1
|
Lv HY, Liu MX, Hong WT, Li XW. Primary hepatic neuroendocrine tumor with a suspicious pulmonary nodule: A case report and literature review. World J Clin Oncol 2025; 16:101236. [PMID: 40130063 PMCID: PMC11866086 DOI: 10.5306/wjco.v16.i3.101236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/07/2024] [Accepted: 12/27/2024] [Indexed: 01/21/2025] Open
Abstract
BACKGROUND Primary hepatic neuroendocrine tumors (PHNETs) are extremely rare tumors originating from neuroendocrine cells. Due to lack of neuroendocrine symptoms and specific radiographic characteristics, PHNETs are challenging to differentiate from other liver tumors. CASE SUMMARY This case involved a 67-year-old male who was admitted with a discovered hepatic mass and a suspicious lung lesion. Primary hepatic carcinoma was initially speculated based on the characteristic magnetic resonance imaging findings. The patient underwent a laparoscopic right partial hepatectomy, and subsequent immunohistochemical examination revealed a HNET. To exclude other potential origins, a positron emission tomography-computed tomography scan and gastrointestinal endoscopy were performed, leading to a final diagnosis of PHNETs. Then we conducted a literature review using the PubMed database, identifying 99 articles and 317 cases related to PHNETs. The characteristics, diagnostic methods, and treatment of PHNETs have been described. Finally, we elaborate on the presumed origins, pathological grades, clinical features, diagnosed methods, and treatments associated with PHNETs. CONCLUSION The diagnosis of PHNETs was primarily an exclusionary process. A definitive diagnosis of PHNETs relied mainly on immunohistochemical markers (chromogranin A, synaptophysin, and cluster of differentiation 56) and exclusion of primary foci in other organs. Radical surgery was the preferred treatment for early-stage tumors.
Collapse
Affiliation(s)
- Hai-Yan Lv
- Department of Nursing, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Mei-Xuan Liu
- Department of Burns and Wound Care Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Wen-Ting Hong
- Department of Nursing Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Xia-Wei Li
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
- Department of Cancer Center, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
- Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, MA 02138, United States
| |
Collapse
|
2
|
Bell D. Top IHC/ISH Hacks for and Molecular Surrogates of Poorly Differentiated Sinonasal Small Round Cell Tumors. Head Neck Pathol 2024; 18:2. [PMID: 38315310 PMCID: PMC10844182 DOI: 10.1007/s12105-023-01608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 11/29/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Poorly differentiated sinonasal small round cell tumors (SRCTs) are rare and heterogeneous, posing challenges in diagnosis and treatment. METHODS Recent advances in molecular findings and diagnostic refinement have promoted better understanding and management of these tumors. RESULTS The newly defined and emerging sinonasal entities demonstrate diverse morphologies, specific genomic signatures, and clinical behavior from conventional counterparts. In this review of SRCTs, emphasis is placed on the diagnostic approach with the employment of a pertinent panel of immunohistochemistry studies and/or molecular tests, fine-tuned to the latest WHO 5 classification of sinonasal/paranasal tumors and personalized treatment. CONCLUSION Specifically, this review focuses on tumors with epithelial and neuroectodermal derivation.
Collapse
Affiliation(s)
- Diana Bell
- Anatomic Pathology, Disease Team Alignment: Head and Neck, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd, Duarte, CA, 91010, USA.
| |
Collapse
|
3
|
Vocino Trucco G, Righi L, Volante M, Papotti M. Updates on lung neuroendocrine neoplasm classification. Histopathology 2024; 84:67-85. [PMID: 37794655 DOI: 10.1111/his.15058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
Lung neuroendocrine neoplasms (NENs) are a heterogeneous group of pulmonary neoplasms showing different morphological patterns and clinical and biological characteristics. The World Health Organisation (WHO) classification of lung NENs has been recently updated as part of the broader attempt to uniform the classification of NENs. This much-needed update has come at a time when insights from seminal molecular characterisation studies revolutionised our understanding of the biological and pathological architecture of lung NENs, paving the way for the development of novel diagnostic techniques, prognostic factors and therapeutic approaches. In this challenging and rapidly evolving landscape, the relevance of the 2021 WHO classification has been recently questioned, particularly in terms of its morphology-orientated approach and its prognostic implications. Here, we provide a state-of-the-art review on the contemporary understanding of pulmonary NEN morphology and the potential contribution of artificial intelligence, the advances in NEN molecular profiling with their impact on the classification system and, finally, the key current and upcoming prognostic factors.
Collapse
Affiliation(s)
| | - Luisella Righi
- Department of Oncology, University of Turin, Turin, Italy
| | - Marco Volante
- Department of Oncology, University of Turin, Turin, Italy
| | - Mauro Papotti
- Department of Oncology, University of Turin, Turin, Italy
| |
Collapse
|
4
|
Weissferdt A, Sepesi B, Ning J, Hermsen M, Ferrarotto R, Glisson B, Hanna E, Bell D. Optimal Combination of Neuroendocrine Markers for the Detection of High-Grade Neuroendocrine Tumors of the Sinonasal Tract and Lung. Curr Oncol Rep 2023; 25:1-10. [PMID: 36422794 DOI: 10.1007/s11912-022-01346-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Identification of neuroendocrine (NE) differentiation is critical to the classification of head and neck (HN) and lung tumors. In combination with tumor morphology, immunohistochemical (IHC) documentation of NE differentiation is necessary for the diagnosis of NE tumors. The purpose of this study is to determine the sensitivity and concordance of two novel NE markers (mASH1, INSM1) across a group of high-grade NE tumors of the sinonasal tract and lung, and to compare their expression with the current widespread use of conventional NE markers, synaptophysin (SYN) and chromogranin A (CGA). In addition, expression of PARP1 is examined as a potential novel therapeutic target. RECENT FINDINGS Thirty-nine high-grade NE tumors, 23 of the HN and 16 of the lung, were reevaluated by two subspecialized HN and thoracic pathologists, and subsequently stained with mASH1, INSM1, and PARP1. Sensitivity and degree of concordance of all possible combinations of markers were assessed. Sensitivities (standard error) were as follows: mASH1 41% (0.08), INSM1 44% (0.08), SYN 56% (0.08), and CGA 42% (0.09); combination of all four NE markers: 73% (0.08). Sensitivity and standard error for PARP1 was 90% and 0.05, respectively. Highest sensitivity to detect NE differentiation in high-grade NE tumors of the HN and thoracic region was achieved with a combination of four NE markers. Moderate concordance was found with combinations of mASH1 and INSM1 and traditional NE markers, respectively. Consistent overexpression of PARP1 in high-grade tumors with NE differentiation in the HN and lung opens eligibility for PARP1 inhibitor trials.
Collapse
Affiliation(s)
- Annikka Weissferdt
- Department of Pathology, MD Anderson Cancer Center, Houston, TX, USA.,Department of Thoracic Surgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Boris Sepesi
- Department of Thoracic Surgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Ning
- Department of Biostatistics, MD Anderson Cancer Center, Houston, TX, USA
| | - Mario Hermsen
- Head and Neck Oncology, University Hospital of Oviedo, Oviedo, Spain
| | - Renata Ferrarotto
- Department of Head and Neck/Thoracic Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Bonnie Glisson
- Department of Head and Neck/Thoracic Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Ehab Hanna
- Department of Head and Neck Surgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Diana Bell
- Department of Pathology and Head and Neck Disease Team Alignment, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA.
| |
Collapse
|
5
|
Metovic J, La Salvia A, Rapa I, Napoli F, Birocco N, Pia Bizzi M, Garcia-Carbonero R, Ciuffreda L, Scagliotti G, Papotti M, Volante M. Molecular Subtypes of Extra-pulmonary Neuroendocrine Carcinomas Identified by the Expression of Neuroendocrine Lineage-Specific Transcription Factors. Endocr Pathol 2022; 33:388-399. [PMID: 35608806 PMCID: PMC9420091 DOI: 10.1007/s12022-022-09722-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 12/17/2022]
Abstract
Extra-pulmonary neuroendocrine carcinomas (EPNEC) represent a group of rare and heterogenous neoplasms with adverse clinical outcome. Their molecular profile is largely unexplored. Our aim was to investigate if the major transcriptional drivers recently described in high-grade pulmonary neuroendocrine carcinomas characterize distinct molecular and clinical subgroups of EPNEC. Gene expression of ASCL1, NEUROD1, DLL3, NOTCH1, INSM1, MYCL1, POU2F3, and YAP1 was investigated in a series of 54 EPNEC (including 10 cases with mixed components analyzed separately) and in a group of 48 pulmonary large cell neuroendocrine carcinomas (P-LCNEC). Unsupervised hierarchical cluster analysis classified the whole series into four major clusters. P-LCNEC were classified into two major clusters, the first ASCL1/DLL3/INSM1-high and the second (including four EPNEC) ASCL1/DLL3-low but INSM1-high. The remaining EPNEC cases were sub-classified into two other clusters. The first showed INSM1-high and alternative ASCL1/DLL3 or NEUROD1 high expression. The second was characterized mainly by MYCL1 and YAP1 overexpression. In the ten cases with mixed histology, ASCL1, DLL3, INSM1, and NEUROD1 genes were significantly upregulated in the neuroendocrine component. Higher gene-expression levels of NOTCH1 and INSM1 were associated with lower pT stage and negative nodal status. Low INSM1 gene expression was associated with shorter overall survival in the entire case series (p = 0.0017) and with a trend towards significance in EPNEC, only (p = 0.06). In conclusion, our results show that EPNEC possess distinct neuroendocrine-lineage-specific transcriptional profiles; moreover, low INSM1 gene expression represents a novel potential unfavorable prognostic marker in high-grade NECs including those in extra-pulmonary location.
Collapse
Affiliation(s)
- Jasna Metovic
- Department of Oncology, University of Turin; Pathology Unit at Città della Salute e della Scienza Hospital, via Santena 7, Turin, Italy
| | - Anna La Salvia
- Division of Medical Oncology, Hospital Universitario, 12 de Octubre, Madrid, Spain
| | - Ida Rapa
- Department of Oncology, University of Turin; Pathology Unit at San Luigi Hospital, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Francesca Napoli
- Department of Oncology, University of Turin; Pathology Unit at San Luigi Hospital, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Nadia Birocco
- Medical Oncology Unit, Città Della Salute e Della Scienza Hospital, Turin, Italy
| | - Maria Pia Bizzi
- Medical Oncology Unit, San Luigi Hospital, Orbassano, Turin, Italy
| | | | - Libero Ciuffreda
- Medical Oncology Unit, Città Della Salute e Della Scienza Hospital, Turin, Italy
| | - Giorgio Scagliotti
- Department of Oncology, University of Turin; Medical Oncology Unit at San Luigi Hospital, Orbassano, Turin, Italy
| | - Mauro Papotti
- Department of Oncology, University of Turin; Pathology Unit at Città della Salute e della Scienza Hospital, via Santena 7, Turin, Italy
| | - Marco Volante
- Department of Oncology, University of Turin; Pathology Unit at San Luigi Hospital, Regione Gonzole 10, 10043, Orbassano, Turin, Italy.
| |
Collapse
|
6
|
Metovic J, Napoli F, Osella-Abate S, Bertero L, Tampieri C, Orlando G, Bianchi M, Carli D, Fagioli F, Volante M, Papotti M. Overexpression of INSM1, NOTCH1, NEUROD1, and YAP1 genes is associated with adverse clinical outcome in pediatric neuroblastoma. Virchows Arch 2022; 481:925-933. [PMID: 36121500 PMCID: PMC9734219 DOI: 10.1007/s00428-022-03406-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/12/2022] [Accepted: 08/27/2022] [Indexed: 01/22/2023]
Abstract
Pediatric neuroblastoma is responsible for approximately 8-10% of pediatric tumors, and it is one of the leading causes of tumor-related deaths in children. Although significant progress has been made in the characterization of neuroblastoma in recent years, the mechanisms influencing the prognosis of neuroblastoma patients remain largely unknown. Our aim was to investigate if the major neuroendocrine-associated transcriptional drivers, including ASCL1, NEUROD1, DLL3, NOTCH1, INSM1, MYCL1, POU2F3 and YAP1 are correlated with specific clinical and pathological characteristics. We selected a retrospective series of 46 primary pediatric neuroblastoma, composed of 30 treatment-naïve and 16 post-chemotherapy cases. Gene expression levels were explored by means of quantitative real-time PCR. An increased expression of NOTCH1 (p = 0.005), NEUROD1 (p = 0.0059), and YAP1 (p = 0.0008) was found in stage IV tumors, while the highest levels of MYCL1 and ASCL1 were seen in stages IVS and III, respectively (p = 0.0182 and p = 0.0134). A higher level of NOTCH1 (p = 0.0079) and YAP1 (p = 0.0026) was found in cases with differentiating morphology, while high mitosis-karyorrhexis index cases demonstrated significantly lower levels of POU2F3 (p = 0.0277). High expression of NOTCH1 (p = 0.008), NEUROD1 (p = 0.026), INSM1 (p = 0.010), and YAP1 (p = 0.005) together with stage IV (p = 0.043) was associated with shorter disease-free survival. In summary, our data indicate that the assessment of gene expression levels of neuroendocrine-lineage transcription factors might help to identify neuroblastoma patients with the risk of relapse.
Collapse
Affiliation(s)
- Jasna Metovic
- Department of Oncology, University of Turin, Orbassano, Turin, Italy
| | - Francesca Napoli
- Department of Oncology, University of Turin, Orbassano, Turin, Italy
| | | | - Luca Bertero
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Giulia Orlando
- Department of Oncology, University of Turin, Orbassano, Turin, Italy
| | - Maurizio Bianchi
- Pediatric Onco-hemathology Unit, "Città della Salute e della Scienza" Hospital, Turin, Italy
| | - Diana Carli
- Pediatric Onco-hemathology Unit, "Città della Salute e della Scienza" Hospital, Turin, Italy
| | - Franca Fagioli
- Department of Sciences of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Marco Volante
- Department of Oncology, University of Turin, Orbassano, Turin, Italy.
| | - Mauro Papotti
- Department of Oncology, University of Turin, Orbassano, Turin, Italy
| |
Collapse
|
7
|
Metovic J, Castellano I, Marinelli E, Osella-Abate S, Sapino A, Cassoni P, Papotti M. INSM1 Expression in Breast Neoplasms with Neuroedocrine Features. Endocr Pathol 2021; 32:452-460. [PMID: 34008122 PMCID: PMC8608773 DOI: 10.1007/s12022-021-09682-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 11/29/2022]
Abstract
According to the 2019 WHO classification of breast tumors, neuroendocrine neoplasms (NENs) are classified into well-differentiated NE tumors (NET) and poorly differentiated NE carcinomas (NEC), while other breast cancers (BCs) of special and no special type with neuroendocrine (NE) features are not incorporated in this scheme anymore. We aimed to assess whether INSM1, a novel NE marker, could have a role in breast NEN subtyping. We selected 63 BCs operated from 2003 to 2018, classified as BCs with NE features, with available clinico-pathological data. Following 2019 WHO criteria, this cohort was reclassified into 37 NETs/NECs, the remaining 26 tumors representing solid-papillary (7), mucinous (7), and mixed type (12) carcinomas with NE differentiation. Chromogranin A (CGA) and synaptophysin (SYN) immunostains were reviewed, and INSM1 was tested by immunohistochemistry. Thirty CGA- and SYN-negative no special type BCs served as negative control. INSM1 was expressed in 52/63 cases of the whole cohort (82.54%). INSM1 positive and negative cases had no significantly different clinico-pathological characteristics. INSM1 expression was not significantly different between the newly reclassified NET/NEC group and other BCs with NE features. No immunoexpression was observed in control BCs. The sensitivity and specificity of INSM1 for the NE phenotype was 82.5% and 100%, respectively, compared to 61.9% and 100% for CGA, and 95.2 and 100% for SYN. In conclusion, INSM1 is as accurate as traditional NE biomarkers to identify NE differentiation in BC. In analogy to standard NE markers, INSM1 could not distinguish NET and NEC from the other BC histotypes with NE differentiation.
Collapse
Affiliation(s)
- Jasna Metovic
- Department of Oncology, Pathology Unit, University of Turin, Via Santena 7, 10126, Turin, Italy
| | - Isabella Castellano
- Department of Medical Sciences, Pathology Unit, University of Turin, Via Santena 7, 10126, Turin, Italy.
| | - Eleonora Marinelli
- Department of Oncology, Pathology Unit, University of Turin, Via Santena 7, 10126, Turin, Italy
| | - Simona Osella-Abate
- Department of Medical Sciences, Pathology Unit, University of Turin, Via Santena 7, 10126, Turin, Italy
| | - Anna Sapino
- Department of Medical Sciences, Pathology Unit, University of Turin, Via Santena 7, 10126, Turin, Italy
- Pathology Division, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, Italy
| | - Paola Cassoni
- Department of Medical Sciences, Pathology Unit, University of Turin, Via Santena 7, 10126, Turin, Italy
| | - Mauro Papotti
- Department of Oncology, Pathology Unit, University of Turin, Via Santena 7, 10126, Turin, Italy
| |
Collapse
|
8
|
La Rosa S. Challenges in High-grade Neuroendocrine Neoplasms and Mixed Neuroendocrine/Non-neuroendocrine Neoplasms. Endocr Pathol 2021; 32:245-257. [PMID: 33786701 PMCID: PMC8116295 DOI: 10.1007/s12022-021-09676-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
The growth in knowledge of the pathogenesis, molecular background, and immunohistochemical profile of neuroendocrine neoplasms (NENs) has led not only to an increased awareness of these diseases but also to several changes of the nomenclature. In particular, the concept and terminology of high-grade (grade 3) NENs and mixed neoplasms have changed considerably over the last 20 years, creating some confusion among pathologists and clinicians. The aim of this review is to elucidate the diagnostic criteria, including the most important differential diagnoses of high-grade NENs and mixed neuroendocrine/non-neuroendocrine neoplasms (MiNENs). The role of the Ki67 labelling index and morphology, used to define grade 3 NENs of the digestive system and lungs, is also discussed. The evolution of the concepts and terminology of MiNENs is revised, including the most important differential diagnoses.
Collapse
Affiliation(s)
- Stefano La Rosa
- Institute of Pathology, University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
9
|
Uccella S, La Rosa S, Metovic J, Marchiori D, Scoazec JY, Volante M, Mete O, Papotti M. Genomics of High-Grade Neuroendocrine Neoplasms: Well-Differentiated Neuroendocrine Tumor with High-Grade Features (G3 NET) and Neuroendocrine Carcinomas (NEC) of Various Anatomic Sites. Endocr Pathol 2021; 32:192-210. [PMID: 33433884 DOI: 10.1007/s12022-020-09660-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
High-grade neuroendocrine neoplasms (HG-NENs) are clinically aggressive diseases, the classification of which has recently been redefined. They now include both poorly differentiated NENs (neuroendocrine carcinoma, NECs) and high proliferating well-differentiated NENs (called grade 3 neuroendocrine tumors, G3 NETs, in the digestive system). In the last decade, the "molecular revolution" that has affected all fields of medical oncology has also shed light in the understanding of HG NENs heterogeneity and has provided new diagnostic and therapeutic tools, useful in the management of these malignancies. Considering the kaleidoscopic aspects of HG NENs in various anatomical sites, this review systematically addresses the genomic landscape of such neoplasm throughout the more common thoracic and digestive locations, as well as it will consider other rare but not exceptional primary sites, including the skin, the head and neck, and the urogenital system. The revision of the available literature will then be oriented to understand the translational relevance of molecular data, by analyzing conceptual issues, clinicopathological correlations, and unmet needs in this field.
Collapse
Affiliation(s)
- Silvia Uccella
- Pathology Unit, Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| | - Stefano La Rosa
- Institute of Pathology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jasna Metovic
- Department of Oncology, University of Turin, Torino, Italy
| | - Deborah Marchiori
- Pathology Unit, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Jean-Yves Scoazec
- Department of Pathology, Gustave Roussy Cancer Campus, Paris, France
| | - Marco Volante
- Department of Oncology, University of Turin, Torino, Italy
| | - Ozgur Mete
- Department of Pathology, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mauro Papotti
- Department of Oncology, University of Turin, Torino, Italy
| |
Collapse
|
10
|
Metovic J, Barella M, Harari S, Pattini L, Albini A, Sonzogni A, Veronesi G, Papotti M, Pelosi G. Clinical implications of lung neuroendocrine neoplasm classification. Expert Rev Anticancer Ther 2020; 21:377-387. [PMID: 33306420 DOI: 10.1080/14737140.2021.1862654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Neuroendocrine neoplasms of the lung (Lung NENs) encompass NE tumors (NETs), which are in turn split into typical and atypical carcinoids, and NE carcinomas (NECs), which group together small-cell carcinoma and large-cell NE carcinoma. This classification is the current basis for orienting the daily practice of these patients, with diagnostic, prognostic, and predictive inferences. AREAS COVERED The clinical implications of lung NEN classification are addressed according to three converging perspectives, which were dissected through an extensive literature overview: (1) how to put intratumor heterogeneity into the context of the current classification; (2) how to contextualize immunohistochemistry markers to improve diagnosis, prognosis, and therapy prediction; and (3) how to use immuno-oncology strategies for life-threatening NECs, which still account for 90% or more of lung NENs. EXPERT OPINION We provide practical insights to account for intratumor heterogeneity, practice the choice of immunohistochemistry markers, and emphasize once again the added value of immuno-oncology in the setting of personalized medicine of lung NENs.
Collapse
Affiliation(s)
- Jasna Metovic
- Department of Oncology, University of Turin, Turin, Italy
| | - Marco Barella
- Inter-Hospital Pathology Division, IRCCS MultiMedica, Milan, Italy
| | - Sergio Harari
- Department of Medical Sciences and Community Health, University of Milan, Milan, Italy.,Division of Pneumology, San Giuseppe Hospital, IRCCS MultiMedica, Milan, Italy
| | - Linda Pattini
- Department of Electronics, Information and Bioengineering, Politecnico Di Milano, Milan, Italy
| | - Adriana Albini
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, Milan, Italy
| | - Angelica Sonzogni
- Department of Pathology and Laboratory Medicine, IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Giulia Veronesi
- Division of Thoracic Surgery, San Raffaele Scientific Institute - IRCCS, Milan, Italy.,School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Mauro Papotti
- Department of Oncology, University of Turin, Turin, Italy
| | - Giuseppe Pelosi
- Inter-Hospital Pathology Division, IRCCS MultiMedica, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
11
|
Zaleski M, Kalhor N, Moran CA. Typical and Atypical Carcinoid Tumors of the Mediastinum: A Biomarker Analysis of 27 Cases With Clinical Correlation. Int J Surg Pathol 2020; 29:358-367. [PMID: 33243039 DOI: 10.1177/1066896920976845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thymic typical and atypical carcinoids are rare and appear to be more aggressive than similar tumors in other sites. We retrospectively analyzed a group of biomarkers that hold therapeutic and prognostic utility, in 27 of these tumors. All cases were immunohistochemically stained with PAX5, MET, CRMP5, paxillin, p21, p27, EZH2, PDL-1, and Ki-67, and then H-scored. Clinicopathologic and survival data were statistically analyzed against staining (χ2 test). Five- and 10-year-survival rates were 53% and 18%, respectively. Mitotic counts ≥4 per 2 mm2 and tumor size ≥5 cm, associated with death of disease (DoD; P = .010 and .016). Ki-67 expression ≥1% associated with DoD (P = .003) and death within 5 years (P = .031). Biomarkers stained tumor cases as follows: PDL-1 = 0%, PAX-5 = 0%, MET = 7.4%, paxillin = 41%, CRMP5 = 78%, p21 = 63%, p27 = 63%, EZH2 = 37%, and MASH1 = 59%. Overall ± staining did not associate with survival or grade. Cases with low CRMP5 H-scores (<80) associated with DoD (P = .002), while CRMP5 H-scores >80 associated with 10-year survival (P = .022). Cases with high MASH1 H-score (>100) associated with DoD (P = .021). Accurate grading and staging remain paramount in predicting clinical outcome. Biomarkers may have significance in subsets of patients and the use of these studies likely should be focused on a more personalize type of approach.
Collapse
Affiliation(s)
- Michael Zaleski
- 4002The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neda Kalhor
- 4002The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cesar A Moran
- 4002The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
12
|
Bell D, Bell A, Ferrarotto R, Glisson B, Takahashi Y, Fuller G, Weber R, Hanna E. High-grade sinonasal carcinomas and surveillance of differential expression in immune related transcriptome. Ann Diagn Pathol 2020; 49:151622. [PMID: 32927372 DOI: 10.1016/j.anndiagpath.2020.151622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022]
Abstract
The skull base is the location of a wide variety of malignant tumors. Among them is sinonasal undifferentiated carcinoma (SNUC), a highly aggressive sinonasal neoplasm that was recently reclassified into subgroups of high-grade carcinomas with unique genomic events (e.g., SMARC-deficient carcinoma, nuclear protein in testis NUT carcinoma). Other high-grade carcinomas in this location are neuroendocrine carcinomas, sinonasal adenocarcinomas, and teratocarcinosarcomas. Given the rarity of these tumors, little transcriptomic data is available. The aim of this study was to characterize the immune-oncology gene expression profile in SNUC and other high-grade sinonasal carcinomas. Next-generation sequencing was performed in 30 high-grade sinonasal carcinoma samples using the HTG EdgeSeq Precision Immuno-Oncology Panel. Ingenuity pathway analysis was performed to understand the immunobiology, signaling, and functional perturbations during tumor development. The samples were divided into 3 groups: 21 SNUCs and SMARC-deficient sinonasal carcinomas; 5 high-grade neuroendocrine carcinomas (HGNECs), with small cell and large cell variants; and 4 high-grade sinonasal carcinomas (HGSNCs) of mixed histology (1 NUT carcinoma, 1 teratocarcinosarcoma, and 2 sinonasal adenocarcinomas). PRAME and ASCL1 emerged as upregulated transcripts with strong protein validation for SNUC and HGNEC; other upregulated candidates EZH2 and BRCA1 offer consideration for alternative targeted therapy, and downregulation of major histocompatibility complex molecules and chemokines represent another hurdle in the development of effective immunotherapy. This immune-oncology gene expression analysis of 3 groups of high-grade sinonasal carcinoma with emphasis on SNUC identified a number of differentially expressed transcripts reflecting effects on tumorigenesis. Identification of immune pathways should be further investigated for possible integration of immunotherapy into a multidisciplinary approach to these cancers and personalized treatment.
Collapse
Affiliation(s)
- Diana Bell
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, United States of America; Department Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, United States of America.
| | - Achim Bell
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, United States of America
| | - Renata Ferrarotto
- Thoracic-Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, United States of America
| | - Bonnie Glisson
- Thoracic-Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, United States of America
| | - Yoko Takahashi
- Department Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, United States of America
| | - Gregory Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, United States of America
| | - Randal Weber
- Department Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, United States of America
| | - Ehab Hanna
- Department Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, United States of America
| |
Collapse
|
13
|
Taskin OC, Clarke CN, Erkan M, Tsai S, Evans DB, Adsay V. Pancreatic neuroendocrine neoplasms: current state and ongoing controversies on terminology, classification and prognostication. J Gastrointest Oncol 2020; 11:548-558. [PMID: 32655934 DOI: 10.21037/jgo.2020.03.07] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Significant improvements have taken place in our understanding of classification neuroendocrine neoplasms of the pancreas in the past decade. These are now regarded in three entirely separate categories: (I) neuroendocrine tumors (PanNETs) are by definition well differentiated, the pancreatic counterpart of carcinoids; (II) neuroendocrine carcinomas, which are poorly differentiated (PDNEC), the pancreatic examples of small cell carcinomas or large cell neuroendocrine carcinomas; (III) other neoplasms that have neuroendocrine differentiation or a distinct neuroendocrine component. PanNETs are by far the most common. They are now regarded as malignancies (albeit often curable when low grade and low stage) with the exception of minute incidental proliferations (tumorlets, or dysplastic-like changes) seen in the setting of some syndromes like MEN. PanNETs are staged based on their size, and for small T1 tumors, watchful waiting is now being considered, although these tumors are also known to show about 10% metastatic rate and/or progression, creating concerns about this approach. PanNETs are graded into 3, based on the proliferative activity, mostly based on the Ki-67 index, and also partly mitotic activity, although the latter seldom if ever is the determinant of the final grade. Neuroendocrine neoplasms with well differentiated morphology but Ki-67 >20% are now regarded as PanNET Grade 3 (G3); they have been shown to have a prognosis significantly worse than lesser grade PanNETs but still incomparably better than frank PDNECs, the latter typically has Ki-67 >50% (often much higher) and require platinum-based chemotherapy. There are also cases that are ambiguous between PanNET-G3 and PDNEC, and very rarely transformation of the former to the latter appears to occur. For low grade (G1/G2) PanNETs, more refined criteria to further prognosticate this group are needed. Morphologic variants being recognized may bring new perspectives to this group.
Collapse
Affiliation(s)
- Orhun Cig Taskin
- Department of Pathology, Koç University Hospital, Istanbul, Turkey
| | - Callisia N Clarke
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mert Erkan
- Department of Surgery, Koç University Hospital, Istanbul, Turkey.,Koç University, Research Center for Translational Medicine, Istanbul, Turkey
| | - Susan Tsai
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Douglas B Evans
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Volkan Adsay
- Department of Pathology, Koç University Hospital, Istanbul, Turkey
| |
Collapse
|
14
|
An Algorithmic Immunohistochemical Approach to Define Tumor Type and Assign Site of Origin. Adv Anat Pathol 2020; 27:114-163. [PMID: 32205473 DOI: 10.1097/pap.0000000000000256] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Immunohistochemistry represents an indispensable complement to an epidemiology and morphology-driven approach to tumor diagnosis and site of origin assignment. This review reflects the state of my current practice, based on 15-years' experience in Pathology and a deep-dive into the literature, always striving to be better equipped to answer the age old questions, "What is it, and where is it from?" The tables and figures in this manuscript are the ones I "pull up on the computer" when I am teaching at the microscope and turn to myself when I am (frequently) stuck. This field is so exciting because I firmly believe that, through the application of next-generation immunohistochemistry, we can provide better answers than ever before. Specific topics covered in this review include (1) broad tumor classification and associated screening markers; (2) the role of cancer epidemiology in determining pretest probability; (3) broad-spectrum epithelial markers; (4) noncanonical expression of broad tumor class screening markers; (5) a morphologic pattern-based approach to poorly to undifferentiated malignant neoplasms; (6) a morphologic and immunohistochemical approach to define 4 main carcinoma types; (7) CK7/CK20 coordinate expression; (8) added value of semiquantitative immunohistochemical stain assessment; algorithmic immunohistochemical approaches to (9) "garden variety" adenocarcinomas presenting in the liver, (10) large polygonal cell adenocarcinomas, (11) the distinction of primary surface ovarian epithelial tumors with mucinous features from metastasis, (12) tumors presenting at alternative anatomic sites, (13) squamous cell carcinoma versus urothelial carcinoma, and neuroendocrine neoplasms, including (14) the distinction of pheochromocytoma/paraganglioma from well-differentiated neuroendocrine tumor, site of origin assignment in (15) well-differentiated neuroendocrine tumor and (16) poorly differentiated neuroendocrine carcinoma, and (17) the distinction of well-differentiated neuroendocrine tumor G3 from poorly differentiated neuroendocrine carcinoma; it concludes with (18) a discussion of diagnostic considerations in the broad-spectrum keratin/CD45/S-100-"triple-negative" neoplasm.
Collapse
|
15
|
Scoazec JY. Lung and digestive neuroendocrine neoplasms. From WHO classification to biomarker screening: Which perspectives? ANNALES D'ENDOCRINOLOGIE 2019; 80:163-165. [PMID: 31064659 DOI: 10.1016/j.ando.2019.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The recent classifications of lung and digestive neuroendocrine neoplasms (NENs) make a fundamental distinction between well- and poorly-differentiated neoplasms. Well-differentiated NENs are termed carcinoids in the lung and neuroendocrine tumors in the gastroenteropancreatic sphere; their risk of malignancy is highly variable; histological grading is used to stratify patients into prognostically significant groups. Poorly-differentiated NENs are termed neuroendocrine carcinoma in both the lung and the digestive sphere; they constantly are of high grade of malignancy; two types are recognized on the basis of tumor cell morphology, the small cell and the large cell types. Recent studies have largely uncovered the genetic landscape of several subsets of well-differentiated NENs (lung, pancreas, small intestine) and of poorly-differentiated NENs. Some molecular markers may help to the differential diagnosis between highly proliferative neuroendocrine tumors and neuroendocrine carcinomas, especially in the pancreas. In well-differentiated tumors, MGMT status is proposed as a predictive marker of the response to temozolomide, but remains to be validated. In poorly-differentiated neoplasms, large cell neuroendocrine carcinoma has been shown to be a heterogeneous category, with some cases presenting the same molecular signature than small cell carcinoma and others the same signature than adenocarcinomas of the same body site. Rb protein has been recently shown to be a potential marker of response to platinum salts in neuroendocrine carcinoma. Much remains to be done to translate the rapid progress in the molecular understanding of NENS into diagnostic, prognostic or predictive markers.
Collapse
Affiliation(s)
- Jean-Yves Scoazec
- Department of pathology, Gustave-Roussy Cancer Campus, 114, rue Edouard-Vaillant, 94805 Villejuif cedex, France; Faculté de médecine de Bicêtre, université Paris Sud, 94270 Le Kremlin-Bicêtre, France.
| |
Collapse
|
16
|
Roy M, Buehler DG, Zhang R, Schwalbe ML, Baus RM, Salamat MS, Lloyd RV, Rosenbaum JN. Expression of Insulinoma-Associated Protein 1 (INSM1) and Orthopedia Homeobox (OTP) in Tumors with Neuroendocrine Differentiation at Rare Sites. Endocr Pathol 2019; 30:35-42. [PMID: 30523500 DOI: 10.1007/s12022-018-9559-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Insulinoma-associated protein 1 (INSM1) and orthopedia homeobox (OTP) are transcription factors that play a critical role in neuroendocrine (NE) and neuroepithelial cell development. INSM1 has been identified in multiple tumors of NE or neuroepithelial origin, whereas OTP expression has been mainly studied in NE tumors of pulmonary origin. Expression of OTP appears to correlate with poorer prognosis in pulmonary carcinoids; however, its expression patterns in other NE/neuroepithelial tumors need further investigation. Here, we assessed the diagnostic utility of INSM1 and OTP in tumors with NE differentiation at relatively uncommon sites including prostate, breast, and tumors of gynecologic origin. Thirty-two formalin-fixed, paraffin-embedded cases were used to construct a tissue microarray. Immunohistochemistry for INSM1 and OTP was performed and scored semi-quantitatively. INSM1 was diffusely expressed in 60% of gynecologic tumors, 71.4% of mammary carcinoma, and 25% of prostate adenocarcinoma with NE differentiation. Diffuse expression of OTP was detected in 50% of prostate adenocarcinoma with NE differentiation and 100% neuroendocrine carcinoma of the ovary. Immunostain for achaete-scute homolog 1, chromogranin, synaptophysin, and CD56 supported the NE and/or neuroepithelial differentiation of the tumors. In summary, INSM1 is expressed in most of the tumors with NE and neuroepithelial differentiation in this study, confirming the diagnostic utility of INSM1 as a novel and sensitive marker of NE/neuroepithelial differentiation. The expression of OTP in some NE tumors outside of lung expands the spectrum of tumors that may express this biomarker and should be considered when working up a NE tumor of unknown primary site.
Collapse
Affiliation(s)
- Madhuchhanda Roy
- Department of Pathology and Laboratory Medicine, University of Wisconsin Hospital and Clinics, Madison, WI, USA.
| | - Darya G Buehler
- Department of Pathology and Laboratory Medicine, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| | - Ranran Zhang
- Department of Pathology and Laboratory Medicine, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| | - Michael L Schwalbe
- Department of Pathology and Laboratory Medicine, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| | - Rebecca M Baus
- Department of Pathology and Laboratory Medicine, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| | - M Shahriar Salamat
- Department of Pathology and Laboratory Medicine, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| | - Jason N Rosenbaum
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
17
|
Bellur S, Van der Kwast T, Mete O. Evolving concepts in prostatic neuroendocrine manifestations: from focal divergent differentiation to amphicrine carcinoma. Hum Pathol 2018; 85:313-327. [PMID: 30481509 DOI: 10.1016/j.humpath.2018.11.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/11/2018] [Accepted: 11/15/2018] [Indexed: 12/31/2022]
Abstract
Prostatic neuroendocrine manifestations encompass a heterogeneous spectrum of morphologic entities. In the era of evidence-based and precision-led treatment, distinction of biologically relevant clinical manifestations expanded the evolving clinical role of pathologists. Recent observations on the occurrence of hormone therapy-induced aggressive prostatic cancers with neuroendocrine features have triggered the need to refine the spectrum and nomenclature of prostatic neuroendocrine manifestations. Although the morphologic assessment still remains the basis of the diagnostic workup of prostatic neoplasms, the application of ancillary biomarkers is crucial in the accurate classification of such presentations. This review provides a diagnostic roadmap for the practicing pathologist by reviewing the characteristic morphologic, immunohistochemical, and molecular correlates of various faces of prostatic neuroendocrine manifestations.
Collapse
Affiliation(s)
- Shubha Bellur
- Department of Pathology, University Health Network, Toronto, ON M5G 2C4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Theodorus Van der Kwast
- Department of Pathology, University Health Network, Toronto, ON M5G 2C4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Ozgur Mete
- Department of Pathology, University Health Network, Toronto, ON M5G 2C4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada; Endocrine Oncology, The Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada.
| |
Collapse
|
18
|
Insulinoma-associated protein 1 is a novel sensitive and specific marker for small cell carcinoma of the prostate. Hum Pathol 2018; 79:151-159. [DOI: 10.1016/j.humpath.2018.05.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/06/2018] [Accepted: 05/24/2018] [Indexed: 01/25/2023]
|
19
|
Uccella S, La Rosa S, Volante M, Papotti M. Immunohistochemical Biomarkers of Gastrointestinal, Pancreatic, Pulmonary, and Thymic Neuroendocrine Neoplasms. Endocr Pathol 2018. [PMID: 29520563 DOI: 10.1007/s12022-018-9522-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Neuroendocrine neoplasms (NENs) are a heterogeneous group of epithelial neoplastic proliferations that irrespective of their primary site share features of neural and endocrine differentiation including the presence of secretory granules, synaptic-like vesicles, and the ability to produce amine and/or peptide hormones. NENs encompass a wide spectrum of neoplasms ranging from well-differentiated indolent tumors to highly aggressive poorly differentiated neuroendocrine carcinomas. Most cases arise in the digestive system and in thoracic organs, i.e., the lung and thymus. A correct diagnostic approach is crucial for the management of patients with both digestive and thoracic NENs, because their high clinical and biological heterogeneity is related to their prognosis and response to therapy. In this context, immunohistochemistry represents an indispensable diagnostic tool that pathologists need to use for the correct diagnosis and classification of such neoplasms. In addition, immunohistochemistry is also useful in identifying prognostic and theranostic markers. In the present article, the authors will review the role of immunohistochemistry in the routine workup of digestive and thoracic NENs.
Collapse
Affiliation(s)
- Silvia Uccella
- Unit of Pathology, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Stefano La Rosa
- Service of Clinical Pathology, Institute of Pathology, Lausanne University Hospital, Lausanne, Switzerland.
- Institut Universitaire de Pathologie, CHUV, 25 rue du Bugnon, 1011, Lausanne, Switzerland.
| | - Marco Volante
- Department of Oncology, San Luigi Hospital, University of Turin, Orbassano, Italy
| | - Mauro Papotti
- Department of Oncology, City of Health and Science, University of Turin, Turin, Italy
| |
Collapse
|
20
|
Zhang W, Girard L, Zhang YA, Haruki T, Papari-Zareei M, Stastny V, Ghayee HK, Pacak K, Oliver TG, Minna JD, Gazdar AF. Small cell lung cancer tumors and preclinical models display heterogeneity of neuroendocrine phenotypes. Transl Lung Cancer Res 2018. [PMID: 29535911 DOI: 10.21037/tlcr.2018.02.02] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background Small cell lung cancer (SCLC) is a deadly, high grade neuroendocrine (NE) tumor without recognized morphologic heterogeneity. However, over 30 years ago we described a SCLC subtype with "variant" morphology which did not express some NE markers and exhibited more aggressive growth. Methods To quantitate NE properties of SCLCs, we developed a 50-gene expression-based NE score that could be applied to human SCLC tumors and cell lines, and genetically engineered mouse (GEM) models. We identified high and low NE subtypes of SCLC in all of our sample types, and characterized their properties. Results We found that 16% of human SCLC tumors and 10% of SCLC cell lines were of the low NE subtype, as well as cell lines from the GEM model. High NE SCLC lines grew as non-adherent floating aggregates or spheroids while Low NE lines had morphologic features of the variant subtype and grew as loosely attached cells. While the high NE subtype expressed one of the NE lineage master transcription factors ASCL1 or NEUROD1, together with NKX2-1, the entire range of NE markers, and lacked expression of the neuronal and NE repressor REST, the low NE subtype had lost expression of most NE markers, ASCL1, NEUROD1 and NKX2-1 and expressed REST. The low NE subtype had undergone epithelial mesenchymal transition (EMT) and had activated the Notch, Hippo and TGFβ pathways and MYC oncogene . Importantly, the high and low NE group of SCLC lines had similar gene expression profiles as their SCLC tumor counterparts. Conclusions SCLC tumors and cell lines can exhibit distinct inter-tumor heterogeneity with respect to expression of NE features. Loss of NE expression results in major alterations in morphology, growth characteristics, and molecular properties. These findings have major clinical implications as the two subtypes are predicted to have very different responses to targeted therapies.
Collapse
Affiliation(s)
- Wei Zhang
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yu-An Zhang
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Tomohiro Haruki
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mahboubeh Papari-Zareei
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Victor Stastny
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Hans K Ghayee
- University of Florida Health and Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - Karel Pacak
- National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Trudy G Oliver
- Huntsman Cancer Institute at University of Utah, Salk Lake City, UT, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Adi F Gazdar
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA.,Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
21
|
Truong N, Chun SM, Kim TI, Suh YA, Jang SJ. Hypermethylation of adjacent CpG sites is negatively correlated with the expression of lineage oncogene ASCL1 in pulmonary neuroendocrine tumors. Tumour Biol 2017. [DOI: 10.1177/1010428317706225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Nhung Truong
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sung Min Chun
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Asan Center for Cancer Genome Discovery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Tae Im Kim
- Asan Center for Cancer Genome Discovery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Young Ah Suh
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Se Jin Jang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Asan Center for Cancer Genome Discovery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
22
|
La Rosa S, Sessa F, Uccella S. Mixed Neuroendocrine-Nonneuroendocrine Neoplasms (MiNENs): Unifying the Concept of a Heterogeneous Group of Neoplasms. Endocr Pathol 2016; 27:284-311. [PMID: 27169712 DOI: 10.1007/s12022-016-9432-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The wide application of immunohistochemistry to the study of tumors has led to the recognition that epithelial neoplasms composed of both a neuroendocrine and nonneuroendocrine component are not as rare as traditionally believed. It has been recommended that mixed neuroendocrine-nonneuroendocrine epithelial neoplasms are classified as only those in which either component represents at least 30 % of the lesion but this cutoff has not been universally accepted. Moreover, since their pathogenetic and clinical features are still unclear, mixed neuroendocrine-nonneuroendocrine epithelial neoplasms are not included as a separate clinicopathological entity in most WHO classifications, although they have been observed in virtually all organs. In the WHO classification of digestive tumors, mixed neuroendocrine-nonneuroendocrine neoplasm is considered a specific type and is defined as mixed adenoneuroendocrine carcinoma, a definition that has not been accepted for other organs. In fact, this term does not adequately convey the morphological and biological heterogeneity of digestive mixed neoplasms and has created some misunderstanding among both pathologists and clinicians. In the present study, we have reviewed the literature on mixed neuroendocrine-nonneuroendocrine epithelial neoplasms reported in the pituitary, thyroid, nasal cavity, larynx, lung, digestive system, urinary system, male and female genital organs, and skin to give the reader an overview of the most important clinicopathological features and morphological criteria for diagnosing each entity. We also propose to use the term "mixed neuroendocrine-nonneuroendocrine neoplasm (MiNEN)" to define and to unify the concept of this heterogeneous group of neoplasms, which show different characteristics mainly depending on the type of neuroendocrine and nonneuroendocrine components.
Collapse
Affiliation(s)
- Stefano La Rosa
- Department of Pathology, Ospedale di Circolo, viale Borri 57, 21100, Varese, Italy.
| | - Fausto Sessa
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Silvia Uccella
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
23
|
A new marker, insulinoma-associated protein 1 (INSM1), for high-grade neuroendocrine carcinoma of the uterine cervix: Analysis of 37 cases. Gynecol Oncol 2016; 144:384-390. [PMID: 27908529 DOI: 10.1016/j.ygyno.2016.11.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/02/2016] [Accepted: 11/12/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVE High-grade neuroendocrine carcinoma of uterine cervix (HGNCUC) has been recognized as a highly malignant tumor. Therapeutic strategy specific to neuroendocrine (NE) tumors needs to be considered, but some cases wouldn't allow simple final diagnoses. Insulinoma-associated protein 1 (INSM1), which is a zinc-finger transcription factor related to NE differentiation, is frequently expressed in NE tumors. We investigated the association between INSM1 and HGNCUC, and the possibility of INSM1 as a useful NE marker. METHODS Thirty-seven cases of formalin-fixed and paraffin-embedded HGNCUCs were evaluated immunohistochemically for conventional NE markers and INSM1. We also surveyed polymerase chain reactions and examined the frequency and the genotype of human papillomavirus (HPV) infections. RESULTS In HGNCUC, chromogranin A, synaptophysin and neural cell adhesion molecule (NCAM) were expressed in 86%, 86% and 68%, respectively. In addition, INSM1 was detected in 95%. Positivity for INSM1 was clearly evaluated histologically, because the intensity of nuclear staining on positive cells was high and nonspecific reactions were minimal. In uni- and multivariate analyses of prognostic factors on stage I and II surgical cases, the association between INSM1 expression and prognosis was insignificant. We confirmed 72% of 29 examined cases had high risk HPV infections (type 16, 14%; type 18, 86%). CONCLUSIONS This study has clarified that INSM1 is closely related to the development of HGNCUC, and a useful new NE marker in conducting its correct and rapid diagnosis.
Collapse
|
24
|
Altree-Tacha D, Tyrrell J, Li F. mASH1 is Highly Specific for Neuroendocrine Carcinomas: An Immunohistochemical Evaluation on Normal and Various Neoplastic Tissues. Arch Pathol Lab Med 2016; 141:288-292. [PMID: 27628324 DOI: 10.5858/arpa.2015-0489-oa] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT -High-grade neuroendocrine carcinomas and carcinoids can arise in different sites such as lung, gastrointestinal tract, prostate, and skin. Classic neuroendocrine markers such as CD56, synaptophysin, and chromogranin cannot distinguish carcinoids from high-grade neuroendocrine carcinomas. Recently, mouse monoclonal mASH1 has been shown to help discriminate carcinoids from high-grade neuroendocrine carcinomas in various neoplastic sites. To date, there have been no comprehensive immunohistochemistry studies with mASH1 on nonneuroendocrine neoplasms. OBJECTIVE -To evaluate the specificity and sensitivity of mASH1 in various normal and neoplastic tissues, including lung cancers. DESIGN -Formalin-fixed, paraffin-embedded tissue microarrays consisting of normal tissues and various neoplastic tissues were immunohistochemically evaluated with mASH1. RESULTS -In normal tissues (n = 30), mASH1 (nuclear staining) was sparsely expressed in the molecular cell layer, white matter, and granular cell layer of cerebellum; C cells in thyroid; and epithelial cells in thymus. In lung cancers, mASH1 stained 1.1% (1 of 93) of adenocarcinomas, 0.9% (1 of 111) of squamous cell carcinomas, 0% (0 of 30) of large cell carcinomas, 66.7% (6 of 9) of large cell neuroendocrine carcinomas, and 82.5% (94 of 114) of small cell carcinomas. In various other neoplastic tissues (n = 1114), mASH1 was expressed in thyroid medullary carcinomas, thymic carcinomas, and brain cancers; mASH1 was also expressed in a very low percentage of breast carcinomas, ovarian cancers, and pancreatic neuroendocrine tumors. All typical carcinoids of various sites were negative (0 of 11), however, in lung atypical carcinoids, mASH1 was expressed in 42.9% (9 of 21). CONCLUSIONS -Although not organ specific, mASH1 is highly specific for high-grade neuroendocrine carcinomas versus carcinoids and other nonneuroendocrine neoplasms.
Collapse
|
25
|
Walter RFH, Werner R, Ting S, Vollbrecht C, Theegarten D, Christoph DC, Schmid KW, Wohlschlaeger J, Mairinger FD. Identification of deregulation of apoptosis and cell cycle in neuroendocrine tumors of the lung via NanoString nCounter expression analysis. Oncotarget 2016; 6:24690-8. [PMID: 26008974 PMCID: PMC4694788 DOI: 10.18632/oncotarget.3992] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/15/2015] [Indexed: 01/16/2023] Open
Abstract
Background Neuroendocrine tumors of the lung comprise typical (TC) and atypical carcinoids (AC), large-cell neuroendocrine cancer (LCNEC) and small-cell lung cancer (SCLC). Cell cycle and apoptosis are key pathways of multicellular homeostasis and deregulation of these pathways is associated with cancerogenesis. Materials and Methods Sixty representative FFPE-specimens (16 TC, 13 AC, 16 LCNEC and 15 SCLC) were used for mRNA expression analysis using the NanoString technique. Eight genes related to apoptosis and ten genes regulating key points of cell cycle were investigated. Results ASCL1, BCL2, CASP8, CCNE1, CDK1, CDK2, CDKN1A and CDKN2A showed lower expression in carcinoids compared to carcinomas. In contrast, CCNE1 and CDK6 showed elevated expression in carcinoids compared to carcinomas. The calculated BCL2/BAX ratio showed increasing values from TC to SCLC. Between SCLC and LCNEC CDK2, CDKN1B, CDKN2A and PNN expression was significantly different with higher expression in SCLC. Conclusion Carcinoids have increased CDK4/6 and CCND1 expression controlling RB1 phosphorylation via this signaling cascade. CDK2 and CCNE1 were increased in carcinomas showing that these use the opposite way to control RB1. BAX and BCL2 are antagonists in regulating apoptosis. BCL2 expression increased over BAX expression with increasing malignancy of the tumor from TC to SCLC.
Collapse
Affiliation(s)
- Robert Fred Henry Walter
- Ruhrlandklinik, West German Lung Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Robert Werner
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Saskia Ting
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Dirk Theegarten
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Daniel Christian Christoph
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kurt Werner Schmid
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jeremias Wohlschlaeger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | |
Collapse
|
26
|
Yazawa T. Recent advances in histogenesis research of lung neuroendocrine cancers: Evidence obtained from functional analyses of primitive neural/neuroendocrine cell-specific transcription factors. Pathol Int 2015; 65:277-85. [PMID: 25708144 DOI: 10.1111/pin.12267] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/14/2015] [Indexed: 12/21/2022]
Abstract
Small cell carcinoma (SmCC) and large cell neuroendocrine carcinoma (LENEC) are categorized as neuroendocrine cancers (NECs) of the lung and have extremely poor prognoses. The lack of an effective therapeutic strategy against SmCC and LCNEC is a serious issue. Because the regulation of the cellular phenotype is complicated by the actions of various transcription factors, investigations into the function of neural/neuroendocrine cell-specific transcription factors are important for elucidating the cellular characteristics and histogenesis of SmCC and LCNEC and for establishing innovative therapeutic strategies against them. In this review, the functions of ASCL1, NeuroD1, REST, TTF1, and class III/IV POU, that are specifically and highly expressed in lung NECs, are introduced. These transcription factors transactivate and/or transrepress various genes and are involved in neural progenitor phenotyping, neuroendocrine and stem cell marker expression, and epithelial-to-mesenchymal transition. Based on the evidence that certain carcinoids express ASCL1, NeuroD1, TTF1, and class III/IV POU and that lung NECs can develop from non-NE cells/non-NEC cells, the relationships among lung NECs, carcinoid tumors, and non-NECs are discussed. Finally, a model of the histogenesis of lung NECs in view of similarities in the expression of primitive neural/neuroendocrine cell-specific transcription factors is proposed.
Collapse
Affiliation(s)
- Takuya Yazawa
- Department of Diagnostic Pathology, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
27
|
La Rosa S, Sessa F. High-grade poorly differentiated neuroendocrine carcinomas of the gastroenteropancreatic system: from morphology to proliferation and back. Endocr Pathol 2014; 25:193-8. [PMID: 24715269 DOI: 10.1007/s12022-014-9316-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Poorly differentiated neuroendocrine carcinomas (PDNECs) of the gastroenteropancreatic system (GEP) are a heterogeneous group of aggressive malignancies with a high propensity for distant metastases and an ominous prognosis. They have traditionally been divided into small and large cell subtypes on morphological grounds. However, histological diagnosis needs to be supported by immunohistochemistry to avoid possible misdiagnoses either with the more frequent poorly differentiated adenocarcinomas and squamous cell carcinomas or with lymphomas and mesenchymal neoplasms. Although it is well known that GEP PDNECs are associated with a poor prognosis, data from some published studies seem to suggest that there is a fraction of patients with PDNECs who have better survival than expected. GEP PDNECs are currently classified according to the criteria proposed in the 2010 WHO classification. They are simply called neuroendocrine carcinomas (NECs) and are defined by mitotic count >20 × 10 HPF and/or Ki-67 labeling index >20 %. However, a few recent papers have indicated that some NECs, as defined by the 2010 WHO scheme, do not show a poorly differentiated morphology as expected. This category seems to show a better prognosis and, especially, does not respond to cisplatin-based chemotherapy, which represents the goal standard therapeutic approach to high-grade PDNECs. In the present review, the main morphological, immunohistochemical, and prognostic features will be discussed as well as the opportunity to introduce a new category characterized by well to moderately differentiated morphology associated with high proliferation (mitotic count >20 × 10 HPF and/or Ki-67 index >20 %).
Collapse
Affiliation(s)
- Stefano La Rosa
- Department of Pathology, Ospedale di Circolo, Viale Borri 57, 21100, Varese, VA, Italy,
| | | |
Collapse
|
28
|
Abstract
Proneural genes encode evolutionarily conserved basic-helix-loop-helix transcription factors. In Drosophila, proneural genes are required and sufficient to confer a neural identity onto naïve ectodermal cells, inducing delamination and subsequent neuronal differentiation. In vertebrates, proneural genes are expressed in cells that already have a neural identity, but they are still required and sufficient to initiate neurogenesis. In all organisms, proneural genes control neurogenesis by regulating Notch-mediated lateral inhibition and initiating the expression of downstream differentiation genes. The general mode of proneural gene function has thus been elucidated. However, the regulatory mechanisms that spatially and temporally control proneural gene function are only beginning to be deciphered. Understanding how proneural gene function is regulated is essential, as aberrant proneural gene expression has recently been linked to a variety of human diseases-ranging from cancer to neuropsychiatric illnesses and diabetes. Recent insights into proneural gene function in development and disease are highlighted herein.
Collapse
Affiliation(s)
- Carol Huang
- Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer A Chan
- Department of Pathology & Laboratory Medicine, Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada.
| | - Carol Schuurmans
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|