1
|
Zhang M, Lin Y, Han Z, Huang X, Zhou S, Wang S, Zhou Y, Han X, Chen H. Exploring mechanisms of skin aging: insights for clinical treatment. Front Immunol 2024; 15:1421858. [PMID: 39582871 PMCID: PMC11581952 DOI: 10.3389/fimmu.2024.1421858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
The skin is the largest organ in the human body and is made up of various cells and structures. Over time, the skin will age, which is not only influenced by internal factors, but also by external environmental factors, especially ultraviolet radiation. Aging causes immune system weakening in the elderly, which makes them more susceptible to dermatosis, such as type 2 inflammatory mediated pruritus. The immune response in this condition is marked by senescent cells consistently releasing low amounts of pro-inflammatory cytokines through a senescence-associated secretory phenotype (SASP). This continuous inflammation may accelerate immune system aging and establish a connection between immune aging and type 2 inflammatory skin diseases. In addition, two chronic pigmentation disorders, vitiligo and chloasma, are also associated with skin aging. Aged cells escape the immune system and accumulate in tissues, forming a microenvironment that promotes cancer. At the same time, "photoaging" caused by excessive exposure to ultraviolet radiation is also an important cause of skin cancer. This manuscript describes the possible links between skin aging and type 2 inflammation, chronic pigmentation disorders, and skin cancer and suggests some treatment options.
Collapse
Affiliation(s)
- Meiqi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xuewen Huang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Shuwei Zhou
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Siyu Wang
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yan Zhou
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
- Department of Dermatology, Guangzhou Dermatology Hospital, Guangzhou, China
| | - Xuan Han
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
- First Clinical College of Changzhi Medical College, Changzhi, China
| | - Haoran Chen
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
2
|
Nishimura T, Nakatani E, Lin MC, Yamauchi H, Fukushima M, Hsu CY. Human life expectancy and season of birth in Taiwan: A retrospective cohort study. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2024; 111:55. [PMID: 39373747 PMCID: PMC11458742 DOI: 10.1007/s00114-024-01933-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 10/08/2024]
Abstract
Prior research has indicated a correlation between the birth season and life expectancy; however, many of these studies did not sufficiently account for comorbidities. In this comprehensive investigation, we aimed to meticulously explore the association between the birth month and life expectancy, giving due consideration to comorbidities. We used a robust dataset derived from Taiwan's National Health Insurance Research Database (2000-2013), which allowed us to conduct a thorough examination. We divided our participants into four groups based on their season of birth: spring, summer, autumn, and winter. Propensity score matching was used to ensure an equitable distribution of demographic and clinical characteristics across the groups. Propensity scores were computed using logistic regression. Our model incorporated a broad range of demographic factors and comorbidities, providing rigorous adjustment for potential confounders. Our findings revealed a significantly increased risk of all-cause mortality among individuals born in spring, even after stringent adjustment for demographic factors and comorbidities. People born in spring demonstrated a 1.05-fold increase in the risk of all-cause mortality, with a hazard ratio of 1.05 and a 95% confidence interval of 1.01-1.09. Our study provides compelling evidence that helps understand the potential long-term impacts of a person's birth season, which acts as a proxy for pregnancy / early-life environmental exposure, on life expectancy. These findings underscore the crucial need for additional research to illuminate the underlying biological and environmental mechanisms linking the birth season and lifespan of a person. The elucidation of these links could guide the development of innovative health promotion and disease prevention strategies that are tailored to an individual's birth season.
Collapse
Affiliation(s)
- Tsutomu Nishimura
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, 606-8507, Japan.
| | - Eiji Nakatani
- Department of Biostatistics and Health Data Science, Graduate School of Medical Science, Nagoya City University, Nagoya, 467-8601, Japan
| | - Mei-Chen Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, 404, Taiwan
| | - Hiroyuki Yamauchi
- Statistical Analysis Division, Earthquake Prediction Research Center, Tokyo, 103-0014, Japan
| | - Masanori Fukushima
- Intelligent Health Promotion Division, Learning Health Society Institute, Nagoya, 451-6005, Japan
| | - Chung Y Hsu
- Department of Biostatistics and Health Data Science, Graduate School of Medical Science, Nagoya City University, Nagoya, 467-8601, Japan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
| |
Collapse
|
3
|
Han F, Riaz F, Pu J, Gao R, Yang L, Wang Y, Song J, Liang Y, Wu Z, Li C, Tang J, Xu X, Wang X. Connecting the Dots: Telomere Shortening and Rheumatic Diseases. Biomolecules 2024; 14:1261. [PMID: 39456194 PMCID: PMC11506250 DOI: 10.3390/biom14101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Telomeres, repetitive sequences located at the extremities of chromosomes, play a pivotal role in sustaining chromosomal stability. Telomerase is a complex enzyme that can elongate telomeres by appending telomeric repeats to chromosome ends and acts as a critical factor in telomere dynamics. The gradual shortening of telomeres over time is a hallmark of cellular senescence and cellular death. Notably, telomere shortening appears to result from the complex interplay of two primary mechanisms: telomere shelterin complexes and telomerase activity. The intricate interplay of genetic, environmental, and lifestyle influences can perturb telomere replication, incite oxidative stress damage, and modulate telomerase activity, collectively resulting in shifts in telomere length. This age-related process of telomere shortening plays a considerable role in various chronic inflammatory and oxidative stress conditions, including cancer, cardiovascular disease, and rheumatic disease. Existing evidence has shown that abnormal telomere shortening or telomerase activity abnormalities are present in the pathophysiological processes of most rheumatic diseases, including different disease stages and cell types. The impact of telomere shortening on rheumatic diseases is multifaceted. This review summarizes the current understanding of the link between telomere length and rheumatic diseases in clinical patients and examines probable telomere shortening in peripheral blood mononuclear cells and histiocytes. Therefore, understanding the intricate interaction between telomere shortening and various rheumatic diseases will help in designing personalized treatment and control measures for rheumatic disease.
Collapse
Affiliation(s)
- Fang Han
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Farooq Riaz
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518000, China;
- Center for Cancer Immunology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Jincheng Pu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Ronglin Gao
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Lufei Yang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Yanqing Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Jiamin Song
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Yuanyuan Liang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Zhenzhen Wu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Chunrui Li
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Jianping Tang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Xianghuai Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China;
| | - Xuan Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| |
Collapse
|
4
|
Lundsgaard NU, Cramp RL, Franklin CE. Early exposure to UV radiation causes telomere shortening and poorer condition later in life. J Exp Biol 2022; 225:276293. [PMID: 35950364 PMCID: PMC9482364 DOI: 10.1242/jeb.243924] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
Abstract
Determining the contribution of elevated ultraviolet-B radiation (UVBR; 280–315 nm) to amphibian population declines is being hindered by a lack of knowledge about how different acute UVBR exposure regimes during early life-history stages might affect post-metamorphic stages via long-term carryover effects. We acutely exposed tadpoles of the Australian green tree frog (Litoria caerulea) to a combination of different UVBR irradiances and doses in a multi-factorial laboratory experiment, and then reared them to metamorphosis in the absence of UVBR to assess carryover effects in subsequent juvenile frogs. Dose and irradiance of acute UVBR exposure influenced carryover effects into metamorphosis in somewhat opposing manners. Higher doses of UVBR exposure in larvae yielded improved rates of metamorphosis. However, exposure at a high irradiance resulted in frogs metamorphosing smaller in size and in poorer condition than frogs exposed to low and medium irradiance UVBR as larvae. We also demonstrate some of the first empirical evidence of UVBR-induced telomere shortening in vivo, which is one possible mechanism for life-history trade-offs impacting condition post-metamorphosis. These findings contribute to our understanding of how acute UVBR exposure regimes in early life affect later life-history stages, which has implications for how this stressor may shape population dynamics. Summary: Ultraviolet radiation exposure in amphibian larvae generates detrimental carryover effects on body condition and relative telomere length post-metamorphosis, a mechanism that may influence amphibian population dynamics.
Collapse
Affiliation(s)
- Niclas U Lundsgaard
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
5
|
Telomere lengths in Barrett's esophagus as a precancerous lesion. Esophagus 2022; 19:287-293. [PMID: 34559348 DOI: 10.1007/s10388-021-00884-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/16/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND We have reported that precancerous conditions and lesions invariably have shorter telomeres and associated chromosomal instability relative to normal tissue. METHODS Using the Q-FISH method and our original software, Tissue Telo, we estimated telomere lengths in cardiac- and intestinal-type mucosae in 48 cases of Barrett's esophagus (short-segment (SS) n = 18; long-segment (LS) n = 30). RESULTS There were no significant differences in telomere length between the cardiac and intestinal types in any of the 48 cases, suggesting that the presence or absence of goblet cells in the columnar segments is unrelated to telomere-dependent chromosomal instability in Barrett's esophagus. In LS Barrett's esophagus, telomeres were shorter in cardiac-type than in intestinal-type mucosa, suggesting that the former may play a more important role than the latter as a precancerous lesion in LS. Telomeres in cardiac-type mucosa were longer in SS than in LS, supporting the possibility that cardiac-type LS may pose a higher risk as a precancerous lesion than cardiac-type SS. CONCLUSIONS Although it has been considered that Barrett's carcinoma arises only from intestinal-type mucosa, our present findings support previous histogenetic studies suggesting that cardiac-type mucosa is more important as a precancerous condition in Barrett's esophagus than anticipated.
Collapse
|
6
|
Csekes E, Račková L. Skin Aging, Cellular Senescence and Natural Polyphenols. Int J Mol Sci 2021; 22:12641. [PMID: 34884444 PMCID: PMC8657738 DOI: 10.3390/ijms222312641] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/13/2021] [Accepted: 11/18/2021] [Indexed: 01/10/2023] Open
Abstract
The skin, being the barrier organ of the body, is constitutively exposed to various stimuli impacting its morphology and function. Senescent cells have been found to accumulate with age and may contribute to age-related skin changes and pathologies. Natural polyphenols exert many health benefits, including ameliorative effects on skin aging. By affecting molecular pathways of senescence, polyphenols are able to prevent or delay the senescence formation and, consequently, avoid or ameliorate aging and age-associated pathologies of the skin. This review aims to provide an overview of the current state of knowledge in skin aging and cellular senescence, and to summarize the recent in vitro studies related to the anti-senescent mechanisms of natural polyphenols carried out on keratinocytes, melanocytes and fibroblasts. Aged skin in the context of the COVID-19 pandemic will be also discussed.
Collapse
Affiliation(s)
- Erika Csekes
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia
| | - Lucia Račková
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia
| |
Collapse
|
7
|
Low E, Alimohammadiha G, Smith LA, Costello LF, Przyborski SA, von Zglinicki T, Miwa S. How good is the evidence that cellular senescence causes skin ageing? Ageing Res Rev 2021; 71:101456. [PMID: 34487917 PMCID: PMC8524668 DOI: 10.1016/j.arr.2021.101456] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022]
Abstract
Skin is the largest organ of the body with important protective functions, which become compromised with time due to both intrinsic and extrinsic ageing processes. Cellular senescence is the primary ageing process at cell level, associated with loss of proliferative capacity, mitochondrial dysfunction and significantly altered patterns of expression and secretion of bioactive molecules. Intervention experiments have proven cell senescence as a relevant cause of ageing in many organs. In case of skin, accumulation of senescence in all major compartments with ageing is well documented and might be responsible for most, if not all, the molecular changes observed during ageing. Incorporation of senescent cells into in-vitro skin models (specifically 3D full thickness models) recapitulates changes typically associated with skin ageing. However, crucial evidence is still missing. A beneficial effect of senescent cell ablation on skin ageing has so far only been shown following rather unspecific interventions or in transgenic mouse models. We conclude that evidence for cellular senescence as a relevant cause of intrinsic skin ageing is highly suggestive but not yet completely conclusive.
Collapse
Affiliation(s)
- Evon Low
- Ageing Biology Laboratories, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Ghazaleh Alimohammadiha
- Ageing Biology Laboratories, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Lucy A Smith
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Lydia F Costello
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Stefan A Przyborski
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Thomas von Zglinicki
- Ageing Biology Laboratories, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| | - Satomi Miwa
- Ageing Biology Laboratories, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
8
|
Hecker M, Bühring J, Fitzner B, Rommer PS, Zettl UK. Genetic, Environmental and Lifestyle Determinants of Accelerated Telomere Attrition as Contributors to Risk and Severity of Multiple Sclerosis. Biomolecules 2021; 11:1510. [PMID: 34680143 PMCID: PMC8533505 DOI: 10.3390/biom11101510] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 02/06/2023] Open
Abstract
Telomeres are protective structures at the ends of linear chromosomes. Shortened telomere lengths (TL) are an indicator of premature biological aging and have been associated with a wide spectrum of disorders, including multiple sclerosis (MS). MS is a chronic inflammatory, demyelinating and neurodegenerative disease of the central nervous system. The exact cause of MS is still unclear. Here, we provide an overview of genetic, environmental and lifestyle factors that have been described to influence TL and to contribute to susceptibility to MS and possibly disease severity. We show that several early-life factors are linked to both reduced TL and higher risk of MS, e.g., adolescent obesity, lack of physical activity, smoking and vitamin D deficiency. This suggests that the mechanisms underlying the disease are connected to cellular aging and senescence promoted by increased inflammation and oxidative stress. Additional prospective research is needed to clearly define the extent to which lifestyle changes can slow down disease progression and prevent accelerated telomere loss in individual patients. It is also important to further elucidate the interactions between shared determinants of TL and MS. In future, cell type-specific studies and advanced TL measurement methods could help to better understand how telomeres may be causally involved in disease processes and to uncover novel opportunities for improved biomarkers and therapeutic interventions in MS.
Collapse
Affiliation(s)
- Michael Hecker
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany; (J.B.); (B.F.); (P.S.R.); (U.K.Z.)
| | - Jan Bühring
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany; (J.B.); (B.F.); (P.S.R.); (U.K.Z.)
| | - Brit Fitzner
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany; (J.B.); (B.F.); (P.S.R.); (U.K.Z.)
| | - Paulus Stefan Rommer
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany; (J.B.); (B.F.); (P.S.R.); (U.K.Z.)
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
| | - Uwe Klaus Zettl
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany; (J.B.); (B.F.); (P.S.R.); (U.K.Z.)
| |
Collapse
|
9
|
The Power of Stress: The Telo-Hormesis Hypothesis. Cells 2021; 10:cells10051156. [PMID: 34064566 PMCID: PMC8151059 DOI: 10.3390/cells10051156] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023] Open
Abstract
Adaptative response to stress is a strategy conserved across evolution to promote survival. In this context, the groundbreaking findings of Miroslav Radman on the adaptative value of changing mutation rates opened new avenues in our understanding of stress response. Inspired by this work, we explore here the putative beneficial effects of changing the ends of eukaryotic chromosomes, the telomeres, in response to stress. We first summarize basic principles in telomere biology and then describe how various types of stress can alter telomere structure and functions. Finally, we discuss the hypothesis of stress-induced telomere signaling with hormetic effects.
Collapse
|
10
|
Shoeb M, Meier HCS, Antonini JM. Telomeres in toxicology: Occupational health. Pharmacol Ther 2021; 220:107742. [PMID: 33176178 PMCID: PMC7969441 DOI: 10.1016/j.pharmthera.2020.107742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/03/2020] [Indexed: 12/24/2022]
Abstract
The ends of chromosomes shorten at each round of cell division, and this process is thought to be affected by occupational exposures. Occupational hazards may alter telomere length homeostasis resulting in DNA damage, chromosome aberration, mutations, epigenetic alterations and inflammation. Therefore, for the protection of genetic material, nature has provided a unique nucleoprotein structure known as a telomere. Telomeres provide protection by averting an inappropriate activation of the DNA damage response (DDR) at chromosomal ends and preventing recognition of single and double strand DNA (ssDNA and dsDNA) breaks or chromosomal end-to-end fusion. Telomeres and their interacting six shelterin complex proteins in coordination act as inhibitors of DNA damage machinery by blocking DDR activation at chromosomes, thereby preventing the occurrence of genome instability, perturbed cell cycle, cellular senescence and apoptosis. However, inappropriate DNA repair may result in the inadequate distribution of genetic material during cell division, resulting in the eventual development of tumorigenesis and other pathologies. This article reviews the current literature on the association of changes in telomere length and its interacting proteins with different occupational exposures and the potential application of telomere length or changes in the regulatory proteins as potential biomarkers for exposure and health response, including recent findings and future perspectives.
Collapse
Affiliation(s)
- Mohammad Shoeb
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States of America.
| | - Helen C S Meier
- Joseph J. Zilber School of Public Health, University of Wisconsin, Milwaukee, WI, United States of America
| | - James M Antonini
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States of America
| |
Collapse
|
11
|
Georgakopoulou EA, Valsamidi C, Veroutis D, Havaki S. The bright and dark side of skin senescence. Could skin rejuvenation anti-senescence interventions become a "bright" new strategy for the prevention of age-related skin pathologies? Mech Ageing Dev 2020; 193:111409. [PMID: 33249190 DOI: 10.1016/j.mad.2020.111409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/17/2020] [Accepted: 11/20/2020] [Indexed: 01/10/2023]
Abstract
The number of senescent cells in the skin is increasing with age. Numerous studies have attempted to elucidate the role of these cells in normal aging of the skin as well as in age-related skin conditions. In recent years, attempts have also been made to find treatments that aim either to cleanse the skin tissues of senescent cells or to neutralize their effects (referred to as senolytics and senomorphics respectively) and thus prevent the consequences, particularly on the skin's appearance in advanced age. Through this review, we have tried to gather data on the role of senescent cells in the skin, in treatments aimed at removing them, and we are asking a reasonable question as to whether anti-senescence treatments may contribute to the protection against age-related skin pathologies, including skin cancer, such as non-melanoma skin cancer, in addition to their involvement in skin rejuvenation.
Collapse
Affiliation(s)
- Eleni A Georgakopoulou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - Christina Valsamidi
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - Dimitrios Veroutis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece.
| |
Collapse
|
12
|
Abstract
Telomere repeats at chromosomal ends are essential for genome stability and sustained cellular proliferation but are susceptible to DNA damage. Repair of damage at telomeres is influenced by numerous factors including telomeric binding proteins, sequence and structure. Ultraviolet (UV) light irradiation induces DNA photoproducts at telomeres that can interfere with telomere maintenance. Here we describe a highly sensitive method for quantifying the formation and removal of UV photoproducts in telomeres isolated from UV irradiated cultured human cells. Damage is detected by immunospot blotting of telomeres with highly specific antibodies against UV photoproducts. This method is adaptable for measuring other types of DNA damage at telomeres as well.
Collapse
|
13
|
Aida J, Yokoyama A, Hara S, Ishizaki T, Fujiwara M, Arai T, Ishiwata T, Takubo K. Telomere shortening in the oral epithelium in relation to alcohol intake, alcohol dehydrogenase (ADH-1B), and acetaldehyde dehydrogenase (ALDH-2) genotypes and clinicopathologic features. J Oral Pathol Med 2019; 49:82-90. [PMID: 31402483 DOI: 10.1111/jop.12947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/04/2019] [Accepted: 08/06/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Progressive telomere shortening with age or chronic inflammation may lead to genomic instability that characterizes the early stage of carcinogenesis. Certain risk factors, such as drinking alcoholic beverages or smoking, predispose the oral mucosa to squamous cell carcinoma. The ADH1B and ALDH2 genotypes can influence the risk of cancer due to alcohol drinking. In the present study, we analyzed chromosomal instability due to telomere shortening in the oral mucosa in relation to cancer risk factors. DESIGN Using our quantitative fluorescence in situ hybridization (Q-FISH) technique, we estimated telomere lengths (TL) in the background mucosa from 23 cases of mucosal carcinoma, 12 cases of oral epithelial dysplasia, and 21 non-neoplasia cases. ALDH2 and ADH1B genotypes were determined using DNA extracted from paraffin sections. We analyzed TL in relation to alcohol drinking, smoking, and cancer multiplicity. RESULTS Telomeres in the backgrounds of dysplasia and mucosal carcinoma were significantly shorter than in controls. In comparison with adult controls, telomeres were significantly (P = .038) shorter in the ADH1B less-active type (ADH1B*1/*1), but not (P = .841) in the ALDH2 inactive type (ALDH2*1/*2 or *2/*2). Cancer multiplicity and smoking had no significant relationship with TL. CONCLUSION Telomeres in the oral epithelium are shorter in cases of oral dysplasia or mucosal carcinoma than in non-neoplasia. Unlike the esophageal epithelium of alcoholics, they are also shorter in individuals with the less-active rather than the active ADH1B gene. Telomeres in the oral epithelium may be directly affected by alcohol drinking.
Collapse
Affiliation(s)
- Junko Aida
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Akira Yokoyama
- Clinical Research Unit, National Hospital Organization Kurihama Alcoholism Center, Yokosuka, Kanagawa, Japan
| | - Sachiko Hara
- Department of Laboratory Medicine, National Hospital Organization Kurihama Alcoholism Center, Yokosuka, Kanagawa, Japan
| | - Tatsuro Ishizaki
- Human Care Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Mutsunori Fujiwara
- Department of Clinical Medicine, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Toshiyuki Ishiwata
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kaiyo Takubo
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
14
|
Cheng L, Montironi R, Davidson DD, Wang M, Lopez-Beltran A, Zhang S. Molecular evidence supporting the precursor nature of atypical adenomatous hyperplasia of the prostate. Mol Carcinog 2019; 58:1272-1278. [PMID: 30920030 DOI: 10.1002/mc.23009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 02/03/2023]
Abstract
Atypical adenomatous hyperplasia (AAH) of the prostate is characterized by lobular proliferation of closely packed small acini. It is hypothesized that AAH is a precursor lesion for low-grade prostate cancer arising from the transition zone. Telomere dysfunction is common during malignant transformation of epithelia. In this study, we investigate telomere shortening in AAH (n = 93), high-grade prostatic intraepithelial neoplasia (HGPIN) ( n = 68), and prostatic adenocarcinoma (PCA) ( n = 70) using quantitative fluorescence in situ hybridization. Twenty percent (19 of 93) of AAH specimens, 68% (46 of 68) of HGPIN, and 83% (58 of 70) of PCA showed significant telomere shortening. Thirty-two percent of AAH lesions had α-methylacyl-CoA racemase (AMACR) expression, a sensitive and specific marker for HGPIN and PCA. AMACR expression in AAH was seen more frequently in AAH foci with telomere shortening or coexisting PCA. Our findings indicate that a subset of AAH lesions have telomere shortening and AMACR expression, suggesting that these foci may be precursors for PCA.
Collapse
Affiliation(s)
- Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Urology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Rodolfo Montironi
- Department of Pathological Anatomy and Histopathology, School of Medicine, Polytechnic University of the Marche Region (Ancona), Ancona, Italy
| | - Darrell D Davidson
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mingsheng Wang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Antonio Lopez-Beltran
- Department of Pathology and Surgery, Faculty of Medicine, Cordoba University, Cordoba, Spain.,Pathology Service, Champalimaud Clinical Center, Lisbon, Portugal
| | - Shaobo Zhang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
15
|
Wang AS, Dreesen O. Biomarkers of Cellular Senescence and Skin Aging. Front Genet 2018; 9:247. [PMID: 30190724 PMCID: PMC6115505 DOI: 10.3389/fgene.2018.00247] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023] Open
Abstract
Cellular senescence is an irreversible growth arrest that occurs as a result of different damaging stimuli, including DNA damage, telomere shortening and dysfunction or oncogenic stress. Senescent cells exert a pleotropic effect on development, tissue aging and regeneration, inflammation, wound healing and tumor suppression. Strategies to remove senescent cells from aging tissues or preneoplastic lesions can delay tissue dysfunction and lead to increased healthspan. However, a significant hurdle in the aging field has been the identification of a universal biomarker that facilitates the unequivocal detection and quantification of senescent cell types in vitro and in vivo. Mammalian skin is the largest organ of the human body and consists of different cell types and compartments. Skin provides a physical barrier against harmful microbes, toxins, and protects us from ultraviolet radiation. Increasing evidence suggests that senescent cells accumulate in chronologically aged and photoaged skin; and may contribute to age-related skin changes and pathologies. Here, we highlight current biomarkers to detect senescent cells and review their utility in the context of skin aging. In particular, we discuss the efficacy of biomarkers to detect senescence within different skin compartments and cell types, and how they may contribute to myriad manifestations of skin aging and age-related skin pathologies.
Collapse
Affiliation(s)
- Audrey S Wang
- Cell Ageing, Skin Research Institute of Singapore (SRIS), A∗STAR, Singapore, Singapore
| | - Oliver Dreesen
- Cell Ageing, Skin Research Institute of Singapore (SRIS), A∗STAR, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
16
|
Zhang C, Kibriya MG, Jasmine F, Roy S, Gao J, Sabarinathan M, Shinkle J, Delgado D, Ahmed A, Islam T, Eunus M, Islam MT, Hasan R, Graziano JH, Ahsan H, Pierce BL. A study of telomere length, arsenic exposure, and arsenic toxicity in a Bangladeshi cohort. ENVIRONMENTAL RESEARCH 2018; 164:346-355. [PMID: 29567420 PMCID: PMC6647858 DOI: 10.1016/j.envres.2018.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/02/2018] [Accepted: 03/03/2018] [Indexed: 06/01/2023]
Abstract
BACKGROUND Chronic arsenic exposure is associated with increased risk for arsenical skin lesions, cancer, and other adverse health outcomes. One potential mechanism of arsenic toxicity is telomere dysfunction. However, prior epidemiological studies of arsenic exposure, telomere length (TL), and skin lesion are small and cross-sectional. We investigated the associations between arsenic exposure and TL and between baseline TL and incident skin lesion risk among individuals participating in the Health Effects of Arsenic Longitudinal Study in Bangladesh (2000-2009). METHODS Quantitative PCR was used to measure the average TL of peripheral blood DNA collected at baseline. The association between baseline arsenic exposure (well water and urine) and TL was estimated in a randomly-selected subcohort (n = 1469). A nested case-control study (466 cases and 464 age- and sex-matched controls) was used to estimate the association between baseline TL and incident skin lesion risk (diagnosed < 8 years after baseline). RESULTS No association was observed between arsenic exposure (water or urine) and TL. Among incident skin lesion cases and matched controls, we observed higher skin lesion risk among individuals with shorter TL (Ptrend = 1.5 × 10-5) with odds ratios of 2.60, 1.59, and 1.10 for the first (shortest), second, and third TL quartiles compared to the fourth (longest). CONCLUSIONS Arsenic exposure was not associated with TL among Bangladeshi adults, suggesting that leukocyte TL may not reflect a primary mode of action for arsenic's toxicity. However, short TL was associated with increased skin lesion risk, and may be a biomarker of arsenic susceptibility modifying arsenic's effect on skin lesion risk.
Collapse
Affiliation(s)
- Chenan Zhang
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, United States
| | - Muhammad G Kibriya
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States
| | - Farzana Jasmine
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States
| | - Shantanu Roy
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States; Centers for Disease Control and Prevention, Atlanta, GA 30329, United States
| | - Jianjun Gao
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States
| | - Mekala Sabarinathan
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States
| | - Justin Shinkle
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States
| | - Dayana Delgado
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States
| | | | | | | | | | | | - Joseph H Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, United States
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States; Department of Human Genetics, University of Chicago, Chicago, IL 60615, United States; Comprehensive Cancer Center, University of Chicago, Chicago, IL 60615, United States; Department of Medicine, University of Chicago, Chicago, IL 60615, United States
| | - Brandon L Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States; Department of Human Genetics, University of Chicago, Chicago, IL 60615, United States; Comprehensive Cancer Center, University of Chicago, Chicago, IL 60615, United States.
| |
Collapse
|
17
|
Aoki Y, Aida J, Kawano Y, Nakamura KI, Izumiyama-Shimomura N, Ishikawa N, Arai T, Nakamura Y, Taniai N, Uchida E, Takubo K, Ishiwata T. Telomere length of gallbladder epithelium is shortened in patients with congenital biliary dilatation: measurement by quantitative fluorescence in situ hybridization. J Gastroenterol 2018; 53:291-301. [PMID: 29143121 DOI: 10.1007/s00535-017-1411-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Congenital biliary dilatation (CBD) is a congenital malformation involving both dilatation of the extrahepatic bile duct and pancreaticobiliary maljunction. Persistent reflux of pancreatic juice injures the biliary tract mucosa, resulting in chronic inflammation and higher rates of carcinogenesis in the biliary tract, including the gallbladder. Telomeres are repetitive DNA sequences located at the ends of chromosomes. Chromosomal instability due to telomere dysfunction plays an important role in the carcinogenesis of many organs. This study was performed to determine whether excessive shortening of telomeres occurs in the gallbladder mucosa of patients with CBD. METHODS Resected gallbladders were obtained from 17 patients with CBD, ten patients with cholecystolithiasis without pancreatic juice reflux, and 17 patients with normal gallbladders (controls) (median age of each group of patients: 37, 50, and 53 years, respectively). The telomere lengths of the gallbladder epithelium were measured by quantitative fluorescence in situ hybridization using tissue sections, and the normalized telomere-to-centromere ratio (NTCR) was calculated. RESULTS The NTCRs in the CBD, cholecystolithiasis, and control groups were 1.24 [interquartile range (IQR) 1.125-1.52], 1.96 (IQR 1.56-2.295), and 1.77 (IQR 1.48-2.53), respectively. The NTCR in the CBD group was significantly smaller than that in the cholecystolithiasis and control groups (p = 0.003 and 0.004, respectively), even in young patients. CONCLUSIONS Our findings indicate that telomere shortening in the gallbladder mucosa plays an important role in the process of carcinogenesis in patients with CBD. These results support the recommendation of established guidelines for prophylactic surgery in patients with CBD because CBD is a premalignant condition with excessive telomere shortening.
Collapse
Affiliation(s)
- Yuto Aoki
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan.
- Research Team for Geriatric Pathology and Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan.
| | - Junko Aida
- Research Team for Geriatric Pathology and Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Youichi Kawano
- Research Team for Geriatric Pathology and Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
- Department of Surgery, Nippon Medical School Chiba Hokusoh Hospital, Chiba, Japan
| | - Ken-Ichi Nakamura
- Research Team for Geriatric Pathology and Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Naotaka Izumiyama-Shimomura
- Research Team for Geriatric Pathology and Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Naoshi Ishikawa
- Research Team for Geriatric Pathology and Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Yoshiharu Nakamura
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Nobuhiko Taniai
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Eiji Uchida
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Kaiyo Takubo
- Research Team for Geriatric Pathology and Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Toshiyuki Ishiwata
- Research Team for Geriatric Pathology and Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan.
| |
Collapse
|
18
|
Yamada-Hishida H, Nobeyama Y, Nakagawa H. Correlation of telomere length to malignancy potential in non-melanoma skin cancers. Oncol Lett 2017; 15:393-399. [PMID: 29285197 DOI: 10.3892/ol.2017.7278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/22/2017] [Indexed: 01/25/2023] Open
Abstract
Telomeres are associated with cell fate and aging through their role in the cellular response to stress and growth stimulation resulting from previous cell divisions and DNA damage. Telomere shortening has been observed in most human cancers, and is known to be a feature of malignancy. The aim of this study is to clarify whether telomere length is related to the malignant potential of non-melanoma skin cancers. Telomere length was analyzed using tissue quantitative fluorescence in situ hybridization in 36 non-melanoma skin cancers including basal cell carcinoma (BCC), squamous cell carcinoma (SCC), Bowen's disease (BD) and actinic keratosis (AK), and also in 26 samples of normal-appearing epidermal tissue surrounding or located close to each tumor. The fluorescence intensities of telomeres and centromeres within nuclei were determined, and the telomere-centromere ratio (TCR) was then calculated in each sample. The resulting histograms suggested that the TCR values for each type of tumor cell were distributed in a lower range than those for epidermal cells located close to the corresponding tumor type, and that the TCR values for SCC and BCC cells were distributed in a lower range than those for BD and AK cells. These results were completely consistent with the potential for metastasis and invasion of each tumor type, suggesting that telomere length in non-melanoma skin cancer cells is intrinsically linked to their biological behavior.
Collapse
Affiliation(s)
- Hanae Yamada-Hishida
- Department of Dermatology, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Yoshimasa Nobeyama
- Department of Dermatology, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Hidemi Nakagawa
- Department of Dermatology, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| |
Collapse
|
19
|
Ishikawa N, Nakamura KI, Izumiyama-Shimomura N, Aida J, Matsuda Y, Arai T, Takubo K. Changes of telomere status with aging: An update. Geriatr Gerontol Int 2017; 16 Suppl 1:30-42. [PMID: 27018281 DOI: 10.1111/ggi.12772] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2016] [Indexed: 12/13/2022]
Abstract
Accumulated data have shown that most human somatic cells or tissues show irreversible telomere shortening with age, and that there are strong associations between telomere attrition and aging-related diseases, including cancers, diabetes and cognitive disorders. Although it has been largely accepted that telomere attrition is one of the major causes of aging-related disorders, critical aspects of telomere biology remain unresolved, especially the lack of standardized methodology for quantification of telomere length. Another frustrating issue is that no potentially promising methods for safe prevention of telomere erosion, or for telomere elongation, have been devised. Here, we review several methods for quantification of telomere length currently utilized worldwide, considering their advantages and drawbacks. We also summarize the results of our recent studies of human cells and tissues, mainly using quantitative fluorescence in situ hybridization and Southern blotting, including those derived from patients with progeria-prone Werner syndrome and trisomy 21, and several strains of induced pluripotent stem cells. We discuss the possible merits of using telomere shortness as an indicator, or a new marker, for diagnosis of precancerous states and aging-related disorders. In addition, we describe newly found factors that are thought to impact telomere dynamics, providing a new avenue for examining the unsolved issues related to telomere restoration and maintenance.
Collapse
Affiliation(s)
- Naoshi Ishikawa
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Ken-Ichi Nakamura
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | | | - Junko Aida
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Yoko Matsuda
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Tomio Arai
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Kaiyo Takubo
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| |
Collapse
|
20
|
Fouquerel E, Opresko P. Convergence of The Nobel Fields of Telomere Biology and DNA Repair. Photochem Photobiol 2017; 93:229-237. [PMID: 27861975 PMCID: PMC5315637 DOI: 10.1111/php.12672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/26/2016] [Indexed: 02/02/2023]
Abstract
The fields of telomere biology and DNA repair have enjoyed a great deal of cross-fertilization and convergence in recent years. Telomeres function at chromosome ends to prevent them from being falsely recognized as chromosome breaks by the DNA damage response and repair machineries. Conversely, both canonical and nonconical functions of numerous DNA repair proteins have been found to be critical for preserving telomere structure and function. In 2009, Elizabeth Blackburn, Carol Greider and Jack Szostak were awarded the Nobel prize in Physiology or Medicine for the discovery of telomeres and telomerase. Four years later, pioneers in the field of DNA repair, Aziz Sancar, Tomas Lindahl and Paul Modrich were recognized for their seminal contributions by being awarded the Nobel Prize in Chemistry. This review is part of a special issue meant to celebrate this amazing achievement, and will focus in particular on the convergence of nucleotide excision repair and telomere biology, and will discuss the profound implications for human health.
Collapse
Affiliation(s)
- Elise Fouquerel
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, University of Pittsburgh Cancer Institute Research Pavilion, 5117 Centre Avenue, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Patricia Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, University of Pittsburgh Cancer Institute Research Pavilion, 5117 Centre Avenue, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
21
|
Menin C, Bojnik E, Del Bianco P, Elefanti L, Gianesin K, Keppel S, Stagni C, Mocellin S, Vecchiato A, De Rossi A. Differences in telomere length between sporadic and familial cutaneous melanoma. Br J Dermatol 2016; 175:937-943. [PMID: 27061190 DOI: 10.1111/bjd.14652] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Several pieces of evidence indicate that a complex relationship exists between constitutional telomere length (TL) and the risk of cutaneous melanoma. Although the general perception is that longer telomeres increase melanoma risk, some studies do not support this association. We hypothesize that discordant data are due to the characteristics of the studied populations. OBJECTIVES To evaluate the association of TL with familial and sporadic melanoma. MATERIALS AND METHODS TL was measured by multiplex quantitative polymerase chain reaction in leukocytes from 310 patients with melanoma according to familial/sporadic and single/multiple cancers and 216 age-matched controls. RESULTS Patients with sporadic melanoma were found to have shorter telomeres compared with those with familial melanoma. In addition, shorter telomeres, while tending to reduce the risk of familial melanoma regardless of single or multiple tumours, nearly trebled the risk of single sporadic melanoma. CONCLUSIONS This is the first time that TL has been correlated to opposite effects on melanoma risk according to the presence or absence of familial predisposition. Individual susceptibility to melanoma should be taken into account when assessing the role of TL as a risk factor.
Collapse
Affiliation(s)
- C Menin
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, via Gattamelata 64, 35128, Padova, Italy.
| | - E Bojnik
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128, Padova, Italy
| | - P Del Bianco
- Clinical Trials and Biostatistics Unit, Veneto Institute of Oncology, IOV-IRCCS, via Gattamelata 64, 35128, Padova, Italy
| | - L Elefanti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, via Gattamelata 64, 35128, Padova, Italy
| | - K Gianesin
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128, Padova, Italy
| | - S Keppel
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, via Gattamelata 64, 35128, Padova, Italy
| | - C Stagni
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128, Padova, Italy
| | - S Mocellin
- Surgery Branch, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128, Padova, Italy
| | - A Vecchiato
- Oncology Surgery Unit, Veneto Institute of Oncology, IOV-IRCCS, via Gattamelata 64, 35128, Padova, Italy
| | - A De Rossi
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, via Gattamelata 64, 35128, Padova, Italy.,Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128, Padova, Italy
| |
Collapse
|
22
|
Parikh D, Fouquerel E, Murphy CT, Wang H, Opresko PL. Telomeres are partly shielded from ultraviolet-induced damage and proficient for nucleotide excision repair of photoproducts. Nat Commun 2015; 6:8214. [PMID: 26351258 PMCID: PMC4566151 DOI: 10.1038/ncomms9214] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/29/2015] [Indexed: 12/12/2022] Open
Abstract
Ultraviolet light induces cyclobutane pyrimidine dimers (CPD) and pyrimidine(6–4)pyrimidone photoproducts, which interfere with DNA replication and transcription. Nucleotide excision repair (NER) removes these photoproducts, but whether NER functions at telomeres is unresolved. Here we use immunospot blotting to examine the efficiency of photoproduct formation and removal at telomeres purified from UVC irradiated cells at various recovery times. Telomeres exhibit approximately twofold fewer photoproducts compared with the bulk genome in cells, and telomere-binding protein TRF1 significantly reduces photoproduct formation in telomeric fragments in vitro. CPD removal from telomeres occurs 1.5-fold faster than the bulk genome, and is completed by 48 h. 6–4PP removal is rapidly completed by 6 h in both telomeres and the overall genome. A requirement for XPA protein indicates the mechanism of telomeric photoproduct removal is NER. These data provide new evidence that telomeres are partially protected from ultraviolet irradiation and that NER preserves telomere integrity. DNA damage caused by ultraviolet irradiation is removed from the genome by nucleotide excision repair; however, it is unclear if this occurs at chromosome ends. Here the authors provide evidence indicating that telomeres are partially shielded from damage and that repair is fully functional.
Collapse
Affiliation(s)
- Dhvani Parikh
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Elise Fouquerel
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213, USA
| | - Connor T Murphy
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - Hong Wang
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.,University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213, USA.,Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA.,Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
23
|
Matsuda Y, Ishiwata T, Izumiyama-Shimomura N, Hamayasu H, Fujiwara M, Tomita KI, Hiraishi N, Nakamura KI, Ishikawa N, Aida J, Takubo K, Arai T. Gradual telomere shortening and increasing chromosomal instability among PanIN grades and normal ductal epithelia with and without cancer in the pancreas. PLoS One 2015; 10:e0117575. [PMID: 25658358 PMCID: PMC4319908 DOI: 10.1371/journal.pone.0117575] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/28/2014] [Indexed: 12/15/2022] Open
Abstract
A large body of evidence supports a key role for telomere dysfunction in carcinogenesis due to the induction of chromosomal instability. To study telomere shortening in precancerous pancreatic lesions, we measured telomere lengths using quantitative fluorescence in situ hybridization in the normal pancreatic duct epithelium, pancreatic intraepithelial neoplasias (PanINs), and cancers. The materials employed included surgically resected pancreatic specimens without cancer (n = 33) and with invasive ductal carcinoma (n = 36), as well as control autopsy cases (n = 150). In comparison with normal ducts, telomere length was decreased in PanIN-1, −2 and −3 and cancer. Furthermore, telomeres were shorter in cancer than in PanIN-1 and −2. Telomere length in cancer was not associated with histological type, lesion location, or cancer stage. PanINs with or without cancer showed similar telomere lengths. The incidences of atypical mitosis and anaphase bridges, which are morphological characteristics of chromosomal instability, were negatively correlated with telomere length. The telomeres in normal duct epithelium became shorter with aging, and those in PanINs or cancers were shorter than in age-matched controls, suggesting that telomere shortening occurs even when histological changes are absent. Our data strongly suggest that telomere shortening occurs in the early stages of pancreatic carcinogenesis and progresses with precancerous development. Telomere shortening and chromosomal instability in the duct epithelium might be associated with carcinogenesis of the pancreas. Determination of telomere length in pancreatic ductal lesions may be valuable for accurate detection and risk assessment of pancreatic cancer.
Collapse
Affiliation(s)
- Yoko Matsuda
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
- * E-mail: (YM); (KT)
| | - Toshiyuki Ishiwata
- Department of Integrated Diagnostic Pathology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Naotaka Izumiyama-Shimomura
- Research Team for Geriatric Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Hideki Hamayasu
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Mutsunori Fujiwara
- Department of Pathology, Japanese Red Cross Medical Center, 4-1-22 Hiroo, Shibuya-ku, Tokyo, 150-8935, Japan
| | - Ken-ichiro Tomita
- Department of Pathology, Japanese Red Cross Medical Center, 4-1-22 Hiroo, Shibuya-ku, Tokyo, 150-8935, Japan
| | - Naoki Hiraishi
- Department of Laboratory Medicine, Hadano Red Cross Hospital, Hadano, Kanagawa, 257-0017, Japan
| | - Ken-ichi Nakamura
- Research Team for Geriatric Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Naoshi Ishikawa
- Research Team for Geriatric Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Junko Aida
- Research Team for Geriatric Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kaiyo Takubo
- Research Team for Geriatric Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
- * E-mail: (YM); (KT)
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| |
Collapse
|
24
|
Aida J, Izumiyama-Shimomura N, Nakamura KI, Ishikawa N, Terai M, Matsuda Y, Aida S, Arai T, Takubo K. Determination of Telomere Length by the Quantitative Fluorescence <i>in Situ</i> Hybridization (Q-FISH) Method. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ajac.2014.512086] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|