1
|
Mayr C, Kiesslich T, Bekric D, Beyreis M, Kittl M, Ablinger C, Neureiter E, Pichler M, Prinz F, Ritter M, Neureiter D, Jakab M, Dobias H. Ouabain at nanomolar concentrations is cytotoxic for biliary tract cancer cells. PLoS One 2023; 18:e0287769. [PMID: 37390071 PMCID: PMC10312999 DOI: 10.1371/journal.pone.0287769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/31/2023] [Indexed: 07/02/2023] Open
Abstract
Biliary tract cancer is a deadly disease with limited therapeutic options. Ouabain is a well-known inhibitor of the pumping function of Na+/K+-ATPase, though there is evidence that low concentrations of ouabain lead to a reduction of cell viability of cancer cells independent of its inhibition of the pumping function of the Na+/K+-ATPase. Regarding the impact of ouabain on biliary tract cancer, no data is currently available. Therefore, we aimed for a first-time investigation of ouabain as a potential anti-neoplastic biliary tract cancer agent using comprehensive human biliary tract cancer in vitro models. We found that ouabain has a strong cell line-dependent cytotoxic effect with IC50 levels in the (low) nanomolar-range and that this effect was not associated with the mRNA expression levels of the Na+/K+-ATPase α, β and fxyd-subunits. Regarding the mode of cytotoxicity, we observed induction of apoptosis in biliary tract cancer cells upon treatment with ouabain. Interestingly, cytotoxic effects of ouabain at sub-saturating (< μM) levels were independent of cellular membrane depolarization and changes in intracellular sodium levels. Furthermore, using a 3D cell culture model, we found that ouabain disturbs spheroid growth and reduces the viability of biliary tract cancer cells within the tumor spheroids. In summary, our data suggest that ouabain possesses anti-biliary tract cancer potential at low μM-concentration in 2D and 3D in vitro biliary tract cancer models and encourage further detailed investigation.
Collapse
Affiliation(s)
- Christian Mayr
- Center of Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology Salzburg, Paracelsus Medical University, Salzburg, Austria
- Department of Internal Medicine I, University Clinics Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Tobias Kiesslich
- Center of Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology Salzburg, Paracelsus Medical University, Salzburg, Austria
- Department of Internal Medicine I, University Clinics Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Dino Bekric
- Center of Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Marlena Beyreis
- Center of Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Michael Kittl
- Center of Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology Salzburg, Paracelsus Medical University, Salzburg, Austria
- Translational Oncology, University Hospital of Augsburg, Augsburg, Germany
| | - Celina Ablinger
- Institute of Pharmacy, Paracelsus Medical University, Salzburg, Austria
| | - Elen Neureiter
- Center of Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Research Unit for Non-Coding RNA and Genome Editing, Medical University of Graz, Graz, Austria
- Translational Oncology, University Hospital of Augsburg, Augsburg, Germany
| | - Felix Prinz
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Research Unit for Non-Coding RNA and Genome Editing, Medical University of Graz, Graz, Austria
| | - Markus Ritter
- Center of Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology Salzburg, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis und Rehabilitation, Paracelsus Medical University, Salzburg, Austria
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
- Kathmandu University School of Medical Sciences, Dhulikhel, Nepal
| | - Daniel Neureiter
- Institute of Pathology, University Clinics Salzburg, Paracelsus Medical University, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Martin Jakab
- Center of Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology Salzburg, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis und Rehabilitation, Paracelsus Medical University, Salzburg, Austria
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
| | - Heidemarie Dobias
- Center of Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
2
|
SMYD3 regulates the abnormal proliferation of non-small-cell lung cancer cells via the H3K4me3/ANO1 axis. J Biosci 2022. [DOI: 10.1007/s12038-022-00299-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
3
|
Mayr C, Kiesslich T, Modest DP, Stintzing S, Ocker M, Neureiter D. Chemoresistance and resistance to targeted therapies in biliary tract cancer: What have we learned? Expert Opin Investig Drugs 2022; 31:221-233. [PMID: 35098846 DOI: 10.1080/13543784.2022.2034785] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Biliary tract cancer (BTC), including intra- and extrahepatic cholangiocarcinoma and gallbladder cancer, is a rare and highly difficult to manage human malignancy. Besides late diagnosis and associated unresectability, frequently observed unresponsiveness towards and recurrence following chemotherapy or targeted therapy essentially contribute to the dismal prognosis of BTC patients. AREAS COVERED The review provides an update on individual mechanisms involved resistance of BTC towards conventional chemotherapy as well as targeted therapies. We review the distinct mechanisms of pharmacoresistance (MPRs) which have been defined in BTC cells on a molecular basis and examine the specific consequences for the various approaches of chemo-, targeted or immunomodulatory therapies. EXPERT OPINION Based on currently available experimental and clinical data, the present knowledge about these MPRs in BTCs are summarized. While some possible tactics for overcoming these mechanisms of resistance have been investigated, a BTC-specific and efficient approach based on comprehensive in vitro and in vivo experimental systems is not yet available. Additionally, a reliable monitoring of therapy-relevant cellular changes needs to be established which allows for choosing the optimal drug (combination) before and/or during pharmacological therapy.
Collapse
Affiliation(s)
- Christian Mayr
- Center for Physiology, Pathophysiology and Biophysics - Salzburg and Nuremberg, Institute for Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austrial.,Department of Internal Medicine I, Paracelsus Medical University/University Hospital Salzburg (SALK), 5020 Salzburg, Austrial
| | - Tobias Kiesslich
- Center for Physiology, Pathophysiology and Biophysics - Salzburg and Nuremberg, Institute for Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austrial.,Department of Internal Medicine I, Paracelsus Medical University/University Hospital Salzburg (SALK), 5020 Salzburg, Austrial
| | - Dominik Paul Modest
- Medical Department, Division of Hematology,Oncology,and Tumor Immunology (Campus Charité Mitte), Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Sebastian Stintzing
- Medical Department, Division of Hematology,Oncology,and Tumor Immunology (Campus Charité Mitte), Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Matthias Ocker
- Charité University Medicine Berlin, 10117 Berlin, Germany.,Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, 55216 Ingelheim, Germany
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/University Hospital Salzburg (SALK), 5020 Salzburg, Austria.,Cancer Cluster Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
4
|
Mayr C, Kiesslich T, Erber S, Bekric D, Dobias H, Beyreis M, Ritter M, Jäger T, Neumayer B, Winkelmann P, Klieser E, Neureiter D. HDAC Screening Identifies the HDAC Class I Inhibitor Romidepsin as a Promising Epigenetic Drug for Biliary Tract Cancer. Cancers (Basel) 2021; 13:cancers13153862. [PMID: 34359763 PMCID: PMC8345689 DOI: 10.3390/cancers13153862] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Biliary tract cancer (BTC) is a rare disease with dismal outcomes. Therefore, the investigation of new therapeutic targets is urgently required. In this study, we demonstrate that histone deacetylases (HDACs) are expressed in BTC cell lines and that treatment of BTC cells with different HDAC class inhibitors reduces cell viability. Specifically, we found that BTC cells are vulnerable to the HDAC class I inhibitor romidepsin. Treatment with romidepsin resulted in apoptotic cell death of BTC cells and reduced HDAC activity. Furthermore, romidepsin augmented the cytotoxic effect of the standard chemotherapeutic cisplatin. HDAC class I proteins were also expressed in BTC patient samples. We detected that BTC patients with high HDAC-2-expressing tumors showed a significantly shorter survival. In summary, we were able to demonstrate that BTC cells are vulnerable to HDAC inhibition and that the HDAC class I inhibitor romidepsin might be a promising anti-BTC substance. Abstract Inhibition of histone deacetylases (HDACs) is a promising anti-cancer approach. For biliary tract cancer (BTC), only limited therapeutic options are currently available. Therefore, we performed a comprehensive investigation of HDAC expression and pharmacological HDAC inhibition into a panel of eight established BTC cell lines. The screening results indicate a heterogeneous expression of HDACs across the studied cell lines. We next tested the effect of six established HDAC inhibitors (HDACi) covering pan- and class-specific HDACis on cell viability of BTC cells and found that the effect (i) is dose- and cell-line-dependent, (ii) does not correlate with HDAC isoform expression, and (iii) is most pronounced for romidepsin (a class I HDACi), showing the highest reduction in cell viability with IC50 values in the low-nM range. Further analyses demonstrated that romidepsin induces apoptosis in BTC cells, reduces HDAC activity, and increases acetylation of histone 3 lysine 9 (H3K9Ac). Similar to BTC cell lines, HDAC 1/2 proteins were heterogeneously expressed in a cohort of resected BTC specimens (n = 78), and their expression increased with tumor grading. The survival of BTC patients with high HDAC-2-expressing tumors was significantly shorter. In conclusion, HDAC class I inhibition in BTC cells by romidepsin is highly effective in vitro and encourages further in vivo evaluation in BTC. In situ assessment of HDAC 2 expression in BTC specimens indicates its importance for oncogenesis and/or progression of BTC as well as for the prognosis of BTC patients.
Collapse
Affiliation(s)
- Christian Mayr
- Center for Physiology, Pathophysiology and Biophysics-Salzburg and Nuremberg, Institute for Physiology and Pathophysiology-Salzburg, Paracelsus Medical University, Strubergasse 22, 5020 Salzburg, Austria; (T.K.); (S.E.); (D.B.); (H.D.); (M.B.); (M.R.)
- Department of Internal Medicine I, University Clinics Salzburg, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria
- Correspondence:
| | - Tobias Kiesslich
- Center for Physiology, Pathophysiology and Biophysics-Salzburg and Nuremberg, Institute for Physiology and Pathophysiology-Salzburg, Paracelsus Medical University, Strubergasse 22, 5020 Salzburg, Austria; (T.K.); (S.E.); (D.B.); (H.D.); (M.B.); (M.R.)
- Department of Internal Medicine I, University Clinics Salzburg, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria
| | - Sara Erber
- Center for Physiology, Pathophysiology and Biophysics-Salzburg and Nuremberg, Institute for Physiology and Pathophysiology-Salzburg, Paracelsus Medical University, Strubergasse 22, 5020 Salzburg, Austria; (T.K.); (S.E.); (D.B.); (H.D.); (M.B.); (M.R.)
| | - Dino Bekric
- Center for Physiology, Pathophysiology and Biophysics-Salzburg and Nuremberg, Institute for Physiology and Pathophysiology-Salzburg, Paracelsus Medical University, Strubergasse 22, 5020 Salzburg, Austria; (T.K.); (S.E.); (D.B.); (H.D.); (M.B.); (M.R.)
| | - Heidemarie Dobias
- Center for Physiology, Pathophysiology and Biophysics-Salzburg and Nuremberg, Institute for Physiology and Pathophysiology-Salzburg, Paracelsus Medical University, Strubergasse 22, 5020 Salzburg, Austria; (T.K.); (S.E.); (D.B.); (H.D.); (M.B.); (M.R.)
| | - Marlena Beyreis
- Center for Physiology, Pathophysiology and Biophysics-Salzburg and Nuremberg, Institute for Physiology and Pathophysiology-Salzburg, Paracelsus Medical University, Strubergasse 22, 5020 Salzburg, Austria; (T.K.); (S.E.); (D.B.); (H.D.); (M.B.); (M.R.)
| | - Markus Ritter
- Center for Physiology, Pathophysiology and Biophysics-Salzburg and Nuremberg, Institute for Physiology and Pathophysiology-Salzburg, Paracelsus Medical University, Strubergasse 22, 5020 Salzburg, Austria; (T.K.); (S.E.); (D.B.); (H.D.); (M.B.); (M.R.)
- Ludwig Boltzmann Institute for Arthritis und Rehabilitation, Paracelsus Medical University, Strubergasse 22, 5020 Salzburg, Austria
- School of Medical Sciences, Kathmandu University, Kavreplanchowk, Dhulikhel 45200, Nepal
| | - Tarkan Jäger
- Department of Surgery, University Clinics Salzburg, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria;
| | - Bettina Neumayer
- Institute of Pathology, University Clinics Salzburg, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (B.N.); (P.W.); (E.K.); (D.N.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Paul Winkelmann
- Institute of Pathology, University Clinics Salzburg, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (B.N.); (P.W.); (E.K.); (D.N.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Eckhard Klieser
- Institute of Pathology, University Clinics Salzburg, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (B.N.); (P.W.); (E.K.); (D.N.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Daniel Neureiter
- Institute of Pathology, University Clinics Salzburg, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (B.N.); (P.W.); (E.K.); (D.N.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
5
|
Histone Methyltransferase G9a Promotes the Development of Renal Cancer through Epigenetic Silencing of Tumor Suppressor Gene SPINK5. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6650781. [PMID: 34336110 PMCID: PMC8294961 DOI: 10.1155/2021/6650781] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/05/2021] [Accepted: 06/22/2021] [Indexed: 01/25/2023]
Abstract
Background Renal cell carcinoma (RCC) accounts for approximately 2–3% of malignant tumors in adults, while clear cell renal cell carcinoma accounts for 70–85% of kidney cancer cases, with an increasing incidence worldwide. G9a is the second histone methyltransferase found in mammals, catalyzing lysine and histone methylation. It regulates gene transcription by catalyzing histone methylation and interacting with transcription factors to alter the tightness of histone-DNA binding. The main purpose of this study is to explore the role and mechanism of G9a in renal cell carcinoma. Methods Firstly, we investigated the expression of G9a in 80 clinical tissues and four cell lines. Then, we explored the effect of G9a-specific inhibitor UNC0638 on proliferation, apoptosis, migration, and invasion of two renal cancer cell lines (786-O, SN12C). In order to study the specific mechanism, G9a knocking down renal cancer cell line was constructed by lentivirus. Finally, we identified the downstream target genes of G9a using ChIP experiments and rescue experiments. Results The results showed that the specific G9a inhibitor UNC0638 significantly inhibited the proliferation, migration, and invasion of kidney cancer in vivo and in vitro; similar results were obtained after knocking down G9a. Meanwhile, we demonstrated that SPINK5 was one of the downstream target genes of G9a through ChIP assay and proved that G9a downregulate the expression of SPINK5 by methylation of H3K9me2. Therefore, targeting G9a might be a new approach to the treatment of kidney cancer. Conclusion G9a was upregulated in renal cancer and could promote the development of renal cancer in vitro and in vivo. Furthermore, we identified SPINK5 as one of the downstream target genes of G9a. Therefore, targeting G9a might be a new treatment for kidney cancer.
Collapse
|
6
|
Colyn L, Bárcena-Varela M, Álvarez-Sola G, Latasa MU, Uriarte I, Santamaría E, Herranz JM, Santos-Laso A, Arechederra M, Ruiz de Gauna M, Aspichueta P, Canale M, Casadei-Gardini A, Francesconi M, Carotti S, Morini S, Nelson LJ, Iraburu MJ, Chen C, Sangro B, Marin JJG, Martinez-Chantar ML, Banales JM, Arnes-Benito R, Huch M, Patino JM, Dar AA, Nosrati M, Oyarzábal J, Prósper F, Urman J, Cubero FJ, Trautwein C, Berasain C, Fernandez-Barrena MG, Avila MA. Dual Targeting of G9a and DNA Methyltransferase-1 for the Treatment of Experimental Cholangiocarcinoma. Hepatology 2021; 73:2380-2396. [PMID: 33222246 DOI: 10.1002/hep.31642] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 10/06/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Cholangiocarcinoma (CCA) is a devastating disease often detected at advanced stages when surgery cannot be performed. Conventional and targeted systemic therapies perform poorly, and therefore effective drugs are urgently needed. Different epigenetic modifications occur in CCA and contribute to malignancy. Targeting epigenetic mechanisms may thus open therapeutic opportunities. However, modifications such as DNA and histone methylation often coexist and cooperate in carcinogenesis. We tested the therapeutic efficacy and mechanism of action of a class of dual G9a histone-methyltransferase and DNA-methyltransferase 1 (DNMT1) inhibitors. APPROACH AND RESULTS Expression of G9a, DNMT1, and their molecular adaptor, ubiquitin-like with PHD and RING finger domains-1 (UHRF1), was determined in human CCA. We evaluated the effect of individual and combined pharmacological inhibition of G9a and DNMT1 on CCA cell growth. Our lead G9a/DNMT1 inhibitor, CM272, was tested in human CCA cells, patient-derived tumoroids and xenograft, and a mouse model of cholangiocarcinogenesis with hepatocellular deletion of c-Jun-N-terminal-kinase (Jnk)-1/2 and diethyl-nitrosamine (DEN) plus CCl4 treatment (JnkΔhepa + DEN + CCl4 mice). We found an increased and correlative expression of G9a, DNMT1, and UHRF1 in CCAs. Cotreatment with independent pharmacological inhibitors G9a and DNMT1 synergistically inhibited CCA cell growth. CM272 markedly reduced CCA cell proliferation and synergized with Cisplatin and the ERBB-targeted inhibitor, Lapatinib. CM272 inhibited CCA tumoroids and xenograft growth and significantly antagonized CCA progression in JnkΔhepa + DEN + CCl4 mice without apparent toxicity. Mechanistically, CM272 reprogrammed the tumoral metabolic transcriptome and phenotype toward a differentiated and quiescent status. CONCLUSIONS Dual targeting of G9a and DNMT1 with epigenetic small molecule inhibitors such as CM272 is a potential strategy to treat CCA and/or enhance the efficacy of other systemic therapies.
Collapse
Affiliation(s)
- Leticia Colyn
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
| | | | - Gloria Álvarez-Sola
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - M Ujue Latasa
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
| | - Iker Uriarte
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Eva Santamaría
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Jose M Herranz
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Alvaro Santos-Laso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, Ikerbasque, Donostia-San Sebastian, Spain
| | | | - Mikel Ruiz de Gauna
- Biocruces Health Research Institute, Department of Physiology, University of the Basque Country, Leioa, Spain
| | - Patricia Aspichueta
- Biocruces Health Research Institute, Department of Physiology, University of the Basque Country, Leioa, Spain
| | - Matteo Canale
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Andrea Casadei-Gardini
- School of Medicine, Vita-Salute San Raffaele University and Unit of Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Francesconi
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
| | - Simone Carotti
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy.,Predictive Molecular Diagnostic Division, Pathology Department, Campus Bio-Medico University Hospital, Rome, Italy
| | - Sergio Morini
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
| | - Leonard J Nelson
- School of Engineering, Institute of Engineering, The University of Edimburgh, Edimburgh, United Kingdom
| | - Maria J Iraburu
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
| | - Chaobo Chen
- Department of Immunology, Ophtalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Bruno Sangro
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Hepatology Unit, Navarra University Clinic, Pamplona, Spain.,Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Jose J G Marin
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Maria L Martinez-Chantar
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CICbioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Jesus M Banales
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, Ikerbasque, Donostia-San Sebastian, Spain
| | - Robert Arnes-Benito
- Max Plank Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Meritxell Huch
- Max Plank Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - John M Patino
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Altaf A Dar
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Mehdi Nosrati
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Julen Oyarzábal
- Molecular Therapies Program, CIMA, University of Navarra, Pamplona, Spain
| | - Felipe Prósper
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain.,Oncohematology Program, CIMA, University of Navarra, Pamplona, Spain
| | - Jesus Urman
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain.,Department of Digestive Diseases, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophtalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital, RWTH Aachen, Aachen, Germany
| | - Carmen Berasain
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Maite G Fernandez-Barrena
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Matias A Avila
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| |
Collapse
|
7
|
Abdullah O, Omran Z, Hosawi S, Hamiche A, Bronner C, Alhosin M. Thymoquinone Is a Multitarget Single Epidrug That Inhibits the UHRF1 Protein Complex. Genes (Basel) 2021; 12:genes12050622. [PMID: 33922029 PMCID: PMC8143546 DOI: 10.3390/genes12050622] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Silencing of tumor suppressor genes (TSGs) through epigenetic mechanisms, mainly via abnormal promoter DNA methylation, is considered a main mechanism of tumorigenesis. The abnormal DNA methylation profiles are transmitted from the cancer mother cell to the daughter cells through the involvement of a macromolecular complex in which the ubiquitin-like containing plant homeodomain (PHD), and an interesting new gene (RING) finger domains 1 (UHRF1), play the role of conductor. Indeed, UHRF1 interacts with epigenetic writers, such as DNA methyltransferase 1 (DNMT1), histone methyltransferase G9a, erasers like histone deacetylase 1 (HDAC1), and functions as a hub protein. Thus, targeting UHRF1 and/or its partners is a promising strategy for epigenetic cancer therapy. The natural compound thymoquinone (TQ) exhibits anticancer activities by targeting several cellular signaling pathways, including those involving UHRF1. In this review, we highlight TQ as a potential multitarget single epidrug that functions by targeting the UHRF1/DNMT1/HDAC1/G9a complex. We also speculate on the possibility that TQ might specifically target UHRF1, with subsequent regulatory effects on other partners.
Collapse
Affiliation(s)
- Omeima Abdullah
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (O.A.); (Z.O.)
| | - Ziad Omran
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (O.A.); (Z.O.)
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ali Hamiche
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France; (A.H.); (C.B.)
| | - Christian Bronner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France; (A.H.); (C.B.)
| | - Mahmoud Alhosin
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence: ; Tel.: +966-597-959-354
| |
Collapse
|
8
|
Ma W, Han C, Zhang J, Song K, Chen W, Kwon H, Wu T. The Histone Methyltransferase G9a Promotes Cholangiocarcinogenesis Through Regulation of the Hippo Pathway Kinase LATS2 and YAP Signaling Pathway. Hepatology 2020; 72:1283-1297. [PMID: 31990985 PMCID: PMC7384937 DOI: 10.1002/hep.31141] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 12/22/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Cholangiocarcinoma (CCA) is a highly malignant epithelial tumor of the biliary tree with poor prognosis. In the current study, we present evidence that the histone-lysine methyltransferase G9a is up-regulated in human CCA and that G9a enhances CCA cell growth and invasiveness through regulation of the Hippo pathway kinase large tumor suppressor 2 (LATS2) and yes-associated protein (YAP) signaling pathway. APPROACH AND RESULTS Kaplan-Meier survival analysis revealed that high G9a expression is associated with poor prognosis of CCA patients. In experimental systems, depletion of G9a by small interfering RNA/short hairpin RNA or inhibition of G9a by specific pharmacological inhibitors (UNC0642 and UNC0631) significantly inhibited human CCA cell growth in vitro and in severe combined immunodeficient mice. Increased G9a expression was also observed in mouse CCA induced by hydrodynamic tail vein injection of notch intracellular domain (NICD) and myr-Akt. Administration of the G9a inhibitor UNC0642 to NICD/Akt-injected mice reduced the growth of CCA, in vivo. These findings suggest that G9a inhibition may represent an effective therapeutic strategy for the treatment of CCA. Mechanistically, our data show that G9a-derived dimethylated H3K9 (H3K9me2) silenced the expression of the Hippo pathway kinase LATS2, and this effect led to subsequent activation of oncogenic YAP. Consequently, G9a depletion or inhibition reduced the level of H3K9me2 and restored the expression of LATS2 leading to YAP inhibition. CONCLUSIONS Our findings provide evidence for an important role of G9a in cholangiocarcinogenesis through regulation of LATS2-YAP signaling and suggest that this pathway may represent a potential therapeutic target for CCA treatment.
Collapse
|
9
|
Pangeni RP, Yang L, Zhang K, Wang J, Li W, Guo C, Yun X, Sun T, Wang J, Raz DJ. G9a regulates tumorigenicity and stemness through genome-wide DNA methylation reprogramming in non-small cell lung cancer. Clin Epigenetics 2020; 12:88. [PMID: 32552834 PMCID: PMC7302379 DOI: 10.1186/s13148-020-00879-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022] Open
Abstract
Background Eukaryotic histone methyltransferases 2 (EHMT2 or G9A) has been regarded as a potential target for non-small cell lung cancer (NSCLC) therapy. This study investigated the regulatory roles of G9A in tumorigenesis and stemness in NSCLC. We isolated and enriched tumor-initiating cells (TIC) from surgically resected NSCLC tissues by FACS and sphere formation assays. We then knocked down G9A using shRNA and carried out genome-wide 850K methylation array and RNA sequencing analyses. We carried out in vivo tumorigenecity asssay using mice xenografts and examined G9A interactions with its novel target using chromatin Immunoprecipitation (ChIP). Results We identified 67 genes hypomethylated and 143 genes upregulated following G9A knockdown of which 43 genes were both hypomethylated and upregulated. We selected six genes (CDYL2, DPP4, SP5, FOXP1, STAMBPL1, and ROBO1) for validation. In addition, G9A expression was higher in TICs and targeting G9a by shRNA knockdown or by selective inhibitor UNC0642 significantly inhibited the expression of cancer stem cell markers and sphere forming capacity, in vitro proliferation, and in vivo growth. Further, transient overexpression of FOXP1, a protein may promote normal stem cell differentiation, in TICs resulted in downregulation of stem cell markers and sphere forming capacity and cell proliferation in vitro indicating that the genes we identified are directly regulated by G9A through aberrant DNA methylation and subsequent expression. Similarly, ChIP assay has shown that G9a interacts with its target genes through H3K9me2 and downregulation of H3K9me2 following G9a knockdown disrupts its interaction with its target genes. Conclusions These data suggest that G9A is involved in lung cancer stemness through epigenetic mechanisms of maintaining DNA methylation of multiple lung cancer stem cell genes and their expression. Further, targeting G9A or its downstream genes could be a novel therapeutic approach in treating NSCLC patients.
Collapse
Affiliation(s)
- Rajendra P Pangeni
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| | - Lu Yang
- Department of System Biology, Beckman Research Institute, City of Hope National Medical Centre, Duarte, CA, USA
| | - Keqiang Zhang
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Jinhui Wang
- The Integrative Genomics Core Lab, Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Wendong Li
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Chao Guo
- The Integrative Genomics Core Lab, Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA, USA.,Frey Medical Laboratory, Maoling Rd, Jinan District, Fuzhou, Fujian, China
| | - Xinwei Yun
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, 91010, USA.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Ting Sun
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Jami Wang
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, 91010, USA.,Western University of Health Sciences, Pomona, CA, USA
| | - Dan J Raz
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
10
|
Chen P, Qian Q, Zhu Z, Shen X, Yu S, Yu Z, Sun R, Li Y, Guo D, Fan H. Increased expression of EHMT2 associated with H3K9me2 level contributes to the poor prognosis of gastric cancer. Oncol Lett 2020; 20:1734-1742. [PMID: 32724416 PMCID: PMC7377055 DOI: 10.3892/ol.2020.11694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 12/31/2019] [Indexed: 12/16/2022] Open
Abstract
Di-methylated lysine 9 of histone H3 (H3K9me2), regulated by histone methyltransferases, is involved in the epigenetic regulation of tumor-associated genes. The present study aimed to evaluate whether the H3K9me2 methylation level is associated with the expression level of euchromatic histone lysine methyltransferase 2 (EHMT2) in the prognosis of gastric cancer (GC). H3K9me2 methylation level and EHMT2 expression level were detected by immunohistochemistry in 118 GC samples. The clinicopathological significance of H3K9me2 and EHMT2 in patients with GC was assessed using a paired Student's t-test, χ2 test, Kaplan-Meier analysis with a log-rank test and Cox's proportional hazard analysis. Strong positive immunostaining of H3K9me2 and EHMT2 was observed in cancerous tissues compared with adjacent non-cancerous tissues. Positive immunostaining of EHMT2 and H3K9me2 was associated with lymph node metastasis, pathological grade and tumor-node-metastasis stage. H3K9me2 expression level was increased in tumor tissue and associated with worse specific-disease and disease-free survival time. In addition, EHMT2 protein expression levels were associated with the expression levels of H3K9me2. Low expression levels of H3K9me2 and EHMT2 predicted a better prognosis of patients with GC. The survival time of patients with a high expression of H3K9me2 and/or EHMT2 was significantly shorter compared with that of the patients with a low expression of H3K9me2 and/or EHMT2. In conclusion, an overexpression pattern of H3K9me2 and/or EHMT2 may be associated with clinicopathological features of GC and may be predictor markers of progression and prognosis in patients with GC, in addition to putative therapeutic targets.
Collapse
Affiliation(s)
- Ping Chen
- Department of Oncology, Yancheng First People's Hospital, Yancheng, Jiangsu 224005, P.R. China
| | - Qi Qian
- Department of Oncology, Yancheng First People's Hospital, Yancheng, Jiangsu 224005, P.R. China
| | - Zhiyuan Zhu
- Department of Oncology, Yancheng First People's Hospital, Yancheng, Jiangsu 224005, P.R. China
| | - Xiaohui Shen
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Shenling Yu
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, Jiangsu 210018, P.R. China
| | - Zhenghong Yu
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Rui Sun
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yiping Li
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Didi Guo
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, Jiangsu 210018, P.R. China
| | - Hong Fan
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
11
|
Liu H, Yan Y, Chen R, Zhu M, Lin J, He C, Shi B, Wen K, Mao K, Xiao Z. Integrated nomogram based on five stage-related genes and TNM stage to predict 1-year recurrence in hepatocellular carcinoma. Cancer Cell Int 2020; 20:140. [PMID: 32368186 PMCID: PMC7189530 DOI: 10.1186/s12935-020-01216-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/16/2020] [Indexed: 12/24/2022] Open
Abstract
Background The primary tumor, regional lymph nodes and distant metastasis (TNM) stage is an independent risk factor for 1-year hepatocellular carcinoma (HCC) recurrence but has insufficient predictive efficiency. We attempt to develop and validate a nomogram to predict 1-year recurrence in HCC and improve the predictive efficiency of the TNM stage. Methods A total of 541 HCC patients were enrolled in the study. The risk score (RS) model was established with the logistic least absolute shrinkage and selector operation algorithm. The predictive nomogram was further validated in the internal testing cohort and external validation cohort. The area under the receiver operating characteristic curves (AUCs), decision curves and clinical impact curves were used to evaluate the predictive accuracy and clinical value of the nomogram. Results In the training cohort, we identified a RS model consisting of five stage-related genes (NUP62, EHMT2, RANBP1, MSH6 and FHL2) for recurrence at 1 year. The 1-year disease-free survival of patients was worse in the high-risk group than in the low-risk group (P < 0.0001), and 1-year recurrence was more likely in the high-risk group (Hazard ratio: 3.199, P < 0.001). The AUC of the nomogram was 0.739, 0.718 and 0.693 in the training, testing and external validation cohort, respectively, and these values were larger than the corresponding AUC of the TNM stage (0.681, 0.688 and 0.616, respectively). Conclusions A RS model consisting of five stage-related genes was successfully identified for predicting 1-year HCC recurrence. Then, a novel nomogram based on the RS model and TNM stage to predict 1-year HCC recurrence was also developed and validated.
Collapse
Affiliation(s)
- Haohan Liu
- 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China.,2Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Yongcong Yan
- 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China.,2Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Ruibing Chen
- 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China.,2Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Mengdi Zhu
- 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Jianhong Lin
- 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China.,2Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Chuanchao He
- 2Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Bingchao Shi
- 2Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Kai Wen
- 2Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Kai Mao
- 2Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Zhiyu Xiao
- 2Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| |
Collapse
|
12
|
Jang JE, Eom JI, Jeung HK, Chung H, Kim YR, Kim JS, Cheong JW, Min YH. PERK/NRF2 and autophagy form a resistance mechanism against G9a inhibition in leukemia stem cells. J Exp Clin Cancer Res 2020; 39:66. [PMID: 32293500 PMCID: PMC7158163 DOI: 10.1186/s13046-020-01565-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The histone methyltransferase G9a has recently been identified as a potential target for epigenetic therapy of acute myeloid leukemia (AML). However, the effect of G9a inhibition on leukemia stem cells (LSCs), which are responsible for AML drug resistance and recurrence, is unclear. In this study, we investigated the underlying mechanisms of the LSC resistance to G9a inhibition. METHODS We evaluated the effects of G9a inhibition on the unfolded protein response and autophagy in AML and LSC-like cell lines and in primary CD34+CD38- leukemic blasts from patients with AML and investigated the underlying mechanisms. The effects of treatment on cells were evaluated by flow cytometry, western blotting, confocal microscopy, reactive oxygen species (ROS) production assay. RESULTS The G9a inhibitor BIX-01294 effectively induced apoptosis in AML cell lines; however, the effect was limited in KG1 LSC-like cells. BIX-01294 treatment or siRNA-mediated G9a knockdown led to the activation of the PERK/NRF2 pathway and HO-1 upregulation in KG1 cells. Phosphorylation of p38 and intracellular generation of reactive oxygen species (ROS) were suppressed. Pharmacological or siRNA-mediated inhibition of the PERK/NRF2 pathway synergistically enhanced BIX-01294-induced apoptosis, with suppressed HO-1 expression, increased p38 phosphorylation, and elevated ROS generation, indicating that activated PERK/NRF2 signaling suppressed ROS-induced apoptosis in KG1 cells. By contrast, cotreatment of normal hematopoietic stem cells with BIX-01294 and a PERK inhibitor had no significant proapoptotic effect. Additionally, G9a inhibition induced autophagy flux in KG1 cells, while autophagy inhibitors significantly increased the BIX-01294-induced apoptosis. This prosurvival autophagy was not abrogated by PERK/NRF2 inhibition. CONCLUSIONS PERK/NRF2 signaling plays a key role in protecting LSCs against ROS-induced apoptosis, thus conferring resistance to G9a inhibitors. Treatment with PERK/NRF2 or autophagy inhibitors could overcome resistance to G9a inhibition and eliminate LSCs, suggesting the potential clinical utility of these unique targeted therapies against AML.
Collapse
Affiliation(s)
- Ji Eun Jang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Ju-In Eom
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Hoi-Kyung Jeung
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Haerim Chung
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yu Ri Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Seok Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - June-Won Cheong
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yoo Hong Min
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
13
|
Dang NN, Jiao J, Meng X, An Y, Han C, Huang S. Abnormal overexpression of G9a in melanoma cells promotes cancer progression via upregulation of the Notch1 signaling pathway. Aging (Albany NY) 2020; 12:2393-2407. [PMID: 32015216 PMCID: PMC7041736 DOI: 10.18632/aging.102750] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/07/2020] [Indexed: 12/17/2022]
Abstract
Malignant melanoma is a type of very dangerous skin cancer. Histone modifiers usually become dysregulated during the process of carcinoma development, thus there is potential for a histone modifier inhibitor as a useful drug for cancer therapy. There is a multitude of evidence regarding the role of G9a, a histone methyltransferase (HMTase), in tumorigenesis. In this study, we first showed that G9a was significantly upregulated in melanoma patients. Using the TCGA database, we found a significantly higher expression of G9a in primary melanoma samples (n = 461) compared to normal skin samples (n = 551). Next, we knocked down G9a in human M14 and A375 melanoma cell lines in vitro via small interfering RNA (siRNA). This resulted in a significant decrease in cell viability, migration and invasion, and an increase in cell apoptosis. UNC0642 is a small molecule inhibitor of G9a that demonstrates minimal cell toxicity and good in vivo pharmacokinetic characteristics. We investigated the role of UNC0642 in melanoma cells, and detected its anti-cancer effects in vitro and in vivo. Next, we treated cells with UNC0642, and observed a significant decrease in cell viability in M14 and A375 cell lines. Furthermore, treatment with UNC0642 resulted in increased apoptosis. In immunocompetent mice bearing A375 engrafts, treatment with UNC0642 inhibited tumor growth. Results of Western blot analysis revealed that administration of UNC0642 or silencing of G9a expression by siRNA reduced Notch1 expression significantly and decreased the level of Hes1 in A375. All in all, the data from our study demonstrates potential of G9a as a therapeutic target in the treatment of melanoma.
Collapse
Affiliation(s)
- Ning-Ning Dang
- Department of Dermatology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Jing Jiao
- Department of Dermatology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Xianguang Meng
- Department of Dermatology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Yunhe An
- Beijing Center for Physical and Chemical Analysis, Beijing, China
| | - Chen Han
- Institute of Basic Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong Province, China
| | - Shuhong Huang
- Institute of Basic Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong Province, China
| |
Collapse
|
14
|
Bhattacharjee P, Paul S, Bhattacharjee P. Understanding the mechanistic insight of arsenic exposure and decoding the histone cipher. Toxicology 2020; 430:152340. [PMID: 31805316 DOI: 10.1016/j.tox.2019.152340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The study of heritable epigenetic changes in arsenic exposure has intensified over the last decade. Groundwater arsenic contamination causes a great threat to humans and, to date, no accurate measure has been formulated for remediation. The fascinating possibilities of epi-therapeutics identify the need for an in-depth mechanistic understanding of the epigenetic landscape. OBJECTIVE In this comprehensive review, we have set to analyze major studies pertaining to histone post-translational modifications in arsenic-mediated disease development and carcinogenesis during last ten years (2008-2018). RESULTS The role of the specific histone marks in arsenic toxicity has been detailed. A comprehensive list that includes major arsenic-induced histone modifications identified for the last 10 years has been documented and details of different states of arsenic, organisms, exposure type, study platform, and findings were provided. An arsenic signature panel was suggested to help in early prognosis. An attempt has been made to identify the grey areas of research. PROSPECTS Future prospective multi-target analyses of the inter-molecular crosstalk among different histone marks are needed to be explored further in order to understand the mechanism of arsenic toxicity and carcinogenicity and to confirm the suitability of these epi-marks as prognostic markers.
Collapse
Affiliation(s)
- Pritha Bhattacharjee
- Department of Zoology, University of Calcutta, Kolkata 700019, India; Department of Environmental Science, University of Calcutta, Kolkata 700019, India
| | - Somnath Paul
- Department of Epigenetics and Molecular Carcinogenesis, UT M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India.
| |
Collapse
|
15
|
Neureiter D, Mayr C, Kiesslich T. How do we choose the appropriate chemotherapeutic agents for biliary tract cancer? Expert Opin Pharmacother 2020; 21:243-245. [PMID: 31899989 DOI: 10.1080/14656566.2019.1705280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University, Salzburg, Austria.,Cancer Cluster Salzburg, Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Salzburg, Austria
| | - Christian Mayr
- Department of Internal Medicine I, Paracelsus Medical University, Salzburg, Austria.,Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
| | - Tobias Kiesslich
- Department of Internal Medicine I, Paracelsus Medical University, Salzburg, Austria.,Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
16
|
Regulation of Long Non-Coding RNA-Dreh Involved in Proliferation and Migration of Hepatic Progenitor Cells during Liver Regeneration in Rats. Int J Mol Sci 2019; 20:ijms20102549. [PMID: 31137617 PMCID: PMC6566148 DOI: 10.3390/ijms20102549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023] Open
Abstract
Liver regeneration plays a significant role in protecting liver function after liver injury or chronic liver disease. Long non-coding RNAs (lncRNAs) are considered to be involved in the proliferation of hepatocytes and liver regeneration. Therefore, this study aimed to explore the effects of LncRNA-Dreh on the regulation of hepatic progenitor cells (HPCs) during liver regeneration in rats. Initially, the rat model of liver injury was established to investigate the effect of LncRNA-Dreh down-regulation on liver tissues of rats with liver injury. Subsequently, HPCs line WB-F344 cells were transfected with interference plasmid of LncRNA-Dreh and the expression of LncRNA-Dreh and Vimentin was detected. The proliferation and migration ability of WB-F344 cells, as well as the content of albumin (ALB) and alpha fetoprotein (AFP) in cell differentiation were then determined. Disorderly arranged structure of liver tissue, a large number of HPCs set portal area as center extended to hepatic lobule and ductular reaction were observed in liver tissues of rats with liver injury. The expression of LncRNA-Dreh decreased while Vimentin increased in liver tissues of rats with liver injury. Moreover, the proliferation and migration ability, expression of Vimentin and AFP in WB-F344 cells were increased after silencing of LncRNA-Dreh and ALB was decreased. Collectively, our findings demonstrate that inhibition of LncRNA-Dreh can enhance the proliferation and migration abilities of HPCs in liver regeneration but cause abnormal differentiation of HPCs.
Collapse
|
17
|
Wanek J, Gaisberger M, Beyreis M, Mayr C, Helm K, Primavesi F, Jäger T, Di Fazio P, Jakab M, Wagner A, Neureiter D, Kiesslich T. Pharmacological Inhibition of Class IIA HDACs by LMK-235 in Pancreatic Neuroendocrine Tumor Cells. Int J Mol Sci 2018; 19:ijms19103128. [PMID: 30321986 PMCID: PMC6213165 DOI: 10.3390/ijms19103128] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/18/2018] [Accepted: 09/29/2018] [Indexed: 02/07/2023] Open
Abstract
Histone deacetylases (HDACs) play a key role in epigenetic mechanisms in health and disease and their dysfunction is implied in several cancer entities. Analysis of expression patterns in pancreatic neuroendocrine tumors (pNETs) indicated HDAC5 to be a potential target for future therapies. As a first step towards a possible treatment, the aim of this study was to evaluate the in vitro cellular and molecular effects of HDAC5 inhibition in pNET cells. Two pNET cell lines, BON-1 and QGP-1, were incubated with different concentrations of the selective class IIA HDAC inhibitor, LMK-235. Effects on cell viability were determined using the resazurin-assay, the caspase-assay, and Annexin-V staining. Western Blot and immunofluorescence microscopy were performed to assess the effects on HDAC5 functionality. LMK-235 lowered overall cell viability by inducing apoptosis in a dose- and time-dependent manner. Furthermore, acetylation of histone-H3 increased with higher LMK-235 concentrations, indicating functional inhibition of HDAC4/5. Immunocytochemical analysis showed that proliferative activity (phosphohistone H3 and Ki-67) decreased at highest concentrations of LMK-235 while chromogranin and somatostatin receptor 2 (SSTR2) expression increased in a dose-dependent manner. HDAC5 expression was found to be largely unaffected by LMK-235. These findings indicate LMK-235 to be a potential therapeutic approach for the development of an effective and selective pNET treatment.
Collapse
Affiliation(s)
- Julia Wanek
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
- Biomedical Sciences, Salzburg University of Applied Sciences, 5412 Puch/Salzburg, Austria.
- Department of Biosciences, Research Division of Regeneration, Stem Cell Biology and Gerontology, University of Salzburg, 5020 Salzburg, Austria.
| | - Martin Gaisberger
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria.
- Department for Radon Therapy Research, Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria.
- Gastein Research Institute, Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Marlena Beyreis
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Christian Mayr
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Katharina Helm
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
- Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Florian Primavesi
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria.
- Department of Surgery, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
| | - Tarkan Jäger
- Department of Surgery, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
| | - Pietro Di Fazio
- Department of Visceral Thoracic and Vascular Surgery, Philipps University Marburg, 35033 Marburg, Germany.
| | - Martin Jakab
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Andrej Wagner
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
- Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Tobias Kiesslich
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria.
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria.
| |
Collapse
|