1
|
Qiu Y, Chen K, Mei Y, Yang J, Chen C. Pre-Embryonic Period Observation Shows a Unique Reproductive Strategy of the Critically Endangered Anji Salamander ( Hynobius amjiensis). Animals (Basel) 2024; 14:3007. [PMID: 39457939 PMCID: PMC11505314 DOI: 10.3390/ani14203007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Hynobius amjiensis, also known as the Anji salamander, is an amphibian species currently categorized as endangered due to its limited geographical distribution, primarily in China. To address the critical conservation status of this species, artificial breeding is essential for population expansion. However, progress in artificial breeding efforts has been hindered by the scarcity of research on the reproductive biology of the Anji salamander. In this study, we identified 25 distinct early stages of embryo development. Additionally, we observed that Anji salamander embryos contain a lesser amount of yolk compared to other salamanders or frogs. We further discovered that the Anji salamander employs a highly competitive reproductive strategy, producing a smaller number of high-quality offspring. This strategy aims to generate adaptive individuals through intense intraspecific competition, driven by three factors: extremely confined breeding habitats, a substantial number of eggs, and a reduced yolk content. We introduce the term "mass escape" to describe this strategy, which provides a novel perspective on cannibalization, focusing on the consumption of specific body parts rather than a single-individual activity. This study offers valuable insights into artificial breeding techniques designed to mitigate inherent intraspecific competitive pressure, thereby improving metamorphosis and survival rates. Additionally, it provides a comprehensive table detailing the pre-embryonic developmental stages of the Anji salamander.
Collapse
Affiliation(s)
- Yu Qiu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China;
| | - Kaiyang Chen
- Zhejiang Museum of Natural History, Hangzhou 310014, China; (K.C.); (Y.M.); (J.Y.)
| | - Yiyun Mei
- Zhejiang Museum of Natural History, Hangzhou 310014, China; (K.C.); (Y.M.); (J.Y.)
| | - Jia Yang
- Zhejiang Museum of Natural History, Hangzhou 310014, China; (K.C.); (Y.M.); (J.Y.)
| | - Cangsong Chen
- Zhejiang Museum of Natural History, Hangzhou 310014, China; (K.C.); (Y.M.); (J.Y.)
| |
Collapse
|
2
|
Borges AR, Teixeira ADD, Martínez LC, Dos Santos MH, Serrão JE. Protein and volatile contents in the mandibular gland of the sugarcane borer Diatraea saccharalis (Lepidoptera: Crambidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21904. [PMID: 35419839 DOI: 10.1002/arch.21904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/02/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
The sugarcane borer Diatraea saccharalis (Lepidoptera: Crambidae) is an important sugarcane pest and mechanical injuries caused through the mandibles can allow pathogen infections. The mandibles of D. saccharalis, as well as other insects, are associated with mandibular glands with a possible function in food intake and mouthparts lubrication; however, the chemical composition of the secretion is poorly known and its elucidation is important for the comprehensive understanding of plant-insect interactions. This study characterized some proteins and volatiles in the mandibular glands of D. saccharalis larvae. MALDI-TOF/TOF mass spectrometry allowed the identification of 24 predicted proteins within 10 functional classes, including the transport and metabolism of carbohydrates, lipids, amino acids, and nucleotides; Posttranslational protein modifications; energy conversion; intracellular trafficking; transcription; translation; and cytoskeleton function. Metabolites identified from GC/MS analysis revealed the presence of hydrocarbons classified as alcohols, ether, alkanes, and esters with differences in their relative abundance. Linolenic acid, the most abundant metabolite found in this gland, when conjugated with amino acids, can be an elicitor in the plant-herbivore interaction. The results suggest the occurrence of digestive and defensive biochemical components, which may contribute to understanding of the multifunctional roles of the mandibular gland secretion of D. saccharalis larvae during feeding activity.
Collapse
Affiliation(s)
- Alex R Borges
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Luis Carlos Martínez
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Marcelo H Dos Santos
- Department of Chemistry, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - José Eduardo Serrão
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
3
|
Ramos I, Machado E, Masuda H, Gomes F. Open questions on the functional biology of the yolk granules during embryo development. Mol Reprod Dev 2022; 89:86-94. [PMID: 35020238 DOI: 10.1002/mrd.23555] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 12/21/2022]
Abstract
Biogenesis and consumption of the yolk are well-conserved aspects of the reproductive biology in oviparous species. Most egg-laying animals accumulate yolk proteins within the oocytes thus creating the source of nutrients and energy that will feed embryo development. Yolk accumulation drives the generation of a highly specialized oocyte cytoplasm with maternal mRNAs, ribosomes, mitochondria, and, mainly, a set of organelles collectively referred to as yolk granules (Ygs). Following fertilization, the Ygs are involved in regulated mechanisms of yolk degradation to fuel the anabolic metabolism of the growing embryo. Thus, yolk accumulation and degradation are essential processes that allow successful development in many species. Nevertheless, the molecular machinery and mechanisms dedicated to the programmed yolk mobilization throughout development are still enigmatic and remain mostly unexplored. Moreover, while the Ygs functional biology as a nutritional source for the embryo has been acknowledged, several reports have suggested that Ygs cargoes and functions go far beyond yolk storage. Evidence of the role of Ygs in gene expression, microbiota harboring, and paracrine signaling has been proposed. In this study, we summarize the current knowledge of the Ygs functional biology pointing to open questions and where further investigation is needed.
Collapse
Affiliation(s)
- Isabela Ramos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM/CNPq, Rio de Janeiro, Brazil
| | - Ednildo Machado
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM/CNPq, Rio de Janeiro, Brazil.,Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hatisaburo Masuda
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM/CNPq, Rio de Janeiro, Brazil
| | - Fabio Gomes
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Campos DA, Pereira EC, Jardim R, Cuadrat RRC, Bernardes JS, Dávila AMR. Homology Inference Based on a Reconciliation Approach for the Comparative Genomics of Protozoa. Evol Bioinform Online 2018; 14:1176934318785138. [PMID: 30034216 PMCID: PMC6048835 DOI: 10.1177/1176934318785138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/30/2018] [Indexed: 11/16/2022] Open
Abstract
Protozoa parasites are responsible for several diseases in tropical countries, such as malaria, sleeping sickness, Chagas disease, leishmaniasis, amebiasis, and giardiasis, which together threaten millions of people around the world. In addition, most of the classic parasitic diseases due to protozoa are zoonotic. Understanding the biology of these organisms plays a relevant role in combating these diseases. Using homology inference and comparative genomics, this study targeted 3 protozoan species from different Phyla: Cryptosporidium muris (Apicomplexa), Entamoeba invadens (Amoebozoa), and Trypanosoma grayi (Euglenozoa). In this study, we propose a new approach for the identification of homologs, based on the reconciliation of the results of 2 different homology inference software programs. Our results showed that 46.1% (59/128) of the groups inferred by our reconciliation approach could be validated using this methodology. These validated groups are here called homologous Supergroups and were compared with SUPERFAMILY and Pfam Clans.
Collapse
Affiliation(s)
- Darueck A Campos
- Acre Federal Institute of Education,
Science and Technology, Rio Branco, Brazil
- Computational and Systems Biology
Laboratory, Oswaldo Cruz Institute (FIOCRUZ), Rio de Janeiro, Brazil
| | - Elisa C Pereira
- Computational and Systems Biology
Laboratory, Oswaldo Cruz Institute (FIOCRUZ), Rio de Janeiro, Brazil
| | - Rodrigo Jardim
- Computational and Systems Biology
Laboratory, Oswaldo Cruz Institute (FIOCRUZ), Rio de Janeiro, Brazil
| | - Rafael RC Cuadrat
- Computational and Systems Biology
Laboratory, Oswaldo Cruz Institute (FIOCRUZ), Rio de Janeiro, Brazil
- Bioinformatics core facility, Max Planck
Institute for Biology of Ageing, Cologne, Germany
| | - Juliana S Bernardes
- Biologie Computationnelle et
Quantitative, Université Pierre et Marie Curie, Paris, France
| | - Alberto MR Dávila
- Computational and Systems Biology
Laboratory, Oswaldo Cruz Institute (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Costa EP, Campos E, de Andrade CP, Façanha AR, Saramago L, Masuda A, da Silva Vaz I, Fernandez JH, Moraes J, Logullo C. Partial characterization of an atypical family I inorganic pyrophosphatase from cattle tick Rhipicephalus (Boophilus) microplus. Vet Parasitol 2012; 184:238-47. [DOI: 10.1016/j.vetpar.2011.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/18/2011] [Accepted: 09/05/2011] [Indexed: 10/17/2022]
|
6
|
Ramos I, Gomes F, Koeller CM, Saito K, Heise N, Masuda H, Docampo R, de Souza W, Machado EA, Miranda K. Acidocalcisomes as calcium- and polyphosphate-storage compartments during embryogenesis of the insect Rhodnius prolixus Stahl. PLoS One 2011; 6:e27276. [PMID: 22096545 PMCID: PMC3214050 DOI: 10.1371/journal.pone.0027276] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 10/12/2011] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The yolk of insect eggs is a cellular domain specialized in the storage of reserve components for embryo development. The reserve macromolecules are stored in different organelles and their interactions with the embryo cells are mostly unknown. Acidocalcisomes are lysosome-related organelles characterized by their acidic nature, high electron density and large content of polyphosphate bound to several cations. In this work, we report the presence of acidocalcisome-like organelles in eggs of the insect vector Rhodnius prolixus. METHODOLOGY/PRINCIPAL FINDINGS Characterization of the elemental composition of electron-dense vesicles by electron probe X-ray microanalysis revealed a composition similar to that previously described for acidocalcisomes. Following subcellular fractionation experiments, fractions enriched in acidocalcisomes were obtained and characterized. Immunofluorescence showed that polyphosphate polymers and the vacuolar proton translocating pyrophosphatase (V-H(+)-PPase, considered as a marker for acidocalcisomes) are found in the same vesicles and that these organelles are mainly localized in the egg cortex. Polyphosphate quantification showed that acidocalcisomes contain a significant amount of polyphosphate detected at day-0 eggs. Elemental analyses of the egg fractions showed that 24.5±0.65% of the egg calcium are also stored in such organelles. During embryogenesis, incubation of acidocalcisomes with acridine orange showed that these organelles are acidified at day-3 (coinciding with the period of yolk mobilization) and polyphosphate quantification showed that the levels of polyphosphate tend to decrease during early embryogenesis, being approximately 30% lower at day-3 compared to day-0 eggs. CONCLUSIONS We found that acidocalcisomes are present in the eggs and are the main storage compartments of polyphosphate and calcium in the egg yolk. As such components have been shown to be involved in a series of dynamic events that may control embryo growth, results reveal the potential involvement of a novel organelle in the storage and mobilization of inorganic elements to the embryo cells.
Collapse
Affiliation(s)
- Isabela Ramos
- Intituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio Gomes
- Intituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina M. Koeller
- Intituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katsuharu Saito
- Faculty of Agriculture, Shinshu University, Minamiminowa, Nagano, Japan
| | - Norton Heise
- Intituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hatisaburo Masuda
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto Docampo
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Wanderley de Souza
- Intituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Diretoria de Programas, Instituto Nacional de Metrologia Normalização e Qualidade Industrial, Xerém, Brazil
| | - Ednildo A. Machado
- Intituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Diretoria de Programas, Instituto Nacional de Metrologia Normalização e Qualidade Industrial, Xerém, Brazil
| | - Kildare Miranda
- Intituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Diretoria de Programas, Instituto Nacional de Metrologia Normalização e Qualidade Industrial, Xerém, Brazil
| |
Collapse
|
7
|
Abstract
Acidocalcisomes are acidic organelles containing calcium and a high concentration of phosphorus in the form of pyrophosphate (PP(i)) and polyphosphate (poly P). Organelles with these characteristics have been found from bacteria to human cells implying an early appearance and persistence over evolutionary time or their appearance by convergent evolution. Acidification of the organelles is driven by the presence of vacuolar proton pumps, one of which, the vacuolar proton pyrophosphatase, is absent in animals, where it is substituted by a vacuolar proton ATPase. A number of other pumps, antiporters, and channels have been described in acidocalcisomes of different species and are responsible for their internal content. Enzymes involved in the synthesis and degradation of PP(i) and poly P are present within the organelle. Acidocalcisomes function as storage sites for cations and phosphorus, and participate in PP(i) and poly P metabolism, calcium homeostasis, maintenance of intracellular pH, and osmoregulation. Experiments in which the acidocalcisome Ca(2+)-ATPase of different parasites were downregulated or eliminated, or acidocalcisome Ca(2+) was depleted revealed the importance of this store in Ca(2+) signaling needed for host invasion and virulence. Acidocalcisomes interact with other organelles in a number of organisms suggesting their association with the endosomal/lysosomal pathway, and are considered part of the lysosome-related group of organelles.
Collapse
|
8
|
Medeiros MN, Ramos IB, Oliveira DMP, da Silva RCB, Gomes FM, Medeiros LN, Kurtenbach E, Chiarini LB, Masuda H, de Souza W, Machado EA. Microscopic and molecular characterization of ovarian follicle atresia in Rhodnius prolixus Stahl under immune challenge. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:945-953. [PMID: 21540034 DOI: 10.1016/j.jinsphys.2011.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/11/2011] [Accepted: 04/11/2011] [Indexed: 05/30/2023]
Abstract
In this work we characterized the degenerative process of ovarian follicles of the bug Rhodnius prolixus challenged with the non-entomopathogenic fungus Aspergillus niger. An injection of A. niger conidia directly into the hemocoel of adult R. prolixus females at the onset of vitellogenesis caused no effect on host lifespan but elicited a net reduction in egg batch size. Direct inspection of ovaries from the mycosed insects revealed that fungal challenge led to atresia of the vitellogenic follicles. Light microscopy and DAPI staining showed follicle shrinkage, ooplasm alteration and disorganization of the monolayer of follicle cells in the atretic follicles. Transmission electron microscopy of thin sections of follicle epithelium also showed nuclei with condensed chromatin, electron dense mitochondria and large autophagic vacuoles. Occurrence of apoptosis of follicle cells in these follicles was visualized by TUNEL labeling. Resorption of the yolk involved an increase in protease activities (aspartyl and cysteinyl proteases) which were associated with precocious acidification of yolk granules and degradation of yolk protein content. The role of follicle atresia in nonspecific host-pathogen associations and the origin of protease activity that led to yolk resorption are discussed.
Collapse
Affiliation(s)
- Marcelo N Medeiros
- Programa de Biologia Celular e Parasitologia, Instituto de Biofísica Carlos Chagas Filho da UFRJ, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Coordination complexes incorporating pyrophosphate: Structural overview and exploration of their diverse magnetic, catalytic and biological properties. Coord Chem Rev 2010. [DOI: 10.1016/j.ccr.2009.12.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Sonobe H, Ito Y. Phosphoconjugation and dephosphorylation reactions of steroid hormone in insects. Mol Cell Endocrinol 2009; 307:25-35. [PMID: 19524123 DOI: 10.1016/j.mce.2009.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 03/23/2009] [Indexed: 10/21/2022]
Abstract
In insects, the major products of phase II metabolism of ecdysteroids, which include the molting hormone, are phosphate esters. The phosphoconjugation pathway is a reversible process, comprising two enzyme systems: ecdysteroid 22-kinase (EcKinase) and ecdysteroid-phosphate phosphatase (EPPase). We report here that: (1) the biochemical characteristics of EcKinase and EPPase, (2) the physiological significance of the reciprocal conversion of ecdysteroids and ecdysteroid phosphates in the ovary-egg system in insects, (3) the biochemical mechanism by which ecdysteroid phosphates are synthesized in the ovary, transferred to eggs, and finally dephosphorylated in eggs, and (4) the possible catalytic steps of EcKinase and EPPase on the basis of the data obtained by an in silico study. From these studies, it is obvious that ecdysteroid phosphates as well as steroid sulfates, which are major products of phase II metabolism in mammals, function as precursors for the formation of biologically active hormones.
Collapse
Affiliation(s)
- Haruyuki Sonobe
- Department of Biology, Konan University, Higashinada-ku, Kobe, Japan.
| | | |
Collapse
|
11
|
Pyrophosphate-bridged complexes with picomolar toxicity. J Inorg Biochem 2009; 103:1254-64. [PMID: 19666193 DOI: 10.1016/j.jinorgbio.2009.07.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Revised: 06/30/2009] [Accepted: 07/06/2009] [Indexed: 11/22/2022]
Abstract
Recently, we have observed the emergence of a new series of pyrophosphate-bridged coordination complexes. Such complexes have been prepared by overcoming the ready hydrolysis of the pyrophosphate moiety. To date, no exploration has been conducted on the cytotoxicity of such complexes. Three pyrophosphate-bridged complexes, namely {[Ni(phen)(2)](2)(mu-P(2)O(7))}.27H(2)O, {[Cu(phen)(H(2)O)](2)(mu-P(2)O(7))}.8H(2)O and {[Co(phen)(2)](2)(mu-P(2)O(7))}.6MeOH, (where phen is 1,10'-phenanthroline) were chosen for their comparative structural similarities and suitable aqueous solubility. Cytotoxicity studies in the adriamycin-resistant ovarian cancer cell line A2780/AD demonstrated highly significant efficacy, with values as low as 160pM for the cobalt complex at 72h. The underlying mechanism for such exceptional toxicity is investigated focusing on DNA interactions, topoisomerase I enzyme inhibition and oxidative stress (followed by intracellular glutathione levels). The role of hydrolysis in uptake and toxicity is also explored (followed by electronic absorption spectroscopy, (31)P NMR, and confocal microscopy) and the complexes are compared to cisplatin controls. Overall a clear picture of the extraordinary toxicity emerged. The results demonstrate a new class of prodrugs with significant potential for future development for the treatment of drug-resistant cancer cell lines.
Collapse
|
12
|
Motta LS, Ramos IB, Gomes FM, de Souza W, Champagne DE, Santiago MF, Docampo R, Miranda K, Machado EA. Proton-pyrophosphatase and polyphosphate in acidocalcisome-like vesicles from oocytes and eggs of Periplaneta americana. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:198-206. [PMID: 19111615 DOI: 10.1016/j.ibmb.2008.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 11/27/2008] [Accepted: 11/29/2008] [Indexed: 05/27/2023]
Abstract
Acidocalcisomes are acidic organelles containing large amounts of polyphosphate (poly P), a number of cations, and a variety of cation pumps in their limiting membrane. The vacuolar proton-pyrophosphatase (V-H(+)-PPase), a unique electrogenic proton-pump that couples pyrophosphate (PPi) hydrolysis to the active transport of protons across membranes, is commonly present in membranes of acidocalcisomes. In the course of insect oogenesis, a large amount of yolk protein is incorporated by the oocytes and stored in organelles called yolk granules (YGs). During embryogenesis, the content of these granules is degraded by acid hydrolases. These enzymes are activated by the acidification of the YG by a mechanism that is mediated by proton-pumps present in their membranes. In this work, we describe an H(+)-PPase activity in membrane fractions of oocytes and eggs of the domestic cockroach Periplaneta americana. The enzyme activity was optimum at pH around 7.0, and was dependent on Mg(2+) and inhibited by NaF, as well as by IDP and Ca(2+). Immunolocalization of the yolk preparation using antibodies against a conserved sequence of V-H(+)-PPases showed labeling of small vesicles, which also showed the presence of high concentrations of phosphorus, calcium and other elements, as revealed by electron probe X-ray microanalysis. In addition, poly P content was detected in ovaries and eggs and localized inside the yolk granules and the small vesicles. Altogether, our results provide evidence that numerous small vesicles of the eggs of P. americana present acidocalcisome-like characteristics. In addition, the possible role of these organelles during embryogenesis of this insect is discussed.
Collapse
Affiliation(s)
- Lucimar S Motta
- Laboratório de Entomologia Médica, Programa de Parasitologia e Biologia Celular, Instituto de Biofísica Carlos Chagas Filho, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Oliveira DMP, Ramos IB, Reis FCG, Lima APCA, Machado EA. Interplay between acid phosphatase and cysteine proteases in mediating vitellin degradation during early embryogenesis of Periplaneta americana. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:883-891. [PMID: 18499122 DOI: 10.1016/j.jinsphys.2008.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 03/04/2008] [Accepted: 04/08/2008] [Indexed: 05/26/2023]
Abstract
In this work, we characterized the activities of two classes of proteases and AcP during early embryogenesis of Periplaneta americana. AcP activity was first detected at day 6 and reached a maximum level at day 10 of development. Using phosphoamino acids, phosphatase activity was shown to be directed only against phosphotyrosine at day 6 while at day 10 it was also active against phosphoserine. In parallel, two classes of proteases were detected and located within yolk granules: a clan CA-cysteine protease, which was inhibited by E-64, insensitive to CA 074 and activated by acidic pH at day 3; and a neutral serine protease, which was inhibited by aprotinin at day 6. Assays of vitellin (Vt) degradation evidenced that incubations at neutral pH induced slight proteolysis, while the incubations at acidic pH did not result in Vt degradation. However, pre-incubations of Vt with AcP increased the levels of Vt acidic proteolysis and this could be inhibited by the addition of phosphatase inhibitors. On the other hand, the same pre-incubations showed no effects on the profile of degradation at neutral pH. We propose that AcP and cysteine protease cooperate to assure Vt breakdown during early embryogenesis of P. americana.
Collapse
Affiliation(s)
- Danielle M P Oliveira
- Laboratório de Entomologia Médica, Programa de Parasitologia e Biologia Celular, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
14
|
Ramos IB, Miranda K, de Souza W, Oliveira DMP, Lima APCA, Sorgine MHF, Machado EA. Calcium-regulated fusion of yolk granules is important for yolk degradation during early embryogenesis of Rhodnius prolixusStahl. J Exp Biol 2007; 210:138-48. [PMID: 17170157 DOI: 10.1242/jeb.02652] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SUMMARY
This study examined the process of membrane fusion of yolk granules (YGs)during early embryogenesis of Rhodnius prolixus. We show that eggs collected at days 0 and 3 after oviposition contain different populations of YGs, for example day-3 eggs are enriched in large YGs (LYGs). Day-3 eggs also contain the highest free [Ca2+] during early embryogenesis of this insect. In vitro incubations of day-0 YGs with [Ca2+]similar to those found in day-3 eggs resulted in the formation of LYGs, as observed in vivo. Fractionation of LYGs and small YGs (SYGs) and their subsequent incubation with the fluorescent membrane marker PKH67 showed a calcium-dependent transference of fluorescence from SYGs to LYGs, possibly as the result of membrane fusion. Acid phosphatase and H+-PPase activities were remarkably increased in day-3 LYGs and in calcium-treated day-0 LYGs. Both fractions were found to contain vitellins as major components, and incubation of YGs with calcium induced yolk proteolysis in vitro. Altogether, our results suggest that calcium-induced membrane fusion events take part in yolk degradation, leading to the assembly of the yolk mobilization machinery.
Collapse
Affiliation(s)
- I B Ramos
- Laboratório de Entomologia Médica, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária--Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brasil
| | | | | | | | | | | | | |
Collapse
|
15
|
Oliveira DMP, Machado EA. Characterization of a tyrosine phosphatase activity in the oogenesis of Periplaneta americana. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2006; 63:24-35. [PMID: 16921521 DOI: 10.1002/arch.20139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this work, phosphatase activity was characterized in the ovary and the haemolymph of Periplaneta americana. The optimum pH for these activities was 4.0, and a temperature of 44 degrees C was ideal for the maximal enzyme activity. The phosphatase activities were inhibited by NaF, sodium tartrate, Pi, sodium orthovanadate, and ammonium molybdate. The ovarian phosphatase activity at pH 4.0 was almost exclusive against phosphotyrosine, with little or no effect on the residues of phosphoserine or phosphothreonine. These results indicate that this phosphatase activity is due to the presence of an acid tyrosine phosphatase. The phosphatase activities of acid extracts from P. americana ovaries (OEX) and an acid extract from P. americana haemolymph (HEX) were analyzed in non-denaturant gel electrophoresis using an analog substrate beta-naphtyl phosphate. The gel revealed two bands with phosphatase activity in the ovary and one band in the haemolymph; these bands were excised and submitted to a 10% SDS-PAGE showing a single 70-kDa polypeptide in both samples. Histochemistry of the ovary with alpha-naphtyl phosphate for localization of acid phosphatase activity showed mainly labeling associated to the oocyte peripheral vesicles, basal lamina, and between follicle cells. Electron microscopy analysis showed that acid phosphatase was localized in small peripheral vesicles in the oocyte, but not inside yolk granules. The possible role of this phosphatase during oogenesis and embryogenesis is also discussed in this article.
Collapse
Affiliation(s)
- D M P Oliveira
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Brasil
| | | |
Collapse
|
16
|
Au KM, Barabote RD, Hu KY, Saier MH. Evolutionary appearance of H+-translocating pyrophosphatases. Microbiology (Reading) 2006; 152:1243-1247. [PMID: 16622041 DOI: 10.1099/mic.0.28581-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ka M Au
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Ravi D Barabote
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Kuang Yu Hu
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Milton H Saier
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
17
|
Ramos IB, Miranda K, De Souza W, Machado EA. Calcium-regulated fusion of yolk granules during early embryogenesis ofPeriplaneta americana. Mol Reprod Dev 2006; 73:1247-54. [PMID: 16868923 DOI: 10.1002/mrd.20560] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This work reported membrane fusion of yolk granules (YGs) during early embryogenesis of the insect Periplaneta americana (P. americana). We showed that eggs from Day 5 of embryogenesis possess a greater amount of enlarged YGs in comparison with Day 1. Day 5 is also the period when the largest amount of free calcium is found (approximately 17 mM) within the oothecae from early embryogenesis. Treatment of Day 1-YGs fraction with 17 mM Ca2+ resulted in a YG size pattern very similar to the one observed in Day 5 eggs, where enlarged YGs were formed. YG membrane fusion was observed by fluorescent membrane dye transfer from previously labeled small YGs to larger ones and was also visualized by electron microscopy. We also showed that the small "in fusion" YGs seemed to be acidic, suggesting that acidification is correlated with YG membrane fusion. Hence, it was shown that YGs are capable of membrane fusion in a calcium-dependent manner and this process probably occurs in vivo during early embryogenesis of P. americana.
Collapse
Affiliation(s)
- I B Ramos
- Laboratório de Entomologia Médica do Programa de Parasitologia e Biologia Celular, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Brasil
| | | | | | | |
Collapse
|
18
|
López-Marqués RL, Pérez-Castiñeira JR, Buch-Pedersen MJ, Marco S, Rigaud JL, Palmgren MG, Serrano A. Large-scale purification of the proton pumping pyrophosphatase from Thermotoga maritima: a "Hot-Solve" method for isolation of recombinant thermophilic membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1716:69-76. [PMID: 16182234 DOI: 10.1016/j.bbamem.2005.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 08/12/2005] [Accepted: 08/12/2005] [Indexed: 11/26/2022]
Abstract
Although several proton-pumping pyrophosphatases (H+-PPases) have been overexpressed in heterologous systems, purification of these recombinant integral membrane proteins in large amounts in order to study their structure-function relationships has proven to be a very difficult task. In this study we report a new method for large-scale production of pure and stable thermophilic H+-PPase from Thermotoga maritima. Following overexpression in yeast, a "Hot-Solve" procedure based on high-temperature solubilization and metal-affinity chromatography was used to obtain a highly purified detergent-solubilized TVP fraction with a yield around 1.5 mg of protein per litre of yeast culture. Electron microscopy showed the monodispersity of the purified protein and single particle analysis provided the first direct evidence of a dimeric structure for H+-PPases. We propose that the method developed could be useful for large-scale purification of other recombinant thermophilic membrane proteins.
Collapse
Affiliation(s)
- Rosa L López-Marqués
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla, CSIC, Avda. Americo Vespucio 49, 45092 Sevilla, Spain.
| | | | | | | | | | | | | |
Collapse
|
19
|
Moraes Moreira BL, Soares Medeiros LCA, Miranda K, de Souza W, Hentschel J, Plattner H, Barrabin H. Kinetics of pyrophosphate-driven proton uptake by acidocalcisomes of Leptomonas wallacei. Biochem Biophys Res Commun 2005; 334:1206-13. [PMID: 16039991 DOI: 10.1016/j.bbrc.2005.06.205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 06/27/2005] [Indexed: 11/22/2022]
Abstract
In this work, we show the kinetics of pyrophosphate-driven H+ uptake by acidocalcisomes in digitonin-permeabilized promastigotes of Leptomonas wallacei. The vacuolar proton pyrophosphatase activity was optimal in the pH range of 7.5-8.0, was inhibited by imidiodiphosphate, and was completely dependent on K+ and PPi. H+ was released with the addition of Ca2+, suggesting the presence of a Ca2+/H+ antiport. In addition, X-ray elemental mapping associated with energy-filtering transmission electron microscopy showed that most of the Ca, Na, Mg, P, K, Fe, and Zn were located in acidocalcisomes. L. wallacei immunolabeled with antibodies against Trypanosoma cruzi pyrophosphatase show intense fluorescence in cytoplasmatic organelles of size and distribution similar to the acidocalcisomes. Altogether, the results show that L. wallacei acidocalcisomes possess a H+-pyrophosphatase with characteristics of type I V-H+-PPase. However, we did not find any evidence, either for the presence of H+-ATPases or for Na+/H+ exchangers in these acidocalcisomes.
Collapse
|
20
|
Atella GC, Gondim KC, Machado EA, Medeiros MN, Silva-Neto MAC, Masuda H. Oogenesis and egg development in triatomines: a biochemical approach. AN ACAD BRAS CIENC 2005; 77:405-30. [PMID: 16127549 DOI: 10.1590/s0001-37652005000300005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In triatomines, as well as in other insects, accumulation of yolk is a process in which an extra-ovarian tissue, the fat body, produces yolk proteins that are packed in the egg. The main protein, synthesized by the fat body, which is accumulated inside the oocyte, is vitellogenin. This process is also known as vitellogenesis. There are growing evidences in triatomines that besides fat body the ovary also produces yolk proteins. The way these yolk proteins enter the oocyte will be discussed. Yolk is a complex material composed of proteins, lipids, carbohydrates and other minor components which are packed inside the oocyte in an organized manner. Fertilization triggers embryogenesis, a process where an embryo will develop. During embryogenesis the yolk will be used for the construction of a new individual, the first instar nymph. The challenge for the next decade is to understand how and where these egg proteins are used up together with their non-protein components, in pace with the genetic program of the embryo, which enables cell differentiation (early phase of embryogenesis) and embryo differentiation (late phase) inside the egg.
Collapse
Affiliation(s)
- Georgia C Atella
- Bloco H, Centro de Ciências da Saúde, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | | | | | | | | | | |
Collapse
|
21
|
Mimura H, Nakanishi Y, Maeshima M. Oligomerization of H(+)-pyrophosphatase and its structural and functional consequences. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:393-403. [PMID: 15953583 DOI: 10.1016/j.bbabio.2005.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 04/18/2005] [Accepted: 05/10/2005] [Indexed: 11/23/2022]
Abstract
The H(+)-pyrophosphatase (H(+)-PPase) consists of a single polypeptide, containing 16 or 17 transmembrane domains. To determine the higher order oligomeric state of Streptomyces coelicolor H(+)-PPase, we constructed a series of cysteine substitution mutants and expressed them in Escherichia coli. Firstly, we analyzed the formation of disulfide bonds, promoted by copper, in mutants with single cysteine substitutions. 28 of 39 mutants formed disulfide bonds, including S545C, a substitution at the periplasmic side. The formation of intermolecular disulfide bonds suppressed the enzyme activity of several, where the substituted residues were located in the cytosol. Creating disulfide links in the cytosol may interfere with the enzyme's catalytic function. Secondly, we prepared double mutants by introducing second cysteine substitutions into the S545C mutant. These double-cysteine mutants produced cross-linked complexes, estimated to be at least tetramers and possibly hexamers. Thirdly, we co-expressed epitope-tagged, wild type, and inactive mutant H(+)-PPases in E. coli and confirmed the formation of oligomers by co-purifying one subunit using the epitope tag used to label the other. The enzyme activity of these oligomers was markedly suppressed. We propose that H(+)-PPase is present as an oligomer made up of at least two or three sets of dimers.
Collapse
Affiliation(s)
- Hisatoshi Mimura
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | |
Collapse
|
22
|
Hirono M, Mimura H, Nakanishi Y, Maeshima M. Expression of Functional Streptomyces coelicolor H+-Pyrophosphatase and Characterization of Its Molecular Properties. ACTA ACUST UNITED AC 2005; 138:183-91. [PMID: 16091593 DOI: 10.1093/jb/mvi112] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
H(+)-translocating pyrophosphatases (H(+)-PPases) are proton pumps that are found in many organisms, including plants, bacteria and protozoa. Streptomyces coelicolor is a soil bacterium that produces several useful antibiotics. Here we investigated the properties of the H(+)-PPase of S. coelicolor by expressing a synthetic DNA encoding the amino-acid sequence of the H(+)-PPase in Escherichia coli. The H(+)-PPase from E. coli membranes was active at a relatively high pH, stable up to 50 degrees C, and sensitive to N-ethylmaleimide, N,N'-dicyclohexylcarbodiimide and acylspermidine. Enzyme activity increased by 60% in the presence of 120 mM K(+), which was less than the stimulation observed with plant vacuolar H(+)-PPases (type I). Substitutions of Lys-507 in the Gly-Gln-x-x-(Ala/Lys)-Ala motif, which is thought to determine the K(+) requirement of H(+)-PPases, did not alter its K(+) dependence, suggesting that other residues control this feature of the S. coelicolor enzyme. The H(+)-PPase was detected during early growth and was present mainly on the plasma membrane and to a lesser extent on intracellular membranous structures.
Collapse
Affiliation(s)
- Megumi Hirono
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University
| | | | | | | |
Collapse
|
23
|
Covi JA, Treleaven WD, Hand SC. V-ATPase inhibition prevents recovery from anoxia in Artemia franciscana embryos: quiescence signaling through dissipation of proton gradients. J Exp Biol 2005; 208:2799-808. [PMID: 16000548 DOI: 10.1242/jeb.01681] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The metabolic downregulation critical for long-term survival of Artemia franciscana embryos under anoxia is mediated, in part, by a progressive intracellular acidification. However, very little is known about the mechanisms responsible for the pH transitions associated with exposure to, and recovery from, oxygen deprivation. In the present study, we demonstrate with 31P-NMR that incubation of intact embryos with the V-ATPase inhibitor bafilomycin A1 severely limits intracellular alkalinization during recovery from anoxia without affecting the restoration of cellular nucleotide triphosphate levels. Based on these data, it appears that oxidative phosphorylation and ATP resynthesis can only account for the first 0.3 pH unit alkalinization observed during aerobic recovery from the 1 pH unit acidification produced during 1 h of anoxia. The additional 0.7 pH unit increase requires proton pumping by the V-ATPase. Aerobic incubation with bafilomycin also suggests that V-ATPase inhibition alone is not enough to induce an acute dissipation of proton gradients under anoxia. In intact embryos, the dissipation of proton gradients and uncoupling of oxidative phosphorylation with carbonyl cyanide 3-chlorophenylhydrazone (CCCP) leads to an intracellular acidification similar to that seen after 1 h of anoxia. Subsequent exposure to anoxia, in the continued presence of CCCP, yields little additional acidification, suggesting that proton gradients are normally dissipated under anoxia. When combined with protons generated from net ATP hydrolysis, these data show that the dissipation of proton chemical gradients is sufficient to account for the reversible acidification associated with quiescence in these embryos.
Collapse
Affiliation(s)
- Joseph A Covi
- Division of Cellular, Developmental and Integrative Biology, Department of Biological Science, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | |
Collapse
|
24
|
Fialho E, Nakamura A, Juliano L, Masuda H, Silva-Neto MAC. Cathepsin D-mediated yolk protein degradation is blocked by acid phosphatase inhibitors. Arch Biochem Biophys 2005; 436:246-53. [PMID: 15797237 DOI: 10.1016/j.abb.2005.01.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 01/05/2005] [Indexed: 10/25/2022]
Abstract
Vitellin (VT) is a lipoglycophosphoprotein stored inside the eggs of every oviparous organism during oogenesis. In the blood-sucking bug Rhodnius prolixus, VT is deposited inside growing oocytes together with two acid hydrolases: acid phosphatase (AP) and cathepsin D (CD). Egg fertilization triggers AP activity and VT proteolysis in vivo [Insect Biochem. Mol. Biol. 2002 (32) 847]. Here, we show that CD is the main protease targeting VT proteolysis during egg development. CD activity in total egg homogenates is blocked by the classical aspartyl protease inhibitor, pepstatin A. Surprisingly, AP inhibitors such as NaF, Na+/K+ tartrate, and inorganic phosphate also block VT proteolysis, whereas this effect is not observed when tyrosine phosphatase inhibitors such as vanadate and phenylarsine oxide or an inhibitor of alkaline phosphatases such as levamisole are used in a VT proteolysis assay. NaF concentrations that block isolated AP activity do not affect the activity of partially purified CD. Therefore, a specific repressor of VT proteolysis must be dephosphorylated by AP in vivo. In conclusion, these results demonstrate for the first time that acid hydrolases act cooperatively to promote yolk degradation during egg development in arthropods.
Collapse
Affiliation(s)
- Eliane Fialho
- Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, UFRJ, P.O. Box 68041, Cidade Universitária, Rio de Janeiro, CEP 21941-590, RJ, Brazil
| | | | | | | | | |
Collapse
|
25
|
Yamada R, Yamahama Y, Sonobe H. Release of Ecdysteroid-Phosphates from Egg Yolk Granules and Their Dephosphorylation during Early Embryonic Development in Silkworm, Bombyx mori. Zoolog Sci 2005; 22:187-98. [PMID: 15738639 DOI: 10.2108/zsj.22.187] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Newly laid eggs of many insect species store maternal ecdysteroids as physiologically inactive phosphoric esters. In the silkworm Bombyx mori, we previously reported the presence of a specific enzyme, called ecdysteroid-phosphate phosphatase (EPPase), which catalyzes the dephosphorylation of ecdysteroid-phosphates to increase the amount of free ecdysteroids during early embryonic development. In this study, we demonstrated that (1) EPPase is found in the cytosol of yolk cells, (2) ecdysteroid-phosphates are localized in yolk granules, being bound to the yolk protein vitellin (Vn), and (3) Vn-bound ecdysteroid-phosphates are scarcely hydrolyzed by EPPase, although free ecdysteroid-phosphates are completely hydrolyzed by EPPase. Thus, we investigated the mechanism by which ecdysteroid-phosphates dissociate from the Vn-ecdysteroid-phosphate complex, and indicated that the acidification of yolk granules causes the dissociation of ecdysteroid-phosphates from the Vn-ecdysteroid-phosphate complex and thereby ecdysteroid-phosphates are released from yolk granules into the cytosol. Indeed, the presence of vacuolar-type proton-translocating ATPase in the membrane fraction of yolk granules was also verified by Western blot analysis. Our experiments revealed that Vn functions as a reservoir of maternal ovarian ecdysteroid-phosphates as well as a nutritional source during embryonic development. This is the first report showing the biochemical mechanism by which maternal Vn-bound ecdysteroid-phosphates function during early embryonic development.
Collapse
Affiliation(s)
- Ryouichi Yamada
- Department of Life and Functional Material Science, Graduate School of Natural Sciences, Konan University, Kobe, Japan
| | | | | |
Collapse
|