1
|
Yang Y, Zhu G, Yang L, Yang Y. Targeting CD24 as a novel immunotherapy for solid cancers. Cell Commun Signal 2023; 21:312. [PMID: 37919766 PMCID: PMC10623753 DOI: 10.1186/s12964-023-01315-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/13/2023] [Indexed: 11/04/2023] Open
Abstract
Cluster of differentiation 24 (CD24), a mucin-like highly glycosylated molecule has been extensively studied as a cancer stem cell marker in a variety of solid cancers. The functional role of CD24 is either fulfilled by combining with ligands or participating in signal transduction, which mediate the initiation and progression of neoplasms. Recently, CD24 was also described as an innate immune checkpoint with apparent significance in several types of solid cancers. Herein, we review the current understanding of the molecular fundamentals of CD24, the role of CD24 in tumorigenesis and cancer progression, the possibility as a promising therapeutic target and summarized different therapeutic agents or strategies targeting CD24 in solid cancers. Video Abstract.
Collapse
Affiliation(s)
- Yan Yang
- Xinxiang Engineering Technology Research Center of Tumor-Targeted Drug Development, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453000, Henan, China
| | - Guangming Zhu
- Clinical Laboratory, The First People's Hospital of Taian, Taian 271000, Shandong, China
| | - Li Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, Zhengzhou, 450052, Henan, China
| | - Yun Yang
- Xinxiang Engineering Technology Research Center of Tumor-Targeted Drug Development, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453000, Henan, China.
| |
Collapse
|
2
|
Wilczyński JR, Wilczyński M, Paradowska E. "DEPHENCE" system-a novel regimen of therapy that is urgently needed in the high-grade serous ovarian cancer-a focus on anti-cancer stem cell and anti-tumor microenvironment targeted therapies. Front Oncol 2023; 13:1201497. [PMID: 37448521 PMCID: PMC10338102 DOI: 10.3389/fonc.2023.1201497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Ovarian cancer, especially high-grade serous type, is the most lethal gynecological malignancy. The lack of screening programs and the scarcity of symptomatology result in the late diagnosis in about 75% of affected women. Despite very demanding and aggressive surgical treatment, multiple-line chemotherapy regimens and both approved and clinically tested targeted therapies, the overall survival of patients is still unsatisfactory and disappointing. Research studies have recently brought some more understanding of the molecular diversity of the ovarian cancer, its unique intraperitoneal biology, the role of cancer stem cells, and the complexity of tumor microenvironment. There is a growing body of evidence that individualization of the treatment adjusted to the molecular and biochemical signature of the tumor as well as to the medical status of the patient should replace or supplement the foregoing therapy. In this review, we have proposed the principles of the novel regimen of the therapy that we called the "DEPHENCE" system, and we have extensively discussed the results of the studies focused on the ovarian cancer stem cells, other components of cancer metastatic niche, and, finally, clinical trials targeting these two environments. Through this, we have tried to present the evolving landscape of treatment options and put flesh on the experimental approach to attack the high-grade serous ovarian cancer multidirectionally, corresponding to the "DEPHENCE" system postulates.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, Lodz, Poland
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother's Health Center-Research Institute, Lodz, Poland
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
3
|
Wilczyński JR, Wilczyński M, Paradowska E. Cancer Stem Cells in Ovarian Cancer-A Source of Tumor Success and a Challenging Target for Novel Therapies. Int J Mol Sci 2022; 23:ijms23052496. [PMID: 35269636 PMCID: PMC8910575 DOI: 10.3390/ijms23052496] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Ovarian cancer is the most lethal neoplasm of the female genital organs. Despite indisputable progress in the treatment of ovarian cancer, the problems of chemo-resistance and recurrent disease are the main obstacles for successful therapy. One of the main reasons for this is the presence of a specific cell population of cancer stem cells. The aim of this review is to show the most contemporary knowledge concerning the biology of ovarian cancer stem cells (OCSCs) and their impact on chemo-resistance and prognosis in ovarian cancer patients, as well as to present the treatment options targeted exclusively on the OCSCs. The review presents data concerning the role of cancer stem cells in general and then concentrates on OCSCs. The surface and intracellular OCSCs markers and their meaning both for cancer biology and clinical prognosis, signaling pathways specifically activated in OCSCs, the genetic and epigenetic regulation of OCSCs function including the recent studies on the non-coding RNA regulation, cooperation between OCSCs and the tumor microenvironment (ovarian cancer niche) including very specific environment such as ascites fluid, the role of shear stress, autophagy and metabolic changes for the function of OCSCs, and finally mechanisms of OCSCs escape from immune surveillance, are described and discussed extensively. The possibilities of anti-OCSCs therapy both in experimental settings and in clinical trials are presented, including the recent II phase clinical trials and immunotherapy. OCSCs are a unique population of cancer cells showing a great plasticity, self-renewal potential and resistance against anti-cancer treatment. They are responsible for the progression and recurrence of the tumor. Several completed and ongoing clinical trials have tested different anti-OCSCs drugs which, however, have shown unsatisfactory efficacy in most cases. We propose a novel approach to ovarian cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
- Correspondence:
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother’s Health Center—Research Institute, 281/289 Rzgowska Str., 93-338 Lodz, Poland;
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland;
| |
Collapse
|
4
|
Johnson RL, Cummings M, Thangavelu A, Theophilou G, de Jong D, Orsi NM. Barriers to Immunotherapy in Ovarian Cancer: Metabolic, Genomic, and Immune Perturbations in the Tumour Microenvironment. Cancers (Basel) 2021; 13:6231. [PMID: 34944851 PMCID: PMC8699358 DOI: 10.3390/cancers13246231] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
A lack of explicit early clinical signs and effective screening measures mean that ovarian cancer (OC) often presents as advanced, incurable disease. While conventional treatment combines maximal cytoreductive surgery and platinum-based chemotherapy, patients frequently develop chemoresistance and disease recurrence. The clinical application of immune checkpoint blockade (ICB) aims to restore anti-cancer T-cell function in the tumour microenvironment (TME). Disappointingly, even though tumour infiltrating lymphocytes are associated with superior survival in OC, ICB has offered limited therapeutic benefits. Herein, we discuss specific TME features that prevent ICB from reaching its full potential, focussing in particular on the challenges created by immune, genomic and metabolic alterations. We explore both recent and current therapeutic strategies aiming to overcome these hurdles, including the synergistic effect of combination treatments with immune-based strategies and review the status quo of current clinical trials aiming to maximise the success of immunotherapy in OC.
Collapse
Affiliation(s)
- Racheal Louise Johnson
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Michele Cummings
- Leeds Institute of Medical Research, St. James’s University Hospital, Leeds LS9 7TF, UK; (M.C.); (N.M.O.)
| | - Amudha Thangavelu
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Georgios Theophilou
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Diederick de Jong
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Nicolas Michel Orsi
- Leeds Institute of Medical Research, St. James’s University Hospital, Leeds LS9 7TF, UK; (M.C.); (N.M.O.)
| |
Collapse
|
5
|
Ni YH, Zhao X, Wang W. CD24, A Review of its Role in Tumor Diagnosis, Progression and Therapy. Curr Gene Ther 2021; 20:109-126. [PMID: 32576128 DOI: 10.2174/1566523220666200623170738] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 02/08/2023]
Abstract
CD24, is a mucin-like GPI-anchored molecules. By immunohistochemistry, it is widely detected in many solid tumors, such as breast cancers, genital system cancers, digestive system cancers, neural system cancers and so on. The functional roles of CD24 are either fulfilled by combination with ligands or participate in signal transduction, which mediate the initiation and progression of neoplasms. However, the character of CD24 remains to be intriguing because there are still opposite voices about the impact of CD24 on tumors. In preclinical studies, CD24 target therapies, including monoclonal antibodies, target silencing by RNA interference and immunotherapy, have shown us brighten futures on the anti-tumor application. Nevertheless, evidences based on clinical studies are urgently needed. Here, with expectancy to spark new ideas, we summarize the relevant studies about CD24 from a tumor perspective.
Collapse
Affiliation(s)
- Yang-Hong Ni
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041, Sichuan, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041, Sichuan, China
| |
Collapse
|
6
|
Nagare RP, Sneha S, Sidhanth C, Roopa S, Murhekar K, Shirley S, Swaminathan R, Sridevi V, Ganesan TS. Expression of cancer stem cell markers CD24, EPHA1 and CD9 and their correlation with clinical outcome in epithelial ovarian tumours. Cancer Biomark 2021; 28:397-408. [PMID: 32224528 DOI: 10.3233/cbm-201463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND There has been variability between laboratories in the identification of cancer stem cells (CSCs) markers for epithelial ovarian cancer (EOC). We have evaluated three new surface markers for EOC to identify CSCs precisely. METHODS Three new putative CSCs specific surface markers CD9, CD24 and EPHA1 identified by a bioinformatics approach were evaluated in normal ovary, fallopian tube and ovarian tumours. RESULTS The expression of CD9 alone was observed in normal ovarian surface epithelium and fallopian tube whereas CD24 and EPHA1 were not expressed (n= 5). CD24 was expressed in all tumours (N= 101) while CD9 and EPHA1 were expressed in 89 and 71 tumours, respectively. The statistical analysis showed significant correlation of the stage of the disease (p< 0.0001), type of surgery (p< 0.0001) and residual disease (p< 0.0001) with overall survival. Although expression of CD9, CD24 and EPHA1 was observed in the majority of tumours there was no significant correlation with outcome. In patients who underwent primary surgery, increased expression of CD24 significantly correlated with poor survival. The expression of CD24 was significantly reduced (p< 0.002) upon analysis of paired sections from patients prior to surgery and at interval debulking surgery (n= 16). CONCLUSION These findings suggest that overexpression of these new markers may be useful in identifying and targeting ovarian CSCs and CD24 may be a putative CSCs marker in ovarian cancer.
Collapse
Affiliation(s)
- Rohit Pravin Nagare
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical research, Cancer Institute (WIA), Chennai, Tamilnadu, India
| | - Smarakan Sneha
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical research, Cancer Institute (WIA), Chennai, Tamilnadu, India
| | - Chirukandath Sidhanth
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical research, Cancer Institute (WIA), Chennai, Tamilnadu, India
| | - S Roopa
- Department of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, Tamilnadu, India
| | - Kanchan Murhekar
- Department of Pathology, Cancer Institute (WIA), Chennai, Tamilnadu, India
| | | | - Rajaraman Swaminathan
- Division of Epidemiology and Cancer Registry, Cancer Institute (WIA), Chennai, Tamilnadu, India
| | - Velusamy Sridevi
- Department of Surgical Oncology, Cancer Institute (WIA), Chennai, Tamilnadu, India
| | - Trivadi Sundaram Ganesan
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical research, Cancer Institute (WIA), Chennai, Tamilnadu, India.,Department of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, Tamilnadu, India
| |
Collapse
|
7
|
The Emerging Role of CD24 in Cancer Theranostics-A Novel Target for Fluorescence Image-Guided Surgery in Ovarian Cancer and Beyond. J Pers Med 2020; 10:jpm10040255. [PMID: 33260974 PMCID: PMC7712410 DOI: 10.3390/jpm10040255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Complete cytoreductive surgery is the cornerstone of the treatment of epithelial ovarian cancer (EOC). The application of fluorescence image-guided surgery (FIGS) allows for the increased intraoperative visualization and delineation of malignant lesions by using fluorescently labeled targeting biomarkers, thereby improving intraoperative guidance. CD24, a small glycophosphatidylinositol-anchored cell surface receptor, is overexpressed in approximately 70% of solid cancers, and has been proposed as a prognostic and therapeutic tumor-specific biomarker for EOC. Recently, preclinical studies have demonstrated the benefit of CD24-targeted contrast agents for non-invasive fluorescence imaging, as well as improved tumor resection by employing CD24-targeted FIGS in orthotopic patient-derived xenograft models of EOC. The successful detection of miniscule metastases denotes CD24 as a promising biomarker for the application of fluorescence-guided surgery in EOC patients. The aim of this review is to present the clinical and preclinically evaluated biomarkers for ovarian cancer FIGS, highlight the strengths of CD24, and propose a future bimodal approach combining CD24-targeted fluorescence imaging with radionuclide detection and targeted therapy.
Collapse
|
8
|
Kleinmanns K, Fosse V, Davidson B, de Jalón EG, Tenstad O, Bjørge L, McCormack E. CD24-targeted intraoperative fluorescence image-guided surgery leads to improved cytoreduction of ovarian cancer in a preclinical orthotopic surgical model. EBioMedicine 2020; 56:102783. [PMID: 32454402 PMCID: PMC7248677 DOI: 10.1016/j.ebiom.2020.102783] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/03/2020] [Accepted: 04/21/2020] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND The completeness of resection is a key prognostic indicator in patients with ovarian cancer, and the application of tumour-targeted fluorescence image-guided surgery (FIGS) has led to improved detection of peritoneal metastases during cytoreductive surgery. CD24 is highly expressed in ovarian cancer and has been shown to be a suitable biomarker for tumour-targeted imaging. METHODS CD24 expression was investigated in cell lines and heterogenous patient-derived xenograft (PDX) tumour samples of high-grade serous ovarian carcinoma (HGSOC). After conjugation of the monoclonal antibody CD24 to the NIR dye Alexa Fluor 750 and the evaluation of the optimal pharmacological parameters (OV-90, n = 21), orthotopic HGSOC metastatic xenografts (OV-90, n = 16) underwent cytoreductive surgery with real-time feedback. The impact of intraoperative CD24-targeted fluorescence guidance was compared to white light and palpation alone, and the recurrence of disease was monitored post-operatively (OV-90, n = 12). CD24-AF750 was further evaluated in four clinically annotated orthotopic PDX models of metastatic HGSOC, to validate the translational potential for intraoperative guidance. FINDINGS CD24-targeted intraoperative NIR FIGS significantly (47•3%) improved tumour detection and resection, and reduced the post-operative tumour burden compared to standard white-light surgery in orthotopic HGSOC xenografts. CD24-AF750 allowed identification of minuscule tumour lesions which were undetectable with the naked eye in four HGSOC PDX. INTERPRETATION CD24-targeted FIGS has translational potential as an aid to improve debulking surgery of ovarian cancer. FUNDING This study was supported by the H2020 program MSCA-ITN [675743], Helse Vest RHF, and Helse Bergen HF [911809, 911852, 912171, 240222, 911974, HV1269], as well as by The Norwegian Cancer Society [182735], and The Research Council of Norway through its Centres of excellence funding scheme [223250, 262652].
Collapse
Affiliation(s)
- Katrin Kleinmanns
- Center for Cancer Biomarkers, CCBIO, Department of Clinical Science, University of Bergen, Jonas Lies vei 91B, 5021 Bergen, Norway
| | - Vibeke Fosse
- Center for Cancer Biomarkers, CCBIO, Department of Clinical Science, University of Bergen, Jonas Lies vei 91B, 5021 Bergen, Norway; Department of Radiology, Erasmus Medical Centre, 3000 CA Rotterdam, the Netherlands
| | - Ben Davidson
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, 0310 Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0316 Oslo, Norway
| | - Elvira García de Jalón
- Center for Cancer Biomarkers, CCBIO, Department of Clinical Science, University of Bergen, Jonas Lies vei 91B, 5021 Bergen, Norway; Department of Chemistry and Centre for Pharmacy, University of Bergen, Allégaten 41, 5007 Bergen, Norway
| | - Olav Tenstad
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91B, 5021 Bergen, Norway
| | - Line Bjørge
- Center for Cancer Biomarkers, CCBIO, Department of Clinical Science, University of Bergen, Jonas Lies vei 91B, 5021 Bergen, Norway; Department of Obstetrics and Gyneacology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Emmet McCormack
- Center for Cancer Biomarkers, CCBIO, Department of Clinical Science, University of Bergen, Jonas Lies vei 91B, 5021 Bergen, Norway.
| |
Collapse
|
9
|
Davidson B, Holth A, Dong HP. Expression of the cancer stem cell marker SSEA1 is associated with poor survival in metastatic high-grade serous carcinoma. Virchows Arch 2020; 477:677-685. [PMID: 32472195 PMCID: PMC7581515 DOI: 10.1007/s00428-020-02850-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 12/24/2022]
Abstract
The objective of the present study was to perform a quantitative analysis of cancer stem cell (CSC) marker expression in ovarian carcinoma effusions. The clinical role of SSEA1 in metastatic high-grade serous carcinoma (HGSC) was additionally analyzed. CD133, Nanog, SOX2, Oct3/4, SSEA1, and SSEA4 protein expressions were quantitatively analyzed using flow cytometry (FCM) in 24 effusions. SSEA1 expression by immunohistochemistry was analyzed in 384 HGSC effusions. Highly variable expression of CSC markers by FCM was observed, ranging from 0 to 78% of Ber-EP4-positive cells in the case of CD133, with the largest number of negative specimens seen for SSEA4. SSEA1 expression by immunohistochemistry was found in HGSC cells in 336/384 (89%) effusions, most commonly focally (< 5% of cells). SSEA1 was overexpressed in post-chemotherapy disease recurrence specimens compared with chemo-naïve HGSC effusions tapped at diagnosis (p = 0.029). In univariate survival analysis, higher SSEA1 expression was significantly associated with poor overall survival (p = 0.047) and progression-free survival (p = 0.018), though it failed to retain its prognostic role in Cox multivariate survival analysis in which it was analyzed with clinical parameters (p = 0.059 and p = 0.111 for overall and progression-free survival, respectively). In conclusion, CSC markers are variably expressed in ovarian carcinoma effusions. SSEA1 expression is associated with disease progression and poor survival in metastatic HGSC. Silencing this molecule may have therapeutic relevance in this cancer.
Collapse
Affiliation(s)
- Ben Davidson
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310, Oslo, Norway. .,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, N-0316, Oslo, Norway.
| | - Arild Holth
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310, Oslo, Norway
| | - Hiep Phuc Dong
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310, Oslo, Norway
| |
Collapse
|
10
|
CD24-targeted fluorescence imaging in patient-derived xenograft models of high-grade serous ovarian carcinoma. EBioMedicine 2020; 56:102782. [PMID: 32454401 PMCID: PMC7248428 DOI: 10.1016/j.ebiom.2020.102782] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/02/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The survival rate of patients with advanced high-grade serous ovarian carcinoma (HGSOC) remains disappointing. Clinically translatable orthotopic cell line xenograft models and patient-derived xenografts (PDXs) may aid the implementation of more personalised treatment approaches. Although orthotopic PDX reflecting heterogeneous molecular subtypes are considered the most relevant preclinical models, their use in therapeutic development is limited by lack of appropriate imaging modalities. METHODS We developed novel orthotopic xenograft and PDX models for HGSOC, and applied a near-infrared fluorescently labelled monoclonal antibody targeting the cell surface antigen CD24 for non-invasive molecular imaging of epithelial ovarian cancer. CD24-Alexa Fluor 680 fluorescence imaging was compared to bioluminescence imaging in three orthotopic cell line xenograft models of ovarian cancer (OV-90luc+, Skov-3luc+ and Caov-3luc+, n = 3 per model). The application of fluorescence imaging to assess treatment efficacy was performed in carboplatin-paclitaxel treated orthotopic OV-90 xenografts (n = 10), before the probe was evaluated to detect disease progression in heterogenous PDX models (n = 7). FINDINGS Application of the near-infrared probe, CD24-AF680, enabled both spatio-temporal visualisation of tumour development, and longitudinal therapy monitoring of orthotopic xenografts. Notably, CD24-AF680 facilitated imaging of multiple PDX models representing different histological subtypes of the disease. INTERPRETATION The combined implementation of CD24-AF680 and orthotopic PDX models creates a state-of-the-art preclinical platform which will impact the identification and validation of new targeted therapies, fluorescence image-guided surgery, and ultimately the outcome for HGSOC patients. FUNDING This study was supported by the H2020 program MSCA-ITN [675743], Helse Vest RHF, and Helse Bergen HF [911809, 911852, 912171, 240222, HV1269], as well as by The Norwegian Cancer Society [182735], and The Research Council of Norway through its Centers of excellence funding scheme [223250, 262652].
Collapse
|
11
|
Nagare RP, Sneha S, Krishnapriya S, Ramachandran B, Murhekar K, Vasudevan S, Shabna A, Ganesan TS. ALDH1A1+ ovarian cancer stem cells co-expressing surface markers CD24, EPHA1 and CD9 form tumours in vivo. Exp Cell Res 2020; 392:112009. [PMID: 32305326 DOI: 10.1016/j.yexcr.2020.112009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/12/2020] [Indexed: 02/09/2023]
Abstract
One of the reasons for recurrence following treatment of high grade serous ovarian carcinoma (HGSOC) is the persistence of residual cancer stem cells (CSCs). There has been variability between laboratories in the identification of CSC markers for HGSOC. We have identified new surface markers (CD24, CD9 and EPHA1) in addition to those previously known (CD44, CD117 and CD133) using a bioinformatics approach. The expression of these surface markers was evaluated in ovarian cancer cell lines, primary malignant cells (PMCs), normal ovary and HGSOC. There was no preferential expression of any of the markers or a combination. All the markers were expressed at variable levels in ovarian cancer cell lines and PMCs. Only CD117 and CD9 were expressed in the normal ovarian surface epithelium and fallopian tube. Both ALDEFLUOR (ALDH1A1) and side population assays identified a small proportion of cells (<3%) separately that did not overlap with little variability in cell lines and PMCs. All surface markers were co-expressed in ALDH1A1+ cells without preference for one combination. The cell cycle analysis of ALDH1A1+ cells alone revealed that majority of them reside in G0/G1 phase of cell cycle. Further separation of G0 and G1 phases showed that ALDH1A1+ cells reside in G1 phase of the cell cycle. Xenograft assays showed that the combinations of ALDH1A1 + cells co-expressing CD9, CD24 or EPHA1 were more tumorigenic and aggressive with respect to ALDH1A1-cells. These data suggest that a combined approach could be more useful in identifying CSCs in HGSOC.
Collapse
Affiliation(s)
- Rohit P Nagare
- Laboratory for Cancer Biology, Cancer Institute (WIA), Chennai, Tamilnadu, India
| | - Smarakan Sneha
- Laboratory for Cancer Biology, Cancer Institute (WIA), Chennai, Tamilnadu, India
| | - Syama Krishnapriya
- Laboratory for Cancer Biology, Cancer Institute (WIA), Chennai, Tamilnadu, India
| | | | - Kanchan Murhekar
- Department of Pathology, Cancer Institute (WIA), Chennai, Tamilnadu, India
| | - Sekar Vasudevan
- Laboratory for Cancer Biology, Cancer Institute (WIA), Chennai, Tamilnadu, India
| | - Aboo Shabna
- Laboratory for Cancer Biology, Cancer Institute (WIA), Chennai, Tamilnadu, India
| | - Trivadi S Ganesan
- Laboratory for Cancer Biology, Cancer Institute (WIA), Chennai, Tamilnadu, India; Department of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, Tamilnadu, India.
| |
Collapse
|
12
|
Terraneo N, Jacob F, Dubrovska A, Grünberg J. Novel Therapeutic Strategies for Ovarian Cancer Stem Cells. Front Oncol 2020; 10:319. [PMID: 32257947 PMCID: PMC7090172 DOI: 10.3389/fonc.2020.00319] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OC) is one of the most lethal gynecologic malignancies. Due to the lack of specific symptoms and screening methods, this disease is usually diagnosed only at an advanced and metastatic stage. The gold-standard treatment for OC patients consists of debulking surgery followed by taxane combined with platinum-based chemotherapy. Most patients show complete clinical remission after first-line therapy, but the majority of them ultimately relapse, developing radio- and chemoresistant tumors. It is now proposed that the cause of recurrence and reduced therapy efficacy is the presence of small populations of cancer stem cells (CSCs). These cells are usually resistant against conventional cancer therapies and for this reason, effective targeted therapies for the complete eradication of CSCs are urgently needed. In this review article, we highlight the mechanisms of CSC therapy resistance, epithelial-to-mesenchymal transition, stemness, and novel therapeutic strategies for ovarian CSCs.
Collapse
Affiliation(s)
- Nastassja Terraneo
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
| | - Francis Jacob
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
| | - Jürgen Grünberg
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
13
|
Expression of CD24 in plasma, exosome and ovarian tissue samples of serous ovarian cancer patients. J Biotechnol 2019; 298:16-20. [PMID: 30959137 DOI: 10.1016/j.jbiotec.2019.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 11/20/2022]
Abstract
CD24 is a small molecular weight cell-surface protein and an independent marker for poor prognosis in the different type of cancers. We aimed to determine the expression of CD24 in plasma, exosomes and ovarian tissue samples of serous ovarian cancer patients. We collected tissue and blood samples from 21 cases of serous ovarian cancer and eight healthy controls. We used silica adsorption method for isolation of RNA. The cDNA was synthesized using quantitative real-time PCR. We used beta-globin as a housekeeping gene for the normalization of the data. Protein-protein and miRNA networking were analyzed. There was a significant difference in the expression of CD24 in ovarian tissue between controls and patients (0.16 ± 0.32 vs. 44.97 ± 68.06; p < 0.01), while CD24 did not show expression in each plasma and exosome samples. There was a correlation in the expression of CD24 and FIGO grading between controls and patients. CD24 expression was detected in exosomes in 38.1% of patients, mainly with FIGO III, and in their plasma in 9.5% of cases. Our network analysis shows LYN, SELP, FGR, and NPM1 proteins are interacting with CD24. Our study demonstrates higher expression of CD24 in ovarian cancer patients' tissue samples, and there is an association with FIGO classification. However, CD24 showed expression only in some cell-free plasma and exosome samples.
Collapse
|
14
|
Sherman-Samis M, Onallah H, Holth A, Reich R, Davidson B. SOX2 and SOX9 are markers of clinically aggressive disease in metastatic high-grade serous carcinoma. Gynecol Oncol 2019; 153:651-660. [PMID: 30904337 DOI: 10.1016/j.ygyno.2019.03.099] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/27/2019] [Accepted: 03/10/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The aim of this study was to analyze the expression, biological role and clinical relevance of cancer stem cell markers in high-grade serous carcinoma (HGSC). METHODS mRNA expression by qRT-PCR of NANOG, OCT4, SOX2, SOX4, SOX9, LIN28A and LIN28B was analyzed in 134 HGSC specimens (84 effusions, 50 surgical specimens). Nanog, OCT3/4, SOX2 and SOX9 protein expression by immunohistochemistry was analyzed in 52 HGSC effusions. Nanog protein expression in exosomes from 80 HGSC effusions was studied by Western Blotting. OVCAR3 cells underwent CRISPR/Cas9 Nanog knockout (KO), and the effect of Nanog KO on migration, invasion, proliferation and proteolytic activity was analyzed in OVCAR3 and OVCAR8 cells. RESULTS OCT4 mRNA was overexpressed in effusions compared to solid specimens (p = 0.046), whereas SOX9 was overexpressed in the ovarian tumors compared to effusions and solid metastases (p = 0.003). Higher SOX2 and SOX9 expression was associated with primary (intrinsic) chemoresistance (p = 0.009 and p = 0.02, respectively). Higher SOX9 levels were associated with shorter overall survival in univariate (p = 0.04) and multivariate (p = 0.049) analysis. OCT3/4, SOX2 and SOX9 proteins were found in HGSC cells, whereas Nanog was detected only in exosomes. Higher SOX2 protein expression was associated with shorter overall survival in univariate analysis (p = 0.049). OVCAR cells exposed to OVCAR3 NANOG KO exosomes had reduced migration, invasion and MMP9 activity. CONCLUSIONS SOX2 and SOX9 mRNA levels in HGSC effusions may be markers of clinically aggressive disease. Nanog is secreted in HGSC exosomes in effusions and modulates tumor-promoting cellular processes in vitro.
Collapse
Affiliation(s)
- Miriam Sherman-Samis
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Hadil Onallah
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Arild Holth
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310 Oslo, Norway
| | - Reuven Reich
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| | - Ben Davidson
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310 Oslo, Norway; University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, N-0316 Oslo, Norway.
| |
Collapse
|
15
|
Pieterse Z, Amaya-Padilla MA, Singomat T, Binju M, Madjid BD, Yu Y, Kaur P. Ovarian cancer stem cells and their role in drug resistance. Int J Biochem Cell Biol 2018; 106:117-126. [PMID: 30508594 DOI: 10.1016/j.biocel.2018.11.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/26/2022]
Abstract
Ovarian cancer is typically diagnosed at advanced stages (III or IV), with metastasis ensuing at stage III. Complete remission is infrequent and is not achieved in almost half of the women diagnosed with ovarian cancer. Consequently, management and treatment of this disease is challenging as many patients are faced with tumour recurrence disseminating to surrounding organs further complicated with acquired chemo-resistance. The cancer stem cell theory proposes the idea that a drug resistant subset of tumour cells drive tumour progression, metastasis and ultimately, recurrent disease. In the ovarian cancer field, cancer stem cells remain elusive with significant gaps in our knowledge. The characteristics and specific role of ovarian cancer stem cells in recurrence still requires further research since different studies often arrive at contradictory conclusions. Here we present a review and critical analysis of current research conducted in the field of ovarian cancer stem cells and their potential role in drug resistance including several signalling pathways within these cells that affect the viability of targeted therapies.
Collapse
Affiliation(s)
- Zalitha Pieterse
- School of Pharmacy & Biomedical Science, Curtin University, Curtin Health Innovative Research Institute, Australia
| | | | - Terence Singomat
- School of Pharmacy & Biomedical Science, Curtin University, Curtin Health Innovative Research Institute, Australia
| | - Mudra Binju
- School of Pharmacy & Biomedical Science, Curtin University, Curtin Health Innovative Research Institute, Australia
| | - Bau Dilam Madjid
- School of Pharmacy & Biomedical Science, Curtin University, Curtin Health Innovative Research Institute, Australia
| | - Yu Yu
- School of Pharmacy & Biomedical Science, Curtin University, Curtin Health Innovative Research Institute, Australia
| | - Pritinder Kaur
- School of Pharmacy & Biomedical Science, Curtin University, Curtin Health Innovative Research Institute, Australia.
| |
Collapse
|
16
|
Cells isolated from residual intracranial tumors after treatment express iPSC genes and possess neural lineage differentiation plasticity. EBioMedicine 2018; 36:281-292. [PMID: 30269995 PMCID: PMC6197705 DOI: 10.1016/j.ebiom.2018.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The goal of this study is to identify and characterize treatment resistant tumor initiating cells (TRTICs) using orthotopic xenografts. METHODS TRTICs were enriched from GBM cell lines using mouse xenografts treated with fractionated doses of radiation and temozolomide. TRTICs were characterized by neurosphere clonogenicity and self-renewal, serial xenotransplantation, differentiation potential, and mRNA & miRNA transcriptomic profiling. We use an unbiased approach to identify antigens encoding TRTIC and glioma stem cells (GSC) populations. Co-culture experiments of TRTIC and differentiated cells were conducted to evaluate the reliance of TRTIC differentiation on the secretome of differentiated cells. FINDINGS TRTICs acquire stem-like gene expression signatures and increased side population staining resulting from the activation of multi-drug resistance genes. Genetic and functional characterization of TRTICs shows a striking resemblance with GSCs. TRTICs can differentiate towards specific progeny in the neural stem cell lineage. TRTIC-derived tumors display all the histological hallmarks of glioblastoma (GBM) and exhibit a miRNA-transcript and mRNA-transcriptomic profile associated with aggressiveness. We report that CD24+/CD44+ antigens are expressed in TRTICs and patient-derived GSCs. Double positive CD24+/CD44+ exhibit treatment resistance and enhanced tumorigenicity. Interestingly, co-culture experiments with TRTICs and differentiated cells indicated that the regulation of TRTIC differentiation could rely on the secretome in the tumor niche. INTERPRETATION Radiation and temozolomide treatment enriches a population of cells that have increased iPSC gene expression. As few as 500 cells produced aggressive intracranial tumors resembling patient GBM. CD24+/CD44+ antigens are increased in TRTICs and patient-derived GSCs. The enrichment for TRTICs may result in part from the secretome of differentiated cells. FUND: NIH/NCI 1RC2CA148190, 1R01CA108633, 1R01CA188228, and The Ohio State University Comprehensive Cancer Center.
Collapse
|
17
|
The diagnostic role of BAP1 in serous effusions. Hum Pathol 2018; 79:122-126. [PMID: 29802871 DOI: 10.1016/j.humpath.2018.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/04/2018] [Accepted: 05/20/2018] [Indexed: 01/05/2023]
Abstract
The aim of this study was to analyze the diagnostic role of BAP1 in effusion cytology. Effusions (n = 258), consisting of 53 malignant mesotheliomas and 205 other cancers, the majority carcinomas (62 breast, 60 ovarian, 31 lung, 51 carcinomas of other origin, 1 melanoma), were analyzed for BAP1 expression using immunohistochemistry. BAP1 was lost in 46 (87%) mesotheliomas compared with 4 (2%) of 205 other cancers (P < .001), resulting in sensitivity and specificity of 87% and 98%, respectively. There was no significant difference between peritoneal (n = 14) and pleural (n = 39) mesotheliomas. The 4 carcinomas with loss of BAP1 included 1 ovarian, 1 breast, 1 uterine cervical, and 1 gastric carcinoma. The present study supports the role of BAP1 as a highly sensitive and specific marker for malignant mesothelioma in serous effusions and argues for inclusion of this test in all specimens in which this diagnosis is considered.
Collapse
|
18
|
Gonzalez VD, Samusik N, Chen TJ, Savig ES, Aghaeepour N, Quigley DA, Huang YW, Giangarrà V, Borowsky AD, Hubbard NE, Chen SY, Han G, Ashworth A, Kipps TJ, Berek JS, Nolan GP, Fantl WJ. Commonly Occurring Cell Subsets in High-Grade Serous Ovarian Tumors Identified by Single-Cell Mass Cytometry. Cell Rep 2018; 22:1875-1888. [PMID: 29444438 PMCID: PMC8556706 DOI: 10.1016/j.celrep.2018.01.053] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 12/18/2017] [Accepted: 01/17/2018] [Indexed: 01/16/2023] Open
Abstract
We have performed an in-depth single-cell phenotypic characterization of high-grade serous ovarian cancer (HGSOC) by multiparametric mass cytometry (CyTOF). Using a CyTOF antibody panel to interrogate features of HGSOC biology, combined with unsupervised computational analysis, we identified noteworthy cell types co-occurring across the tumors. In addition to a dominant cell subset, each tumor harbored rarer cell phenotypes. One such group co-expressed E-cadherin and vimentin (EV), suggesting their potential role in epithelial mesenchymal transition, which was substantiated by pairwise correlation analyses. Furthermore, tumors from patients with poorer outcome had an increased frequency of another rare cell type that co-expressed vimentin, HE4, and cMyc. These poorer-outcome tumors also populated more cell phenotypes, as quantified by Simpson's diversity index. Thus, despite the recognized genomic complexity of the disease, the specific cell phenotypes uncovered here offer a focus for therapeutic intervention and disease monitoring.
Collapse
Affiliation(s)
- Veronica D Gonzalez
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nikolay Samusik
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tiffany J Chen
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Erica S Savig
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nima Aghaeepour
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 1450 Third Street, San Francisco, CA 94158, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, 1450 Third Street, San Francisco, CA 94158, USA
| | - Ying-Wen Huang
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Valeria Giangarrà
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexander D Borowsky
- Center for Comparative Medicine, University of California, Davis, Davis, CA 95616, USA; Department of Pathology and Laboratory Medicine, Comprehensive Cancer Center, University of California, Davis School of Medicine, Sacramento, CA 95817, USA
| | - Neil E Hubbard
- Center for Comparative Medicine, University of California, Davis, Davis, CA 95616, USA; Department of Pathology and Laboratory Medicine, Comprehensive Cancer Center, University of California, Davis School of Medicine, Sacramento, CA 95817, USA
| | - Shih-Yu Chen
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Guojun Han
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 1450 Third Street, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, 1450 Third Street, San Francisco, CA 94158, USA
| | - Thomas J Kipps
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jonathan S Berek
- Stanford Comprehensive Cancer Institute and Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Garry P Nolan
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wendy J Fantl
- Stanford Comprehensive Cancer Institute and Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
19
|
Davidson B, Pinamonti M, Cuevas D, Holth A, Zeppa P, Hager T, Wohlschlaeger J, Tötsch M. The diagnostic role of PTEN and ARID1A in serous effusions. Virchows Arch 2017; 472:425-432. [DOI: 10.1007/s00428-017-2273-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/07/2017] [Accepted: 11/19/2017] [Indexed: 12/11/2022]
|
20
|
Lupia M, Cavallaro U. Ovarian cancer stem cells: still an elusive entity? Mol Cancer 2017; 16:64. [PMID: 28320418 PMCID: PMC5360065 DOI: 10.1186/s12943-017-0638-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/13/2017] [Indexed: 12/16/2022] Open
Abstract
The cancer stem cell (CSC) model proposes that tumor development and progression are fueled and sustained by undifferentiated cancer cells, endowed with self-renewal and tumor-initiating capacity. Ovarian carcinoma, based on its biological features and clinical evolution, appears as a prototypical example of CSC-driven disease. Indeed, ovarian cancer stem cells (OCSC) would account not only for the primary tumor growth, the peritoneal spread and the relapse, but also for the development of chemoresistance, thus having profound implication for the treatment of this deadly disease. In the last decade, an increasing body of experimental evidence has supported the existence of OCSC and their pathogenic role in the disease. Nevertheless, the identification of OCSC and the definition of their phenotypical and functional traits have proven quite challenging, mainly because of the heterogeneity of the disease and of the difficulties in establishing reliable biological models. A deeper understanding of OCSC pathobiology will shed light on the mechanisms that underlie the clinical behaviour of OC. In addition, it will favour the design of innovative treatment regimens that, on one hand, would counteract the resistance to conventional chemotherapy, and, on the other, would aim at the eradication of OC through the elimination of its CSC component.
Collapse
Affiliation(s)
- Michela Lupia
- Unit of Gynecological Oncology Research, European Institute of Oncology, Via G. Ripamonti 435, I-20141, Milan, Italy
| | - Ugo Cavallaro
- Unit of Gynecological Oncology Research, European Institute of Oncology, Via G. Ripamonti 435, I-20141, Milan, Italy.
| |
Collapse
|