1
|
Lu S, de Sousa-Paula LC, Ribeiro JMC, Tirloni L. Exploring the longitudinal expression dynamics of midguts in adult female Amblyomma americanum ticks. BMC Genomics 2024; 25:996. [PMID: 39448894 PMCID: PMC11515579 DOI: 10.1186/s12864-024-10905-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Female ticks remain attached to their host for multiple days to complete a blood meal. This prolonged feeding period is accompanied by a significant increase in the tick's size and body weight, paralleled by noteworthy changes to the tick midgut. While the midgut is recognized for its established role in blood storage and processing, its importance extends to playing a crucial role in the acquisition, survival, and proliferation of pathogens. Despite this, our overall understanding of tick midgut biology is limited. RESULTS Our transcriptome analysis identified 15,599 putative DNA coding sequences (CDS), which were classified into 26 functional groups. Dimensional and differential expression analyses revealed four primary transcriptional profiles corresponding to unfed, slow-feeding, transitory (from slow- to rapid-feeding), and rapid-feeding stages. Additionally, comparing the current dataset with previously deposited transcriptome from other tick species allowed the identification of commonly expressed transcripts across different feeding stages. CONCLUSION Our findings provide a detailed temporal resolution of numerous metabolic pathways in the midgut of A. americanum adult females throughout the feeding process, highlighting the dynamic transcriptional regulation of the tick's midgut as feeding progresses. Furthermore, we identified conserved transcripts across three different tick species that exhibit similar expression patterns. This knowledge not only enhances our understanding of the physiological processes within the tick midgut but also opens up potential avenues for developing control methods that target multiple tick species.
Collapse
Affiliation(s)
- Stephen Lu
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Lucas C de Sousa-Paula
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Jose M C Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA.
| |
Collapse
|
2
|
da Silva Vaz Junior I, Lu S, Pinto AFM, Diedrich JK, Yates JR, Mulenga A, Termignoni C, Ribeiro JM, Tirloni L. Changes in saliva protein profile throughout Rhipicephalus microplus blood feeding. Parasit Vectors 2024; 17:36. [PMID: 38281054 PMCID: PMC10821567 DOI: 10.1186/s13071-024-06136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/12/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND When feeding on a vertebrate host, ticks secrete saliva, which is a complex mixture of proteins, lipids, and other molecules. Tick saliva assists the vector in modulating host hemostasis, immunity, and tissue repair mechanisms. While helping the vector to feed, its saliva modifies the site where pathogens are inoculated and often facilitates the infection process. The objective of this study is to uncover the variation in protein composition of Rhipicephalus microplus saliva during blood feeding. METHODS Ticks were fed on calves, and adult females were collected, weighed, and divided in nine weight groups, representing the slow and rapid feeding phases of blood feeding. Tick saliva was collected, and mass spectrometry analyses were used to identify differentially secreted proteins. Bioinformatic tools were employed to predict the structural and functional features of the salivary proteins. Reciprocal best hit analyses were used to identify conserved families of salivary proteins secreted by other tick species. RESULTS Changes in the protein secretion profiles of R. microplus adult female saliva during the blood feeding were observed, characterizing the phenomenon known as "sialome switching." This observation validates the idea that the switch in protein expression may serve as a mechanism for evading host responses against tick feeding. Cattle tick saliva is predominantly rich in heme-binding proteins, secreted conserved proteins, lipocalins, and protease inhibitors, many of which are conserved and present in the saliva of other tick species. Additionally, another remarkable observation was the identification of host-derived proteins as a component of tick saliva. CONCLUSIONS Overall, this study brings new insights to understanding the dynamics of the proteomic profile of tick saliva, which is an important component of tick feeding biology. The results presented here, along with the disclosed sequences, contribute to our understanding of tick feeding biology and might aid in the identification of new targets for the development of novel anti-tick methods.
Collapse
Affiliation(s)
- Itabajara da Silva Vaz Junior
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Stephen Lu
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Antônio F M Pinto
- Clayton Foundation Peptide Biology Lab, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - José Marcos Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA.
| |
Collapse
|
3
|
Fazito do Vale V, Hevillin Rocha Simtob B, Ferreira Malta LG, Pessoa de Siqueira E. The common bed bug Cimex lectularius synthesizes hemozoin as an essential defense against the toxic effects of heme. Exp Parasitol 2023; 255:108653. [PMID: 37951390 DOI: 10.1016/j.exppara.2023.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
The common bed bug Cimex lectularius (Linnaeus 1758) is an ectoparasite that feeds preferably on human blood, being considered an important public health issue. Blood-feeding is a challenging process for hematophagous organisms, and one of the inherent risks with this kind of diet is the liberation of high doses of free heme after the digestion of hemoglobin. In order to deal with this potent cytotoxic agent, such organisms have acquired different defense mechanisms. Here, we use UV-visible spectrophotometry and infrared spectroscopy to show that C. lectularius crystalizes free heme to form the much less dangerous compound, hemozoin. According to our results, the peak of formation of hemozoin in the intestinal contents occurred 4-5 days after the blood meal, primarily in the posterior midgut. The quantification of the rate of conversion of heme to hemozoin revealed that at the end of digestion all the heme was in the form of hemozoin. Inhibition of the synthesis of hemozoin using the anti-malarial drug quinine led to an increase in both catalase activity in the intestinal epithelium and the mortality of the bed bugs, indicating that the insects were unable to cope with the oxidative stress generated by the overload of free heme. The data presented here show for the first time how C. lectularius deals with free heme, and how the process of formation of hemozoin is essential for the survival of these insects. Since resistance to insecticides is a common feature among field populations of bed bugs, there is an urgent need to develop alternative control methods. Thus, targeting the synthesis of hemozoin emerges as a possible novel strategy to fight bed bugs.
Collapse
Affiliation(s)
- Vladimir Fazito do Vale
- Grupo de Pesquisa Triatomíneos, Instituto René Rachou, Fiocruz, Belo Horizonte, 30190-002, Brazil.
| | | | | | - Ezequias Pessoa de Siqueira
- Grupo de Pesquisa Química de Produtos Naturais Bioativos, Instituto René Rachou, Fiocruz, Belo Horizonte, 30190-002, Brazil.
| |
Collapse
|
4
|
Inspiring Anti-Tick Vaccine Research, Development and Deployment in Tropical Africa for the Control of Cattle Ticks: Review and Insights. Vaccines (Basel) 2022; 11:vaccines11010099. [PMID: 36679944 PMCID: PMC9866923 DOI: 10.3390/vaccines11010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Ticks are worldwide ectoparasites to humans and animals, and are associated with numerous health and economic effects. Threatening over 80% of the global cattle population, tick and tick-borne diseases (TTBDs) particularly constrain livestock production in the East, Central and Southern Africa. This, therefore, makes their control critical to the sustainability of the animal industry in the region. Since ticks are developing resistance against acaricides, anti-tick vaccines (ATVs) have been proposed as an environmentally friendly control alternative. Whereas they have been used in Latin America and Australia to reduce tick populations, pathogenic infections and number of acaricide treatments, commercially registered ATVs have not been adopted in tropical Africa for tick control. This is majorly due to their limited protection against economically important tick species of Africa and lack of research. Recent advances in various omics technologies and reverse vaccinology have enabled the identification of many candidate anti-tick antigens (ATAs), and are likely to usher in the next generation of vaccines, for which Africa should prepare to embrace. Herein, we highlight some scientific principles and approaches that have been used to identify ATAs, outline characteristics of a desirable ATA for vaccine design and propose the need for African governments to investment in ATV research to develop vaccines relevant to local tick species (personalized vaccines). We have also discussed the prospect of incorporating anti-tick vaccines into the integrated TTBDs control strategies in the sub-Saharan Africa, citing the case of Uganda.
Collapse
|
5
|
Pérez-Sánchez R, Carnero-Morán A, Luz Valero M, Oleaga A. A proteomics informed by transcriptomics insight into the proteome of Ornithodoros erraticus adult tick saliva. Parasit Vectors 2022; 15:1. [PMID: 34980218 PMCID: PMC8722417 DOI: 10.1186/s13071-021-05118-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The argasid tick Ornithodoros erraticus is the main vector of tick-borne human relapsing fever (TBRF) and African swine fever (ASF) in the Mediterranean Basin. The prevention and control of these diseases would greatly benefit from the elimination of O. erraticus populations, and anti-tick vaccines are envisaged as an effective and sustainable alternative to chemical acaricide usage for tick control. Ornithodoros erraticus saliva contains bioactive proteins that play essential functions in tick feeding and host defence modulation, which may contribute to host infection by tick-borne pathogens. Hence, these proteins could be candidate antigen targets for the development of vaccines aimed at the control and prevention of O. erraticus infestations and the diseases this tick transmits. The objective of the present work was to obtain and characterise the proteome of the saliva of O. erraticus adult ticks as a means to identify and select novel salivary antigen targets. METHODS A proteomics informed by transcriptomics (PIT) approach was applied to analyse samples of female and male saliva separately using the previously obtained O. erraticus sialotranscriptome as a reference database and two different mass spectrometry techniques, namely liquid chromatography-tandem mass spectrometry (LC-MS/MS) in data-dependent acquisition mode and sequential window acquisition of all theoretical fragment ion spectra MS (SWATH-MS). RESULTS Up to 264 and 263 proteins were identified by LC-MS/MS in the saliva of O. erraticus female and male ticks, respectively, totalling 387 non-redundant proteins. Of these, 224 were further quantified by SWATH-MS in the saliva of both male and female ticks. Quantified proteins were classified into 23 functional categories and their abundance compared between sexes. Heme/iron-binding proteins, protease inhibitors, proteases, lipocalins and immune-related proteins were the categories most abundantly expressed in females, while glycolytic enzymes, protease inhibitors and lipocalins were the most abundantly expressed in males. Ninety-seven proteins were differentially expressed between the sexes, of which 37 and 60 were overexpressed in females and males, respectively. CONCLUSIONS The PIT approach demonstrated its usefulness for proteomics studies of O. erraticus, a non-model organism without genomic sequences available, allowing the publication of the first comprehensive proteome of the saliva of O. erraticus reported to date. These findings confirm important quantitative differences between sexes in the O. erraticus saliva proteome, unveil novel salivary proteins and functions at the tick-host feeding interface and improve our understanding of the physiology of feeding in O. erraticus ticks. The integration of O. erraticus sialoproteomic and sialotranscriptomic data will drive a more rational selection of salivary candidates as antigen targets for the development of vaccines aimed at the control of O. erraticus infestations and the diseases it transmits.
Collapse
Affiliation(s)
- Ricardo Pérez-Sánchez
- Parasitology Laboratory, Spanish National Research Council Institute of Natural Resources and Agrobiology (CSIC-IRNASA), Cordel de Merinas, 40-52, 37008 Salamanca, Spain
| | - Angel Carnero-Morán
- Parasitology Laboratory, Spanish National Research Council Institute of Natural Resources and Agrobiology (CSIC-IRNASA), Cordel de Merinas, 40-52, 37008 Salamanca, Spain
| | - M. Luz Valero
- Proteomics Section, Central Service for Experimental Research, University of Valencia, Carrer del Dr. Moliner, 50, 46100 Burjassot, Spain
| | - Ana Oleaga
- Parasitology Laboratory, Spanish National Research Council Institute of Natural Resources and Agrobiology (CSIC-IRNASA), Cordel de Merinas, 40-52, 37008 Salamanca, Spain
- Proteomics Section, Central Service for Experimental Research, University of Valencia, Carrer del Dr. Moliner, 50, 46100 Burjassot, Spain
| |
Collapse
|
6
|
Sajid A, Matias J, Arora G, Kurokawa C, DePonte K, Tang X, Lynn G, Wu MJ, Pal U, Strank NO, Pardi N, Narasimhan S, Weissman D, Fikrig E. mRNA vaccination induces tick resistance and prevents transmission of the Lyme disease agent. Sci Transl Med 2021; 13:eabj9827. [PMID: 34788080 DOI: 10.1126/scitranslmed.abj9827] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ixodes scapularis ticks transmit many pathogens that cause human disease, including Borrelia burgdorferi. Acquired resistance to I. scapularis due to repeated tick exposure has the potential to prevent tick-borne infectious diseases, and salivary proteins have been postulated to contribute to this process. We examined the ability of lipid nanoparticle–containing nucleoside-modified mRNAs encoding 19 I. scapularis salivary proteins (19ISP) to enhance the recognition of a tick bite and diminish I. scapularis engorgement on a host and thereby prevent B. burgdorferi infection. Guinea pigs were immunized with a 19ISP mRNA vaccine and subsequently challenged with I. scapularis. Animals administered 19ISP developed erythema at the bite site shortly after ticks began to attach, and these ticks fed poorly, marked by early detachment and decreased engorgement weights. 19ISP immunization also impeded B. burgdorferi transmission in the guinea pigs. The effective induction of local redness early after I. scapularis attachment and the inability of the ticks to take a normal blood meal suggest that 19ISP may be used either alone or in conjunction with traditional pathogen-based vaccines for the prevention of Lyme disease, and potentially other tick-borne infections.
Collapse
Affiliation(s)
- Andaleeb Sajid
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jaqueline Matias
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Cheyne Kurokawa
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kathleen DePonte
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Geoffrey Lynn
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ming-Jie Wu
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20472, USA
- Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD 20472, USA
| | - Norma Olivares Strank
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
7
|
Pérez-Sánchez R, Carnero-Morán Á, Soriano B, Llorens C, Oleaga A. RNA-seq analysis and gene expression dynamics in the salivary glands of the argasid tick Ornithodoros erraticus along the trophogonic cycle. Parasit Vectors 2021; 14:170. [PMID: 33743776 PMCID: PMC7980729 DOI: 10.1186/s13071-021-04671-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The argasid tick Ornithodoros erraticus is the main vector of tick-borne human relapsing fever (TBRF) and African swine fever (ASF) in the Mediterranean Basin. Tick salivary proteins secreted to the host at the feeding interface play critical roles for tick feeding and may contribute to host infection by tick-borne pathogens; accordingly, these proteins represent interesting antigen targets for the development of vaccines aimed at the control and prevention of tick infestations and tick-borne diseases. METHODS To identify these proteins, the transcriptome of the salivary glands of O. erraticus was de novo assembled and the salivary gene expression dynamics assessed throughout the trophogonic cycle using Illumina sequencing. The genes differentially upregulated after feeding were selected and discussed as potential antigen candidates for tick vaccines. RESULTS Transcriptome assembly resulted in 22,007 transcripts and 18,961 annotated transcripts, which represent 86.15% of annotation success. Most salivary gene expression took place during the first 7 days after feeding (2088 upregulated transcripts), while only a few genes (122 upregulated transcripts) were differentially expressed from day 7 post-feeding onwards. The protein families more abundantly overrepresented after feeding were lipocalins, acid and basic tail proteins, proteases (particularly metalloproteases), protease inhibitors, secreted phospholipases A2, 5'-nucleotidases/apyrases and heme-binding vitellogenin-like proteins. All of them are functionally related to blood ingestion and regulation of host defensive responses, so they can be interesting candidate protective antigens for vaccines. CONCLUSIONS The O. erraticus sialotranscriptome contains thousands of protein coding sequences-many of them belonging to large conserved multigene protein families-and shows a complexity and functional redundancy similar to those observed in the sialomes of other argasid and ixodid tick species. This high functional redundancy emphasises the need for developing multiantigenic tick vaccines to reach full protection. This research provides a set of promising candidate antigens for the development of vaccines for the control of O. erraticus infestations and prevention of tick-borne diseases of public and veterinary health relevance, such as TBRF and ASF. Additionally, this transcriptome constitutes a valuable reference database for proteomics studies of the saliva and salivary glands of O. erraticus.
Collapse
Affiliation(s)
- Ricardo Pérez-Sánchez
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008, Salamanca, Spain.
| | - Ángel Carnero-Morán
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008, Salamanca, Spain
| | - Beatriz Soriano
- Biotechvana, Scientific Park, University of Valencia, Calle Catedrático José Beltrán 2, Paterna, 46980, Valencia, Spain
| | - Carlos Llorens
- Biotechvana, Scientific Park, University of Valencia, Calle Catedrático José Beltrán 2, Paterna, 46980, Valencia, Spain
| | - Ana Oleaga
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008, Salamanca, Spain
| |
Collapse
|
8
|
Kim TK, Tirloni L, Pinto AFM, Diedrich JK, Moresco JJ, Yates JR, da Silva Vaz I, Mulenga A. Time-resolved proteomic profile of Amblyomma americanum tick saliva during feeding. PLoS Negl Trop Dis 2020; 14:e0007758. [PMID: 32049966 PMCID: PMC7041860 DOI: 10.1371/journal.pntd.0007758] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/25/2020] [Accepted: 01/03/2020] [Indexed: 12/26/2022] Open
Abstract
Amblyomma americanum ticks transmit more than a third of human tick-borne disease (TBD) agents in the United States. Tick saliva proteins are critical to success of ticks as vectors of TBD agents, and thus might serve as targets in tick antigen-based vaccines to prevent TBD infections. We describe a systems biology approach to identify, by LC-MS/MS, saliva proteins (tick = 1182, rabbit = 335) that A. americanum ticks likely inject into the host every 24 h during the first 8 days of feeding, and towards the end of feeding. Searching against entries in GenBank grouped tick and rabbit proteins into 27 and 25 functional categories. Aside from housekeeping-like proteins, majority of tick saliva proteins belong to the tick-specific (no homology to non-tick organisms: 32%), protease inhibitors (13%), proteases (8%), glycine-rich proteins (6%) and lipocalins (4%) categories. Global secretion dynamics analysis suggests that majority (74%) of proteins in this study are associated with regulating initial tick feeding functions and transmission of pathogens as they are secreted within 24–48 h of tick attachment. Comparative analysis of the A. americanum tick saliva proteome to five other tick saliva proteomes identified 284 conserved tick saliva proteins: we speculate that these regulate critical tick feeding functions and might serve as tick vaccine antigens. We discuss our findings in the context of understanding A. americanum tick feeding physiology as a means through which we can find effective targets for a vaccine against tick feeding. The lone star tick, Amblyomma americanum, is a medically important species in US that transmits 5 of the 16 reported tick-borne disease agents. Most recently, bites of this tick were associated with red meat allergies in humans. Vaccination of animals against tick feeding has been shown to be a sustainable and an effective alternative to current acaricide based tick control method which has several limitations. The pre-requisite to tick vaccine development is to understand the molecular basis of tick feeding physiology. Toward this goal, this study has identified proteins that A. americanum ticks inject into the host at different phases of its feeding cycle. This data set has identified proteins that A. americanum inject into the host within 24–48 h of feeding before it starts to transmit pathogens. Of high importance, we identified 284 proteins that are present in saliva of other tick species, which we suspect regulate important role(s) in tick feeding success and might represent rich source target antigens for a tick vaccine. Overall, this study provides a foundation to understand the molecular mechanisms regulating tick feeding physiology.
Collapse
Affiliation(s)
- Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Lucas Tirloni
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Antônio F. M. Pinto
- Foundation Peptide Biology Lab, Salk Institute for Biological Studies, La Jolla, Californai, United States of America
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jolene K. Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - James J. Moresco
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - John R. Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
9
|
Moura-Martiniano NO, Machado-Ferreira E, Gazêta GS, Soares CAG. Relative transcription of autophagy-related genes in Amblyomma sculptum and Rhipicephalus microplus ticks. EXPERIMENTAL & APPLIED ACAROLOGY 2017; 73:401-428. [PMID: 29181673 DOI: 10.1007/s10493-017-0193-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Ticks endure stressful off-host periods and perform as vectors of a diversity of infectious agents, thus engaging pathways that expectedly demand for autophagy. Little is known of ticks' autophagy, a conserved eukaryotic machinery assisting in homeostasis processes that also participates in tissue-dependent metabolic functions. Here, the autophagy-related ATG4 (autophagin-1), ATG6 (beclin-1) and ATG8 (LC3) mRNAs from the human diseases vector Amblyomma sculptum and the cattle-tick Rhipicephalus microplus were identified. Comparative qPCR quantifications evidenced different transcriptional status for the ATG genes in the salivary glands (SG), ovaries and intestines of actively feeding ticks. These ATGs had increased relative transcription under nutrient-deprivation, as determined by validation tests with R. microplus embryo-derivative cells BME26 and A. sculptum SG explants incubations in HBSS. Starvation lead to 4-31.8× and ~ 60-500× increments on the ATGs mRNA loads in BME26 and A. sculptum SG explants, respectively. PI3K inhibitor 3MA treatment also affected ATGs expression in BME26. Some ATGs were more transcribed in the SGs than in the ovaries of cattle-ticks. Amblyomma sculptum/R. microplus interspecific comparisons showed that ATG4 and ATG6 were 0.18× less expressed in A. sculptum SGs, but ~ 10-100× more expressed in their ovaries when compared to R. microplus organs. ATG4 and ATG8a transcript loads were ~ 120× and ~ 40× higher, respectively, in A. sculptum intestines when compared to cattle-ticks of similar weight category. ATGs expression in A. sculptum intestines increased with tick weight, indicating Atgs contribution to intracellular blood digestion. Possible roles of the autophagy machinery and their organ-specific expression profile on vector biology are discussed.
Collapse
Affiliation(s)
- Nicole O Moura-Martiniano
- Laboratório de Genética Molecular de Eucariontes e Simbiontes, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Erik Machado-Ferreira
- Laboratório de Genética Molecular de Eucariontes e Simbiontes, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilberto S Gazêta
- Laboratório de Referência Nacional em Vetores das Riquetsioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carlos Augusto Gomes Soares
- Laboratório de Genética Molecular de Eucariontes e Simbiontes, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- , Ilha do Fundão, CCS, Bloco A, Lab. A2-120. Rua Professor Rodolpho Paulo Rocco S/N, Rio de Janeiro, RJ, 21941-617, Brazil.
| |
Collapse
|
10
|
Kim TK, Tirloni L, Pinto AFM, Moresco J, Yates JR, da Silva Vaz I, Mulenga A. Ixodes scapularis Tick Saliva Proteins Sequentially Secreted Every 24 h during Blood Feeding. PLoS Negl Trop Dis 2016; 10:e0004323. [PMID: 26751078 PMCID: PMC4709002 DOI: 10.1371/journal.pntd.0004323] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/02/2015] [Indexed: 12/31/2022] Open
Abstract
Ixodes scapularis is the most medically important tick species and transmits five of the 14 reportable human tick borne disease (TBD) agents in the USA. This study describes LC-MS/MS identification of 582 tick- and 83 rabbit proteins in saliva of I. scapularis ticks that fed for 24, 48, 72, 96, and 120 h, as well as engorged but not detached (BD), and spontaneously detached (SD). The 582 tick proteins include proteases (5.7%), protease inhibitors (7.4%), unknown function proteins (22%), immunity/antimicrobial (2.6%), lipocalin (3.1%), heme/iron binding (2.6%), extracellular matrix/ cell adhesion (2.2%), oxidant metabolism/ detoxification (6%), transporter/ receptor related (3.2%), cytoskeletal (5.5%), and housekeeping-like (39.7%). Notable observations include: (i) tick saliva proteins of unknown function accounting for >33% of total protein content, (ii) 79% of proteases are metalloproteases, (iii) 13% (76/582) of proteins in this study were found in saliva of other tick species and, (iv) ticks apparently selectively inject functionally similar but unique proteins every 24 h, which we speculate is the tick's antigenic variation equivalent strategy to protect important tick feeding functions from host immune system. The host immune responses to proteins present in 24 h I. scapularis saliva will not be effective at later feeding stages. Rabbit proteins identified in our study suggest the tick's strategic use of host proteins to modulate the feeding site. Notably fibrinogen, which is central to blood clotting and wound healing, was detected in high abundance in BD and SD saliva, when the tick is preparing to terminate feeding and detach from the host. A remarkable tick adaptation is that the feeding lesion is completely healed when the tick detaches from the host. Does the tick concentrate fibrinogen at the feeding site to aide in promoting healing of the feeding lesion? Overall, these data provide broad insight into molecular mechanisms regulating different tick feeding phases. These data set the foundation for in depth I. scapularis tick feeding physiology and TBD transmission studies.
Collapse
Affiliation(s)
- Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Lucas Tirloni
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Antônio F. M. Pinto
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - James Moresco
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
11
|
Bartley K, Wright HW, Huntley JF, Manson EDT, Inglis NF, McLean K, Nath M, Bartley Y, Nisbet AJ. Identification and evaluation of vaccine candidate antigens from the poultry red mite (Dermanyssus gallinae). Int J Parasitol 2015; 45:819-30. [PMID: 26296690 PMCID: PMC4655837 DOI: 10.1016/j.ijpara.2015.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/10/2015] [Accepted: 07/14/2015] [Indexed: 11/21/2022]
Abstract
Ten poultry red mite vaccine candidate antigens were identified and recombinant versions produced. Mite mortality was monitored after feeding on the blood from vaccinated hens. A ⩾1.6-fold increased risk of mite death was observed with four of the vaccine candidates (P < 0.001). Best candidates include: a serpin, vitellogenin, hemelipoglycoprotein and a novel protein.
An aqueous extract of the haematophagous poultry ectoparasite, Dermanyssus gallinae, was subfractionated using anion exchange chromatography. Six of these subfractions were used to immunise hens and the blood from these hens was fed, in vitro, to poultry red mites. Mite mortality following these feeds was indicative of protective antigens in two of the subfractions, with the risks of mites dying being 3.1 and 3.7 times higher than in the control group (P < 0.001). A combination of two-dimensional immunoblotting and immunoaffinity chromatography, using IgY from hens immunised with these subfractions, was used in concert with proteomic analyses to identify the strongest immunogenic proteins in each of these subfractions. Ten of the immunoreactive proteins were selected for assessment as vaccine candidates using the following criteria: intensity of immune recognition; likelihood of exposure of the antigen to the antibodies in a blood meal; proposed function and known vaccine potential of orthologous molecules. Recombinant versions of each of these 10 proteins were produced in Escherichia coli and were used to immunise hens. Subsequent in vitro feeding of mites on blood from these birds indicated that immunisation with Deg-SRP-1 (serpin), Deg-VIT-1 (vitellogenin), Deg-HGP-1 (hemelipoglycoprotein) or Deg-PUF-1 (a protein of unknown function) resulted in significantly increased risk of mite death (1.7–2.8 times higher than in mites fed blood from control hens immunised with adjuvant only, P < 0.001). The potential for using these antigens in a recombinant vaccine is discussed.
Collapse
Affiliation(s)
- Kathryn Bartley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, United Kingdom.
| | - Harry W Wright
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, United Kingdom
| | - John F Huntley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, United Kingdom
| | - Erin D T Manson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, United Kingdom
| | - Neil F Inglis
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, United Kingdom
| | - Kevin McLean
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, United Kingdom
| | - Mintu Nath
- Biomathematics and Statistics Scotland (BioSS), The King's Buildings, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Yvonne Bartley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, United Kingdom
| | - Alasdair J Nisbet
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, United Kingdom
| |
Collapse
|
12
|
Lewis LA, Radulović ŽM, Kim TK, Porter LM, Mulenga A. Identification of 24h Ixodes scapularis immunogenic tick saliva proteins. Ticks Tick Borne Dis 2015; 6:424-34. [PMID: 25825233 PMCID: PMC4415496 DOI: 10.1016/j.ttbdis.2015.03.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 02/19/2015] [Accepted: 03/09/2015] [Indexed: 12/13/2022]
Abstract
Ixodes scapularis is arguably the most medically important tick species in the United States. This tick transmits 5 of the 14 human tick-borne disease (TBD) agents in the USA: Borrelia burgdorferi, Anaplasma phagocytophilum, B. miyamotoi, Babesia microti, and Powassan virus disease. Except for the Powassan virus disease, I. scapularis-vectored TBD agents require more than 24h post attachment to be transmitted. This study describes identification of 24h immunogenic I. scapularis tick saliva proteins, which could provide opportunities to develop strategies to stop tick feeding before transmission of the majority of pathogens. A 24h fed female I. scapularis phage display cDNA expression library was biopanned using rabbit antibodies to 24h fed I. scapularis female tick saliva proteins, subjected to next generation sequencing, de novo assembly, and bioinformatic analyses. A total of 182 contigs were assembled, of which ∼19% (35/182) are novel and did not show identity to any known proteins in GenBank. The remaining ∼81% (147/182) of contigs were provisionally identified based on matches in GenBank including ∼18% (27/147) that matched protein sequences previously annotated as hypothetical and putative tick saliva proteins. Others include proteases and protease inhibitors (∼3%, 5/147), transporters and/or ligand binding proteins (∼6%, 9/147), immunogenic tick saliva housekeeping enzyme-like (17%, 25/147), ribosomal protein-like (∼31%, 46/147), and those classified as miscellaneous (∼24%, 35/147). Notable among the miscellaneous class include antimicrobial peptides (microplusin and ricinusin), myosin-like proteins that have been previously found in tick saliva, and heat shock tick saliva protein. Data in this study provides the foundation for in-depth analysis of I. scapularis feeding during the first 24h, before the majority of TBD agents can be transmitted.
Collapse
Affiliation(s)
- Lauren A Lewis
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, United States
| | - Željko M Radulović
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, United States
| | - Tae K Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, United States
| | - Lindsay M Porter
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, United States
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
13
|
Urbanová V, Šíma R, Šauman I, Hajdušek O, Kopáček P. Thioester-containing proteins of the tick Ixodes ricinus: gene expression, response to microbial challenge and their role in phagocytosis of the yeast Candida albicans. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:55-64. [PMID: 25224405 DOI: 10.1016/j.dci.2014.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/09/2014] [Accepted: 09/09/2014] [Indexed: 05/16/2023]
Abstract
The ability of ticks to act as vectors for a wide range of serious human and animal infectious diseases is apparently linked to the insufficiency of the tick immune system to effectively eliminate pathogens they transmit. At the tick-pathogen interface, an important role is presumably played by components of an ancient complement system that includes a repertoire of thioester-containing proteins (TEPs), which in Ixodes sp. comprises three α2-macroglobulins (A2M), three C3 complement component-related molecules (C3), two macroglobulin complement-related (Mcr) and one insect-type TEPs (Tep). In order to assess the function of TEPs in tick immunity, a quantitative real-time PCR expression analysis of tick TEPs was performed at various developmental stages of Ixodes ricinus, and in tissues dissected from adult females. Expression of TEP genes was mostly tissue specific; IrA2M1, IrC3-1, IrC3-3 were found to be expressed in cells of tick fat body adjacent to the tracheal trunks, IrA2M2 in hemocytes, IrTep in ovaries, IrMcr1 in salivary glands and only IrA2M3, IrC3-2 and IrMcr2 mRNAs were present in multiple organs. Expression of tick TEPs was further examined in response to injection of model microbes representing Gram-negative, Gram-positive bacteria and yeast. The greatest expression induction was observed for IrA2M1 and IrC3-1 after challenge with the yeast Candida albicans. Phagocytosis of the yeast was strongly dependent on an active thioester bond and the subsequent silencing of individual tick TEPs by RNA interference demonstrated the involvement of IrC3-1 and IrMcr2. This result suggests the existence of a distinct complement-like pathway, different from that leading to phagocytosis of Gram-negative bacteria. Understanding of the tick immune response against model microbes should provide new concepts for investigating interactions between ticks and relevant tick-borne pathogens.
Collapse
Affiliation(s)
- Veronika Urbanová
- Institute of Parasitology, Biology Centre ASCR, České Budějovice CZ-370 05, Czech Republic
| | - Radek Šíma
- Institute of Parasitology, Biology Centre ASCR, České Budějovice CZ-370 05, Czech Republic
| | - Ivo Šauman
- Institute of Entomology, Biology Centre ASCR, České Budějovice CZ-370 05, Czech Republic
| | - Ondřej Hajdušek
- Institute of Parasitology, Biology Centre ASCR, České Budějovice CZ-370 05, Czech Republic
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre ASCR, České Budějovice CZ-370 05, Czech Republic.
| |
Collapse
|
14
|
Tirloni L, Reck J, Terra RMS, Martins JR, Mulenga A, Sherman NE, Fox JW, Yates JR, Termignoni C, Pinto AFM, da Silva Vaz I. Proteomic analysis of cattle tick Rhipicephalus (Boophilus) microplus saliva: a comparison between partially and fully engorged females. PLoS One 2014; 9:e94831. [PMID: 24762651 PMCID: PMC3998978 DOI: 10.1371/journal.pone.0094831] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/19/2014] [Indexed: 01/10/2023] Open
Abstract
The cattle tick Rhipicephalus (Boophilus) microplus is one of the most harmful parasites affecting bovines. Similarly to other hematophagous ectoparasites, R. microplus saliva contains a collection of bioactive compounds that inhibit host defenses against tick feeding activity. Thus, the study of tick salivary components offers opportunities for the development of immunological based tick control methods and medicinal applications. So far, only a few proteins have been identified in cattle tick saliva. The aim of this work was to identify proteins present in R. microplus female tick saliva at different feeding stages. Proteomic analysis of R. microplus saliva allowed identifying peptides corresponding to 187 and 68 tick and bovine proteins, respectively. Our data confirm that (i) R. microplus saliva is complex, and (ii) that there are remarkable differences in saliva composition between partially engorged and fully engorged female ticks. R. microplus saliva is rich mainly in (i) hemelipoproteins and other transporter proteins, (ii) secreted cross-tick species conserved proteins, (iii) lipocalins, (iv) peptidase inhibitors, (v) antimicrobial peptides, (vii) glycine-rich proteins, (viii) housekeeping proteins and (ix) host proteins. This investigation represents the first proteomic study about R. microplus saliva, and reports the most comprehensive Ixodidae tick saliva proteome published to date. Our results improve the understanding of tick salivary modulators of host defense to tick feeding, and provide novel information on the tick-host relationship.
Collapse
Affiliation(s)
- Lucas Tirloni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - José Reck
- Instituto de Pesquisas Veterinárias Desidério Finamor, Fundação Estadual de Pesquisa Agropecuária, Eldorado do Sul, RS, Brazil
| | - Renata Maria Soares Terra
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
- CAPES, Ministério da Educação do Brasil, Brasília, DF, Brasil
| | - João Ricardo Martins
- Instituto de Pesquisas Veterinárias Desidério Finamor, Fundação Estadual de Pesquisa Agropecuária, Eldorado do Sul, RS, Brazil
| | - Albert Mulenga
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Nicholas E. Sherman
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jay W. Fox
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Antônio F. M. Pinto
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
- CAPES, Ministério da Educação do Brasil, Brasília, DF, Brasil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
15
|
Cotté V, Sabatier L, Schnell G, Carmi-Leroy A, Rousselle JC, Arsène-Ploetze F, Malandrin L, Sertour N, Namane A, Ferquel E, Choumet V. Differential expression of Ixodes ricinus salivary gland proteins in the presence of the Borrelia burgdorferi sensu lato complex. J Proteomics 2014; 96:29-43. [DOI: 10.1016/j.jprot.2013.10.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/07/2013] [Accepted: 10/24/2013] [Indexed: 12/22/2022]
|
16
|
Martínez-Sernández V, Mezo M, González-Warleta M, Perteguer MJ, Muiño L, Guitián E, Gárate T, Ubeira FM. The MF6p/FhHDM-1 major antigen secreted by the trematode parasite Fasciola hepatica is a heme-binding protein. J Biol Chem 2013; 289:1441-56. [PMID: 24280214 DOI: 10.1074/jbc.m113.499517] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Blood-feeding parasites have developed biochemical mechanisms to control heme intake and detoxification. Here we show that a major antigen secreted by Fasciola hepatica, previously reported as MF6p, of unknown function (gb|CCA61804.1), and as FhHDM-1, considered to be a helminth defense molecule belonging to the family of cathelicidin-like proteins (gb|ADZ24001.1), is in fact a heme-binding protein. The heme-binding nature of the MF6p/FhHDM-1 protein was revealed in two independent experiments: (i) immunopurification of the secreted protein·heme complexes with mAb MF6 and subsequent analysis by C8 reversed-phase HPLC and MS/MS spectrometry and (ii) analysis of the binding ability of the synthetic protein to hemin in vitro. By immunohistochemistry analysis, we have observed that MF6p/FhHDM-1 is produced by parenchymal cells and transported to other tissues (e.g. vitellaria and testis). Interestingly, MF6p/FhHDM-1 is absent both in the intestinal cells and in the lumen of cecum, but it can be released through the tegumental surface to the external medium, where it binds to free heme molecules regurgitated by the parasite after hemoglobin digestion. Proteins that are close analogs of the Fasciola MF6p/FhHDM-1 are present in other trematodes, including Clonorchis, Opistorchis, Paragonimus, Schistosoma, and Dicrocoelium. Using UV-visible spectroscopy and immunoprecipitation techniques, we observed that synthetic MF6p/FhHDM-1 binds to hemin with 1:1 stoichiometry and an apparent Kd of 1.14 × 10(-6) M(-1). We also demonstrated that formation of synthetic MF6p/FhHDM-1·hemin complexes inhibited hemin degradation by hydrogen peroxide and hemin peroxidase-like activity in vitro. Our results suggest that MF6p/FhHDM-1 may be involved in heme homeostasis in trematodes.
Collapse
Affiliation(s)
- Victoria Martínez-Sernández
- From the Laboratorio de Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Adamson SW, Browning RE, Budachetri K, Ribeiro JMC, Karim S. Knockdown of selenocysteine-specific elongation factor in Amblyomma maculatum alters the pathogen burden of Rickettsia parkeri with epigenetic control by the Sin3 histone deacetylase corepressor complex. PLoS One 2013; 8:e82012. [PMID: 24282621 PMCID: PMC3840058 DOI: 10.1371/journal.pone.0082012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 10/27/2013] [Indexed: 01/21/2023] Open
Abstract
Selenocysteine is the 21st naturally-occurring amino acid. Selenoproteins have diverse functions and many remain uncharacterized, but they are typically associated with antioxidant activity. The incorporation of selenocysteine into the nascent polypeptide chain recodes the TGA stop codon and this process depends upon a number of essential factors including the selenocysteine elongation factor (SEF). The transcriptional expression of SEF did not change significantly in tick midguts throughout the blood meal, but decreased in salivary glands to 20% at the end of the fast feeding phase. Since selenoprotein translation requires this specialized elongation factor, we targeted this gene for knockdown by RNAi to gain a global view of the role selenoproteins play in tick physiology. We found no significant differences in tick engorgement and embryogenesis but detected no antioxidant capacity in tick saliva. The transcriptional profile of selenoproteins in R. parkeri-infected Amblyomma maculatum revealed declined activity of selenoprotein M and catalase and increased activity of selenoprotein O, selenoprotein S, and selenoprotein T. Furthermore, the pathogen burden was significantly altered in SEF-knockdowns. We then determined the global impact of SEF-knockdown by RNA-seq, and mapped huge shifts in secretory gene expression that could be the result of downregulation of the Sin3 histone deacetylase corepressor complex.
Collapse
Affiliation(s)
- Steven W. Adamson
- Department of Biological Sciences, the University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Rebecca E. Browning
- Department of Biological Sciences, the University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Khemraj Budachetri
- Department of Biological Sciences, the University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - José M. C. Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Shahid Karim
- Department of Biological Sciences, the University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
- * E-mail:
| |
Collapse
|
18
|
Sandoval CM, Medone P, Nieves EE, Jaimes DA, Ortiz N, Rabinovich JE. Demographic fitness of Belminus ferroae (Hemiptera: Triatominae) on three different hosts under laboratory conditions. Mem Inst Oswaldo Cruz 2013; 108:854-64. [PMID: 24141961 PMCID: PMC3970645 DOI: 10.1590/0074-0276130211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 08/06/2013] [Indexed: 11/22/2022] Open
Abstract
Triatominae are widely recognised for their role as vectors of Trypanosoma cruzi. One of the main biological characteristics of this subfamily is their obligate haematophagous condition. However, previous studies on Belminus herreri and Belminus ferroae suggested that cockroaches are their principal hosts in domiciles. Due to this peculiar behaviour, the aim of this study was to analyse several demographic and reproductive parameters of B. ferroae fed on three different hosts (mice, cockroaches and Rhodnius prolixus) and relate B. ferroae fitness to these alternative hosts. The cohorts were reared under constant conditions. The egg hatching rate was similar for cohorts fed on cockroaches (69.4%) and R. prolixus (63.8%), but was much lower for the cohort fed on mice (16%). The development time from the nymph to adult stage and the average age of first reproduction (α) presented lower values in the cohort fed on cockroaches, which is consistent with the higher population growth rate associated with this host. Demographic parameters [intrinsic rate of natural increase, finite rate of population growth, net reproductive rate and damping ratio] showed statistically significant differences between the cohorts. Analysis of the life history of B. ferroae revealed a higher fitness related to the cockroach. The implications of these results for the origin of the subfamily are discussed.
Collapse
Affiliation(s)
- Claudia Magaly Sandoval
- Laboratorio de Parasitología Experimental, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Paula Medone
- Centro de Estudios Parasitológicos y de Vectores, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - Elsa Evelia Nieves
- Laboratorio de Parasitología Experimental, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Diego Alexander Jaimes
- Laboratorio de Investigación en Ciencias Biomédicas, Universidad de Pamplona, Pamplona, Norte de Santander, Colombia
| | - Nelcy Ortiz
- Laboratorio de Investigación en Ciencias Biomédicas, Universidad de Pamplona, Pamplona, Norte de Santander, Colombia
| | - Jorge Eduardo Rabinovich
- Centro de Estudios Parasitológicos y de Vectores, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| |
Collapse
|
19
|
Hamza I, Dailey HA. One ring to rule them all: trafficking of heme and heme synthesis intermediates in the metazoans. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1617-32. [PMID: 22575458 DOI: 10.1016/j.bbamcr.2012.04.009] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/15/2012] [Accepted: 04/19/2012] [Indexed: 12/17/2022]
Abstract
The appearance of heme, an organic ring surrounding an iron atom, in evolution forever changed the efficiency with which organisms were able to generate energy, utilize gasses and catalyze numerous reactions. Because of this, heme has become a near ubiquitous compound among living organisms. In this review we have attempted to assess the current state of heme synthesis and trafficking with a goal of identifying crucial missing information, and propose hypotheses related to trafficking that may generate discussion and research. The possibilities of spatially organized supramolecular enzyme complexes and organelle structures that facilitate efficient heme synthesis and subsequent trafficking are discussed and evaluated. Recently identified players in heme transport and trafficking are reviewed and placed in an organismal context. Additionally, older, well established data are reexamined in light of more recent studies on cellular organization and data available from newer model organisms. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Iqbal Hamza
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|
20
|
Dupejova J, Sterba J, Vancova M, Grubhoffer L. Hemelipoglycoprotein from the ornate sheep tick, Dermacentor marginatus: structural and functional characterization. Parasit Vectors 2011; 4:4. [PMID: 21214898 PMCID: PMC3022847 DOI: 10.1186/1756-3305-4-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 01/07/2011] [Indexed: 11/25/2022] Open
Abstract
Background Tick carrier proteins are able to bind, transport, and store host-blood heme, and thus they function also as antioxidants. Nevertheless, the role of carrier proteins in ticks is not fully understood. Some of them are found also in tick males which do not feed on hosts to such an extent such as females (there are differences in male feeding in different tick species) and thus they are not dealing with such an excess of heme; some of the carrier proteins were found in salivary glands where the processing of blood and thus release of heme does not occur. Besides, the carrier proteins bind relatively low amounts of heme (in one case only two molecules of heme per protein) compared to their sizes (above 200 kDa). The main aim of this study is the biochemical characterization of a carrier protein from the ornate sheep tick Dermacentor marginatus, hemelipoglycoprotein, with emphasis on its size in native conditions, its glycosylation and identification of its modifying glycans, and examining its carbohydrate-binding specificity. Results Hemelipoglycoprotein from D. marginatus plasma was purified in native state by immunoprecipitation and denatured using electroelution from SDS-PAGE separated plasma. The protein (290 kDa) contains two subunits with molecular weights 100 and 95 kDa. It is glycosylated by high-mannose and complex N-glycans HexNAc2Hex9, HexNAc2Hex10, HexNAc4Hex7, and HexNAc4Hex8. The purified protein is able to agglutinate red blood cells and has galactose- and mannose-binding specificity. The protein is recognized by antibodies directed against plasma proteins with hemagglutination activity and against fibrinogen-related lectin Dorin M from the tick Ornithodoros moubata. It forms high-molecular weight complexes with putative fibrinogen-related proteins and other unknown proteins under native conditions in tick plasma. Feeding does not increase its amounts in male plasma. The hemelipoglycoprotein was detected also in hemocytes, salivary glands, and gut. In salivary glands, the protein was present in both glycosylated and nonglycosylated forms. Conclusion A 290 kDa hemelipoglycoprotein from the tick Dermacentor marginatus, was characterized. The protein has two subunits with 95 and 100 kDa, and bears high-mannose and complex N-linked glycans. In hemolymph, it is present in complexes with putative fibrinogen-related proteins. This, together with its carbohydrate-binding activity, suggests its possible involvement in tick innate immunity. In fed female salivary glands, it was found also in a form corresponding to the deglycosylated protein.
Collapse
Affiliation(s)
- Jarmila Dupejova
- Faculty of Science, University of South Bohemia, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic
| | | | | | | |
Collapse
|
21
|
Kopáček P, Hajdušek O, Burešová V, Daffre S. Tick Innate Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010. [DOI: 10.1007/978-1-4419-8059-5_8] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Affiliation(s)
- Scott Severance
- Department of Animal & Avian Sciences and Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | - Iqbal Hamza
- Department of Animal & Avian Sciences and Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
23
|
Donohue KV, Khalil SMS, Sonenshine DE, Roe RM. Heme-binding storage proteins in the Chelicerata. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:287-296. [PMID: 19183556 DOI: 10.1016/j.jinsphys.2009.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 01/02/2009] [Accepted: 01/05/2009] [Indexed: 05/27/2023]
Abstract
Lipoglycoproteins in the Chelicerata that bind and store heme appear to represent a unique evolutionary strategy to both mitigate the toxicity of heme and utilize the molecule as a prosthetic group. Knowledge of heme-binding storage proteins in these organisms is in its infancy and much of what is known is from studies with vitellogenins (Vg) and more recently the main hemolymph storage protein in ixodid ticks characterized as a hemelipoglyco-carrier protein (CP). Data have also been reported from another arachnid, the black widow spider, Latrodectus mirabilis, and seem to suggest that the heme-binding capability of these large multimeric proteins is not a phenomenon found only in the Acari. CP appears to be most closely related to Vg in ticks in terms of primary structure but post-translational processing is different. Tick CP and L. mirabilis high-density lipoprotein 1 (HDL1) are similar in that they consist of two subunits of approximate molecular masses of 90 and 100 kDa, are found in the hemolymph as the dominant protein, and bind lipids, carbohydrates and cholesterol. CP binds heme which may also be the case for HDL1 since the protein was found to contain a brown pigment when analyzed by native polyacrylamide gel electrophoresis. Vgs in ticks are composed of multiple subunits and are the precursor of the yolk protein, vitellin. The phylogeny of these proteins, regulation of gene expression and putative functions of binding and storing heme throughout reproduction, blood-feeding and development are discussed. Comparisons with non-chelicerate arthropods are made in order to highlight the mechanisms and putative functions of heme-binding storage proteins and their possible critical function in the evolution of hematophagy.
Collapse
Affiliation(s)
- Kevin V Donohue
- Department of Entomology, Campus Box 7647, North Carolina State University, Raleigh, NC 27695-7647, USA
| | | | | | | |
Collapse
|
24
|
Donohue KV, Khalil SMS, Mitchell RD, Sonenshine DE, Roe RM. Molecular characterization of the major hemelipoglycoprotein in ixodid ticks. INSECT MOLECULAR BIOLOGY 2008; 17:197-208. [PMID: 18477238 DOI: 10.1111/j.1365-2583.2008.00794.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The major hemelipoglyco-carrier protein (CP) found throughout the development of male and female adult American dog ticks, Dermacentor variabilis (Say) was sequenced. DvCP is a single transcript coding for two protein subunits that together contain three motifs: (1) a lipoprotein n-terminal domain that is a common attribute of proteins that bind lipids, carbohydrates and metals; (2) a domain of unknown function characteristic of proteins with several large open beta sheets; and (3) a von Willebrand factor type D domain near the carboxy-terminus apparently important for multimerization. These motifs, which are also found in tick vitellogenin, are not shared by heme-binding proteins studied thus far in other hematophagous insects. DvCP message was highest in fat body and salivary gland but was also found in midgut and ovary tissue. Expression was initiated by blood feeding in virgin females and not by mating, as is typical of tick vitellogenin; and the message was found in fed males at levels similar to part fed, virgin females. CP appears to be highly conserved among the Ixodida. The closest match by BlastP to DvCP is vitellogenin from Caenorhabditis elegans (AAC04423), suggesting that CP is a novel protein. The role of CP in heme sequestration, the evolution of hematophagy and host complementation are discussed.
Collapse
Affiliation(s)
- K V Donohue
- Department of Entomology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | |
Collapse
|
25
|
Oliveira MF, Gandara ACP, Braga CMS, Silva JR, Mury FB, Dansa-Petretski M, Menezes D, Vannier-Santos MA, Oliveira PL. Heme crystallization in the midgut of triatomine insects. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:168-174. [PMID: 17254848 DOI: 10.1016/j.cbpc.2006.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 10/26/2006] [Accepted: 12/08/2007] [Indexed: 11/15/2022]
Abstract
Hemozoin (Hz) is a heme crystal produced by several blood-feeding organisms in order to detoxify free heme released upon hemoglobin (Hb) digestion. Here we show that heme crystallization also occurs in three species of triatomine insects. Ultraviolet-visible and infrared light absorption spectra of insoluble pigments isolated from the midgut of three triatomine species Triatoma infestans, Dipetalogaster maximus and Panstrongylus megistus indicated that all produce Hz. Morphological analysis of T. infestans and D. maximus midguts revealed the close association of Hz crystals to perimicrovillar membranes and also as multicrystalline assemblies, forming nearly spherical structures. Heme crystallization was promoted by isolated perimicrovillar membranes from all three species of triatomine bugs in vitro in heat-sensitive reactions. In conclusion, the data presented here indicate that Hz formation is an ancestral adaptation of Triatominae to a blood-sucking habit and that the presence of perimicrovillar membranes plays a central role in this process.
Collapse
Affiliation(s)
- Marcus F Oliveira
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brazil.
| | - Ana Caroline P Gandara
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Cláudia M S Braga
- Petrobrás/CENPES, Divisão de Química, Setor de Química Orgânica, Cidade Universitária, Rio de Janeiro, RJ, 21949-900, Brazil
| | - José R Silva
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Flavia B Mury
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Marílvia Dansa-Petretski
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Diego Menezes
- Centro de Pesquisas Gonçalo Moniz, Fiocruz, Salvador, BA, Brazil
| | | | - Pedro L Oliveira
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brazil
| |
Collapse
|
26
|
Silva JR, Mury FB, Oliveira MF, Oliveira PL, Silva CP, Dansa-Petretski M. Perimicrovillar membranes promote hemozoin formation into Rhodnius prolixus midgut. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:523-31. [PMID: 17517329 DOI: 10.1016/j.ibmb.2007.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 01/09/2007] [Accepted: 01/12/2007] [Indexed: 05/15/2023]
Abstract
Rhodnius prolixus is a hematophagous insect that ingests large quantities of blood in each blood-feeding session. This ingested blood provides important nutrients to sustain the insect's oogenesis and metabolic pathways. During the digestive process, however, huge amounts of heme are generated as a consequence of the hemoglobin breakdown. Heme is an extremely dangerous molecule, since it can generate reactive oxygen species in the presence of oxygen that impair the normal metabolism of the insect. Part of the hemoglobin-derived heme can associate with the perimicrovillar membranes (PMM) in the gut lumen of R. prolixus; in this study we demonstrate the participation of the PMM in a heme detoxification process. These membranes were able to successfully induce heme aggregation into hemozoin (Hz). Heme aggregation was not dependent on the erythrocyte membranes, since the contribution of these membranes to the process was negligible, demonstrating that the ability to induce heme aggregation is a feature of the PMM, possibly representing a pre-adaptation of the hemipterans to feeding on blood.
Collapse
Affiliation(s)
- José R Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Av Alberto Lamego, 2000, Campos dos Goytacazes, Brazil
| | | | | | | | | | | |
Collapse
|
27
|
Teixeira ARL, Nascimento RJ, Sturm NR. Evolution and pathology in chagas disease--a review. Mem Inst Oswaldo Cruz 2007; 101:463-91. [PMID: 17072450 DOI: 10.1590/s0074-02762006000500001] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 06/07/2006] [Indexed: 02/04/2023] Open
Abstract
Trypanosoma cruzi acute infections often go unperceived, but one third of chronically infected individuals die of Chagas disease, showing diverse manifestations affecting the heart, intestines, and nervous systems. A common denominator of pathology in Chagas disease is the minimal rejection unit, whereby parasite-free target host cells are destroyed by immune system mononuclear effectors cells infiltrates. Another key feature stemming from T. cruzi infection is the integration of kDNA minicircles into the vertebrate host genome; horizontal transfer of the parasite DNA can undergo vertical transmission to the progeny of mammals and birds. kDNA integration-induced mutations can enter multiple loci in diverse chromosomes, generating new genes, pseudo genes and knock-outs, and resulting in genomic shuffling and remodeling over time. As a result of the juxtaposition of kDNA insertions with host open reading frames, novel chimeric products may be generated. Germ line transmission of kDNA-mutations determined the appearance of lesions in birds that are indistinguishable from those seen in Chagas disease patients. The production of tissue lesions showing typical minimal rejection units in birds' refractory to T. cruzi infection is consistent with the hypothesis that autoimmunity, likely triggered by integration-induced phenotypic alterations, plays a major role in the pathogenesis of Chagas disease.
Collapse
Affiliation(s)
- Antonio R L Teixeira
- Laboratório de Pesquisa Multidisciplinar em Doença de Chagas, Faculdade de Medicina, Universidade de Brasilia, Caixa Postal 04536, 70919-970 Brasilia,-DF, Brasil.
| | | | | |
Collapse
|
28
|
Freitas DRJ, Rosa RM, Moura DJ, Seitz AL, Colodel EM, Driemeier D, Da Silva Vaz I, Masuda A. Cell death during preoviposition period in Boophilus microplus tick. Vet Parasitol 2006; 144:321-7. [PMID: 17157985 DOI: 10.1016/j.vetpar.2006.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 10/17/2006] [Accepted: 10/18/2006] [Indexed: 10/23/2022]
Abstract
Programmed cell death (PCD) is present during the development of multicellular organisms and occurs from embryogenesis to death. In females of Boophilus microplus, the mass of several organs is reduced after the detachment from the host. In order to better characterize the cell death process that eliminates unnecessary tissues, the degeneration of salivary glands, ovaries and synganglia was investigated using DNA fragmentation in agarose gel, comet and TUNEL assays, and apoptosis activation pathway by the caspase assay. DNA fragmentation and enzymatic activity of caspase-3 were observed in salivary glands and ovaries at 48 and 72h after tick removal from the host; in synganglia these parameters were maintained at low levels upon 48h. The results obtained suggest that there is a refined control of tissue maintenance through apoptosis.
Collapse
Affiliation(s)
- D R J Freitas
- Centro de Biotecnologia do Estado do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, C.P. 15005, 91501-970 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Citelli M, Lara FA, da Silva Vaz I, Oliveira PL. Oxidative stress impairs heme detoxification in the midgut of the cattle tick, Rhipicephalus (Boophilus) microplus. Mol Biochem Parasitol 2006; 151:81-8. [PMID: 17123644 DOI: 10.1016/j.molbiopara.2006.10.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 10/18/2006] [Accepted: 10/19/2006] [Indexed: 11/19/2022]
Abstract
In the cattle tick Rhipicephalus (Boophilus) microplus digestion of blood is intracellular, accomplished by the so-called digest cells that fill the midgut lumen. Hydrolysis of hemoglobin in the digestive vesicles of these cells results in the release of large amounts of heme, a pro-oxidant compound, whose iron atom, together with H(2)O(2), may participate in the Fenton reaction and lead to the production of hydroxyl radicals. Here, we investigated the role of catalase, an enzyme responsible for H(2)O(2) detoxification. Fully engorged female ticks injected with 3-amino-1,2,4-triazole (AT), a catalase inhibitor, showed increased H(2)O(2) in the gut, together with diminished life span and lower egg-laying rates. Increased mortality observed upon AT injection was reversed by further injection of exogenous catalase, 2 days after AT treatment, confirming that increased death was due to inhibition of this enzyme by AT. In primary cultures of digest cells, intracellular H(2)O(2) is limited to specific organelles, while treatment with AT in vitro resulted in increased H(2)O(2) spreading all over the cell, confirming the role of catalase in regulating H(2)O(2) levels. Ticks fed on a calf that had been injected with AT showed marked inhibition of catalase activity in the gut and diminished life span, oviposition and engorgement. Digest cells of these ticks had an altered morphology, showing heme spread all over the cytosol, instead of being limited to the hemosomes. The amount of aggregated heme found in isolated hemosome was also strongly decreased in AT-treated cattle. All together, our results indicate that catalase performs an important role in the control of redox balance in R. microplus, which dramatically affects hemosome formation and stability. This enzyme may be a target in the development of new methods for tick control.
Collapse
Affiliation(s)
- Marta Citelli
- Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | | | | | | |
Collapse
|