1
|
Urbanová V, Lu S, Kalinová E, Martins L, Kozelková T, Dyčka F, Ribeiro JM, Hajdušek O, Perner J, Kopáček P. From the fat body to the hemolymph: Profiling tick immune and storage proteins through transcriptomics and proteomics. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104072. [PMID: 38185274 DOI: 10.1016/j.ibmb.2024.104072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Ticks are blood-feeding arachnids that are known to transmit various pathogenic microorganisms to their hosts. During blood feeding, ticks activate their metabolism and immune system to efficiently utilise nutrients from the host's blood and complete the feeding process. In contrast to insects, in which the fat body is known to be a central organ that controls essential metabolic processes and immune defense mechanisms, the function of the fat body in tick physiology is still relatively unexplored. To fill this gap, we sought to uncover the repertoire of genes expressed in the fat body associated with trachea (FB/Tr) by analyzing the transcriptome of individual, partially fed (previtellogenic) Ixodes ricinus females. The resulting catalog of individual mRNA sequences reveals a broad repertoire of transcripts encoding proteins involved in nutrient storage and distribution, as well as components of the tick immune system. To gain a detailed insight into the secretory products of FB/Tr specifically involved in inter-tissue transport and humoral immunity, the transcriptomic data were complemented with the proteome of soluble proteins in the hemolymph of partially fed female ticks. Among these proteins, the hemolipoglyco-carrier proteins were predominant. When comparing immune peptides and proteins from the fat body with those produced by hemocytes, we found that the fat body serves as a unique producer of certain immune components. Finally, time-resolved transcriptional regulation of selected immune transcripts from the FB/Tr was examined in response to experimental challenges with model microbes and analyzed by RT-qPCR. Overall, our data show that the fat body of ticks, similar to insects, is an important metabolic tissue that also plays a remarkable role in immune defense against invading microbes. These findings improve our understanding of tick biology and its impact on the transmission of tick-borne pathogens.
Collapse
Affiliation(s)
- Veronika Urbanová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Stephen Lu
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Eliška Kalinová
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Larissa Martins
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories - NIH/NIAID, Hamilton, MT, USA
| | - Tereza Kozelková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Filip Dyčka
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - José M Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Ondřej Hajdušek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Jan Perner
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic.
| |
Collapse
|
2
|
Prado Sepulveda CC, Alencar RM, Santana RA, Belém de Souza I, D'Elia GMA, Godoy RSM, Duarte AP, Lopes SCP, de Lacerda MVG, Monteiro WM, Nacif-Pimenta R, Secundino NFC, Koerich LB, Pimenta PFP. Evolution and assembly of Anopheles aquasalis's immune genes: primary malaria vector of coastal Central and South America and the Caribbean Islands. Open Biol 2023; 13:230061. [PMID: 37433331 PMCID: PMC10335856 DOI: 10.1098/rsob.230061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/20/2023] [Indexed: 07/13/2023] Open
Abstract
Anophelines are vectors of malaria, the deadliest disease worldwide transmitted by mosquitoes. The availability of genomic data from various Anopheles species allowed evolutionary comparisons of the immune response genes in search of alternative vector control of the malarial parasites. Now, with the Anopheles aquasalis genome, it was possible to obtain more information about the evolution of the immune response genes. Anopheles aquasalis has 278 immune genes in 24 families or groups. Comparatively, the American anophelines possess fewer genes than Anopheles gambiae s. s., the most dangerous African vector. The most remarkable differences were found in the pathogen recognition and modulation families like FREPs, CLIP and C-type lectins. Even so, genes related to the modulation of the expression of effectors in response to pathogens and gene families that control the production of reactive oxygen species were more conserved. Overall, the results show a variable pattern of evolution in the immune response genes in the anopheline species. Environmental factors, such as exposure to different pathogens and differences in the microbiota composition, could shape the expression of this group of genes. The results presented here will contribute to a better knowledge of the Neotropical vector and open opportunities for malaria control in the endemic-affected areas of the New World.
Collapse
Affiliation(s)
- Cesar Camilo Prado Sepulveda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Rodrigo Maciel Alencar
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Rosa Amélia Santana
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Igor Belém de Souza
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Gigliola Mayra Ayres D'Elia
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Raquel Soares Maia Godoy
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, FIOCRUZ – Belo Horizonte. Minas Gerais, Brazil
| | - Ana Paula Duarte
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Stefanie Costa Pinto Lopes
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Instituto de Pesquisas Leônidas e Maria Deane, Fundação Oswaldo Cruz, Manaus, Amazonas, Brazil
| | - Marcus Vinicius Guimarães de Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Instituto de Pesquisas Leônidas e Maria Deane, Fundação Oswaldo Cruz, Manaus, Amazonas, Brazil
- University of Texas Medical Branch, Galveston, TX, USA
| | - Wuelton Marcelo Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Rafael Nacif-Pimenta
- Departament of Epidemiology of Microbial Disease, Yale School of Public Health, New Haven, CT, USA
| | - Nágila Francinete Costa Secundino
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, FIOCRUZ – Belo Horizonte. Minas Gerais, Brazil
| | - Leonardo Barbosa Koerich
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paulo Filemon Paolucci Pimenta
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, FIOCRUZ – Belo Horizonte. Minas Gerais, Brazil
| |
Collapse
|
3
|
Zhao BR, Wang XX, Liu PP, Wang XW. Complement-related proteins in crustacean immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104577. [PMID: 36265592 DOI: 10.1016/j.dci.2022.104577] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
As an important part of innate immune system, complement system is widely involved in defense response and immune regulation, and plays an important biological role. The complement system has been deeply studied. More than 30 complement-related molecules and three major complement-activation pathways have been identified in vertebrates. Crustacean animals do not have complement system. There are only some complement-related proteins in crustaceans which are important for host defense. In this review, we summarize the current knowledge about complement-related proteins in crustaceans, and their functions in crustacean immunity. We also make a comparation of the crustacean pro-phenoloxidase activating system and the mammalian complement system. This review provides a better understanding of the evolution and function of complement-related proteins in crustaceans.
Collapse
Affiliation(s)
- Bao-Rui Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xin-Xin Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Ping-Ping Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xian-Wei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China.
| |
Collapse
|
4
|
Morejon B, Michel K. A zone-of-inhibition assay to screen for humoral antimicrobial activity in mosquito hemolymph. Front Cell Infect Microbiol 2023; 13:891577. [PMID: 36779191 PMCID: PMC9908765 DOI: 10.3389/fcimb.2023.891577] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
In insects, antibacterial immunity largely depends on the activation of downstream signaling and effector responses, leading to the synthesis and secretion of soluble effector molecules, such as antimicrobial peptides (AMPs). AMPs are acute infection response peptides secreted into the hemolymph upon bacterial stimulation. The transcription of innate immunity genes encoding for AMPs is highly dependent on several signaling cascade pathways, such as the Toll pathway. In the African malaria mosquito, Anopheles gambiae, AMPs hold a special interest as their upregulation have been shown to limit the growth of malaria parasites, bacteria, and fungi. Most of the current knowledge on the regulation of insect AMPs in microbial infection have been obtained from Drosophila. However, largely due to the lack of convenient assays, the regulation of antimicrobial activity in mosquito hemolymph is still not completely understood. In this study, we report a zone of inhibition assay to identify the contribution of AMPs and components of the Toll pathway to the antimicrobial activity of A. gambiae hemolymph. As a proof of principle, we demonstrate that Micrococcus luteus challenge induces antimicrobial activity in the adult female mosquito hemolymph, which is largely dependent on defensin 1. Moreover, by using RNAi to silence Cactus, REL1, and MyD88, we showed that Cactus kd induces antimicrobial activity in the mosquito hemolymph, whereas the antimicrobial activity in REL1 kd and MyD88 kd is reduced after challenge. Finally, while injection itself is not sufficient to induce antimicrobial activity, our results show that it primes the response to bacterial challenge. Our study provides information that increases our knowledge of the regulation of antimicrobial activity in response to microbial infections in mosquitoes. Furthermore, this assay represents an ex vivo medium throughput assay that can be used to determine the upstream regulatory elements of antimicrobial activity in A. gambiae hemolymph.
Collapse
Affiliation(s)
- Bianca Morejon
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | | |
Collapse
|
5
|
Suh PF, Elanga-Ndille E, Tchouakui M, Sandeu MM, Tagne D, Wondji C, Ndo C. Impact of insecticide resistance on malaria vector competence: a literature review. Malar J 2023; 22:19. [PMID: 36650503 PMCID: PMC9847052 DOI: 10.1186/s12936-023-04444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Since its first report in Anopheles mosquitoes in 1950s, insecticide resistance has spread very fast to most sub-Saharan African malaria-endemic countries, where it is predicted to seriously jeopardize the success of vector control efforts, leading to rebound of disease cases. Supported mainly by four mechanisms (metabolic resistance, target site resistance, cuticular resistance, and behavioural resistance), this phenomenon is associated with intrinsic changes in the resistant insect vectors that could influence development of invading Plasmodium parasites. A literature review was undertaken using Pubmed database to collect articles evaluating directly or indiretly the impact of insecticide resistance and the associated mechanisms on key determinants of malaria vector competence including sialome composition, anti-Plasmodium immunity, intestinal commensal microbiota, and mosquito longevity. Globally, the evidence gathered is contradictory even though the insecticide resistant vectors seem to be more permissive to Plasmodium infections. The actual body of knowledge on key factors to vectorial competence, such as the immunity and microbiota communities of the insecticide resistant vector is still very insufficient to definitively infer on the epidemiological importance of these vectors against the susceptible counterparts. More studies are needed to fill important knowledge gaps that could help predicting malaria epidemiology in a context where the selection and spread of insecticide resistant vectors is ongoing.
Collapse
Affiliation(s)
- Pierre Fongho Suh
- Department of Parasitology and Microbiology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
- Faculty of Sciences, University of Yaoundé I, P.O. Box 837, Yaoundé, Cameroon
| | - Emmanuel Elanga-Ndille
- Department of Medical Entomology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
| | - Magellan Tchouakui
- Department of Medical Entomology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
| | - Maurice Marcel Sandeu
- Department of Medical Entomology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
- Department of Microbiology and Infectious Diseases, School of Veterinary Medicine and Sciences, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
| | - Darus Tagne
- Department of Parasitology and Microbiology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
- Faculty of Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon
| | - Charles Wondji
- Department of Parasitology and Microbiology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Cyrille Ndo
- Department of Parasitology and Microbiology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon.
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon.
| |
Collapse
|
6
|
Ouali R, Vieira LR, Salmon D, Bousbata S. Rhodnius prolixus Hemolymph Immuno-Physiology: Deciphering the Systemic Immune Response Triggered by Trypanosoma cruzi Establishment in the Vector Using Quantitative Proteomics. Cells 2022; 11:1449. [PMID: 35563760 PMCID: PMC9104911 DOI: 10.3390/cells11091449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022] Open
Abstract
Understanding the development of Trypanosoma cruzi within the triatomine vector at the molecular level should provide novel targets for interrupting parasitic life cycle and affect vectorial competence. The aim of the current study is to provide new insights into triatomines immunology through the characterization of the hemolymph proteome of Rhodnius prolixus, a major Chagas disease vector, in order to gain an overview of its immune physiology. Surprisingly, proteomics investigation of the immunomodulation of T. cruzi-infected blood reveals that the parasite triggers an early systemic response in the hemolymph. The analysis of the expression profiles of hemolymph proteins from 6 h to 24 h allowed the identification of a broad range of immune proteins expressed already in the early hours post-blood-feeding regardless of the presence of the parasite, ready to mount a rapid response exemplified by the significant phenol oxidase activation. Nevertheless, we have also observed a remarkable induction of the immune response triggered by an rpPGRP-LC and the overexpression of defensins 6 h post-T. cruzi infection. Moreover, we have identified novel proteins with immune properties such as the putative c1q-like protein and the immunoglobulin I-set domain-containing protein, which have never been described in triatomines and could play a role in T. cruzi recognition. Twelve proteins with unknown function are modulated by the presence of T. cruzi in the hemolymph. Determining the function of these parasite-induced proteins represents an exciting challenge for increasing our knowledge about the diversity of the immune response from the universal one studied in holometabolous insects. This will provide us with clear answers for misunderstood mechanisms in host-parasite interaction, leading to the development of new generation strategies to control vector populations and pathogen transmission.
Collapse
Affiliation(s)
- Radouane Ouali
- Proteomic Plateform, Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Larissa Rezende Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Centro de Ciências e da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.R.V.); (D.S.)
| | - Didier Salmon
- Institute of Medical Biochemistry Leopoldo de Meis, Centro de Ciências e da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.R.V.); (D.S.)
| | - Sabrina Bousbata
- Proteomic Plateform, Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| |
Collapse
|
7
|
Jin L, Dong H, Sun D, Wang L, Qu L, Lin S, Yang Q, Zhang X. Biological Functions and Applications of Antimicrobial Peptides. Curr Protein Pept Sci 2022; 23:226-247. [DOI: 10.2174/1389203723666220519155942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Despite antimicrobial resistance, which is attributed to the misuse of broad-spectrum antibiotics,
antibiotics can indiscriminately kill pathogenic and beneficial microorganisms. These events
disrupt the delicate microbial balance in both humans and animals, leading to secondary infections
and other negative effects. Antimicrobial peptides (AMPs) are functional natural biopolymers in
plants and animals. Due to their excellent antimicrobial activities and absence of microbial resistance,
AMPs have attracted enormous research attention. We reviewed the antibacterial, antifungal, antiviral,
antiparasitic, as well as antitumor properties of AMPs and research progress on AMPs. In addition,
we highlighted various recommendations and potential research areas for their progress and
challenges in practical applications.
Collapse
Affiliation(s)
- Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Hao Dong
- College of Life Science and Technology, Jilin Agricultural University, Changchun 130118,
China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Linkai Qu
- College of Life Science and Technology, Jilin Agricultural University, Changchun 130118,
China
| | - Sue Lin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Xingxing Zhang
- Department of Endocrinology
and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
8
|
Transcriptome of the Maize Leafhopper ( Dalbulus maidis) and Its Transcriptional Response to Maize Rayado Fino Virus (MRFV), Which It Transmits in a Persistent, Propagative Manner. Microbiol Spectr 2021; 9:e0061221. [PMID: 34817206 PMCID: PMC8612151 DOI: 10.1128/spectrum.00612-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The corn leafhopper (Dalbulus maidis) is an important vector of maize rayado fino virus (MRFV), a positive-strand RNA (+ssRNA) marafivirus which it transmits in a persistent propagative manner. The interaction of D. maidis with MRFV, including infection of the insect and subsequent transmission to new plants, is not well understood at the molecular level. To examine the leafhopper-virus interaction, a D. maidis transcriptome was assembled and differences in transcript abundance between virus-exposed and naive D. maidis were examined at two time points (4 h and 7 days) post exposure to MRFV. The D. maidis transcriptome contained 56,116 transcripts generated from 1,727,369,026 100-nt paired-end reads from whole adult insects. The transcriptome of D. maidis shared highest identity and most orthologs with the leafhopper Graminella nigrifrons (65% of transcripts had matches with E values of <10-5) versus planthoppers Sogatella furcifera (with 23% of transcript matches below the E value cutoff) and Peregrinus maidis (with 21% transcript matches below the E value cutoff), as expected based on taxonomy. D. maidis expressed genes in the Toll, Imd, and Jak/Stat insect immune signaling pathways, RNA interference (RNAi) pathway genes, prophenoloxidase-activating system pathways, and immune recognition protein-encoding genes such as peptidoglycan recognition proteins (PGRPs), antimicrobial peptides, and other effectors. Statistical analysis (performed by R package DESeq2) identified 72 transcripts at 4 h and 67 at 7 days that were significantly responsive to MRFV exposure. Genes expected to be favorable for virus propagation, such as protein synthesis-related genes and genes encoding superoxide dismutase, were significantly upregulated after MRFV exposure. IMPORTANCE The transcriptome of the corn leafhopper, D. maidis, revealed conserved biochemical pathways for immunity and discovered transcripts responsive to MRFV-infected plants at two time points, providing a basis for functional identification of genes that either limit or promote the virus-vector interaction. Compared to other hopper species and the propagative plant viruses they transmit, D. maidis shared 15 responsive transcripts with S. furcifera (to southern rice black-streaked dwarf virus [SRBSDV]), one with G. nigrifrons (to maize fine streak virus [MFSV]), and one with P. maidis (to maize mosaic virus [MMV]), but no virus-responsive transcripts identified were shared among all four hopper vector species.
Collapse
|
9
|
Additional evidence on the efficacy of different Akirin vaccines assessed on Anopheles arabiensis (Diptera: Culicidae). Parasit Vectors 2021; 14:209. [PMID: 33879250 PMCID: PMC8056099 DOI: 10.1186/s13071-021-04711-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/31/2021] [Indexed: 11/17/2022] Open
Abstract
Background Anopheles arabiensis is an opportunistic malaria vector that rests and feeds outdoors, circumventing current indoor vector control methods. Furthermore, this vector will readily feed on both animals and humans. Targeting this vector while feeding on animals can provide an additional intervention for the current vector control activities. Previous results have displayed the efficacy of using Subolesin/Akirin ortholog vaccines for the control of multiple ectoparasite infestations. This made Akirin a potential antigen for vaccine development against An. arabiensis. Methods The efficacy of three antigens, namely recombinant Akirin from An. arabiensis, recombinant Akirin from Aedes albopictus, and recombinant Q38 (Akirin/Subolesin chimera) were evaluated as novel interventions for An. arabiensis vector control. Immunisation trials were conducted based on the concept that mosquitoes feeding on vaccinated balb/c mice would ingest antibodies specific to the target antigen. The antibodies would interact with the target antigen in the arthropod vector, subsequently disrupting its function. Results All three antigens successfully reduced An. arabiensis survival and reproductive capacities, with a vaccine efficacy of 68–73%. Conclusions These results were the first to show that hosts vaccinated with recombinant Akirin vaccines could develop a protective response against this outdoor malaria transmission vector, thus providing a step towards the development of a novel intervention for An. arabiensis vector control. Graphic Abstract Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04711-8.
Collapse
|
10
|
Aromolaran O, Aromolaran D, Isewon I, Oyelade J. Machine learning approach to gene essentiality prediction: a review. Brief Bioinform 2021; 22:6219158. [PMID: 33842944 DOI: 10.1093/bib/bbab128] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/04/2021] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Essential genes are critical for the growth and survival of any organism. The machine learning approach complements the experimental methods to minimize the resources required for essentiality assays. Previous studies revealed the need to discover relevant features that significantly classify essential genes, improve on the generalizability of prediction models across organisms, and construct a robust gold standard as the class label for the train data to enhance prediction. Findings also show that a significant limitation of the machine learning approach is predicting conditionally essential genes. The essentiality status of a gene can change due to a specific condition of the organism. This review examines various methods applied to essential gene prediction task, their strengths, limitations and the factors responsible for effective computational prediction of essential genes. We discussed categories of features and how they contribute to the classification performance of essentiality prediction models. Five categories of features, namely, gene sequence, protein sequence, network topology, homology and gene ontology-based features, were generated for Caenorhabditis elegans to perform a comparative analysis of their essentiality prediction capacity. Gene ontology-based feature category outperformed other categories of features majorly due to its high correlation with the genes' biological functions. However, the topology feature category provided the highest discriminatory power making it more suitable for essentiality prediction. The major limiting factor of machine learning to predict essential genes conditionality is the unavailability of labeled data for interest conditions that can train a classifier. Therefore, cooperative machine learning could further exploit models that can perform well in conditional essentiality predictions. SHORT ABSTRACT Identification of essential genes is imperative because it provides an understanding of the core structure and function, accelerating drug targets' discovery, among other functions. Recent studies have applied machine learning to complement the experimental identification of essential genes. However, several factors are limiting the performance of machine learning approaches. This review aims to present the standard procedure and resources available for predicting essential genes in organisms, and also highlight the factors responsible for the current limitation in using machine learning for conditional gene essentiality prediction. The choice of features and ML technique was identified as an important factor to predict essential genes effectively.
Collapse
Affiliation(s)
- Olufemi Aromolaran
- Department of Computer and Information Sciences, Covenant University, Ota, Ogun State, Nigeria.,Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
| | - Damilare Aromolaran
- Department of Computer and Information Sciences, Covenant University, Ota, Ogun State, Nigeria.,Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
| | - Itunuoluwa Isewon
- Department of Computer and Information Sciences, Covenant University, Ota, Ogun State, Nigeria.,Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
| | - Jelili Oyelade
- Department of Computer and Information Sciences, Covenant University, Ota, Ogun State, Nigeria.,Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
| |
Collapse
|
11
|
Gabrieli P, Caccia S, Varotto-Boccazzi I, Arnoldi I, Barbieri G, Comandatore F, Epis S. Mosquito Trilogy: Microbiota, Immunity and Pathogens, and Their Implications for the Control of Disease Transmission. Front Microbiol 2021; 12:630438. [PMID: 33889137 PMCID: PMC8056039 DOI: 10.3389/fmicb.2021.630438] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
In mosquitoes, the interaction between the gut microbiota, the immune system, and the pathogens that these insects transmit to humans and animals is regarded as a key component toward the development of control strategies, aimed at reducing the burden of severe diseases, such as malaria and dengue fever. Indeed, different microorganisms from the mosquito microbiota have been investigated for their ability to affect important traits of the biology of the host insect, related with its survival, development and reproduction. Furthermore, some microorganisms have been shown to modulate the immune response of mosquito females, significantly shaping their vector competence. Here, we will review current knowledge in this field, focusing on i) the complex interaction between the intestinal microbiota and mosquito females defenses, both in the gut and at humoral level; ii) how knowledge on these issues contributes to the development of novel and targeted strategies for the control of mosquito-borne diseases such as the use of paratransgenesis or taking advantage of the relationship between Wolbachia and mosquito hosts. We conclude by providing a brief overview of available knowledge on microbiota-immune system interplay in major insect vectors.
Collapse
Affiliation(s)
- Paolo Gabrieli
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Silvia Caccia
- Department of Agricultural Sciences, University of Naples "Federico II", Naples, Italy.,Task Force on Microbiome Studies, University of Naples "Federico II", Naples, Italy
| | - Ilaria Varotto-Boccazzi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Irene Arnoldi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Giulia Barbieri
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Francesco Comandatore
- "L. Sacco" Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Sara Epis
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| |
Collapse
|
12
|
Adedeji EO, Ogunlana OO, Fatumo S, Beder T, Ajamma Y, Koenig R, Adebiyi E. Anopheles metabolic proteins in malaria transmission, prevention and control: a review. Parasit Vectors 2020; 13:465. [PMID: 32912275 PMCID: PMC7488410 DOI: 10.1186/s13071-020-04342-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022] Open
Abstract
The increasing resistance to currently available insecticides in the malaria vector, Anopheles mosquitoes, hampers their use as an effective vector control strategy for the prevention of malaria transmission. Therefore, there is need for new insecticides and/or alternative vector control strategies, the development of which relies on the identification of possible targets in Anopheles. Some known and promising targets for the prevention or control of malaria transmission exist among Anopheles metabolic proteins. This review aims to elucidate the current and potential contribution of Anopheles metabolic proteins to malaria transmission and control. Highlighted are the roles of metabolic proteins as insecticide targets, in blood digestion and immune response as well as their contribution to insecticide resistance and Plasmodium parasite development. Furthermore, strategies by which these metabolic proteins can be utilized for vector control are described. Inhibitors of Anopheles metabolic proteins that are designed based on target specificity can yield insecticides with no significant toxicity to non-target species. These metabolic modulators combined with each other or with synergists, sterilants, and transmission-blocking agents in a single product, can yield potent malaria intervention strategies. These combinations can provide multiple means of controlling the vector. Also, they can help to slow down the development of insecticide resistance. Moreover, some metabolic proteins can be modulated for mosquito population replacement or suppression strategies, which will significantly help to curb malaria transmission.
Collapse
Affiliation(s)
- Eunice Oluwatobiloba Adedeji
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State Nigeria
| | - Olubanke Olujoke Ogunlana
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State Nigeria
| | - Segun Fatumo
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, Keppel St, Bloomsbury, London, UK
| | - Thomas Beder
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Yvonne Ajamma
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
| | - Rainer Koenig
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Computer and Information Sciences, Covenant University, Ota, Ogun State Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), G200, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
13
|
Yu S, Wang P, Qin J, Zheng H, Wang J, Liu T, Yang X, Wang Y. Bacillus sphaericus exposure reduced vector competence of Anopheles dirus to Plasmodium yoelii by upregulating the Imd signaling pathway. Parasit Vectors 2020; 13:446. [PMID: 32891162 PMCID: PMC7487769 DOI: 10.1186/s13071-020-04321-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/30/2020] [Indexed: 12/05/2022] Open
Abstract
Background Vector control with Bacillus sphaericus (Bs) is an effective way to block the transmission of malaria. However, in practical application of Bs agents, a sublethal dose effect was often caused by insufficient dosing, and it is little known whether the Bs exposure would affect the surviving mosquitoes’ vector capacity to malaria. Methods A sublethal dose of the Bs 2362 strain was administrated to the early fourth-instar larvae of Anopheles dirus to simulate shortage use of Bs in field circumstance. To determine vector competence, mosquitoes were dissected and the oocysts in the midguts were examined on day 9–11 post-infection with Plasmodium yoelii. Meanwhile, a SYBR quantitative PCR assay was conducted to examine the transcriptional level of the key immune molecules of mosquitoes, and RNA interference was utilized to validate the role of key immune effector molecule TEP1. Results The sublethal dose of Bs treatment significantly reduced susceptibility of An. dirus to P. yoelii, with the decrease of P. yoelii infection intensity and rate. Although there existed a melanization response of adult An. dirus following challenge with P. yoelii, it was not involved in the decrease of vector competence as no significant difference of melanization rates and densities between the control and Bs groups was found. Further studies showed that Bs treatment significantly increased TEP1 expression in the fourth-instar larvae (L4), pupae (Pu), 48 h post-infection (hpi) and 72 hpi (P < 0.001). Further, gene-silencing of TEP1 resulted in disappearance of the Bs impact on vector competence of An. dirus to P. yoelii. Moreover, the transcriptional level of PGRP-LC and Rel2 were significantly elevated by Bs treatment with decreased expression of the negative regulator Caspar at 48 hpi, which implied that the Imd signaling pathway was upregulated by Bs exposure. Conclusions Bs exposure can reduce the vector competence of An. dirus to malaria parasites through upregulating Imd signaling pathway and enhancing the expression of TEP1. The data could not only help us to understand the impact and mechanism of Bs exposure on Anopheles’ vector competence to malaria but also provide us with novel clues for wiping out malaria using vector control.![]()
Collapse
Affiliation(s)
- Shasha Yu
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Pan Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Jie Qin
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jing Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Tingting Liu
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Xuesen Yang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Ying Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
14
|
Janeh M, Osman D, Kambris Z. Comparative Analysis of Midgut Regeneration Capacity and Resistance to Oral Infection in Three Disease-Vector Mosquitoes. Sci Rep 2019; 9:14556. [PMID: 31601867 PMCID: PMC6787257 DOI: 10.1038/s41598-019-50994-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 09/23/2019] [Indexed: 11/09/2022] Open
Abstract
Mosquitoes acquire the pathogens they transmit through ingestion, and the insects' gut constitutes the first line of defense against invading pathogens. Indeed the gut epithelium acts as a physical barrier, activates local antimicrobial peptides production and triggers the systemic immune response. Consequently, gut epithelium is constantly confronted to stress and often suffers cellular damage. We have previously shown that regenerative cells are present in the guts of adult Aedes albopictus, and that chemical damage or bacterial infection leads to the proliferation of these regenerative cells in the midgut. In this study, we extended the analysis of gut cells response to stress to two other important disease vector mosquitoes: Culex pipiens and Anopheles gambiae. We fed mosquitoes on sucrose solutions or on sucrose supplemented with pathogenic bacteria or with damage-inducing chemicals. We also assayed the survival of mosquitoes following the ingestion of pathogenic bacteria. We found that in adult C. pipiens, dividing cells exist in the digestive tract and that these cells proliferate in the midgut after bacterial or chemical damage, similarly to what we previously observed in A. albopictus. In sharp contrast, we did not detect any mitotic cell in the midguts of A. gambiae mosquitoes, neither in normal situation nor after the induction of gut damage. In agreement with this observation, A. gambiae mosquitoes were more sensitive to oral bacterial infections compared to A. albopictus and C. pipiens. This work provides evidence that major differences in gut physiological responses exist between different mosquitoes. The presence of regenerative cells in the mosquito guts and their ability to multiply after gut damage affect the mosquito survival to oral infections, and is also likely to affect its vectorial capacity.
Collapse
Affiliation(s)
- Maria Janeh
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Dani Osman
- Faculty of Sciences III and Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, 1300, Tripoli, Lebanon
| | - Zakaria Kambris
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
15
|
Mitchell SN, Catteruccia F. Anopheline Reproductive Biology: Impacts on Vectorial Capacity and Potential Avenues for Malaria Control. Cold Spring Harb Perspect Med 2017; 7:a025593. [PMID: 28389513 PMCID: PMC5710097 DOI: 10.1101/cshperspect.a025593] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Vectorial capacity is a mathematical approximation of the efficiency of vector-borne disease transmission, measured as the number of new infections disseminated per case per day by an insect vector. Multiple elements of mosquito biology govern their vectorial capacity, including survival, population densities, feeding preferences, and vector competence. Intriguingly, biological pathways essential to mosquito reproductive fitness directly or indirectly influence a number of these elements. Here, we explore this complex interaction, focusing on how the interplay between mating and blood feeding in female Anopheles not only shapes their reproductive success but also influences their ability to sustain Plasmodium parasite development. Central to malaria transmission, mosquito reproductive biology has recently become the focus of research strategies aimed at malaria control, and we discuss promising new methods based on the manipulation of key reproductive steps. In light of widespread resistance to all public health-approved insecticides targeting mosquito reproduction may prove crucial to the success of malaria-eradication campaigns.
Collapse
Affiliation(s)
- Sara N Mitchell
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, Massachusetts 02115
| | - Flaminia Catteruccia
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, Massachusetts 02115
| |
Collapse
|
16
|
Pimenta PFP, Orfano AS, Bahia AC, Duarte APM, Ríos-Velásquez CM, Melo FF, Pessoa FAC, Oliveira GA, Campos KMM, Villegas LM, Rodrigues NB, Nacif-Pimenta R, Simões RC, Monteiro WM, Amino R, Traub-Cseko YM, Lima JBP, Barbosa MGV, Lacerda MVG, Tadei WP, Secundino NFC. An overview of malaria transmission from the perspective of Amazon Anopheles vectors. Mem Inst Oswaldo Cruz 2015; 110:23-47. [PMID: 25742262 PMCID: PMC4371216 DOI: 10.1590/0074-02760140266] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/18/2014] [Indexed: 02/07/2023] Open
Abstract
In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Anopheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence.
Collapse
Affiliation(s)
- Paulo FP Pimenta
- Centro de Pesquisas René Rachou-Fiocruz, Belo Horizonte, MG,
Brasil
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | | | - Ana C Bahia
- Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Ana PM Duarte
- Centro de Pesquisas René Rachou-Fiocruz, Belo Horizonte, MG,
Brasil
| | | | - Fabrício F Melo
- Centro de Pesquisas René Rachou-Fiocruz, Belo Horizonte, MG,
Brasil
| | | | | | - Keillen MM Campos
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | | | | | | | - Rejane C Simões
- Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brasil
| | - Wuelton M Monteiro
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | - Rogerio Amino
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, Paris,
France
| | | | - José BP Lima
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
- Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Maria GV Barbosa
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | - Marcus VG Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
- Instituto Leônidas e Maria Deane-Fiocruz, Manaus, AM, Brasil
| | | | | |
Collapse
|
17
|
Jupatanakul N, Sim S, Dimopoulos G. The insect microbiome modulates vector competence for arboviruses. Viruses 2014; 6:4294-313. [PMID: 25393895 PMCID: PMC4246223 DOI: 10.3390/v6114294] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 01/05/2023] Open
Abstract
Diseases caused by arthropod-borne viruses (arboviruses), such as Dengue, West Nile, and Chikungunya, constitute a major global health burden and are increasing in incidence and geographic range. The natural microbiota of insect vectors influences various aspects of host biology, such as nutrition, reproduction, metabolism, and immunity, and recent studies have highlighted the ability of insect-associated bacteria to reduce vector competence for arboviruses and other pathogens. This reduction can occur through mechanisms, such as immune response activation, resource competition, or the production of anti-viral molecules. Studying the interactions between insect vectors and their microbiota is an important step toward developing alternative strategies for arbovirus transmission control.
Collapse
Affiliation(s)
- Natapong Jupatanakul
- Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| | - Shuzhen Sim
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome, Singapore 138672, Singapore.
| | - George Dimopoulos
- Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
18
|
Hillyer JF, Strand MR. Mosquito hemocyte-mediated immune responses. CURRENT OPINION IN INSECT SCIENCE 2014; 3:14-21. [PMID: 25309850 PMCID: PMC4190037 DOI: 10.1016/j.cois.2014.07.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Hemocytes are a key component of the mosquito immune system that kill pathogens via phagocytic, lytic and melanization pathways. Individual mosquitoes contain between 500 and 4,000 hemocytes, which are divided into three populations named granulocytes, oenocytoids and prohemocytes. Hemocytes can also be divided by their anatomical location with 75% of hemocytes circulating in the hemocoel (circulating hemocytes) and 25% of hemocytes attaching themselves to tissues (sessile hemocytes). Greater than 85% of the hemocytes in adult mosquitoes are granulocytes, which primarily kill pathogens by phagocytosis or lysis. Oenocytoids, on the other hand, are the major producers of the enzymes required for melanization while prohemocytes are small cells that participate in phagocytosis. Both circulating and sessile hemocytes engage in defense against pathogens. The circulatory system of mosquitoes also interacts with hemocytes and facilitates elimination of potential pathogens that enter the hemocoel.
Collapse
Affiliation(s)
- Julián F. Hillyer
- Department of Biological Sciences and Institute for Global Health, Vanderbilt University, Nashville, TN, USA
| | - Michael R. Strand
- Department of Entomology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| |
Collapse
|
19
|
Clayton AM, Dong Y, Dimopoulos G. The Anopheles innate immune system in the defense against malaria infection. J Innate Immun 2013; 6:169-81. [PMID: 23988482 DOI: 10.1159/000353602] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/06/2013] [Indexed: 01/10/2023] Open
Abstract
The multifaceted innate immune system of insects is capable of fighting infection by a variety of pathogens including those causing human malaria. Malaria transmission by the Anopheles mosquito depends on the Plasmodium parasite's successful completion of its lifecycle in the insect vector, a process that involves interactions with several tissues and cell types as well as with the mosquito's innate immune system. This review will discuss our current understanding of the Anopheles mosquito's innate immune responses against the malaria parasite Plasmodium and the influence of the insect's intestinal microbiota on parasite infection.
Collapse
Affiliation(s)
- April M Clayton
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Md., USA
| | | | | |
Collapse
|
20
|
Clayton AM, Cirimotich CM, Dong Y, Dimopoulos G. Caudal is a negative regulator of the Anopheles IMD pathway that controls resistance to Plasmodium falciparum infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:323-332. [PMID: 23178401 PMCID: PMC3892953 DOI: 10.1016/j.dci.2012.10.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/11/2012] [Accepted: 10/12/2012] [Indexed: 06/02/2023]
Abstract
Malaria parasite transmission depends upon the successful development of Plasmodium in its Anopheles mosquito vector. The mosquito's innate immune system constitutes a major bottleneck for parasite population growth. We show here that in Anopheles gambiae, the midgut-specific transcription factor Caudal acts as a negative regulator in the Imd pathway-mediated immune response against the human malaria parasite Plasmodium falciparum. Caudal also modulates the mosquito midgut bacterial flora. RNAi-mediated silencing of Caudal enhanced the mosquito's resistance to bacterial infections and increased the transcriptional abundance of key immune effector genes. Interestingly, Caudal's silencing resulted in an increased lifespan of the mosquito, while it impaired reproductive fitness with respect to egg laying and hatching.
Collapse
Affiliation(s)
| | | | | | - George Dimopoulos
- Corresponding author. Address: W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA. Tel.: 1-443-287-0128. Fax: 1-410-955-0105.
| |
Collapse
|
21
|
Yek SH, Boomsma JJ, Schiøtt M. Differential gene expression in Acromyrmex leaf-cutting ants after challenges with two fungal pathogens. Mol Ecol 2013; 22:2173-87. [PMID: 23480581 DOI: 10.1111/mec.12255] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 01/03/2013] [Accepted: 01/15/2013] [Indexed: 11/30/2022]
Abstract
Social insects in general and leaf-cutting ants in particular have increased selection pressures on their innate immune system due to their social lifestyle and monoclonality of the symbiotic fungal cultivar. As this symbiosis is obligate for both parties, prophylactic behavioural defences against infections are expected to increase either ant survival or fungus-garden survival, but also to possibly trade off when specific infections differ in potential danger. We examined the effectiveness of prophylactic behaviours and modulations of innate immune defences by a combination of inoculation bioassays and genome-wide transcriptomic studies (RNA-Seq), using an ant pathogen (Metarhizium brunneum) and a fungus-garden pathogen (Escovopsis weberi) and administering inoculations both directly and indirectly (via the symbiotic partner). Upon detection of pathogen conidia, ant workers responded by increasing both general activity and the frequency of specific defence behaviours (self-grooming, allo-grooming, garden-grooming) independent of the pathogen encountered. This trend was also evident in the patterns of gene expression change. Both direct and indirect (via fungus garden) inoculations with Metarhizium induced a general up-regulation of gene expression, including a number of well-known immune-related genes. In contrast, direct inoculation of the fungus garden by Escovopsis induced an overall down-regulation of ant gene expression, whereas indirect inoculation (via the ants) did not, suggesting that increased activity of ants to remove this fungus-garden pathogen is costly and involves trade-offs with the activation of other physiological pathways.
Collapse
Affiliation(s)
- Sze H Yek
- Department of Biology, Centre for Social Evolution, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
22
|
Boissière A, Gimonneau G, Tchioffo MT, Abate L, Bayibeki A, Awono-Ambéné PH, Nsango SE, Morlais I. Application of a qPCR assay in the investigation of susceptibility to malaria infection of the M and S molecular forms of An. gambiae s.s. in Cameroon. PLoS One 2013; 8:e54820. [PMID: 23349974 PMCID: PMC3551906 DOI: 10.1371/journal.pone.0054820] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 12/17/2012] [Indexed: 12/16/2022] Open
Abstract
Plasmodium falciparum is the causative agent of malaria, a disease that kills almost one million persons each year, mainly in sub-Saharan Africa. P. falciparum is transmitted to the human host by the bite of an Anopheles female mosquito, and Anopheles gambiae sensus stricto is the most tremendous malaria vector in Africa, widespread throughout the afro-tropical belt. An. gambiae s.s. is subdivided into two distinct molecular forms, namely M and S forms. The two molecular forms are morphologically identical but they are distinct genetically, and differ by their distribution and their ecological preferences. The epidemiological importance of the two molecular forms in malaria transmission has been poorly investigated so far and gave distinct results in different areas. We have developed a real-time quantitative PCR (qPCR) assay, and used it to detect P. falciparum at the oocyst stage in wild An. gambiae s.s. mosquitoes experimentally infected with natural isolates of parasites. Mosquitoes were collected at immature stages in sympatric and allopatric breeding sites and further infected at the adult stage. We next measured the infection prevalence and intensity in female mosquitoes using the qPCR assay and correlated the infection success with the mosquito molecular forms. Our results revealed different prevalence of infection between the M and S molecular forms of An. gambiae s.s. in Cameroon, for both sympatric and allopatric populations of mosquitoes. However, no difference in the infection intensity was observed. Thus, the distribution of the molecular forms of An. gambiae s.s. may impact on the malaria epidemiology, and it will be important to monitor the efficiency of malaria control interventions on the two M and S forms.
Collapse
Affiliation(s)
- Anne Boissière
- Unité mixte de recherche MIVEGEC (IRD 224- CNRS 5290-UM1-UM2), Institut de Recherche pour le Développement, Montpellier, France
| | - Geoffrey Gimonneau
- Unité mixte de recherche MIVEGEC (IRD 224- CNRS 5290-UM1-UM2), Institut de Recherche pour le Développement, Montpellier, France
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
| | - Majoline T. Tchioffo
- Unité mixte de recherche MIVEGEC (IRD 224- CNRS 5290-UM1-UM2), Institut de Recherche pour le Développement, Montpellier, France
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
| | - Luc Abate
- Unité mixte de recherche MIVEGEC (IRD 224- CNRS 5290-UM1-UM2), Institut de Recherche pour le Développement, Montpellier, France
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
| | - Albert Bayibeki
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
| | - Parfait H. Awono-Ambéné
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
| | - Sandrine E. Nsango
- Unité mixte de recherche MIVEGEC (IRD 224- CNRS 5290-UM1-UM2), Institut de Recherche pour le Développement, Montpellier, France
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
| | - Isabelle Morlais
- Unité mixte de recherche MIVEGEC (IRD 224- CNRS 5290-UM1-UM2), Institut de Recherche pour le Développement, Montpellier, France
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
- * E-mail:
| |
Collapse
|
23
|
Oppert B, Dowd SE, Bouffard P, Li L, Conesa A, Lorenzen MD, Toutges M, Marshall J, Huestis DL, Fabrick J, Oppert C, Jurat-Fuentes JL. Transcriptome profiling of the intoxication response of Tenebrio molitor larvae to Bacillus thuringiensis Cry3Aa protoxin. PLoS One 2012; 7:e34624. [PMID: 22558093 PMCID: PMC3338813 DOI: 10.1371/journal.pone.0034624] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/02/2012] [Indexed: 12/22/2022] Open
Abstract
Bacillus thuringiensis (Bt) crystal (Cry) proteins are effective against a select number of insect pests, but improvements are needed to increase efficacy and decrease time to mortality for coleopteran pests. To gain insight into the Bt intoxication process in Coleoptera, we performed RNA-Seq on cDNA generated from the guts of Tenebrio molitor larvae that consumed either a control diet or a diet containing Cry3Aa protoxin. Approximately 134,090 and 124,287 sequence reads from the control and Cry3Aa-treated groups were assembled into 1,318 and 1,140 contigs, respectively. Enrichment analyses indicated that functions associated with mitochondrial respiration, signalling, maintenance of cell structure, membrane integrity, protein recycling/synthesis, and glycosyl hydrolases were significantly increased in Cry3Aa-treated larvae, whereas functions associated with many metabolic processes were reduced, especially glycolysis, tricarboxylic acid cycle, and fatty acid synthesis. Microarray analysis was used to evaluate temporal changes in gene expression after 6, 12 or 24 h of Cry3Aa exposure. Overall, microarray analysis indicated that transcripts related to allergens, chitin-binding proteins, glycosyl hydrolases, and tubulins were induced, and those related to immunity and metabolism were repressed in Cry3Aa-intoxicated larvae. The 24 h microarray data validated most of the RNA-Seq data. Of the three intoxication intervals, larvae demonstrated more differential expression of transcripts after 12 h exposure to Cry3Aa. Gene expression examined by three different methods in control vs. Cry3Aa-treated larvae at the 24 h time point indicated that transcripts encoding proteins with chitin-binding domain 3 were the most differentially expressed in Cry3Aa-intoxicated larvae. Overall, the data suggest that T. molitor larvae mount a complex response to Cry3Aa during the initial 24 h of intoxication. Data from this study represent the largest genetic sequence dataset for T. molitor to date. Furthermore, the methods in this study are useful for comparative analyses in organisms lacking a sequenced genome.
Collapse
Affiliation(s)
- Brenda Oppert
- USDA Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, Kansas, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yaro AS, Touré AM, Guindo A, Coulibaly MB, Dao A, Diallo M, Traoré SF. Reproductive success in Anopheles arabiensis and the M and S molecular forms of Anopheles gambiae: do natural sporozoite infection and body size matter? Acta Trop 2012; 122:87-93. [PMID: 22198241 DOI: 10.1016/j.actatropica.2011.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 12/07/2011] [Accepted: 12/10/2011] [Indexed: 11/16/2022]
Abstract
Malaria parasites stages prior to sporozoite formation are known to affect the fecundity of several species of mosquitoes in the laboratory, but little is known about this phenomenon in natural conditions especially with sporozoite-infected anophelines. The reproductive success of wild-caught Anopheles arabiensis and the M and S molecular forms of Anopheles gambiae was investigated by comparing females infected with Plasmodium falciparum sporozoites to females free of sporozoites. Association between sporozoite-infected females' body size and their egg batch size was also measured. There was no significant reduction in egg production due to sporozoite infection among wild females An. arabiensis and the M and S form of An. gambiae. The infected groups and the controls laid similar numbers of eggs. A positive association was found between body size of females infected with P. falciparum and mean egg production. Infected females of the molecular forms of An. gambiae and their sibling species An. arabiensis invest similarly in egg batch size regardless of their body size although the expected egg batch size may differ among them because of differences in their mean body size. A reduction of egg production related to infection status was not observed among females harboring sporozoites. Therefore for the gonotrophic cycles that occur once sporozoites are present, natural infection of all three vectors we studied has no or minimal effect on their densities or their reproductive outputs.
Collapse
Affiliation(s)
- Alpha Seydou Yaro
- Malaria Research and Training Center, Faculté de Médecine, de Pharmacie et d'Odonto-Stomatologie, Université de Bamako, BP 1805, Bamako, Mali.
| | | | | | | | | | | | | |
Collapse
|
25
|
Identification of a fibrinogen-related protein (FBN9) gene in neotropical anopheline mosquitoes. Malar J 2011; 10:21. [PMID: 21288344 PMCID: PMC3055219 DOI: 10.1186/1475-2875-10-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 02/02/2011] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Malaria has a devastating impact on worldwide public health in many tropical areas. Studies on vector immunity are important for the overall understanding of the parasite-vector interaction and for the design of novel strategies to control malaria. A member of the fibrinogen-related protein family, fbn9, has been well studied in Anopheles gambiae and has been shown to be an important component of the mosquito immune system. However, little is known about this gene in neotropical anopheline species. METHODS This article describes the identification and characterization of the fbn9 gene partial sequences from four species of neotropical anopheline primary and secondary vectors: Anopheles darlingi, Anopheles nuneztovari, Anopheles aquasalis, and Anopheles albitarsis (namely Anopheles marajoara). Degenerate primers were designed based on comparative analysis of publicly available Aedes aegypti and An. gambiae gene sequences and used to clone putative homologs in the neotropical species. Sequence comparisons and Bayesian phylogenetic analyses were then performed to better understand the molecular diversity of this gene in evolutionary distant anopheline species, belonging to different subgenera. RESULTS Comparisons of the fbn9 gene sequences of the neotropical anophelines and their homologs in the An. gambiae complex (Gambiae complex) showed high conservation at the nucleotide and amino acid levels, although some sites show significant differentiation (non-synonymous substitutions). Furthermore, phylogenetic analysis of fbn9 nucleotide sequences showed that neotropical anophelines and African mosquitoes form two well-supported clades, mirroring their separation into two different subgenera. CONCLUSIONS The present work adds new insights into the conserved role of fbn9 in insect immunity in a broader range of anopheline species and reinforces the possibility of manipulating mosquito immunity to design novel pathogen control strategies.
Collapse
|
26
|
Hillyer JF, Estévez-Lao TY. Nitric oxide is an essential component of the hemocyte-mediated mosquito immune response against bacteria. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:141-149. [PMID: 19733588 DOI: 10.1016/j.dci.2009.08.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 08/29/2009] [Accepted: 08/29/2009] [Indexed: 05/28/2023]
Abstract
Nitric oxide is a signaling and immune effector molecule synthesized by the enzyme nitric oxide synthase. In mosquitoes, nitric oxide functions as a parasite antagonist in the midgut but little is known about its function in the hemocoel. Here, we characterized the temporal and spatial expression of the Anopheles gambiae nitric oxide synthase gene and explored the role nitric oxide plays in the antibacterial response in the mosquito hemocoel. Quantitative PCR and Western blot analyses showed that nitric oxide synthase is expressed in hemocytes and fat body, and is upregulated in response to systemic infection with Escherichia coli and Micrococcus luteus. Diaphorase staining and immunofluorescence showed that nitric oxide synthase is abundant in the granulocyte subpopulation of hemocytes, and both the staining intensity and the percentage of cells that stain for nitric oxide synthase significantly increase after a bacterial challenge. When nitric oxide production was inhibited, the mosquito's ability to kill E. coli was significantly reduced. Accordingly, inhibiting nitric oxide production increased the mortality rate of mosquitoes with systemic E. coli infections. Taken altogether, these data show that nitric oxide is a crucial player in the antibacterial immune response in the mosquito hemocoel.
Collapse
Affiliation(s)
- Julián F Hillyer
- Department of Biological Sciences and Institute for Global Health, Vanderbilt University, VU Station B 35-1634, Nashville, TN 37235-1634, USA.
| | | |
Collapse
|
27
|
Malagoli D, Sacchi S, Ottaviani E. unpaired (upd)-3 expression and other immune-related functions are stimulated by interleukin-8 in Drosophila melanogaster SL2 cell line. Cytokine 2008; 44:269-74. [DOI: 10.1016/j.cyto.2008.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 08/07/2008] [Accepted: 08/13/2008] [Indexed: 11/29/2022]
|
28
|
Cell-penetrating peptide TP10 shows broad-spectrum activity against both Plasmodium falciparum and Trypanosoma brucei brucei. Antimicrob Agents Chemother 2008; 52:3414-7. [PMID: 18519720 DOI: 10.1128/aac.01450-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malaria and trypanosomiasis are diseases which afflict millions and for which novel therapies are urgently required. We have tested two well-characterized cell-penetrating peptides (CPPs) for antiparasitic activity. One CPP, designated TP10, has broad-spectrum antiparasitic activity against Plasmodium falciparum, both blood and mosquito stages, and against blood-stage Trypanosoma brucei brucei.
Collapse
|
29
|
Tangin A, Komichi Y, Wagatsuma Y, Rashidul H, Wataya Y, Kim HS. Detection of malaria parasites in mosquitoes from the malaria-endemic area of Chakaria, Bangladesh. Biol Pharm Bull 2008; 31:703-8. [PMID: 18379066 DOI: 10.1248/bpb.31.703] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Malaria is one of the major public health problems of Bangladesh. We investigated the mosquito populations infected with malaria parasites in a malaria-endemic area Chakaria, Bangladesh, where Anopheles dirus and Anopheles minimus are the principal vectors. Anopheles mosquitoes were collected with a CDC miniature light trap from inside households in June 2007. A total of 868 mosquitoes were collected, among which females numbered 669 (77.1%). The species of female Anopheles mosquitoes were identified morphologically, and 651 were A. minimus and the remaining 18 were other Anopheles species. Malaria parasite DNA from individual female mosquitoes was extracted and distinguished using the microtiter plate hybridization (MPH) technique targeting the 18S rRNA of human malaria parasites. Nineteen mosquitoes were malaria parasite positive: 12 for Plasmodium falciparum, 1 for Plasmodium vivax, and 6 for both P. falciparum and P. vivax. This is the first time that the MPH technique was used for distinguishing malaria parasites in mosquitoes and the first report from Chakaria. Our results may contribute to planning and assessing malaria control strategies in Chakaria.
Collapse
Affiliation(s)
- Akter Tangin
- Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Okayama 700-8530, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Neira Oviedo M, Vanekeris L, Corena-McLeod MDP, Linser PJ. A microarray-based analysis of transcriptional compartmentalization in the alimentary canal of Anopheles gambiae (Diptera: Culicidae) larvae. INSECT MOLECULAR BIOLOGY 2008; 17:61-72. [PMID: 18237285 DOI: 10.1111/j.1365-2583.2008.00779.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The alimentary canal of the larval mosquito displays a considerable degree of physiological compartmentalization among its different anatomical sub-divisions (gastric caeca, anterior midgut, posterior midgut and hindgut). We performed a comparative microarray analysis in order to identify transcripts which are particularly enriched in each gut section. Based on the available annotation of the selected transcripts, we suggest that the metabolism and absorption of proteins and carbohydrates takes place mainly in the gastric caeca and posterior midgut, whereas the anterior midgut specializes in the metabolism and absorption of lipids. Transcripts encoding antimicrobial peptides were found to be enriched in the gastric caeca, and a high enrichment of transcripts associated with enzymes involved in xenobiotic detoxification was found in the anterior midgut. Furthermore, our data support the notion that the region encompassing the hindgut and Malpighian tubes plays important roles in avoiding the excretion of nutrients, as well as in xenobiotic detoxification.
Collapse
Affiliation(s)
- M Neira Oviedo
- The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| | | | | | | |
Collapse
|
31
|
Dodds AW, Matsushita M. The phylogeny of the complement system and the origins of the classical pathway. Immunobiology 2007; 212:233-43. [PMID: 17544809 DOI: 10.1016/j.imbio.2006.11.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 11/14/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
The origins of the complement system have now been traced to near to the beginnings of multi-cellular animal life. Most of the evidence points to the earliest activation mechanism having been more similar to the lectin pathway than to the alternative pathway. C1q, the immunoglobulin recognition molecule of the classical pathway of the vertebrates, has now been shown to predate the development of antibody as it has been found in the lamprey, a jawless fish that lacks an acquired immune system. In this species, C1q acts as a lectin that binds MASPs and activates the C3/C4-like thioester protein of the lamprey complement system. The classical pathway can, therefore, be regarded as a specialised arm of the lectin pathway in which the specificity of C1q for carbohydrate has been recruited to recognise the Fc region of immunoglobulin.
Collapse
Affiliation(s)
- Alister W Dodds
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | |
Collapse
|
32
|
Shiao SH, Whitten MMA, Zachary D, Hoffmann JA, Levashina EA. Fz2 and cdc42 mediate melanization and actin polymerization but are dispensable for Plasmodium killing in the mosquito midgut. PLoS Pathog 2007; 2:e133. [PMID: 17196037 PMCID: PMC1757202 DOI: 10.1371/journal.ppat.0020133] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 11/06/2006] [Indexed: 12/11/2022] Open
Abstract
The midgut epithelium of the mosquito malaria vector Anopheles is a hostile environment for Plasmodium, with most parasites succumbing to host defenses. This study addresses morphological and ultrastructural features associated with Plasmodium berghei ookinete invasion in Anopheles gambiae midguts to define the sites and possible mechanisms of parasite killing. We show by transmission electron microscopy and immunofluorescence that the majority of ookinetes are killed in the extracellular space. Dead or dying ookinetes are surrounded by a polymerized actin zone formed within the basal cytoplasm of adjacent host epithelial cells. In refractory strain mosquitoes, we found that formation of this zone is strongly linked to prophenoloxidase activation leading to melanization. Furthermore, we identify two factors controlling both phenomena: the transmembrane receptor frizzled-2 and the guanosine triphosphate–binding protein cell division cycle 42. However, the disruption of actin polymerization and melanization by double-stranded RNA inhibition did not affect ookinete survival. Our results separate the mechanisms of parasite killing from subsequent reactions manifested by actin polymerization and prophenoloxidase activation in the A. gambiae–P. berghei model. These latter processes are reminiscent of wound healing in other organisms, and we propose that they represent a form of wound-healing response directed towards a moribund ookinete, which is perceived as damaged tissue. A dangerous journey awaits malaria Plasmodium parasites ingested by a mosquito. Most parasites are destroyed by host responses in the midgut, and in parasite-resistant refractory strains of mosquito the mortality can reach 100%. This midgut “bottleneck” represents an appealing target for reducing malaria transmission by the genetic control of wild mosquitoes. However, the killing mechanisms are still unclear. In this study, electron microscopical analyses followed the entire midgut invasion process in mosquitoes to identify the major site(s) and ultrastructural features of Plasmodium killing. The authors found that invasion can be divided into two steps: a swift passage through a midgut cell, followed by establishment of the parasite in the basal extracellular space, where it becomes an important target for destruction by soluble immunity factors. In refractory mosquitoes, dead parasites are associated with the formation of organelle-free zones of actin in adjacent midgut cells, and melanin deposition on the parasite surface. The authors identify two genes, called frizzled-2 and cell division cycle 42, that control these phenomena. Actin zone formation and melanization are generally thought to be killing mechanisms; however, the authors show by gene silencing that neither is lethal to Plasmodium. Instead, these mechanisms may represent a form of mosquito wound-healing response that is triggered by the presence of a moribund parasite.
Collapse
Affiliation(s)
- Shin-Hong Shiao
- Institut de Biologie Moléculaire et Cellulaire, UPR9022 du CNRS, Équipe “Avenir” INSERM, Strasbourg, France
| | - Miranda M. A Whitten
- Institut de Biologie Moléculaire et Cellulaire, UPR9022 du CNRS, Équipe “Avenir” INSERM, Strasbourg, France
| | - Daniel Zachary
- Institut de Biologie Moléculaire et Cellulaire, UPR9022 du CNRS, Équipe “Avenir” INSERM, Strasbourg, France
| | - Jules A Hoffmann
- Institut de Biologie Moléculaire et Cellulaire, UPR9022 du CNRS, Équipe “Avenir” INSERM, Strasbourg, France
| | - Elena A Levashina
- Institut de Biologie Moléculaire et Cellulaire, UPR9022 du CNRS, Équipe “Avenir” INSERM, Strasbourg, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
33
|
Hillyer JF, Barreau C, Vernick KD. Efficiency of salivary gland invasion by malaria sporozoites is controlled by rapid sporozoite destruction in the mosquito haemocoel. Int J Parasitol 2006; 37:673-81. [PMID: 17275826 PMCID: PMC1905829 DOI: 10.1016/j.ijpara.2006.12.007] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 11/08/2006] [Accepted: 12/12/2006] [Indexed: 11/18/2022]
Abstract
For successful transmission to the vertebrate host, malaria sporozoites must migrate from the mosquito midgut to the salivary glands. Here, using purified sporozoites inoculated into the mosquito haemocoel, we show that salivary gland invasion is inefficient and that sporozoites have a narrow window of opportunity for salivary gland invasion. Only 19% of sporozoites invade the salivary glands, all invasion occurs within 8h at a rate of approximately 200 sporozoites per hour, and sporozoites that fail to invade within this time rapidly die and are degraded. Then, using natural release of sporozoites from oocysts, we show that haemolymph flow through the dorsal vessel facilitates proper invasion. Most mosquitoes had low steady-state numbers of circulating sporozoites, which is remarkable given the thousands of sporozoites released per oocyst, and suggests that sporozoite degradation is a rapid immune process most efficient in regions of high haemolymph flow. Only 2% of Anopheles gambiae haemocytes phagocytized Plasmodium berghei sporozoites, a rate insufficient to explain the extent of sporozoite clearance. Greater than 95% of haemocytes phagocytized Escherichia coli or latex particles, indicating that their failure to sequester large numbers of sporozoites is not due to an inability to engage in phagocytosis. These results reveal the operation of an efficient sporozoite-killing and degradation machinery within the mosquito haemocoel, which drastically limits the numbers of infective sporozoites in the mosquito salivary glands.
Collapse
Affiliation(s)
| | | | - Kenneth D. Vernick
- *Corresponding author. Tel.: +1 612 624 5068; fax: +1 612 624 6264. E-mail address:
| |
Collapse
|
34
|
Burrows ME, Caillaud MC, Smith DM, Gray SM. Biometrical genetic analysis of luteovirus transmission in the aphid Schizaphis graminum. Heredity (Edinb) 2006; 98:106-13. [PMID: 17021612 DOI: 10.1038/sj.hdy.6800909] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The aphid Schizaphis graminum is an important vector of the viruses that cause barley yellow dwarf disease. We studied the genetic architecture of virus transmission by crossing a vector and a non-vector genotype of S. graminum. F1 and F2 hybrids were generated, and a modified line-cross biometrical analysis was performed on transmission phenotype of two of the viruses that cause barley yellow dwarf: Cereal yellow dwarf virus (CYDV)-RPV and Barley yellow dwarf virus (BYDV)-SGV. Our aims were to (1) determine to what extent differences in transmission ability between vectors and non-vectors is due to net additive or non-additive gene action, (2) estimate the number of loci that determine transmission ability and (3) examine the nature of genetic correlations between transmission of CYDV-RPV and BYDV-SGV. Only additive effects contributed significantly to divergence in transmission of both CYDV-RPV and BYDV-SGV. For each luteovirus, Castle-Wright's estimator for the number of effective factors segregating for transmission phenotype was less than one. Transmission of CYDV-RPV and BYDV-SGV was significantly correlated in the F2 generation, suggesting that there is a partial genetic overlap for transmission of these luteoviruses. Yet, 63% of the F2 genotypes transmitted CYDV-RPV and BYDV-SGV at significantly different rates. Our data suggest that in S. graminum, the transmission efficiency of both CYDV-RPV and BYDV-SGV is regulated by a major gene or set of tightly linked genes, and the transmission efficiency of each virus is influenced by a unique set of minor genes.
Collapse
Affiliation(s)
- M E Burrows
- USDA-ARS Plant Protection Research Unit, Department of Plant Pathology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
35
|
Li B, Paskewitz SM. A role for lysozyme in melanization of Sephadex beads in Anopheles gambiae. JOURNAL OF INSECT PHYSIOLOGY 2006; 52:936-42. [PMID: 16876189 DOI: 10.1016/j.jinsphys.2006.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 05/30/2006] [Accepted: 06/01/2006] [Indexed: 05/11/2023]
Abstract
Melanization of foreign targets in the mosquito, Anopheles gambiae, was studied using a model Sephadex bead system. A mosquito factor that was deposited on beads and prevented bead melanization (MPF) was purified. The N-terminal sequence of the factor identified it as lysozyme c-1 (Lys c-1). Gene silencing of Lys c-1 mediated by RNA interference resulted in a significant reduction in the MPF activity compared with controls. The purified Lys c-1 protein reduced dopachrome formation by mosquito hemolymph phenoloxidase in solution assays in vitro. In vivo, Lys c-1 might inhibit melanization of beads by blocking attachment of critical factors to the bead surface or by inhibiting PO directly. This work indicates that insect lysozymes can play unexpected roles in mediating melanization of foreign targets.
Collapse
Affiliation(s)
- Bin Li
- Department of Entomology, University of Wisconsin, 237 Russell Labs, 1630 Linden Dr, Madison, WI 53706, USA
| | | |
Collapse
|
36
|
Whitten MMA, Shiao SH, Levashina EA. Mosquito midguts and malaria: cell biology, compartmentalization and immunology. Parasite Immunol 2006; 28:121-30. [PMID: 16542314 DOI: 10.1111/j.1365-3024.2006.00804.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The malaria parasite Plasmodium has an absolute requirement for both a vertebrate and a mosquito host in order to complete its life cycle, and its interactions with the latter provide the focus for this review. The mosquito midgut represents one of the most challenging environments for the survival and development of Plasmodium, and is thus also one of the most attractive sites for novel targeted malaria control strategies. During their attempts to cross the midgut epithelium en route to the salivary glands, motile ookinetes are swiftly detected and labelled by mosquito recognition factors and targeted for destruction by a variety of immune responses that recruit killing factors both from the midgut and from other tissues in the surrounding body cavity. The exact interplay between these factors and the parasite is highly species- and strain-specific, as are the timing and the route of parasite invasion. These features are paramount to determining the success of the infection and the vector competence of the mosquito. Here we discuss recent advances in genomic analyses, coupled with detailed microscopical investigations, which are helping to unravel the identity and roles of the major players of these complex systems.
Collapse
Affiliation(s)
- M M A Whitten
- Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France.
| | | | | |
Collapse
|
37
|
Frischknecht F, Martin B, Thiery I, Bourgouin C, Menard R. Using green fluorescent malaria parasites to screen for permissive vector mosquitoes. Malar J 2006; 5:23. [PMID: 16569221 PMCID: PMC1450296 DOI: 10.1186/1475-2875-5-23] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 03/28/2006] [Indexed: 11/10/2022] Open
Abstract
Background The Plasmodium species that infect rodents, particularly Plasmodium berghei and Plasmodium yoelii, are useful to investigate host-parasite interactions. The mosquito species that act as vectors of human plasmodia in South East Asia, Africa and South America show different susceptibilities to infection by rodent Plasmodium species. P. berghei and P. yoelii infect both Anopheles gambiae and Anopheles stephensi, which are found mainly in Africa and Asia, respectively. However, it was reported that P. yoelii can infect the South American mosquito, Anopheles albimanus, while P. berghei cannot. Methods P. berghei lines that express the green fluorescent protein were used to screen for mosquitoes that are susceptible to infection by P. berghei. Live mosquitoes were examined and screened for the presence of a fluorescent signal in the abdomen. Infected mosquitoes were then examined by time-lapse microscopy to reveal the dynamic behaviour of sporozoites in haemolymph and extracted salivary glands. Results A single fluorescent oocyst can be detected in live mosquitoes and P. berghei can infect A. albimanus. As in other mosquitoes, P. berghei sporozoites can float through the haemolymph and invade A. albimanus salivary glands and they are infectious in mice after subcutaneous injection. Conclusion Fluorescent Plasmodium parasites can be used to rapidly screen susceptible mosquitoes. These results open the way to develop a laboratory model in countries where importation of A. gambiae and A. stephensi is not allowed.
Collapse
Affiliation(s)
- Friedrich Frischknecht
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
- Department of Parasitology, University of Heidelberg Medical School, Tel 49-6221-566537, Fax 49-6221-564643, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Beatrice Martin
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
- CNRS, Institut Alfred Fessard, Neurobiologie Génétique et Intégrative, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Isabelle Thiery
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
- Centre de Production et d'Infection des Anopheles, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Catherine Bourgouin
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
- Centre de Production et d'Infection des Anopheles, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Robert Menard
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
38
|
Ahmed AM, Hurd H. Immune stimulation and malaria infection impose reproductive costs in Anopheles gambiae via follicular apoptosis. Microbes Infect 2006; 8:308-15. [PMID: 16213176 DOI: 10.1016/j.micinf.2005.06.026] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Revised: 06/21/2005] [Accepted: 06/23/2005] [Indexed: 10/25/2022]
Abstract
The employment of defense mechanisms is recognized as a costly life-history trait. In the malaria vector Anopheles gambiae, reproductive costs have been associated with both humoral and cellular innate immune responses and also with malaria infection. The resorption of developing oocytes associated with malaria infection is preceded by the programmed cell death, or apoptosis, of follicular cells. Here we demonstrate that apoptosis in ovarian follicular epithelial cells also occurs when mosquitoes are subjected to artificial immune-elicitors that induce a melanization response or humoral antimicrobial activity. Caspases are key cysteine proteases involved in apoptosis. Caspase-like activity was detected in epithelial cells in approximately 4.0% of the developing ovarian follicles of untreated, blood-fed, mosquitoes. Lipopolysaccharide injection resulted in a significant increase in anti-Micrococcus luteus humoral activity and a significant increase of 257.7% of follicles exhibiting apoptosis compared to results after saline injections. Melanization also triggered follicular apoptosis, which increased by 106.25% or 134.37% in Sephadex C-25 or G-25 bead-inoculated mosquitoes, respectively, compared to that in sham-injected ones. Ovaries from Plasmodium yoelii nigeriensis-infected mosquitoes exhibited a significant increase in follicular apoptosis of 440.9% compared to non-infected ones. Thus, at the time point investigated, infection had a much greater effect than artificial immune-elicitors. Death of follicular epithelial cells has been shown to lead to follicle resorption and hence a decrease in egg production. We propose the trade-off between reproductive fitness and immune defense in A. gambiae operates via the induction of apoptosis in ovarian follicles and that different immune responses impose costs via the same pathway.
Collapse
Affiliation(s)
- Ashraf M Ahmed
- Department of Zoology, Faculty of Sciences, University of El-Minia, El-Minia, Egypt
| | | |
Collapse
|
39
|
Kanzok SM, Jacobs-Lorena M. Entomopathogenic fungi as biological insecticides to control malaria. Trends Parasitol 2005; 22:49-51. [PMID: 16377249 DOI: 10.1016/j.pt.2005.12.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 10/07/2005] [Accepted: 12/08/2005] [Indexed: 11/23/2022]
Abstract
Malaria is arguably the most serious vector-borne disease worldwide. The already-alarming number of deaths caused by malaria is increasing, caused in part by the increase in mosquito resistance to chemical insecticides. In two recent articles, the use of an approach was reported that could open a new front in the fight against malaria. Laboratory and field studies demonstrate that entomopathogenic fungi can efficiently kill adult anopheline mosquitoes, the females of which are the obligatory vectors for malaria parasites.
Collapse
Affiliation(s)
- Stefan M Kanzok
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, Malaria Research Institute, Baltimore, MD 21205, USA
| | | |
Collapse
|
40
|
Hurd H, Taylor PJ, Adams D, Underhill A, Eggleston P. EVALUATING THE COSTS OF MOSQUITO RESISTANCE TO MALARIA PARASITES. Evolution 2005. [DOI: 10.1111/j.0014-3820.2005.tb00969.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Biron DG, Agnew P, Marché L, Renault L, Sidobre C, Michalakis Y. Proteome of Aedes aegypti larvae in response to infection by the intracellular parasite Vavraia culicis. Int J Parasitol 2005; 35:1385-97. [PMID: 16102770 DOI: 10.1016/j.ijpara.2005.05.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 05/03/2005] [Accepted: 05/15/2005] [Indexed: 10/25/2022]
Abstract
We report on the modification of the Aedes aegypti larval proteome following infection by the microsporidian parasite Vavraia culicis. Mosquito larvae were sampled at 5 and 15 days of age to compare the effects of infection when the parasite was in two different developmental stages. Modifications of the host proteome due to the stress of infection were distinguished from those of a more general nature by treatments involving hypoxia. We found that the major reaction to stress was the suppression of particular protein spots. Older (15 days) larvae reacted more strongly to infection by V. culicis (46% of the total number of spots affected; 17% for 5 days larvae), while the strongest reaction of younger (5 days) larvae was to hypoxia for pH range 5-8 and to combined effects of infection and hypoxia for pH range 3-6. MALDI-TOF results indicate that proteins induced or suppressed by infection are involved directly or indirectly in defense against microorganisms. Finally, our MALDI-TOF results suggest that A. aegypti larvae try to control or clear V. culicis infection and also that V. culicis probably impairs the immune defense of this host via arginases-NOS competition.
Collapse
Affiliation(s)
- D G Biron
- GEMI, UMR CNRS/IRD 2724, Centre IRD de Montpellier, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France.
| | | | | | | | | | | |
Collapse
|
42
|
Michel K, Kafatos FC. Mosquito immunity against Plasmodium. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:677-89. [PMID: 15894185 DOI: 10.1016/j.ibmb.2005.02.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/11/2005] [Indexed: 05/02/2023]
Abstract
Understanding the molecular mechanisms of the innate immune responses of Anopheles gambiae against Plasmodium parasites is of great importance for current efforts to develop novel strategies for malaria disease control. The parasite undergoes substantial stage-specific losses during its development in the mosquito, which in some cases lead to complete refractoriness of the mosquito against the parasite. The underlying genetics of refractoriness are complex and multifactorial. Completion of the genome sequence of An. gambiae 2 years ago, together with the development of DNA microarrays in this species and the extension of the RNAi technique to adult mosquitoes, has allowed comparative and functional genomic approaches of the mosquito innate immune system. A variety of factors were shown to negatively affect the development of Plasmodium parasites in the mosquito, in some cases leading to complete transmission blockage. In addition, mosquito factors have been identified that play positive roles and are required for successful transmission of the parasite. These findings indicate a highly complex interplay between parasite and vector. Research is continuing to identify new factors involved in this interaction and to decipher the interplay of these molecules and their regulation.
Collapse
Affiliation(s)
- K Michel
- European Molecular Biology Laboratory, Meyerhofstr.1, 69117 Heidelberg, Germany
| | | |
Collapse
|
43
|
Hurd H, Taylor PJ, Adams D, Underhill A, Eggleston P. EVALUATING THE COSTS OF MOSQUITO RESISTANCE TO MALARIA PARASITES. Evolution 2005. [DOI: 10.1554/05-211.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|