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
26
|
Csányi G, Singla B. Arterial Lymphatics in Atherosclerosis: Old Questions, New Insights, and Remaining Challenges. J Clin Med 2019; 8:jcm8040495. [PMID: 30979062 PMCID: PMC6518204 DOI: 10.3390/jcm8040495] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/29/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022] Open
Abstract
The lymphatic network is well known for its role in the maintenance of tissue fluid homeostasis, absorption of dietary lipids, trafficking of immune cells, and adaptive immunity. Aberrant lymphatic function has been linked to lymphedema and immune disorders for a long time. Discovery of lymphatic cell markers, novel insights into developmental and postnatal lymphangiogenesis, development of genetic mouse models, and the introduction of new imaging techniques have improved our understanding of lymphatic function in both health and disease, especially in the last decade. Previous studies linked the lymphatic vasculature to atherosclerosis through regulation of immune responses, reverse cholesterol transport, and inflammation. Despite extensive research, many aspects of the lymphatic circulation in atherosclerosis are still unknown and future studies are required to confirm that arterial lymphangiogenesis truly represents a therapeutic target in patients with cardiovascular disease. In this review article, we provide an overview of factors and mechanisms that regulate lymphangiogenesis, summarize recent findings on the role of lymphatics in macrophage reverse cholesterol transport, immune cell trafficking and pathogenesis of atherosclerosis, and present an overview of pharmacological and genetic strategies to modulate lymphatic vessel density in cardiovascular tissue.
Collapse
Affiliation(s)
- Gábor Csányi
- Vascular Biology Center, 1460 Laney Walker Blvd., Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Department of Pharmacology & Toxicology, 1460 Laney Walker Blvd., Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Bhupesh Singla
- Vascular Biology Center, 1460 Laney Walker Blvd., Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
27
|
Hueso M, Cruzado JM, Torras J, Navarro E. An Exonic Switch Regulates Differential Accession of microRNAs to the Cd34 Transcript in Atherosclerosis Progression. Genes (Basel) 2019; 10:genes10010070. [PMID: 30669689 PMCID: PMC6356495 DOI: 10.3390/genes10010070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/07/2019] [Accepted: 01/14/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND CD34⁺ Endothelial Progenitor Cells (EPCs) play an important role in the recovery of injured endothelium and contribute to atherosclerosis (ATH) pathogenesis. Previously we described a potential atherogenic role for miR-125 that we aimed to confirm in this work. METHODS Microarray hybridization, TaqMan Low Density Array (TLDA) cards, qPCR, and immunohistochemistry (IHC) were used to analyze expression of the miRNAs, proteins and transcripts here studied. RESULTS Here we have demonstrated an increase of resident CD34-positive cells in the aortic tissue of human and mice during ATH progression, as well as the presence of clusters of CD34-positive cells in the intima and adventitia of human ATH aortas. We introduce miR-351, which share the seed sequence with miR-125, as a potential effector of CD34. We show a splicing event at an internal/cryptic splice site at exon 8 of the murine Cd34 gene (exonic-switch) that would regulate the differential accession of miRNAs (including miR-125) to the coding region or to the 3'UTR of Cd34. CONCLUSIONS We introduce new potential mediators of ATH progression (CD34 cell-clusters, miR-351), and propose a new mechanism of miRNA action, linked to a cryptic splicing site in the target-host gene, that would regulate the differential accession of miRNAs to their cognate binding sites.
Collapse
Affiliation(s)
- Miguel Hueso
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| | - Josep M Cruzado
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| | - Joan Torras
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| | - Estanis Navarro
- Independent Researcher, Esplugues de Llobregat, 08950 Barcelona, Spain.
| |
Collapse
|
28
|
Breslin JW, Yang Y, Scallan JP, Sweat RS, Adderley SP, Murfee WL. Lymphatic Vessel Network Structure and Physiology. Compr Physiol 2018; 9:207-299. [PMID: 30549020 PMCID: PMC6459625 DOI: 10.1002/cphy.c180015] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The lymphatic system is comprised of a network of vessels interrelated with lymphoid tissue, which has the holistic function to maintain the local physiologic environment for every cell in all tissues of the body. The lymphatic system maintains extracellular fluid homeostasis favorable for optimal tissue function, removing substances that arise due to metabolism or cell death, and optimizing immunity against bacteria, viruses, parasites, and other antigens. This article provides a comprehensive review of important findings over the past century along with recent advances in the understanding of the anatomy and physiology of lymphatic vessels, including tissue/organ specificity, development, mechanisms of lymph formation and transport, lymphangiogenesis, and the roles of lymphatics in disease. © 2019 American Physiological Society. Compr Physiol 9:207-299, 2019.
Collapse
Affiliation(s)
- Jerome W. Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Joshua P. Scallan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Richard S. Sweat
- Department of Biomedical Engineering, Tulane University, New Orleans, LA
| | - Shaquria P. Adderley
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - W. Lee Murfee
- Department of Biomedical Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
29
|
Zhang Y, Bai Y, Jing Q, Qian J. Functions and Regeneration of Mature Cardiac Lymphatic Vessels in Atherosclerosis, Myocardial Infarction, and Heart Failure. Lymphat Res Biol 2018; 16:507-515. [PMID: 30339474 DOI: 10.1089/lrb.2018.0023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cardiac lymphatic vessels play a vital role in maintaining cardiac homeostasis both under physiological and pathological conditions. Clearer illustration of the anatomy of cardiac lymphatics has been achieved by fluorescence exhibition comparing to dye injection. Besides, identification of specific lymphatic markers in recent decades paves the way for researches in development and regeneration of cardiac lymphatics, such as VEGF-C/VEGFR-3, EphB4/ephrin-B2, Prox-1, Podoplanin, and Lyve-1. Knocking out each of these markers in mice model also reveals the signaling pathways instructing the formation of cardiac lymphatics. In the major cardiovascular disease series of atherosclerosis, myocardial infarction (MI), and heart failure, cardiac lymphatics regulate the transportation of extravasated proteins and lipids, inflammatory and immune responses, as well as fluid balance. Elementary intervention methods, such as lymphatic factor protein injection VEGF-C, are applied in murine MI models to restore or enhance functions of lymphatic vessels, achieving improvements in cardiac function. Also, data from our laboratory showed that intramyocardial EphB4 injection also improved lymphatic regeneration in mouse MI model. Therefore, we believe that enhancing functions and regeneration of mature cardiac lymphatic vessels in cardiovascular diseases is of great potential therapeutic meaning in the future.
Collapse
Affiliation(s)
- Yaqi Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yingnan Bai
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qing Jing
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Juying Qian
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Aoyama T, Fukumoto A, Shigita K, Asayama N, Mukai S, Nagata S. Arteriosclerosis Is a Major Predictor of Small Bowel Vascular Lesions. Dig Dis Sci 2018; 63:723-730. [PMID: 29372478 DOI: 10.1007/s10620-018-4930-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/11/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Most studies have focused on evaluating the association between the presence of small bowel vascular lesions (SBVLs) and patients' comorbidities. AIMS We sought to uncover a more fundamental indicator that may predict the presence of SBVLs by considering atherosclerosis qualitatively and quantitatively. METHODS We enrolled 79 consecutive patients with obscure gastrointestinal bleeding who had undergone computed tomography (CT) and capsule endoscopy or double-balloon endoscopy from January 2015 to June 2017. The SBVL frequency, type, and location, and the relationship between the presence of SBVLs and the patients' clinical characteristics were evaluated. Arterial wall calcification was assessed on unenhanced CT images, and a modified Agatston scoring system was used to determine the abdominal aorta calcium scores. RESULTS Of the 27 (34%) patients with SBVLs, 15 (19%) had type 1a, 12 (15%) had type 1b, and 2 (3%) had type 2a SBVLs. Most of the lesions were located in the jejunum. Cardiovascular disease (P = .017), chronic kidney disease (P = .025), and arteriosclerosis (P = .0036) were associated with the presence of SBVLs. Subsequent multivariate analysis revealed that arteriosclerosis (odds ratio [OR] 7.29; 95% confidence interval [CI] 1.13-143.9) and superior mesenteric artery calcification (OR 16.3; 95% CI 3.64-118.6) were independent predictors of the presence of SBVLs. The modified Agatston score was significantly higher in SBVL cases than in non-SBVL cases (6384 vs. 2666, P = .0023). CONCLUSIONS Arteriosclerosis, especially increased superior mesenteric artery calcification, is associated with an increased likelihood of SBVLs.
Collapse
Affiliation(s)
- Taiki Aoyama
- Department of Gastroenterology, Hiroshima City Asa Citizens Hospital, 2-1-1 Kabe-minami, Asakita-ku, Hiroshima, 731-0293, Japan.
| | - Akira Fukumoto
- Department of Endoscopy, Hiroshima City Asa Citizens Hospital, 2-1-1 Kabe-minami, Asakita-ku, Hiroshima, 731-0293, Japan
| | - Kenjiro Shigita
- Department of Endoscopy, Hiroshima City Asa Citizens Hospital, 2-1-1 Kabe-minami, Asakita-ku, Hiroshima, 731-0293, Japan
| | - Naoki Asayama
- Department of Gastroenterology, Hiroshima City Asa Citizens Hospital, 2-1-1 Kabe-minami, Asakita-ku, Hiroshima, 731-0293, Japan
| | - Shinichi Mukai
- Department of Gastroenterology, Hiroshima City Asa Citizens Hospital, 2-1-1 Kabe-minami, Asakita-ku, Hiroshima, 731-0293, Japan
| | - Shinji Nagata
- Department of Gastroenterology, Hiroshima City Asa Citizens Hospital, 2-1-1 Kabe-minami, Asakita-ku, Hiroshima, 731-0293, Japan
| |
Collapse
|
31
|
Hasegawa S, Nakano T, Torisu K, Tsuchimoto A, Eriguchi M, Haruyama N, Masutani K, Tsuruya K, Kitazono T. Vascular endothelial growth factor-C ameliorates renal interstitial fibrosis through lymphangiogenesis in mouse unilateral ureteral obstruction. J Transl Med 2017; 97:1439-1452. [PMID: 29083411 DOI: 10.1038/labinvest.2017.77] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/30/2017] [Accepted: 06/16/2017] [Indexed: 12/26/2022] Open
Abstract
Renal fibrosis is the final common pathway of chronic kidney diseases. Lymphatic vessel (LV) proliferation is found in human renal diseases and other fibrotic diseases, suggesting that lymphangiogenesis is associated with the progression or suppression of kidney diseases. However, the purpose of LV proliferation is not completely understood. We investigated the effect of vascular endothelial growth factor (VEGF)-C on lymphangiogenesis, inflammation, and fibrosis in the mouse kidney using the unilateral ureteral obstruction (UUO) model. In UUO mice, significant proliferation of LVs was accompanied by tubulointerstitial nephritis and fibrosis. We continuously administered recombinant human VEGF-C to UUO model mice using an osmotic pump (UUO+VEGF-C group). Lymphangiogenesis was significantly induced in the UUO+VEGF-C group compared with the vehicle group, despite similar numbers of capillaries in both groups. The number of infiltrating macrophages, and levels of inflammatory cytokines and transforming growth factor-β1 were reduced in the UUO+VEGF-C group compared with the vehicle group. Renal fibrosis was consequently attenuated in the UUO+VEGF-C group. In cultured lymphatic endothelial cells, administration of VEGF-C increased the activity and proliferation of lymphatic endothelial cells (LECs) and expression of adhesion molecules such as vascular cell adhesion molecule-1. These findings suggest that induction of lymphangiogenesis ameliorates inflammation and fibrosis in the renal interstitium. Enhancement of the VEGF-C signaling pathway in LECs may be a therapeutic strategy for renal fibrosis.
Collapse
Affiliation(s)
- Shoko Hasegawa
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kumiko Torisu
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akihiro Tsuchimoto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Eriguchi
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Haruyama
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Masutani
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhiko Tsuruya
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Integrated Therapy for Chronic Kidney Disease, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
32
|
Surya VN, Michalaki E, Huang EY, Fuller GG, Dunn AR. Sphingosine 1-phosphate receptor 1 regulates the directional migration of lymphatic endothelial cells in response to fluid shear stress. J R Soc Interface 2017; 13:rsif.2016.0823. [PMID: 27974574 DOI: 10.1098/rsif.2016.0823] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/17/2016] [Indexed: 01/03/2023] Open
Abstract
The endothelial cells that line blood and lymphatic vessels undergo complex, collective migration and rearrangement processes during embryonic development, and are known to be exquisitely responsive to fluid flow. At present, the molecular mechanisms by which endothelial cells sense fluid flow remain incompletely understood. Here, we report that both the G-protein-coupled receptor sphingosine 1-phosphate receptor 1 (S1PR1) and its ligand sphingosine 1-phosphate (S1P) are required for collective upstream migration of human lymphatic microvascular endothelial cells in an in vitro setting. These findings are consistent with a model in which signalling via S1P and S1PR1 are integral components in the response of lymphatic endothelial cells to the stimulus provided by fluid flow.
Collapse
Affiliation(s)
- Vinay N Surya
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Eleftheria Michalaki
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Eva Y Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Gerald G Fuller
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA .,Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
33
|
Alginate hydrogels allow for bioactive and sustained release of VEGF-C and VEGF-D for lymphangiogenic therapeutic applications. PLoS One 2017; 12:e0181484. [PMID: 28723974 PMCID: PMC5517064 DOI: 10.1371/journal.pone.0181484] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/30/2017] [Indexed: 11/19/2022] Open
Abstract
Lymphatic dysfunction is associated with the progression of many cardiovascular disorders due to their role in maintaining tissue fluid homeostasis. Promoting new lymphatic vessels (lymphangiogenesis) is a promising strategy to reverse these cardiovascular disorders via restoring lymphatic function. Vascular endothelial growth factor (VEGF) members VEGF-C and VEGF-D are both potent candidates for stimulating lymphangiogenesis, though maintaining spatial and temporal control of these factors represents a challenge to developing efficient therapeutic lymphangiogenic applications. Injectable alginate hydrogels have been useful for the controlled delivery of many angiogenic factors, including VEGF-A, to stimulate new blood vasculature. However, the utility of these tunable hydrogels for delivering lymphangiogenic factors has never been closely examined. Thus, the objective of this study was to utilize ionically cross-linked alginate hydrogels to deliver VEGF-C and VEGF-D for potential lymphangiogenic applications. We demonstrated that lymphatic endothelial cells (LECs) are sensitive to temporal presentation of VEGF-C and VEGF-D but with different responses between the factors. The greatest LEC mitogenic and sprouting response was observed for constant concentrations of VEGF-C and a high initial concentration that gradually decreased over time for VEGF-D. Additionally, alginate hydrogels provided sustained release of radiolabeled VEGF-C and VEGF-D. Finally, VEGF-C and VEGF-D released from these hydrogels promoted a similar number of LEC sprouts as exogenously added growth factors and new vasculature in vivo via a chick chorioallantoic membrane (CAM) assay. Overall, these findings demonstrate that alginate hydrogels can provide sustained and bioactive release of VEGF-C and VEGF-D which could have applications for therapeutic lymphangiogenesis.
Collapse
|
34
|
Tsuchimoto A, Nakano T, Hasegawa S, Masutani K, Matsukuma Y, Eriguchi M, Nagata M, Nishiki T, Kitada H, Tanaka M, Kitazono T, Tsuruya K. The potential role of perivascular lymphatic vessels in preservation of kidney allograft function. Clin Exp Nephrol 2016; 21:721-731. [PMID: 27770292 DOI: 10.1007/s10157-016-1338-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/30/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Lymphangiogenesis occurs in diseased native kidneys and kidney allografts, and correlates with histological injury; however, the clinical significance of lymphatic vessels in kidney allografts is unclear. METHODS This study retrospectively reviewed 63 kidney transplant patients who underwent protocol biopsies. Lymphatic vessels were identified by immunohistochemical staining for podoplanin, and were classified according to their location as perivascular or interstitial lymphatic vessels. The associations between perivascular lymphatic density and kidney allograft function and pathological findings were analyzed. RESULTS There were no significant differences in perivascular lymphatic densities in kidney allograft biopsy specimens obtained at 0 h, 3 months and 12 months. The groups with higher perivascular lymphatic density showed a lower proportion of progression of interstitial fibrosis/tubular atrophy grade from 3 to 12 months (P for trend = 0.039). Perivascular lymphatic density was significantly associated with annual decline of estimated glomerular filtration rate after 12 months (r = -0.31, P = 0.017), even after adjusting for multiple confounders (standardized β = -0.30, P = 0.019). CONCLUSIONS High perivascular lymphatic density is associated with favourable kidney allograft function. The perivascular lymphatic network may be involved in inhibition of allograft fibrosis and stabilization of graft function.
Collapse
Affiliation(s)
- Akihiro Tsuchimoto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shoko Hasegawa
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Masutani
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuta Matsukuma
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Eriguchi
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaharu Nagata
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takehiro Nishiki
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hidehisa Kitada
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masao Tanaka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhiko Tsuruya
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
- Department of Integrated Therapy for Chronic Kidney Disease, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
35
|
Dashkevich A, Hagl C, Beyersdorf F, Nykänen AI, Lemström KB. VEGF Pathways in the Lymphatics of Healthy and Diseased Heart. Microcirculation 2016; 23:5-14. [PMID: 26190445 DOI: 10.1111/micc.12220] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/13/2015] [Indexed: 12/17/2022]
Abstract
Cardiac lymphatic system is a rare focus of the modern cardiovascular research. Nevertheless, the growing body of evidence is depicting lymphatic endothelium as an important functional unit in healthy and diseased myocardium. Since the discovery of angiogenic VEGF-A in 1983 and lymphangiogenic VEGF-C in 1997, an increasing amount of knowledge has accumulated on the essential roles of VEGF ligands and receptors in physiological and pathological angiogenesis and lymphangiogenesis. Tissue adaptation to several stimuli such as hypoxia, pathogen invasion, degenerative process and inflammation often involves coordinated changes in both blood and lymphatic vessels. As lymphatic vessels are involved in the initiation and resolution of inflammation and regulation of tissue edema, VEGF family members may have important roles in myocardial lymphatics in healthy and in cardiac disease. We will review the properties of VEGF ligands and receptors concentrating on their lymphatic vessel effects first in normal myocardium and then in cardiac disease.
Collapse
Affiliation(s)
- Alexey Dashkevich
- Cardiac Surgery, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.,Cardiac Surgery, Heart and Lung Center, Helsinki University Central Hospital, Helsinki, Finland.,Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Christian Hagl
- Cardiac Surgery, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
| | | | - Antti I Nykänen
- Cardiac Surgery, Heart and Lung Center, Helsinki University Central Hospital, Helsinki, Finland.,Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Karl B Lemström
- Cardiac Surgery, Heart and Lung Center, Helsinki University Central Hospital, Helsinki, Finland.,Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|
36
|
Subbotin VM. Excessive intimal hyperplasia in human coronary arteries before intimal lipid depositions is the initiation of coronary atherosclerosis and constitutes a therapeutic target. Drug Discov Today 2016; 21:1578-1595. [DOI: 10.1016/j.drudis.2016.05.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/29/2016] [Accepted: 05/25/2016] [Indexed: 12/19/2022]
|
37
|
Abstract
The mammalian circulatory system comprises both the cardiovascular system and the lymphatic system. In contrast to the blood vascular circulation, the lymphatic system forms a unidirectional transit pathway from the extracellular space to the venous system. It actively regulates tissue fluid homeostasis, absorption of gastrointestinal lipids, and trafficking of antigen-presenting cells and lymphocytes to lymphoid organs and on to the systemic circulation. The cardinal manifestation of lymphatic malfunction is lymphedema. Recent research has implicated the lymphatic system in the pathogenesis of cardiovascular diseases including obesity and metabolic disease, dyslipidemia, inflammation, atherosclerosis, hypertension, and myocardial infarction. Here, we review the most recent advances in the field of lymphatic vascular biology, with a focus on cardiovascular disease.
Collapse
Affiliation(s)
- Aleksanteri Aspelund
- From the Wihuri Research Institute (A.A., M.R.R., S.K., K.A.) and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (A.A., M.R.R., K.A.); and Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (T.M.)
| | - Marius R Robciuc
- From the Wihuri Research Institute (A.A., M.R.R., S.K., K.A.) and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (A.A., M.R.R., K.A.); and Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (T.M.)
| | - Sinem Karaman
- From the Wihuri Research Institute (A.A., M.R.R., S.K., K.A.) and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (A.A., M.R.R., K.A.); and Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (T.M.)
| | - Taija Makinen
- From the Wihuri Research Institute (A.A., M.R.R., S.K., K.A.) and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (A.A., M.R.R., K.A.); and Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (T.M.)
| | - Kari Alitalo
- From the Wihuri Research Institute (A.A., M.R.R., S.K., K.A.) and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (A.A., M.R.R., K.A.); and Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (T.M.).
| |
Collapse
|
38
|
Dashkevich A. Training-related changes in muscular and myocardial lymphangiogenesis: how to train the drain? Acta Physiol (Oxf) 2016; 217:11-2. [PMID: 26857790 DOI: 10.1111/apha.12660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A. Dashkevich
- Cardiac Surgery; University Hospital Munich; Ludwig-Maximilians-University; Munich Germany
- Cardiac Surgery; Heart and Lung Center; Helsinki University Central Hospital, and Transplantation Laboratory; Haartman Institute; University of Helsinki; Helsinki Finland
| |
Collapse
|
39
|
Taher M, Nakao S, Zandi S, Melhorn MI, Hayes KC, Hafezi-Moghadam A. Phenotypic transformation of intimal and adventitial lymphatics in atherosclerosis: a regulatory role for soluble VEGF receptor 2. FASEB J 2016; 30:2490-9. [PMID: 27006449 DOI: 10.1096/fj.201500112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/03/2016] [Indexed: 01/23/2023]
Abstract
The role of lymphatics in atherosclerosis is not yet understood. Here, we investigate lymphatic growth dynamics and marker expression in atherosclerosis in apolipoprotein E-deficient (apoE(-/-)) mice. The prolymphangiogenic growth factor, VEGF-C, was elevated in atherosclerotic aortic walls. Despite increased VEGF-C, we found that adventitial lymphatics regress during the course of formation of atherosclerosis (P < 0.01). Similar to lymphatic regression, the number of lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1(+)) macrophages decreased in the aortic adventitia of apoE(-/-) mice with atherosclerosis (P < 0.01). Intimal lymphatics in the atherosclerotic lesions exhibited an atypical phenotype, with the expression of podoplanin and VEGF receptor 3 (VEGFR-3) but not of LYVE-1 and prospero homeobox protein 1. In the aortas of atherosclerotic animals, we found markedly increased soluble VEGFR-2. We hypothesized that the elevated soluble VEGFR-2 that was found in the aortas of apoE(-/-) mice with atherosclerosis binds to and diminishes the activity of VEGF-C. This trapping mechanism explains, despite increased VEGF-C in the atherosclerotic aortas, how adventitial lymphatics regress. Lymphatic regression impedes the drainage of lipids, growth factors, inflammatory cytokines, and immune cells. Insufficient lymphatic drainage could thus exacerbate atherosclerosis formation. Our study contributes new insights to previously unknown dynamic changes of adventitial lymphatics. Targeting soluble VEGFR-2 in atherosclerosis may provide a new strategy for the liberation of endogenous VEGF-C and the prevention of lymphatic regression.-Taher, M., Nakao, S., Zandi, S., Melhorn, M. I., Hayes, K. C., Hafezi-Moghadam, A. Phenotypic transformation of intimal and adventitial lymphatics in atherosclerosis: a regulatory role for soluble VEGF receptor 2.
Collapse
Affiliation(s)
- Mahdi Taher
- Center for Excellence in Functional and Molecular Imaging, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Radiology and Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA; Institute of Biochemistry, Charité University Medical Center, Berlin, Germany; and
| | - Shintaro Nakao
- Center for Excellence in Functional and Molecular Imaging, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Radiology and Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Souska Zandi
- Center for Excellence in Functional and Molecular Imaging, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Radiology and Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark I Melhorn
- Center for Excellence in Functional and Molecular Imaging, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Radiology and Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - K C Hayes
- Department of Biology, Brandeis University, Waltham, Massachusetts, USA
| | - Ali Hafezi-Moghadam
- Center for Excellence in Functional and Molecular Imaging, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Radiology and Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
40
|
Abstract
The lymphatic system is a key component of tissue fluid homeostasis. In contrast to the closed and high-pressure blood vascular system, the lymphatic vascular system transports lymph in an open and low-pressure network. A prerequisite player in the transport of immune cells and cholesterol metabolism, it has been understudied until recently. Whereas defects in lymph circulation are mostly associated with pathologies such as congenital or acquired lymphedema, emerging significant developments are unraveling the role of lymphatic vessels in other pathological settings. In the last decade, discoveries of underlying genes responsible for developmental and postnatal lymphatic growth, combined with state-of-the-art lymphatic function imaging and quantification techniques, have matched the growing interest in understanding the role of the lymphatic system in atherosclerosis. With a historical perspective, this review highlights the current knowledge regarding interaction between the lymphatic vascular tree and atherosclerosis, with an emphasis on the physiological mechanisms of this multifaceted system throughout disease onset and progression. The blood and lymphatic vascular systems are parallel but interdependent networks. The lymphatic system governs the transport of superfluous interstitial fluids from peripheral tissues to the blood circulation, maintaining fluid balance throughout the body. Defects in lymphatic function have been broadly associated with pathologies such as congenital or acquired lymphedema. Although longstanding observations suggested that the lymphatic vasculature could be central in the development of chronic inflammatory diseases, recent publications specifically point out its potential implication in atherosclerosis. In this review, we highlight the current knowledge unraveling the interaction between the lymphatic network and atherosclerosis, with an emphasis on the physiological mechanisms of this intricate system.
Collapse
|
41
|
van Hinsbergh VWM, Eringa EC, Daemen MJAP. Neovascularization of the atherosclerotic plaque: interplay between atherosclerotic lesion, adventitia-derived microvessels and perivascular fat. Curr Opin Lipidol 2015; 26:405-11. [PMID: 26241102 DOI: 10.1097/mol.0000000000000210] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW Neovascularization is a prominent feature in advanced human atherosclerotic plaques. This review surveys recent evidence for and remaining uncertainties regarding a role of neovascularization in atherosclerotic plaque progression. Specific emphasis is given to hypoxia, angiogenesis inhibition, and perivascular adipose tissue (PVAT). RECENT FINDINGS Immunohistochemical and imaging studies showed a strong association between hypoxia, inflammation and neovascularization, and the progression of the atherosclerotic plaque both in humans and mice. Whereas in humans, a profound invasion of microvessels from the adventitia into the plaque occurs, neovascularization in mice is found mainly (peri)adventitially. Influencing neovascularization in mice affected plaque progression, possibly by improving vessel perfusion, but supportive clinical data are not available. Whereas plaque neovascularization contributes to monocyte/macrophage accumulation in the plaque, lymphangiogenesis may facilitate egress of cells and waste products. A specific role for PVAT and its secreted factors is anticipated and wait further clinical evaluation. SUMMARY Hypoxia, inflammation, and plaque neovascularization are associated with plaque progression as underpinned by recent imaging data in humans. Recent studies provide new insights into modulation of adventitia-associated angiogenesis, PVAT, and plaque development in mice, but there is still a need for detailed information on modulating human plaque vascularization in patients.
Collapse
Affiliation(s)
- Victor W M van Hinsbergh
- aLaboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center bDepartment of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
42
|
Huang LH, Elvington A, Randolph GJ. The role of the lymphatic system in cholesterol transport. Front Pharmacol 2015; 6:182. [PMID: 26388772 PMCID: PMC4557107 DOI: 10.3389/fphar.2015.00182] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/12/2015] [Indexed: 11/13/2022] Open
Abstract
Reverse cholesterol transport (RCT) is the pathway for removal of peripheral tissue cholesterol and involves transport of cholesterol back to liver for excretion, starting from cellular cholesterol efflux facilitated by lipid-free apolipoprotein A1 (ApoA1) or other lipidated high-density lipoprotein (HDL) particles within the interstitial space. Extracellular cholesterol then is picked up and transported through the lymphatic vasculature before entering into bloodstream. There is increasing evidence supporting a role for enhanced macrophage cholesterol efflux and RCT in ameliorating atherosclerosis, and recent data suggest that these processes may serve as better diagnostic biomarkers than plasma HDL levels. Hence, it is important to better understand the processes governing ApoA1 and HDL influx into peripheral tissues from the bloodstream, modification and facilitation of cellular cholesterol removal within the interstitial space, and transport through the lymphatic vasculature. New findings will complement therapeutic strategies for the treatment of atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Li-Hao Huang
- Department of Pathology and Immunology, Washington University School of Medicine , St. Louis, MO, USA
| | - Andrew Elvington
- Department of Pathology and Immunology, Washington University School of Medicine , St. Louis, MO, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine , St. Louis, MO, USA
| |
Collapse
|
43
|
Frenay ARS, Yazdani S, Boersema M, van der Graaf AM, Waanders F, van den Born J, Navis GJ, van Goor H. Incomplete Restoration of Angiotensin II-Induced Renal Extracellular Matrix Deposition and Inflammation Despite Complete Functional Recovery in Rats. PLoS One 2015; 10:e0129732. [PMID: 26061812 PMCID: PMC4464893 DOI: 10.1371/journal.pone.0129732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 05/12/2015] [Indexed: 01/13/2023] Open
Abstract
Some diseases associated with a temporary deterioration in kidney function and/or development of proteinuria show an apparently complete functional remission once the initiating trigger is removed. While it was earlier thought that a transient impairment of kidney function is harmless, accumulating evidence now suggests that these patients are more prone to developing renal failure later in life. We therefore sought to investigate to what extent renal functional changes, inflammation and collagen deposition are reversible after cessation of disease induction, potentially explaining residual sensitivity to damage. Using a rat model of Angiotensin II (Ang II)-induced hypertensive renal disease we show the development of severe hypertension (212 ± 10.43 vs. 146 ± 1.4 mmHg, p<0.001) and proteinuria (51.4 ± 6.3 vs. 14.7 ± 2.0 mg/24h, p<0.01) with declined creatinine clearance (2.0 ± 0.5 vs. 4.9 ± 0.6 mL/min, p<0.001) to occur after 3 weeks of Ang II infusion. At the structural level, Ang II infusion resulted in interstitial inflammation (18.8 ± 4.8 vs. 3.6 ± 0.5 number of macrophages, p<0.001), renal interstitial collagen deposition and lymphangiogenesis (4.1 ± 0.4 vs. 2.2 ± 0.4 number of lymph vessels, p<0.01). Eight weeks after cessation of Ang II, all clinical parameters, pre-fibrotic changes such as myofibroblast transformation and increase in lymph vessel number (lymphangiogenesis) returned to control values. However, glomerular desmin expression, glomerular and periglomerular macrophages and interstitial collagens remained elevated. These dormant abnormalities indicate that after transient renal function decline, inflammation and collagen deposition may persist despite normalization of the initiating pathophysiological stimulus perhaps rendering the kidney more vulnerable to further damage.
Collapse
Affiliation(s)
- Anne-Roos S. Frenay
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Saleh Yazdani
- Department of Nephrology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Miriam Boersema
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Anne Marijn van der Graaf
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
- Department of Obstetrics and Gynecology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Femke Waanders
- Department of Nephrology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Jacob van den Born
- Department of Nephrology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Gerjan J. Navis
- Department of Nephrology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
- * E-mail:
| |
Collapse
|
44
|
Kutkut I, Meens MJ, McKee TA, Bochaton-Piallat ML, Kwak BR. Lymphatic vessels: an emerging actor in atherosclerotic plaque development. Eur J Clin Invest 2015; 45:100-8. [PMID: 25388153 DOI: 10.1111/eci.12372] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/08/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory disease of large- to medium-sized arteries and is the main underlying cause of death worldwide. The lymphatic vasculature is critical for processes that are intimately linked to atherogenesis such as the immune response and cholesterol metabolism. However, whether lymphatic vessels truly contribute to the pathogenesis of atherosclerosis is less clear despite increasing research efforts in this field. DESIGN PubMed and Ovid MEDLINE databases were searched. In addition, key review articles were screened for relevant original publications. RESULTS Current knowledge about lymphatic vessels in the arterial wall came from studies that examined the presence and location of such vessels in human atherosclerotic plaque specimens, as well as in a variety of arteries in animal models for atherosclerosis (e.g. rabbits, dogs, rats and mice). Generally, three experimental approaches have been used to investigate the functional role of plaque-associated lymphatic vessels; experimental lymphostasis was used to investigate lymphatic drainage of the arterial wall, and more recently, studies with genetic interventions and/or surgical transplantation have been performed. CONCLUSIONS Lymphatic vessels seem to be mostly present in the adventitial layer of the arterial walls of animals and humans. They are involved in reverse cholesterol transport from atherosclerotic lesions, and arteries with a dense lymphatic network seem naturally protected against atherosclerosis. Lymphangiogenesis is a process that is an important part of the inflammatory loop in atherosclerosis. However, how augmenting or impeding the distribution of lymphatic vessels impacts disease progression remains to be investigated in future studies.
Collapse
Affiliation(s)
- Issa Kutkut
- Department of Pathology and Immunology, University of Geneva and Geneva University Hospitals, Geneva, Switzerland; Department of Medical Specializations - Cardiology, University of Geneva and Geneva University Hospitals, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
45
|
Usman A, Ribatti D, Sadat U, Gillard JH. From Lipid Retention to Immune-Mediate Inflammation and Associated Angiogenesis in the Pathogenesis of Atherosclerosis. J Atheroscler Thromb 2015; 22:739-49. [DOI: 10.5551/jat.30460] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Ammara Usman
- University Department of Radiology, Cambridge University Hospitals NHS Foundation Trust
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, National Cancer Institute “Giovanni Paolo II”
| | - Umar Sadat
- Cambridge Vascular Unit, Cambridge University Hospitals NHS Foundation Trust
| | - Jonathan H Gillard
- University Department of Radiology, Cambridge University Hospitals NHS Foundation Trust
| |
Collapse
|
46
|
Grzegorek I, Drozdz K, Chmielewska M, Gomulkiewicz A, Jablonska K, Piotrowska A, Karczewski M, Janczak D, Podhorska-Okolow M, Dziegiel P, Szuba A. Arterial Wall Lymphangiogenesis Is Increased in the Human Iliac Atherosclerotic Arteries: Involvement of CCR7 Receptor. Lymphat Res Biol 2014; 12:222-31. [DOI: 10.1089/lrb.2013.0048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Irmina Grzegorek
- Regional Specialized Hospital in Wroclaw, Research and Development Center, Wroclaw, Poland
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Drozdz
- Regional Specialized Hospital in Wroclaw, Research and Development Center, Wroclaw, Poland
- Department of Internal Medicine, 4th Military Hospital, Wroclaw, Poland
| | - Magdalena Chmielewska
- Regional Specialized Hospital in Wroclaw, Research and Development Center, Wroclaw, Poland
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Agnieszka Gomulkiewicz
- Regional Specialized Hospital in Wroclaw, Research and Development Center, Wroclaw, Poland
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Karolina Jablonska
- Regional Specialized Hospital in Wroclaw, Research and Development Center, Wroclaw, Poland
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Aleksandra Piotrowska
- Regional Specialized Hospital in Wroclaw, Research and Development Center, Wroclaw, Poland
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Maciej Karczewski
- Regional Specialized Hospital in Wroclaw, Research and Development Center, Wroclaw, Poland
- Illimites Foundation, Wroclaw, Poland
| | - Dariusz Janczak
- Regional Specialized Hospital in Wroclaw, Research and Development Center, Wroclaw, Poland
- Department of Clinical Proceedings, Faculty of Health Science, Wroclaw Medical University, Wroclaw, Poland
- Department of Surgery, 4th Military Hospital, Wroclaw, Poland
| | - Marzena Podhorska-Okolow
- Regional Specialized Hospital in Wroclaw, Research and Development Center, Wroclaw, Poland
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Dziegiel
- Regional Specialized Hospital in Wroclaw, Research and Development Center, Wroclaw, Poland
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Andrzej Szuba
- Regional Specialized Hospital in Wroclaw, Research and Development Center, Wroclaw, Poland
- Department of Internal Medicine, 4th Military Hospital, Wroclaw, Poland
- Department of Clinical Nursing, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
47
|
Vuorio T, Nurmi H, Moulton K, Kurkipuro J, Robciuc MR, Ohman M, Heinonen SE, Samaranayake H, Heikura T, Alitalo K, Ylä-Herttuala S. Lymphatic vessel insufficiency in hypercholesterolemic mice alters lipoprotein levels and promotes atherogenesis. Arterioscler Thromb Vasc Biol 2014; 34:1162-70. [PMID: 24723556 DOI: 10.1161/atvbaha.114.302528] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Lymphatic vessels collect extravasated fluid and proteins from tissues to blood circulation as well as play an essential role in lipid metabolism by taking up intestinal chylomicrons. Previous studies have shown that impairment of lymphatic vessel function causes lymphedema and fat accumulation, but clear connections between arterial pathologies and lymphatic vessels have not been described. APPROACH AND RESULTS Two transgenic mouse strains with lymphatic insufficiency (soluble vascular endothelial growth factor 3 [sVEGFR3] and Chy) were crossed with atherosclerotic mice deficient of low-density lipoprotein receptor and apolipoprotein B48 (LDLR(-/-)/ApoB(100/100)) to study the effects of insufficient lymphatic vessel transport on lipoprotein metabolism and atherosclerosis. Both sVEGFR3×LDLR(-/-)/ApoB(100/100) mice and Chy×LDLR(-/-)/ApoB(100/100) mice had higher plasma cholesterol levels compared with LDLR(-/-)/ApoB(100/100) control mice during both normal chow diet (16.3 and 13.7 versus 8.2 mmol/L, respectively) and Western-type high-fat diet (eg, after 2 weeks of fat diet, 45.9 and 42.6 versus 30.2 mmol/L, respectively). Cholesterol and triglyceride levels in very-low-density lipoprotein and low-density lipoprotein fractions were increased. Atherosclerotic lesions in young and intermediate cohorts of sVEGFR3×LDLR(-/-)/ApoB(100/100) mice progressed faster than in control mice (eg, intermediate cohort mice at 6 weeks, 18.3% versus 7.7% of the whole aorta, respectively). In addition, lesions in sVEGFR3×LDLR(-/-)/ApoB(100/100) mice and Chy×LDLR(-/-)/ApoB(100/100) mice had much less lymphatic vessels than lesions in control mice (0.33% and 1.07% versus 7.45% of podoplanin-positive vessels, respectively). CONCLUSIONS We show a novel finding linking impaired lymphatic vessels to lipoprotein metabolism, increased plasma cholesterol levels, and enhanced atherogenesis.
Collapse
Affiliation(s)
- Taina Vuorio
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Harri Nurmi
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Karen Moulton
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Jere Kurkipuro
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Marius R Robciuc
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Miina Ohman
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Suvi E Heinonen
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Haritha Samaranayake
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Tommi Heikura
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Kari Alitalo
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland (T.V., J.K., S.E.H., H.S., T.H., S.Y.-H.); Wihuri Research Institute and Translational Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (H.N., M.R.R., M.Ö., K.A.); Cardiology Division, Department of Medicine, University of Colorado, Aurora (K.M.); and Gene Therapy Unit (S.Y.-H.) and Research Unit (S.Y.-H.), Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
48
|
Drożdż K, Grzegorek I, Chmielewska M, Gomułkiewicz A, Jabłońska K, Piotrowska A, Karczewski M, Janczak D, Patrzałek D, Dzięgiel P, Szuba A. Nogo-B expression, in arterial intima, is impeded in the early stages of atherosclerosis in humans. APMIS 2013; 122:742-9. [PMID: 24372562 DOI: 10.1111/apm.12212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 09/27/2013] [Indexed: 11/30/2022]
Abstract
Nogo-B (Reticulon 4B) is considered to be a novel vascular marker, which may have a protective role in injury-induced neointima formation and atherosclerosis. Nogo A/B is found to be crucial for monocyte/macrophage recruitment in acute inflammation and it is expressed in CD68 + macrophages. We hypothesize that macrophage infiltration in atherosclerosis is not dependent on Nogo-B expression in arterial wall. We have assessed Nogo-B expression and macrophage accumulation in the iliac arteries of healthy organ donors and organ donors with cardiovascular risk factors. Paraffin sections of 66 iliac arteries, from 44 deceased organ donors (17 women and 27 men), were studied. The healthy and cardiovascular risk (CVR) subgroups were created. With regard to staging of the atherosclerotic process, the thickness of arterial intima was measured in digitalized images of H+E stained tissue sections. Immunohistochemical reactions (Nogo-B and CD68) were carried out in all arteries (66 samples). Western blotting (WB-19 samples) and real-time PCR (27 samples) were performed on selected arteries. Significantly higher Nogo-B expression was demonstrated in the intima of the healthy subjects' subgroup, using immunohistochemistry. WB and real-time PCR revealed a trend toward lower Nogo-B expression in the adventitia of the CVR subgroup. Furthermore, the thickness of the intima was found to negatively correlate with the expression of Nogo-B in the intima and media (r = -0.32; p < 0.05; r = -0.32; p < 0.05). Macrophage infiltrates were more prominent in intima of CVR subjects (0.65 vs 3.52 a.u.; p < 0.01). Macrophage density in intima increased with atherosclerosis progression (r = 0.37; p < 0.01). CD68 macrophages density in adventitia was lower in CVR arteries than in healthy arteries. The expression of Nogo-B, in arterial intima, is impeded in the early stages of atherosclerosis. Accumulation of arterial intimal CD68 macrophages has been shown to progress; however, the overall macrophage density in the adventitia is reduced in arteries shown to have intimal thickening. Macrophage infiltration is not accompanied by Nogo-B expression in atherosclerotic arteries.
Collapse
Affiliation(s)
- Katarzyna Drożdż
- Regional Specialized Hospital in Wroclaw, Research and Development Center, Wroclaw, Poland; Department of Internal Medicine, 4th Military Hospital, Wroclaw, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Aebischer D, Iolyeva M, Halin C. The inflammatory response of lymphatic endothelium. Angiogenesis 2013; 17:383-93. [PMID: 24154862 DOI: 10.1007/s10456-013-9404-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/16/2013] [Indexed: 12/13/2022]
Abstract
Lymphatic vessels have traditionally been regarded as a rather inert drainage system, which just passively transports fluids, leukocytes and antigen. However, it is becoming increasingly clear that the lymphatic vasculature is highly dynamic and plays a much more active role in inflammatory and immune processes. Tissue inflammation induces a rapid, stimulus-specific upregulation of chemokines and adhesion molecules in lymphatic endothelial cells and a proliferative expansion of the lymphatic network in the inflamed tissue and in draining lymph nodes. Moreover, increasing evidence suggests that inflammation-induced changes in the lymphatic vasculature have a profound impact on the course of inflammatory and immune responses, by modulating fluid drainage, leukocyte migration or the removal of inflammatory mediators from tissues. In this review we will summarize and discuss current knowledge of the inflammatory response of lymphatic endothelium and of inflammation-induced lymphangiogenesis and the current perspective on the overall functional significance of these processes.
Collapse
Affiliation(s)
- David Aebischer
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Wolfgang-Pauli Str. 10, HCI H413, 8093, Zurich, Switzerland
| | | | | |
Collapse
|
50
|
Scott DJA, Allen CJ, Honstvet CA, Hanby AM, Hammond C, Johnson AB, Perry SL, Jones PF. Lymphangiogenesis in abdominal aortic aneurysm. Br J Surg 2013; 100:895-903. [DOI: 10.1002/bjs.9128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2013] [Indexed: 11/05/2022]
Abstract
Abstract
Background
Ongoing angiogenesis is implicated in the inflammatory environment that characterizes abdominal aortic aneurysm (AAA). Although lymphangiogenesis has been associated with chronic inflammatory conditions, it has yet to be demonstrated in AAA. The aim was to determine the presence of lymphangiogenesis and to delineate the relationship between inflammation and neovascularization in AAA tissue.
Methods
AAA samples and preoperative computed tomography images were obtained from patients undergoing elective AAA repair. Control samples were age-matched abdominal aortic tissue. Specific immunostains for blood vessels (CD31, CD105), lymphatic vessels (D2-40), vascular endothelial growth factor (VEGF) A and VEGF receptor (VEGFR) 3 allowed characterization and quantitation of vasculature.
Results
The AAA wall contained high levels of inflammatory infiltrate; microvascular densities of blood (P < 0·001) and lymphatic (P = 0·003) vessels were significantly increased in AAA samples compared with controls. Maximal AAA vascularity was observed in inflammatory areas, with vessels that stained positively for CD31 (ρ = 0·625, P = 0·017), CD105 (ρ = 0·692, P = 0·009) and D2-40 (ρ = 0·675, P = 0·008) correlating positively with the extent of inflammation. Increased VEGFR-3 and VEGF-A expression was also evident within inflammatory AAA areas.
Conclusion
These findings demonstrated lymphatic vessel involvement in end-stage AAA disease, which was associated with the degree of inflammation, and confirmed the involvement of neovascularization.
Collapse
Affiliation(s)
- D J A Scott
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Genetics, Health and Therapeutics, and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, UK
| | - C J Allen
- Leeds Institute of Molecular Medicine, University of Leeds, St James's University Hospital, Leeds, UK
| | - C A Honstvet
- Leeds Institute of Molecular Medicine, University of Leeds, St James's University Hospital, Leeds, UK
| | - A M Hanby
- Leeds Institute of Molecular Medicine, University of Leeds, St James's University Hospital, Leeds, UK
| | - C Hammond
- Department of Vascular Radiology, Leeds General Infirmary, Leeds, UK
| | - A B Johnson
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Genetics, Health and Therapeutics, and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, UK
| | - S L Perry
- Leeds Institute of Molecular Medicine, University of Leeds, St James's University Hospital, Leeds, UK
| | - P F Jones
- Leeds Institute of Molecular Medicine, University of Leeds, St James's University Hospital, Leeds, UK
| |
Collapse
|