1
|
Jiang J, Xue J, Yu M, Jiang X, Cheng Y, Wang H, Liu Y, Dou W, Fan J, Chen J. Molecular Characterization of Chemosensory Protein (CSP) Genes and the Involvement of AgifCSP5 in the Perception of Host Location in the Aphid Parasitoid Aphidius gifuensis. Int J Mol Sci 2024; 25:6392. [PMID: 38928098 PMCID: PMC11204085 DOI: 10.3390/ijms25126392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Aphidius gifuensis is the dominant parasitic natural enemy of aphids. Elucidating the molecular mechanism of host recognition of A. gifuensis would improve its biological control effect. Chemosensory proteins (CSPs) play a crucial role in insect olfactory systems and are mainly involved in host localization. In this study, a total of nine CSPs of A. gifuensis with complete open reading frames were identified based on antennal transcriptome data. Phylogenetic analysis revealed that AgifCSPs were mainly clustered into three subgroups (AgifCSP1/2/7/8, AgifCSP3/9, and AgifCSP4/5/6). AgifCSP2/5 showed high expression in the antennae of both sexes. Moreover, AgifCSP5 was found to be specifically expressed in the antennae. In addition, fluorescent binding assays revealed that AifCSP5 had greater affinities for 7 of 32 volatile odor molecules from various sources. Molecular docking and site-directed mutagenesis results revealed that the residue at which AgifCSP5 binds to these seven plant volatiles is Tyr75. Behavior tests further confirmed that trans-2-nonenal, one of the seven active volatiles in the ligand binding test, significantly attracted female adults at a relatively low concentration of 10 mg/mL. In conclusion, AgifCSP5 may be involved in locating aphid-infested crops from long distances by detecting and binding trans-2-nonenal. These findings provide a theoretical foundation for further understanding the olfactory recognition mechanisms and indirect aphid localization behavior of A. gifuensis from long distances by first identifying the host plant of aphids.
Collapse
Affiliation(s)
- Jun Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.J.); (J.X.); (M.Y.); (X.J.); (Y.C.); (H.W.); (Y.L.)
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China;
| | - Jiayi Xue
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.J.); (J.X.); (M.Y.); (X.J.); (Y.C.); (H.W.); (Y.L.)
| | - Miaomiao Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.J.); (J.X.); (M.Y.); (X.J.); (Y.C.); (H.W.); (Y.L.)
| | - Xin Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.J.); (J.X.); (M.Y.); (X.J.); (Y.C.); (H.W.); (Y.L.)
| | - Yumeng Cheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.J.); (J.X.); (M.Y.); (X.J.); (Y.C.); (H.W.); (Y.L.)
| | - Huijuan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.J.); (J.X.); (M.Y.); (X.J.); (Y.C.); (H.W.); (Y.L.)
| | - Yanxia Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.J.); (J.X.); (M.Y.); (X.J.); (Y.C.); (H.W.); (Y.L.)
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China;
| | - Jia Fan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.J.); (J.X.); (M.Y.); (X.J.); (Y.C.); (H.W.); (Y.L.)
| | - Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.J.); (J.X.); (M.Y.); (X.J.); (Y.C.); (H.W.); (Y.L.)
| |
Collapse
|
2
|
Li JB, Liu Q, Ma S, Wang YY, Liu XZ, Wang CW, Wang DJ, Hu ZZ, Gan JW, Zhu XY, Li BP, Yin MZ, Zhang YN. Binding properties of chemosensory protein 4 in Riptortus pedestris to aggregation pheromones. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105874. [PMID: 38685243 DOI: 10.1016/j.pestbp.2024.105874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 05/02/2024]
Abstract
In insects, chemosensory proteins (CSPs) play an important role in the perception of the external environment and have been widely used for protein-binding characterization. Riptortus pedestris has received increased attention as a potential cause of soybean staygreen syndrome in recent years. In this study, we found that RpedCSP4 expression in the antennae of adult R. pedestris increased with age, with no significant difference in expression level observed between males and females, as determined through quantitative real-time polymerase chain reaction (qRT-PCR). Subsequently, we investigated the ability of RpedCSP4 to bind various ligands (five aggregated pheromone components and 13 soybean volatiles) using a prokaryotic expression system and fluorescence competitive binding assays. We found that RpedCSP4 binds to three aggregated pheromone components of R. pedestris, namely, ((E)-2-hexenyl (Z)-3-hexenoate (E2Z3), (E)-2-hexenyl (E)-2-hexenoate (E2E2), and (E)-2-hexenyl hexenoate (E2HH)), and that its binding capacities are most stable under acidic condition. Finally, the structure and protein-ligand interactions of RpedCSP4 were further analyzed via homology modeling, molecular docking, and targeted mutagenesis experiments. The L29A mutant exhibited a loss of binding ability to these three aggregated pheromone components. Our results show that the olfactory function of RpedCSP4 provides new insights into the binding mechanism of RpedCSPs to aggregation pheromones and contributes to discover new target candidates that will provide a theoretical basis for future population control of R. pedestris.
Collapse
Affiliation(s)
- Jin-Bu Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Suzhou Academy of Agricultural Sciences, Suzhou 234000, China; Suzhou Vocational and Technical College, Suzhou 234000, China
| | - Qiang Liu
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Sai Ma
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Yue-Ying Wang
- Suzhou Academy of Agricultural Sciences, Suzhou 234000, China
| | - Xing-Zhou Liu
- Suzhou Academy of Agricultural Sciences, Suzhou 234000, China
| | - Chao-Wei Wang
- Suzhou Academy of Agricultural Sciences, Suzhou 234000, China
| | - Da-Jiang Wang
- Suzhou Academy of Agricultural Sciences, Suzhou 234000, China
| | | | - Jia-Wen Gan
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Xiu-Yun Zhu
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Bao-Ping Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Mao-Zhu Yin
- Suzhou Academy of Agricultural Sciences, Suzhou 234000, China.
| | - Ya-Nan Zhang
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
3
|
Wang JJ, Ma C, Yue Y, Yang J, Chen LX, Wang YT, Zhao CC, Gao X, Chen HS, Ma WH, Zhou Z. Identification of candidate chemosensory genes in Bactrocera cucurbitae based on antennal transcriptome analysis. Front Physiol 2024; 15:1354530. [PMID: 38440345 PMCID: PMC10910661 DOI: 10.3389/fphys.2024.1354530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/24/2024] [Indexed: 03/06/2024] Open
Abstract
The melon fly, Bactrocera cucurbitae (Coquillett) (Tephritidae: Diptera), is an invasive pest that poses a significant threat to agriculture in Africa and other regions. Flies are known to use their olfactory systems to recognise environmental chemical cues. However, the molecular components of the chemosensory system of B. cucurbitae are poorly characterised. To address this knowledge gap, we have used next-generation sequencing to analyse the antenna transcriptomes of sexually immature B. cucurbitae adults. The results have identified 160 potential chemosensory genes, including 35 odourant-binding proteins (OBPs), one chemosensory protein (CSP), three sensory neuron membrane proteins (SNMPs), 70 odourant receptors (ORs), 30 ionotropic receptors (IRs), and 21 gustatory receptors (GRs). Quantitative real-time polymerase chain reaction quantitative polymerase chain reaction was used to validate the results by assessing the expression profiles of 25 ORs and 15 OBPs. Notably, high expression levels for BcucOBP5/9/10/18/21/23/26 were observed in both the female and male antennae. Furthermore, BcucOROrco/6/7/9/13/15/25/27/28/42/62 exhibited biased expression in the male antennae, whereas BcucOR55 showed biased expression in the female antennae. This comprehensive investigation provides valuable insights into insect olfaction at the molecular level and will, thus, help to facilitate the development of enhanced pest management strategies in the future.
Collapse
Affiliation(s)
- Jing Jing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Chao Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Yang Yue
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Jingfang Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Li Xiang Chen
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Yi Ting Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | | | - Xuyuan Gao
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Hong Song Chen
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wei Hua Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhongshi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
4
|
Han WK, Tang FX, Yan YY, Wang Y, Zhang YX, Yu N, Wang K, Liu ZW. An OBP gene highly expressed in non-chemosensory tissues affects the phototaxis and reproduction of Spodoptera frugiperda. INSECT MOLECULAR BIOLOGY 2024; 33:81-90. [PMID: 37815404 DOI: 10.1111/imb.12880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
Insect odorant binding proteins (OBPs) were initially regarded as carriers of the odorants involved in chemosensation. However, it had been observed that a growing number of OBP genes exhibited broad expression patterns beyond chemosensory tissues. Here, an OBP gene (OBP31) was found to be highly expressed in the larval ventral nerve cord, adult brain and male reproductive organ of Spodoptera frugiperda. An OBP31 knockout strain (OBP31-/- ) was generated by CRISPR/Cas9 mutagenesis. For OBP31-/- , the larvae needed longer time to pupate, but there was no difference in the pupal weight between OBP31-/- and wild type (WT). OBP31-/- larvae showed stronger phototaxis than the WT larvae, indicating the importance of OBP31 in light perception. For mating rhythm of adults, OBP31-/- moths displayed an earlier second mating peak. In the cross-pairing of OBP31-/- and WT moths, the mating duration was longer, and hatchability was lower in OBP31-/- group and OBP31+/- ♂ group than that in the WT group. These results suggested that OBP31 played a vital role in larval light perception and male reproductive process and could provide valuable insights into understanding the biological functions of OBPs that were not specific in chemosensory tissues.
Collapse
Affiliation(s)
- Wei-Kang Han
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Feng-Xian Tang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yang-Yang Yan
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yan Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yi-Xi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Na Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Kan Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ze-Wen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Han KR, Wang WW, Yang WQ, Li X, Liu TX, Zhang SZ. Characterization of CrufCSP1 and Its Potential Involvement in Host Location by Cotesia ruficrus (Hymenoptera: Braconidae), an Indigenous Parasitoid of Spodoptera frugiperda (Lepidoptera: Noctuidae) in China. INSECTS 2023; 14:920. [PMID: 38132594 PMCID: PMC10744196 DOI: 10.3390/insects14120920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Chemosensory proteins (CSPs) are a class of soluble proteins that facilitate the recognition of chemical signals in insects. While CSP genes have been identified in many insect species, studies investigating their function remain limited. Cotesia ruficrus (Hymenoptera: Braconidae) holds promise as an indigenous biological control agent for managing the invasive pest Spodoptera frugiperda (Lepidoptera: Noctuidae) in China. This study aimed to shed light on the gene expression, ligand binding, and molecular docking of CrufCSP1 in C. ruficrus. A RT-qPCR analysis revealed that the expression of CrufCSP1 was higher in the wings, with male adults exhibiting significantly higher relative expression levels than other developmental stages. A fluorescence competitive binding analysis further demonstrated that CrufCSP1 has a high binding ability with several host-related volatiles, with trans-2-hexenal, octanal, and benzaldehyde showing the strongest affinity to CrufCSP1. A molecular docking analysis indicated that specific amino acid residues (Phe24, Asp25, Thr53, and Lys81) of CrufCSP1 can bind to these specific ligands. Together, these findings suggest that CrufCSP1 may play a crucial role in the process of C. ruficrus locating hosts. This knowledge can contribute to the development of more efficient and eco-friendly strategies for protecting crops and managing pests.
Collapse
Affiliation(s)
- Kai-Ru Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (K.-R.H.); (W.-W.W.); (W.-Q.Y.); (X.L.)
| | - Wen-Wen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (K.-R.H.); (W.-W.W.); (W.-Q.Y.); (X.L.)
| | - Wen-Qin Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (K.-R.H.); (W.-W.W.); (W.-Q.Y.); (X.L.)
| | - Xian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (K.-R.H.); (W.-W.W.); (W.-Q.Y.); (X.L.)
| | - Tong-Xian Liu
- Institute of Entomology, College of Agriculture, Guizhou University, Guiyang 550025, China;
| | - Shi-Ze Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (K.-R.H.); (W.-W.W.); (W.-Q.Y.); (X.L.)
| |
Collapse
|
6
|
Liu L, Wang F, Yang W, Yang H, Huang Q, Yang C, Hui W. Molecular and Functional Characterization of Pheromone Binding Protein 2 from Cyrtotrachelus buqueti (Coleoptera: Curculionidae). Int J Mol Sci 2023; 24:16925. [PMID: 38069247 PMCID: PMC10706763 DOI: 10.3390/ijms242316925] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Pheromone-binding proteins (PBPs) play important roles in binding and transporting sex pheromones. However, the PBP genes identified in coleopteran insects and their information sensing mechanism are largely unknown. Cyrtotrachelus buqueti (Coleoptera: Curculionidae) is a major insect pest of bamboo plantations. In this study, a novel PBP gene, CbuqPBP2, from C. buqueti was functionally characterized. CbuqPBP2 was more abundantly expressed in the antennae of both sexes than other body parts, and its expression level was significantly male-biased. Fluorescence competitive binding assays showed that CbuqPBP2 exhibited the strongest binding affinity to dibutyl phthalate (Ki = 6.32 μM), followed by styrene (Ki = 11.37 μM), among twelve C. buqueti volatiles. CbuqPBP2, on the other hand, showed high binding affinity to linalool (Ki = 10.55), the main volatile of host plant Neosinocalamus affinis. Furthermore, molecular docking also demonstrated the strong binding ability of CbuqPBP2 to dibutyl phthalate, styrene, and linalool, with binding energy values of -5.7, -6.6, and -6.0 kcal/mol, respectively, and hydrophobic interactions were the prevailing forces. The knockdown of CbuqPBP2 expression via RNA interference significantly reduced the electroantennography (EAG) responses of male adults to dibutyl phthalate and styrene. In conclusion, these results will be conducive to understanding the olfactory mechanisms of C. buqueti and promoting the development of novel strategies for controlling this insect pest.
Collapse
Affiliation(s)
| | | | | | - Hua Yang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (F.W.); (W.Y.); (Q.H.); (C.Y.); (W.H.)
| | | | | | | |
Collapse
|
7
|
Li XM, Liu Q, Ma S, Yin MZ, Gu N, Qian LF, Zhang YN. Screening of behaviorally active compounds based on the interaction between two chemosensory proteins and mung bean volatiles in Callosobruchus chinensis. Int J Biol Macromol 2023; 250:126137. [PMID: 37544560 DOI: 10.1016/j.ijbiomac.2023.126137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/09/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
Chemosensory proteins (CSPs) are involved in the earliest steps of the olfactory process by binding and transporting odorants and play a crucial role in the insect's search for food and egg-laying sites. In the present study, the tissue expression profiles showed that both CchiCSP3 and CchiCSP5 of Callosobruchus chinensis were highly expressed in the adult antennae. Subsequently, the recombinant CchiCSP3 and CchiCSP5 proteins were analysed using fluorescence competitive binding assays, and both showed binding affinities for the three mung bean volatiles. Molecular docking and site-directed mutagenesis revealed four key amino acid residues in CchiCSP3 (L47, W80, Y81, and L84) and CchiCSP5 (Y28, K46, L49, and I72). Electroantennogram (EAG) and dual-choice biobehavioral assays showed that the antennae of adult C. chinensis were electrophysiologically active in response to stimulation with all three behaviorally active compounds and that octyl 4-methoxycinnamate and β-ionone had a significant luring effect on adult C. chinensis, whereas vanillin had a significant avoidance effect. Our study screened three effective behaviorally active compounds based on the involvement of two CchiCSPs in the recognition of mung bean volatiles, providing an opportunity to develop an alternative control strategy using behavioral disruptors to limit the impact of pests.
Collapse
Affiliation(s)
- Xiao-Ming Li
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Qiang Liu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Sai Ma
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Mao-Zhu Yin
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou 234000, China
| | - Nan Gu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Li-Fu Qian
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
8
|
Wu Y, Li Y, Chu W, Niu T, Feng X, Ma R, Liu H. Expression and functional characterization of odorant-binding protein 2 in the predatory mite Neoseiulus barkeri. INSECT SCIENCE 2023; 30:1493-1506. [PMID: 36458978 DOI: 10.1111/1744-7917.13156] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Olfaction plays a crucial role for arthropods in foraging, mating, and oviposition. The odorant-binding protein (OBP) gene is considered one of the most important olfactory genes. However, little is known about its functions in predatory mites. Here, we used Neoseiulus barkeri, an important commercialized natural pest control, to explore the chemosensory characteristics of OBP. In this study, N. barkeri was attracted by methyl salicylate (MeSA) and showed higher crawling speeds under MeSA treatment. Then, we identified and cloned an OBP gene named Nbarobp2 and analyzed its expression profiles in the predatory mite. Nbarobp2 was 663 bp, was highly expressed in larval and nymphal stages, and was significantly upregulated in N. barkeri under MeSA treatment. Nbarobp2 encoded 202 amino acid residues with a molecular weight of 23 kDa (after removing the signal peptide). Sequence comparisons revealed that the OBPs in Arachnida shared 6 conserved cysteine sites, but were distinguishable from the OBPs of Insecta on the phylogenetic tree. RNA interference, Western blotting, and binding affinity assays further proved that Nbarobp2 was involved in volatile perception in predatory mites. This study shed light on the functional characteristics of OBPs in predatory mites, providing a new insight for better biological control.
Collapse
Affiliation(s)
- Yixia Wu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Yaying Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Wenqiang Chu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Tiandi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Xiaotian Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Rongjiang Ma
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| | - Huai Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Beibei District, Chongqing, 400715, China
| |
Collapse
|
9
|
Han WK, Tang FX, Yu N, Zhang YX, Liu ZW. A nonsensory odorant-binding protein plays an important role in the larval development and adult mating of Spodoptera frugiperda. INSECT SCIENCE 2023; 30:1325-1336. [PMID: 36647341 DOI: 10.1111/1744-7917.13178] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Odorant-binding proteins (OBPs) play key roles in the perception of semiochemicals in insects. Several OBPs in insect olfactory systems have been functionally characterized, and they provide excellent targets for pest control. The functions of some OBPs that are highly expressed in the nonsensory organs of insects remain unclear. Here, the physiological function of an OBP (OBP27) that was highly expressed in the nonsensory organs of Spodoptera frugiperda was studied. OBP27 was nested within the Plus-C cluster according to phylogenetic analysis. The transcription of OBP27 steadily increased throughout the development of S. frugiperda, and transcripts of this gene were abundant in the fat body and male reproductive organs. An OBP27 knockout strain with an early frameshift mutation was obtained using the clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9 (Cas9) system. The development time of OBP27-/- larvae was significantly longer than that of other larvae. Both male and female OBP27-/- pupae weighed significantly less than wild-type (WT) pupae. In crosses of OBP27-/- males or females, the mating rate was lower and the mating duration was longer for OBP27-/- male-WT female pairs than for WT-WT pairs. By contrast, the mating rate, hatching rate, and number of eggs of OBP27-/- female-WT male pairs and WT-WT pairs were similar. These findings indicate that OBP27 plays an important role in the larval development and mating process in male adults. Generally, our findings provide new insights into the physiological roles of nonsensory OBPs.
Collapse
Affiliation(s)
- Wei-Kang Han
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Feng-Xian Tang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Na Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yi-Xi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ze-Wen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Li LL, Xu BQ, Li CQ, Li BL, Chen XL, Li GW. Different Binding Affinities of Three General Odorant-Binding Proteins in Grapholita funebrana (Treitscheke) (Lepidoptera: Tortricidae) to Sex Pheromones, Host Plant Volatiles, and Insecticides. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1129-1145. [PMID: 35604383 DOI: 10.1093/jee/toac063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Indexed: 06/15/2023]
Abstract
Insect general odorant-binding proteins (GOBPs) play irreplaceable roles in filtering, binding, and transporting host odorants to olfactory receptors. Grapholita funebrana (Treitscheke) (Lepidoptera: Tortricidae), an economically important pest of fruit crops, uses fruit volatiles as cues to locate host plants. However, the functions of GOBPs in G. funebrana are still unknown. Three GOBP genes, namely, GfunGOBP1, GfunGOBP2, and GfunGOBP3, were cloned, and their expression profiles in different tissues were detected by the method of real-time quantitative PCR (RT-qPCR). The binding properties of recombinant GfunGOBPs (rGfunGOBPs) to various ligands were investigated via fluorescence binding assays. The three GfunGOBPs were mainly expressed in the antennae of both male and female moths. All these three rGfunGOBPs could bind to sex pheromones, while having varying affinities toward these pheromones. The three rGfunGOBPs also displayed a wide range of ligand-binding spectrums with tested host odorants. The rGfunGOBP1, rGfunGOBP2, and rGfunGOBP3 bound to 34, 33, and 30 out of the 41 tested odorants, respectively. Three rGfunGOBPs had overlapping binding activities to β-myrcene, (-)-α-phellandrene, and ethyl isovalerate with the Ki less than 3.0 μM. The rGfunGOBP1 and rGfunGOBP3 could selectively bind to several insecticides, whereas rGfunGOBP2 could not. Three rGfunGOBPs had the dual functions of selectively binding to sex pheromones and host odorants. Moreover, the rGfunGOBP1 and rGfunGOBP3 can also serve as 'signal proteins' and bind to different insecticides. This study contributed to elucidating the potential molecular mechanism of the olfaction for G. funebrana, and thereby promotes the development of effective botanical attractants or pheromone synergists to control G. funebrana.
Collapse
Affiliation(s)
- Lin-Lin Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, Shaanxi, P. R. China
| | - Bing-Qiang Xu
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumchi, Xinjiang, P. R. China
| | - Chun-Qin Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, Shaanxi, P. R. China
| | - Bo-Liao Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, Shaanxi, P. R. China
| | - Xiu-Lin Chen
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, Shaanxi, P. R. China
| | - Guang-Wei Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, Shaanxi, P. R. China
| |
Collapse
|
11
|
Cui Z, Liu Y, Wang G, Zhou Q. Identification and functional analysis of a chemosensory protein from Bactrocera minax (Diptera: Tephritidae). PEST MANAGEMENT SCIENCE 2022; 78:3479-3488. [PMID: 35567397 DOI: 10.1002/ps.6988] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 05/07/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Olfaction has an indispensable role in insect behavior, enabling location of suitable host plants and oviposition sites, finding mates and evasion of natural enemies. Chemosensory proteins (CSPs) function to screen external odorants and transport them to olfactory receptor neurons, thereby increasing the sensitivity of the olfactory system. At present, CSP genes have been identified in many insect species, but there are relatively few studies on the function of CSP, especially in Tephritidae. RESULTS In this study, we sequenced and analyzed 12 transcriptomes of Bactrocera minax and identified five CSP genes. The results of polymerase chain reactions with reverse transcription showed that BminCSP3 was highly expressed only in antennae. Results from competitive binding experiments showed that BminCSP3 has good binding ability to citral compared with 23 other volatile organic compounds. The docking model with citral showed hydrogen bond formation with residues (ARG97); however, no hydrogen bonds were formed in the docking of five other ligands (furfuryl alcohol, linalool, cis-3-hexenyl acetate, (R)-(+)-limonene and (+)-carvone). Electroantennogram (EAG) analyses revealed that citral was active in B. minax at the antennal level, and the EAG response value of female adults was significantly higher than that of male adults. Furthermore, the results of behavioral bioassays showed that females were significantly attracted to citral. CONCLUSION Our results suggest that BminCSP3 plays an important role in the recognition of citral by B. minax adults. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhongyi Cui
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yipeng Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qiong Zhou
- College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
12
|
Gao YQ, Chen ZZ, Liu MY, Song CY, Jia ZF, Liu FH, Qu C, Dewer Y, Zhao HP, Xu YY, Kang ZW. Characterization of Antennal Chemosensilla and Associated Chemosensory Genes in the Orange Spiny Whitefly, Aleurocanthus spiniferus (Quaintanca). Front Physiol 2022; 13:847895. [PMID: 35295577 PMCID: PMC8920487 DOI: 10.3389/fphys.2022.847895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/20/2022] [Indexed: 11/20/2022] Open
Abstract
The insect chemosensory system plays an important role in many aspects of insects' behaviors necessary for their survival. Despite the complexity of this system, an increasing number of studies have begun to understand its structure and function in different insect species. Nonetheless, the chemosensory system in the orange spiny whitefly Aleurocanthus spiniferus, as one of the most destructive insect pests of citrus in tropical Asia, has not been investigated yet. In this study, the sensillum types, morphologies and distributions of the male and female antennae of A. spiniferus were characterized using scanning electron microscopy. In both sexes, six different sensilla types were observed: trichodea sensilla, chaetica sensilla, microtrichia sensilla, coeloconic sensilla, basiconic sensilla, and finger-like sensilla. Moreover, we identified a total of 48 chemosensory genes, including 5 odorant-binding proteins (OBPs), 12 chemosensory proteins (CSPs), 3 sensory neuron membrane proteins (SNMPs), 6 odorant receptors (ORs), 8 gustatory receptors (GRs), and 14 ionotropic receptors (IRs) using transcriptome data analysis. Tissue-specific transcriptome analysis of these genes showed predominantly expression in the head (including antennae), whereas CSPs were broadly expressed in both head (including the antennae) and body tissue of adult A. spiniferus. In addition, the expression profiling of selected chemosensory genes at different developmental stages was examined by quantitative real time-PCR which was mapped to the transcriptome. We found that the majority of these genes were highly expressed in adults, while AspiORco, AspiGR1, AspiGR2, and AspiIR4 genes were only detected in the pupal stage. Together, this study provides a basis for future chemosensory and genomic studies in A. spiniferus and closely related species. Furthermore, this study not only provides insights for further research on the molecular mechanisms of A. spiniferus-plant interactions but also provides extensive potential targets for pest control.
Collapse
Affiliation(s)
- Yu-Qing Gao
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Zhen-Zhen Chen
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Meng-Yuan Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Chang-Yuan Song
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Zhi-Fei Jia
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Fang-Hua Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Cheng Qu
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Hai-Peng Zhao
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Yong-Yu Xu
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Zhi-Wei Kang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
13
|
Chemosensory Proteins (CSPs) in the Cotton Bollworm Helicoverpa armigera. INSECTS 2021; 13:insects13010029. [PMID: 35055872 PMCID: PMC8780252 DOI: 10.3390/insects13010029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary The insect chemosensory system is crucial in regulating insect behaviors. Chemosensory proteins (CSPs) are a family of small, soluble proteins conventionally known to transport odorant molecules in insect chemosensory system. Besides chemosensation, CSPs have been reported to play important roles in development, nutrient metabolism, and insecticide resistance. Therefore, identification and characterization of previously unknown CSPs will be valuable for further investigation of this protein family. The cotton bollworm, Helicoverpa armigera (Hübner) is among the most serious insect pests in various agricultural and horticultural crops. In this study, 27 CSP genes were identified from H. armigera genome and transcriptome sequences, and their expression patterns were further examined by using transcriptomic data obtained from different tissues and stages. The results demonstrate that H. armigera CSP genes are highly expressed in both chemosensory and non-chemosensory tissues. Moreover, a new recombinant expression method was developed that can significantly increase H. armigera CSP expression levels as soluble proteins in Escherichia coli. This study improves our understanding of insect CSPs and developed a new approach to highly express recombinant CSPs, which can be expanded to examine CSPs in other species for functional characterization. Abstract Chemosensory proteins (CSPs) are a family of small, soluble proteins that play a crucial role in transporting odorant and pheromone molecules in the insect chemosensory system. Recent studies reveal that they also function in development, nutrient metabolism and insecticide resistance. In-depth and systematic characterization of previously unknown CSPs will be valuable to investigate more detailed functionalities of this protein family. Here, we identified 27 CSP genes from the genome and transcriptome sequences of cotton bollworm, Helicoverpa armigera (Hübner). The expression patterns of these genes were studied by using transcriptomic data obtained from different tissues and stages. The results demonstrate that H. armigera CSP genes are not only highly expressed in chemosensory tissues, such as antennae, mouthparts, and tarsi, but also in the salivary glands, cuticle epidermis, and hind gut. HarmCSP6 and 22 were selected as candidate CSPs for expression in Escherichia coli and purification. A new method was developed that significantly increased the HarmCSP6 and 22 expression levels as soluble recombinant proteins for purification. This study advances our understanding of insect CSPs and provides a new approach to highly express recombinant CSPs in E. coli.
Collapse
|
14
|
Soares MPM, Pinheiro DG, de Paula Freitas FC, Simões ZLP, Bitondi MMG. Transcriptome dynamics during metamorphosis of imaginal discs into wings and thoracic dorsum in Apis mellifera castes. BMC Genomics 2021; 22:756. [PMID: 34674639 PMCID: PMC8532292 DOI: 10.1186/s12864-021-08040-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/20/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Much of the complex anatomy of a holometabolous insect is built from disc-shaped epithelial structures found inside the larva, i.e., the imaginal discs, which undergo a rapid differentiation during metamorphosis. Imaginal discs-derived structures, like wings, are built through the action of genes under precise regulation. RESULTS We analyzed 30 honeybee transcriptomes in the search for the gene expression needed for wings and thoracic dorsum construction from the larval wing discs primordia. Analyses were carried out before, during, and after the metamorphic molt and using worker and queen castes. Our RNA-seq libraries revealed 13,202 genes, representing 86.2% of the honeybee annotated genes. Gene Ontology analysis revealed functional terms that were caste-specific or shared by workers and queens. Genes expressed in wing discs and descendant structures showed differential expression profiles dynamics in premetamorphic, metamorphic and postmetamorphic developmental phases, and also between castes. At the metamorphic molt, when ecdysteroids peak, the wing buds of workers showed maximal gene upregulation comparatively to queens, thus underscoring differences in gene expression between castes at the height of the larval-pupal transition. Analysis of small RNA libraries of wing buds allowed us to build miRNA-mRNA interaction networks to predict the regulation of genes expressed during wing discs development. CONCLUSION Together, these data reveal gene expression dynamics leading to wings and thoracic dorsum formation from the wing discs, besides highlighting caste-specific differences during wing discs metamorphosis.
Collapse
Affiliation(s)
- Michelle Prioli Miranda Soares
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Daniel Guariz Pinheiro
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, SP, Brazil
| | | | - Zilá Luz Paulino Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Márcia Maria Gentile Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
15
|
Hua J, Fu Y, Zhou Q, Huang Y, Li H, Chen T, Ma D, Li Z. Three chemosensory proteins from the sweet potato weevil, Cylas formicarius, are involved in the perception of host plant volatiles. PEST MANAGEMENT SCIENCE 2021; 77:4497-4509. [PMID: 34037312 DOI: 10.1002/ps.6484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/06/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Chemosensory proteins (CSPs) play important roles in chemical communication, but their precise physiological functions are still unclear. Cylas formicarius is the most serious pest attacking sweet potato around the world. At present, there is no effective way to control this pest. RESULTS Our results showed that CforCSP1, 5 and 6 genes were highly expressed in the antennae of both sexes of C. formicarius. In addition, results from a fluorescence competitive binding assay showed that the CforCSP1, 5 and 6 proteins had high binding affinities for 17 plant volatiles including eight host plant volatiles. This indicated that the three proteins may be involved in the detection of host plant volatiles. Furthermore, results from four-arm olfactometer bioassays showed that there was a significant tendency for C. formicarius to be attracted to eucalyptol, β-carotene, benzaldehyde, vanillin and phenethyl alcohol, while it was repelled by β-ionone. Finally, the levels of expression of the three CforCSPs in C. formicarius were successfully inhibited by RNA interference (RNAi). Behavioral experiments showed that CforCSP1, 5 and 6-deficient C. formicarius were partly anosmic to β-cyclocitral, benzaldehyde, octyl aldehyde, and β-ionone and exhibited a reduced ability to locate the host plant volatiles β-carotene and vanillin. CONCLUSION Our data suggest that CforCSP1, 5 and 6 likely are involved in the chemical communication between C. formicarius and host plant volatiles, which may play pivotal roles in oviposition and feeding site preferences. More importantly, these results could provide information for the development of monitoring and push-pull strategies for the control of C. formicarius. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinfeng Hua
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Sweet Potato Laboratory, Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yujie Fu
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Qiaoling Zhou
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yongmei Huang
- Sweet Potato Laboratory, Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Huifeng Li
- Sweet Potato Laboratory, Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Tianyuan Chen
- Sweet Potato Laboratory, Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Daifu Ma
- Xuzhou Academy of Agricultural Sciences/Sweet Potato Research Institute, CAAS, Xuzhou, China
| | - Zongyun Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
16
|
Zhou X, Guo J, Zhang M, Bai C, Wang Z, Li Z. Antennal transcriptome analysis and candidate olfactory genes in Crematogaster rogenhoferi. BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:464-475. [PMID: 33691812 DOI: 10.1017/s0007485321000134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Crematogaster rogenhoferi (Hymenoptera: Formicidae), an omnivorous ant, is one of the dominant predatory natural enemies of a soft scale pest, Parasaissetia nigra Nietner (Homoptera: Coccidae), and can effectively control P. nigra populations in rubber forests. Olfaction plays a vital role in the process of predation. However, the information about the molecular mechanism of olfaction-evoked behaviour in C. rogenhoferi is limited. In this study, we conducted antennal transcriptome analysis to identify candidate olfactory genes. We obtained 53,892 unigenes, 16,185 of which were annotated. Based on annotations, we identified 49 unigenes related to chemoreception, including four odourant-binding proteins, three chemosensory proteins, 37 odourant receptors, two odourant ionotropic receptors and three sensory neuron membrane proteins. This is the first report on the molecular basis of the chemosensory system of C. rogenhoferi. The findings provide a basis for elucidating the molecular mechanisms of the olfactory-related behaviours of C. rogenhoferi, which would facilitate a better application of C. rogenhoferi as a biological control agent.
Collapse
Affiliation(s)
- Xiang Zhou
- College of Plant Protection, Hainan University, Haikou570228, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), Hainan University, Haikou570228, China
| | - Jixing Guo
- College of Plant Protection, Hainan University, Haikou570228, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), Hainan University, Haikou570228, China
| | - Mingxia Zhang
- College of Plant Protection, Hainan University, Haikou570228, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), Hainan University, Haikou570228, China
| | - Chunxiu Bai
- College of Plant Protection, Hainan University, Haikou570228, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), Hainan University, Haikou570228, China
| | - Zheng Wang
- College of Plant Protection, Hainan University, Haikou570228, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), Hainan University, Haikou570228, China
| | - Zhidong Li
- College of Plant Protection, Hainan University, Haikou570228, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), Hainan University, Haikou570228, China
| |
Collapse
|
17
|
Kang I, Kim W, Lim JY, Lee Y, Shin C. Organ-specific transcriptome analysis reveals differential gene expression in different castes under natural conditions in Apis cerana. Sci Rep 2021; 11:11267. [PMID: 34050219 PMCID: PMC8163739 DOI: 10.1038/s41598-021-90635-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/12/2021] [Indexed: 02/04/2023] Open
Abstract
Honeybees are one of the most environmentally important insects, as their pollination of various plant species contributes to the balance among different ecosystems. It has been studied extensively for their unique attribute of forming a caste society. Unlike other insects, honeybees communicate socially by secreting pheromones or by exhibiting specific patterns of motion. In the honeybee industry, the Asian honeybees (Apis cerana) and the Western honeybees (Apis mellifera) are dominant species. However, molecular research on the transcriptomes of A. cerana has not been studied as extensively as those of A. mellifera. Therefore, in this study, caste-specific transcriptional differences were analyzed, which provides a comprehensive analysis of A. cerana. In our dataset, we analyzed gene expression profiles using organs from worker, drone, and queen bees. This gene-expression profile helped us obtain more detailed information related to organ-specific genes, immune response, detoxification mechanisms, venom-specific genes, and ovary development. From our result, we found 4096 transcripts representing different gene-expression pattern in each organ. Our results suggest that caste-specific transcripts of each organ were expressed differently even under natural conditions. These transcriptome-wide analyses provide new insights into A. cerana and that promote honeybee research and conservation.
Collapse
Affiliation(s)
- Igojo Kang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Woojin Kim
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jae Yun Lim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yun Lee
- Department of Applied Biology and Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chanseok Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
18
|
Kennedy A, Peng T, Glaser SM, Linn M, Foitzik S, Grüter C. Use of waggle dance information in honey bees is linked to gene expression in the antennae, but not in the brain. Mol Ecol 2021; 30:2676-2688. [PMID: 33742503 DOI: 10.1111/mec.15893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/26/2022]
Abstract
Communication is essential for social animals, but deciding how to utilize information provided by conspecifics is a complex process that depends on environmental and intrinsic factors. Honey bees use a unique form of communication, the waggle dance, to inform nestmates about the location of food sources. However, as in many other animals, experienced individuals often ignore this social information and prefer to rely on prior experiences, i.e., private information. The neurosensory factors that drive the decision to use social information are not yet understood. Here we test whether the decision to use social dance information or private information is linked to gene expression differences in different parts of the nervous system. We trained bees to collect food from sugar water feeders and observed whether they utilize social or private information when exposed to dances for a new food source. We performed transcriptome analysis of four brain parts (11-16 bees per tissue type) critical for cognition: the subesophageal ganglion, the central brain, the mushroom bodies, and the antennal lobes but, unexpectedly, detected no differences between social or private information users. In contrast, we found 413 differentially expressed genes in the antennae, suggesting that variation in sensory perception mediates the decision to use social information. Social information users were characterized by the upregulation of biogenic amine genes, while private information users upregulated several genes coding for odour perception. These results highlight that decision-making in honey bees might also depend on peripheral processes of perception rather than higher-order brain centres of information integration.
Collapse
Affiliation(s)
- Anissa Kennedy
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tianfei Peng
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany.,College of Plant Science, Jilin University, Changchun, China
| | - Simone M Glaser
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Melissa Linn
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christoph Grüter
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany.,School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
19
|
The 40-Year Mystery of Insect Odorant-Binding Proteins. Biomolecules 2021; 11:biom11040509. [PMID: 33808208 PMCID: PMC8067015 DOI: 10.3390/biom11040509] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022] Open
Abstract
The survival of insects depends on their ability to detect molecules present in their environment. Odorant-binding proteins (OBPs) form a family of proteins involved in chemoreception. While OBPs were initially found in olfactory appendages, recently these proteins were discovered in other chemosensory and non-chemosensory organs. OBPs can bind, solubilize and transport hydrophobic stimuli to chemoreceptors across the aqueous sensilla lymph. In addition to this broadly accepted "transporter role", OBPs can also buffer sudden changes in odorant levels and are involved in hygro-reception. The physiological roles of OBPs expressed in other body tissues, such as mouthparts, pheromone glands, reproductive organs, digestive tract and venom glands, remain to be investigated. This review provides an updated panorama on the varied structural aspects, binding properties, tissue expression and functional roles of insect OBPs.
Collapse
|
20
|
Wei Z, Ortiz-Urquiza A, Keyhani NO. Altered Expression of Chemosensory and Odorant Binding Proteins in Response to Fungal Infection in the Red Imported Fire Ant, Solenopsis invicta. Front Physiol 2021; 12:596571. [PMID: 33746766 PMCID: PMC7970113 DOI: 10.3389/fphys.2021.596571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/08/2021] [Indexed: 01/21/2023] Open
Abstract
Social insects have evolved acute mechanisms for sensing and mitigating the spread of microbial pathogens within their communities that include complex behaviors such as grooming and sanitation. Chemical sensing involves detection and transport of olfactory and other chemicals that are mediated by at least two distinct classes of small molecular weight soluble proteins known as chemosensory- and odorant binding proteins (CSPs and OBPs, respectively) that exist as protein families in all insects. However, to date, a systematic examination of the expression of these genes involved in olfactory and other pathways to microbial infection has yet to be reported. The red imported fire ant, Solenopsis invicta, is one of the most successful invasive organisms on our planet. Here, we examined the temporal gene expression profiles of a suite of S. invicta CSPs (SiCSPs1-22) and OBPs (SiOBPs1-16) in response to infection by the broad host range fungal insect pathogen, Beauveria bassiana. Our data show that within 24 h post-infection, i.e., before the fungus has penetrated the host cuticle, the expression of SiCSPs and SiOBPs is altered (mainly increased compared to uninfected controls), followed by suppression of SiCSP and select SiOBP expression 48 h post-infection and mixed responses at 72 h post-infection. A smaller group of SiBOPs, however, appeared to respond to fungal infection, with expression of SiOBP15 consistently higher during fungal infection over the time course examined. These data indicate dynamic gene expression responses of CSPs and OBPs to fungal infection that provide clues to mechanisms that might mediate detection of microbial pathogens, triggering grooming, and nest sanitation.
Collapse
Affiliation(s)
- Zhang Wei
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China.,Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Almudena Ortiz-Urquiza
- Department of Biosciences, College of Science, Swansea University, Swansea, United Kingdom
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| |
Collapse
|
21
|
Chen C, Zhu H, Li SY, Han YY, Chen L, Fan BQ, Zhang YF, Wang Y, Hao DJ. Insights into chemosensory genes of Pagiophloeus tsushimanus adults using transcriptome and qRT-PCR analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 37:100785. [PMID: 33548831 DOI: 10.1016/j.cbd.2020.100785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022]
Abstract
Pagiophloeus tsushimanus is a new, destructive, and monophagous weevil pest that thrives on Cinnamomum camphora, found in Shanghai. The functions of chemosensory genes involved in the host location and intraspecific communication of P. tsushimanus remain unknown. The male-female transcriptomes of P. tsushimanus adults were assembled using Illumina sequencing, and we focused on all chemosensory genes in transcriptomes. In general, 58,088 unigenes with a mean length of 1018.19 bp were obtained. In total, 39 odorant binding proteins (OBPs), 10 chemosensory proteins (CSPs), 22 olfactory receptors (ORs), 16 gustatory receptors (GRs), eight ionotropic receptors (IRs), and five sensory neuron membrane proteins (SNMPs) were identified. PtsuOBPs comprised four subfamilies (20 Minus-C, one Plus-C, two Dimer, and 15 Classic). Both PtsuOBPs and PtsuCSPs contained a highly conserved sequence motif of cysteine residues. PtsuORs including one olfactory receptor co-receptors (Ptsu/Orco) comprised seven predicted transmembrane domains. Phylogenetic analysis revealed that PtsuOBPs, PtsuCSPs, and PtsuORs in P. tsushimanus exhibited low homology compared to other insect species. The results of tissue- and sex-specific expression patterns indicated that PtsuOBPs and PtsuORs were highly abundant in the antennae; whereas, PtsuCSPs were not only highly abundant in antennae, but also abdominal apexes, wings, and legs. In conclusion, these results enrich the gene database of P. tsushimanus, which may serve as a basis for identifying novel targets to disrupt olfactory key genes and may provide a reverse validation method to identify attractants for formulating potential eco-friendly control strategies for this pest.
Collapse
Affiliation(s)
- Cong Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China; College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Han Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China; College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Shou-Yin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China; College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | | | - Liang Chen
- Shanghai Kaisheng Landscape Engineering Co., Ltd, Shanghai, China
| | - Bin-Qi Fan
- Forest Station of Shanghai, Shanghai, China
| | | | - Yan Wang
- Forest Station of Shanghai, Shanghai, China
| | - De-Jun Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China; College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China.
| |
Collapse
|
22
|
He Y, Wang K, Zeng Y, Guo Z, Zhang Y, Wu Q, Wang S. Analysis of the antennal transcriptome and odorant-binding protein expression profiles of the parasitoid wasp Encarsia formosa. Genomics 2020; 112:2291-2301. [DOI: 10.1016/j.ygeno.2019.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 01/03/2023]
|
23
|
Cali K, Persaud KC. Modification of an Anopheles gambiae odorant binding protein to create an array of chemical sensors for detection of drugs. Sci Rep 2020; 10:3890. [PMID: 32127578 PMCID: PMC7054253 DOI: 10.1038/s41598-020-60824-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/07/2020] [Indexed: 11/26/2022] Open
Abstract
The binding pockets of odorant binding proteins from Anopheles gambiae (OBP1 and OBP47) were analysed using in silico modelling. The feasibility of creating mutant proteins to achieve a protein array capable of detecting drugs of abuse in solution or in vapour phase was investigated. OBP1 was found to be easily adapted and several mutant proteins were expressed and characterised. AgamOBP1_S82P was found to have high affinities to cannabinol, 3,4-methylenedioxy methamphetamine (MDMA/Ecstasy) and cocaine hydrochloride. When these proteins were immobilised on a quartz crystal microbalance, saturated cocaine hydrochloride vapour could be detected. The sensors were stable over a period of at least 10 months in air. The approach taken allows flexible design of new biosensors based on inherently stable protein scaffolds taking advantage of the tertiary structure of odorant binding proteins.
Collapse
Affiliation(s)
- Khasim Cali
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, M13 9PL, UK
| | - Krishna C Persaud
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
24
|
Jing D, Zhang T, Prabu S, Bai S, He K, Wang Z. Molecular characterization and volatile binding properties of pheromone binding proteins and general odorant binding proteins in Conogethes pinicolalis (Lepidoptera: Crambidae). Int J Biol Macromol 2020; 146:263-272. [DOI: 10.1016/j.ijbiomac.2019.12.248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/28/2019] [Accepted: 12/28/2019] [Indexed: 10/25/2022]
|
25
|
Du Y, Xu K, Ma W, Su W, Tai M, Zhao H, Jiang Y, Li X. Contact Chemosensory Genes Identified in Leg Transcriptome of Apis cerana cerana (Hymenoptera: Apidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2015-2029. [PMID: 31188452 DOI: 10.1093/jee/toz130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Indexed: 06/09/2023]
Abstract
Correct gustatory recognition and selection of foods both within and outside the hive by honey bee workers are fundamental to the maintenance of colonies. The tarsal chemosensilla located on the legs of workers are sensitive to nonvolatile compounds and proposed to be involved in gustatory detection. However, little is known about the molecular mechanisms underlying the gustatory recognition of foods in honey bees. In the present study, RNA-seq was performed with RNA samples extracted from the legs of 1-, 10-, and 20-d-old workers of Apis cerana cerana Fabricius, a dominant indigenous crop pollinator with a keen perception ability for phytochemicals. A total of 124 candidate chemosensory proteins (CSPs), including 15 odorant-binding proteins (OBPs), 5 CSPs, 7 gustatory receptors (GRs), 2 sensory neuron membrane proteins (SNMPs), and 95 odorant receptors (ORs), were identified from the assembled leg transcriptome. In silico analysis of expression showed that 36 of them were differentially expressed among the three different ages of A. c. cerana workers. Overall, the genes encoding OBPs and CSPs had great but extremely variable FPKM values and thus were highly expressed in the legs of workers, whereas the genes encoding ORs, GRs, and SNMPs (except SNMP2) were expressed at low levels. Tissue-specific expression patterns indicated that two upregulated genes, AcerOBP15 and AcerCSP3, were predominately expressed in the legs of 20-d-old foragers, suggesting they may play an essential role in gustatory recognition and selection of plant nectars and pollens. This study lays a foundation for further research on the feeding preferences of honey bees.
Collapse
Affiliation(s)
- Yali Du
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Kai Xu
- Department of Honey Bee Genetics and Breeding, Apiculture Science Institute of Jilin Province, Jilin, China
| | - Weihua Ma
- Institute of Horticulture, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Wenting Su
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Miaomiao Tai
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Huiting Zhao
- College of Life Science, Shanxi Agricultural University, Taigu, China
| | - Yusuo Jiang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ
| |
Collapse
|
26
|
Jing D, Zhang T, Bai S, Prabu S, He K, Dewer Y, Wang Z. GOBP1 Plays a Key Role in Sex Pheromones and Plant Volatiles Recognition in Yellow Peach Moth, Conogethes punctiferalis (Lepidoptera: Crambidae). INSECTS 2019; 10:insects10090302. [PMID: 31533342 PMCID: PMC6780721 DOI: 10.3390/insects10090302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 02/02/2023]
Abstract
Insects recognize odorous compounds using sensory neurons organized in olfactory sensilla. The process odor detection in insects requires an ensemble of proteins, including odorant binding proteins, olfactory receptors, and odor degrading enzymes; each of them are encoded by multigene families. Most functional proteins seem to be broadly tuned, responding to multiple chemical compounds with different, but mostly quite similar structures. Based on the hypothesis that insects recognize host volatiles by means of general odorant binding proteins (GOBPs), the current study aimed to characterize GOBPs of the yellow peach moth, Conogethes punctiferalis (Guenée). In oviposition preference tests, it was found that the yellow peach moth preferred volatiles from Prunus persica (peach) in finding their host plant. Exposure of the moth to volatiles from peaches affected the expression level of GOBP genes. Binding affinity of GOBPs from yellow peach moth was assessed for 16 host plant volatiles and 2 sex pheromones. The fluorescence ligand-binding assays revealed highest affinities for hexadecanal, farnesol, and limonene with KD values of 0.55 ± 0.08, 0.35 ± 0.04, and 1.54 ± 0.39, respectively. The binding sites of GOBPs from yellow peach moth were predicted using homology modeling and characterized using molecular docking approaches. The results indicated the best binding affinity of both GOBP1 and GOBP2 for farnesol, with scores of −7.4 and −8.5 kcal/mol. Thus, GOBPs may play an important role in the process of finding host plants.
Collapse
Affiliation(s)
- Dapeng Jing
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110161, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Tiantao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Shuxiong Bai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Sivaprasath Prabu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Youssef Dewer
- Bioassay Research Department, Central Agricultural Pesticide Laboratory, Sabahia Plant Protection Research Station, Agricultural Research Center, Alexandria 21616, Egypt.
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
27
|
Xu JW, Zhu XY, Chao QJ, Zhang YJ, Yang YX, Wang RR, Zhang Y, Xie MZ, Ge YT, Wu XL, Zhang F, Zhang YN, Ji L, Xu L. Chemosensory Gene Families in the Oligophagous Pear Pest Cacopsylla chinensis (Hemiptera: Psyllidae). INSECTS 2019; 10:insects10060175. [PMID: 31212973 PMCID: PMC6628306 DOI: 10.3390/insects10060175] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 01/28/2023]
Abstract
Chemosensory systems play an important role in insect behavior, and some key associated genes have potential as novel targets for pest control. Cacopsylla chinensis is an oligophagous pest and has become one of the main pests of pear trees, but little is known about the molecular-level means by which it locates its hosts. In this study, we assembled the head transcriptome of C. chinensis using Illumina sequencing, and 63,052 Unigenes were identified. A total of 36 candidate chemosensory genes were identified, including five different families: 12 odorant binding proteins (OBPs), 11 chemosensory proteins (CSPs), 7 odorant receptors (ORs), 4 ionotropic receptors (IRs), and 2 gustatory receptors (GRs). The number of chemosensory gene families is consistent with that found in other Hemipteran species, indicating that our approach successfully obtained the chemosensory genes of C. chinensis. The tissue expression of all genes using quantitative real-time PCR (qRT-PCR) found that some genes displayed male head, female head, or nymph-biased specific/expression. Our results enrich the gene inventory of C. chinensis and provide valuable resources for the analysis of the functions of some key genes. This will help in developing molecular targets for disrupting feeding behavior in C. chinensis.
Collapse
Affiliation(s)
- Ji-Wei Xu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Xiu-Yun Zhu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Qiu-Jie Chao
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Yong-Jie Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Yu-Xia Yang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Ran-Ran Wang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Yu Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Meng-Zhen Xie
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Ya-Ting Ge
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Xin-Lai Wu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Fan Zhang
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, Jinan 250000, China.
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Lei Ji
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Lu Xu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
28
|
Dimitratos SD, Hommel AS, Konrad KD, Simpson LM, Wu-Woods JJ, Woods DF. Biosensors to Monitor Water Quality Utilizing Insect Odorant-Binding Proteins as Detector Elements. BIOSENSORS 2019; 9:E62. [PMID: 31091776 PMCID: PMC6627439 DOI: 10.3390/bios9020062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022]
Abstract
In the developing world, the identification of clean, potable water continues to pose a pervasive challenge, and waterborne diseases due to fecal contamination of water supplies significantly threaten public health. The ability to efficiently monitor local water supplies is key to water safety, yet no low-cost, reliable method exists to detect contamination quickly. We developed an in vitro assay utilizing an odorant-binding protein (OBP), AgamOBP1, from the mosquito, Anopheles gambiae, to test for the presence of a characteristic metabolite, indole, from harmful coliform bacteria. We demonstrated that recombinantly expressed AgamOBP1 binds indole with high sensitivity. Our proof-of-concept assay is fluorescence-based and demonstrates the usefulness of insect OBPs as detector elements in novel biosensors that rapidly detect the presence of bacterial metabolic markers, and thus of coliform bacteria. We further demonstrated that rAgamOBP1 is suitable for use in portable, inexpensive "dipstick" biosensors that improve upon lateral flow technology since insect OBPs are robust, easily obtainable via recombinant expression, and resist detector "fouling." Moreover, due to their wide diversity and ligand selectivity, insect chemosensory proteins have other biosensor applications for various analytes. The techniques presented here therefore represent platform technologies applicable to various future devices.
Collapse
Affiliation(s)
- Spiros D Dimitratos
- Inscent, Inc., 17905 Sky Park CIR STE P, Irvine, CA 92614, USA.
- Department of Biology, Natural Sciences Division, Fullerton College, Fullerton, CA 92832, USA.
| | | | | | | | | | - Daniel F Woods
- Inscent, Inc., 17905 Sky Park CIR STE P, Irvine, CA 92614, USA.
| |
Collapse
|
29
|
Li GW, Chen XL, Chen LH, Wang WQ, Wu JX. Functional Analysis of the Chemosensory Protein GmolCSP8 From the Oriental Fruit Moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae). Front Physiol 2019; 10:552. [PMID: 31133881 PMCID: PMC6516043 DOI: 10.3389/fphys.2019.00552] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
Chemosensory proteins (CSPs) belong to a family of small water-soluble proteins that can selectively bind and transport odorant molecules for olfactory communication in insects. To date, their definite physiological functions in olfaction remain controversial when compared with odorant binding proteins (OBPs). To investigate the functions of CSPs in the oriental fruit moth Grapholita molesta, we determined the tissue expression patterns and binding properties of the CSP, GmolCSP8. The key binding sites of GmolCSP8 with a representative ligand were evaluated using molecular flexible docking, site-directed mutagenesis and ligand-binding experiments. Multiple sequence alignment and phylogenetic analysis showed that GmolCSP8 possesses a typical conserved four cysteines motif and shares high sequence identity with some CSP members of other Lepidopteran insects. GmolCSP8 was predominantly expressed in the wings and antennae of both male and female adults and may be involve in contact chemoreception. Recombinant GmolCSP8 (rGmolCSP8) exhibited specific-binding affinities to small aliphatic alcohols (C4–12) and had the strongest binding affinity to 1-hexanol. The three-dimensional structure of GmolCSP8 was constructed using the structure of sgCSP4 as a template. Site-directed mutagenesis and ligand-binding experiments confirmed that Thr27 is the key binding site in GmolCSP8 for 1-hexanol binding, because this residue can form hydrogen bond with the oxygen atom of the hydroxyl group in 1-hexanol, and Leu30 may play an important role in binding to 1-hexanol. We found that pH significantly affected the binding affinities of rGmolCSP8 to ligand, revealing that ligand-binding and -release by this protein is related to a pH-dependent conformational transition. Based on these results, we infer that GmolCSP8 may participate in the recognition and transportation of 1-hexanol and other small aliphatic alcohols.
Collapse
Affiliation(s)
- Guang-Wei Li
- Shaanxi Province Key Laboratory of Jujube, Yan'an University, Yan'an, China.,College of Life Sciences, Yan'an University, Yan'an, China
| | - Xiu-Lin Chen
- Shaanxi Province Key Laboratory of Jujube, Yan'an University, Yan'an, China.,College of Life Sciences, Yan'an University, Yan'an, China
| | - Li-Hui Chen
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, China
| | - Wen-Qiang Wang
- Shaanxi Province Key Laboratory of Jujube, Yan'an University, Yan'an, China.,College of Life Sciences, Yan'an University, Yan'an, China
| | - Jun-Xiang Wu
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, China
| |
Collapse
|
30
|
de Souza CL, Dos Santos-Pinto JRA, Esteves FG, Perez-Riverol A, Fernandes LGR, de Lima Zollner R, Palma MS. Revisiting Polybia paulista wasp venom using shotgun proteomics - Insights into the N-linked glycosylated venom proteins. J Proteomics 2019; 200:60-73. [PMID: 30905720 DOI: 10.1016/j.jprot.2019.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/26/2019] [Accepted: 03/20/2019] [Indexed: 12/21/2022]
Abstract
The partial proteome of Polybia paulista wasp venom was previously reported elsewhere using a gel-dependent approach and resulted in the identification of a limited number of venom toxins. Here, we reinvestigated the P. paulista venom using a gel-free shotgun proteomic approach; the highly dynamic range of this approach facilitated the detection and identification of 1673 proteins, of which 23 venom proteins presented N-linked glycosylation as a posttranslational modification. Three different molecular forms of PLA1 were identified as allergenic proteins, and two of these forms were modified by N-linked glycosylation. This study reveals an extensive repertoire of hitherto undescribed proteins that were classified into the following six different functional groups: (i) typical venom proteins; (ii) proteins related to the folding/conformation and PTMs of toxins; (iii) proteins that protect toxins from oxidative stress; (iv) proteins involved in chemical communication; (v) housekeeping proteins; and (vi) uncharacterized proteins. It was possible to identify venom toxin-like proteins that are commonly reported in other animal venoms, including arthropods such as spiders and scorpions. Thus, the findings reported here may contribute to improving our understanding of the composition of P. paulista venom, its envenoming mechanism and the pathologies experienced by the victim after the wasp stinging accident. BIOLOGICAL SIGNIFICANCE: The present study significantly expanded the number of proteins identified in P. paulista venom, contributing to improvements in our understanding of the envenoming mechanism produced by sting accidents caused by this wasp. For example, novel wasp venom neurotoxins have been identified, but no studies have assessed the presence of this type of toxin in social wasp venoms. In addition, 23 N-linked glycosylated venom proteins were identified in the P. paulista venom proteome, and some of these proteins might be relevant allergens that are immunoreactive to human IgE.
Collapse
Affiliation(s)
- Caroline Lacerra de Souza
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University, Rio Claro, SP 13500, Brazil
| | - José Roberto Aparecido Dos Santos-Pinto
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University, Rio Claro, SP 13500, Brazil.
| | - Franciele Grego Esteves
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University, Rio Claro, SP 13500, Brazil
| | - Amilcar Perez-Riverol
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University, Rio Claro, SP 13500, Brazil
| | - Luís Gustavo Romani Fernandes
- Laboratory of Translational Immunology, Faculty of Medicine, University of Campinas (UNICAMP), Cidade Universitária "Zeferino Vaz", Campinas, SP 13083887, Brazil
| | - Ricardo de Lima Zollner
- Laboratory of Translational Immunology, Faculty of Medicine, University of Campinas (UNICAMP), Cidade Universitária "Zeferino Vaz", Campinas, SP 13083887, Brazil
| | - Mario Sergio Palma
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University, Rio Claro, SP 13500, Brazil.
| |
Collapse
|
31
|
Li Y, Li H, Wang Z, Gao D, Xiao K, Yan A. Cloning, localization and bioinformatics analysis of a gene encoding an odorant-binding protein (OBP) in Anoplophora glabripennis (Motschulsky). INVERTEBRATE NEUROSCIENCE 2018; 18:11. [PMID: 30171363 DOI: 10.1007/s10158-018-0215-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/23/2018] [Indexed: 01/09/2023]
Abstract
Anoplophora glabripennis (Motschulsky) has an advanced and complicated olfactory system to identify hosts, mates and spawning locations, and odorant-binding proteins (OBPs) play a key role by binding to volatile materials from different hosts. The full-length cDNA sequence of an OBP, AglaOBP, was cloned by RACE from an antenna cDNA library, and the protein structure and function were predicted by bioinformatics analysis. Gene temporal and spatial expression was detected by real-time qPCR. AglaOBP had distinctive sequence, location and expression profiles compared with other OBPs of A. glabripennis, as it was found in different tissues, and the highest expression was in the elytrums. The possible physiological functions of this OBP were discussed. These findings help elucidate the physiology of this pest and provide a new potential target for pest control.
Collapse
Affiliation(s)
- Yu Li
- College of Forestry, Agricultural University of Hebei, Baoding, 071000, Hebei, People's Republic of China
| | - Huien Li
- Key Laboratory of Genetic Resources of Forest and Forest Protection of Hebei, Baoding, 071000, Hebei, People's Republic of China
| | - Zhigang Wang
- College of Forestry, Agricultural University of Hebei, Baoding, 071000, Hebei, People's Republic of China
- Key Laboratory of Genetic Resources of Forest and Forest Protection of Hebei, Baoding, 071000, Hebei, People's Republic of China
| | - Danyang Gao
- College of Forestry, Agricultural University of Hebei, Baoding, 071000, Hebei, People's Republic of China
| | - Kun Xiao
- College of Forestry, Agricultural University of Hebei, Baoding, 071000, Hebei, People's Republic of China
| | - Aihua Yan
- College of Forestry, Agricultural University of Hebei, Baoding, 071000, Hebei, People's Republic of China.
- Key Laboratory of Genetic Resources of Forest and Forest Protection of Hebei, Baoding, 071000, Hebei, People's Republic of China.
| |
Collapse
|
32
|
Younas A, Waris MI, Tahir ul Qamar M, Shaaban M, Prager SM, Wang MQ. Functional Analysis of the Chemosensory Protein MsepCSP8 From the Oriental Armyworm Mythimna separata. Front Physiol 2018; 9:872. [PMID: 30050456 PMCID: PMC6052345 DOI: 10.3389/fphys.2018.00872] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/19/2018] [Indexed: 11/17/2022] Open
Abstract
Chemosensory proteins (CSPs) play important roles in chemosensation in insects, but their exact physiological functions remain elusive. In order to investigate the functions of CSPs in the oriental armyworm Mythimna separata, in the present study we explored expression patterns and binding characteristics of the CSP, MsepCSP8. The distinctive functions of MsepCSP8 were also validated by RNAi. The results showed that MsepCSP8 shares high sequence similarity with CSPs of other insect family members, including the characteristic four-cysteine signature motif. MsepCSP8 mRNA was specifically expressed in antennae of females at levels well above those in other tissues. Competitive binding assays confirmed that 20 out of 56 ligands bound more strongly to MsepCSP8 at pH 7.4 than at pH 5.0. Protein structure modeling and molecular docking analyses identified amino acid residues involved in binding volatile compounds, and behavioral response experiments showed that M. separata elicited significant responses to five volatiles from compounds displaying high binding affinity to MsepCSP8. MsepCSP8 transcript abundance was decreased by dsMsepCSP8 injection, which affected the behavioral responses of M. separata to representative semiochemicals. Our findings demonstrate that MsepCSP8 likely contributes to mediating responses of M. separata adults to plant volatiles.
Collapse
Affiliation(s)
- Aneela Younas
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad I. Waris
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Muhammad Shaaban
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Sean M. Prager
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Man-Qun Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
33
|
Chen XL, Su L, Li BL, Li GW, Wu JX. Molecular and functional characterization of three odorant binding proteins from the oriental fruit moth Grapholita molesta (Busck) (Lepidoptera: Tortricide). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 98:e21456. [PMID: 29569371 DOI: 10.1002/arch.21456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Odorant binding proteins (OBPs) act in recognizing odor molecules and their most well-studied functions are transporting odors across the sensillum lymph to olfactory receptor neurons within the insect antennal sensillum. The adults of Grapholita molesta highly depend on olfactory cues in locating host plants and selecting oviposition sites, in which OBPs play an important role in perceiving and recognizing host plant volatiles. Exploring the physiological function of OBPs could facilitate our understanding of their importance in insects' chemical communication. In this study, three OBP genes were cloned and named GmolOBP4, GmolOBP5, and GmolOBP10. Quantitative real-time PCR results indicated that GmolOBP4 and GmolOBP10 were predominantly expressed in adult antennae and GmolOBP5 was expressed in multiple tissues, including head, legs, and wings in addition to antennae. The binding affinities of the three recombinant GmolOBPs (rGmolOBPs) with four sex pheromone components and twenty-nine host plant volatiles were measured using 1-N-Phenyl-naphthylamine as a fluorescence probe. The three rGmolOBPs exhibited specific binding properties to potential ligands, GmolOBP4 and GmolOBP10 bound to minor sex pheromone components, such as (Z)-8-dodecenyl alcohol and dodecanol, respectively. rGmolOBP4 showed intermediate binding ability with hexanal, benzyl alcohol, and pear ester, rGmolOBP5 had a weak affinity for benzaldehyde, pear ester and, methyl jasmonate, and rGmolOBP10 showed strong binding capacity toward hexanol, decanol, and α-ocimene. We speculate that the GmolOBP4 and GmolOBP10 have dual functions in perception and recognition of host plant volatiles and sex pheromone components, while GmolOBP5 may serve other function(s).
Collapse
Affiliation(s)
- Xiu-Lin Chen
- Key Laboratory of Plant Protection Resources and Pest Management, Northwest A&F University, Ministry of Education, Yangling, Shaanxi, China
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, China
| | - Li Su
- Department of Plant Protection, Agricultural College, Guangxi University, Nanning, Guangxi, China
| | - Bo-Liao Li
- Key Laboratory of Plant Protection Resources and Pest Management, Northwest A&F University, Ministry of Education, Yangling, Shaanxi, China
- Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, Shaanxi, China
| | - Guang-Wei Li
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, China
| | - Jun-Xiang Wu
- Key Laboratory of Plant Protection Resources and Pest Management, Northwest A&F University, Ministry of Education, Yangling, Shaanxi, China
- Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
34
|
Li F, Fu N, Li D, Chang H, Qu C, Wang R, Xu Y, Luo C. Identification of an Alarm Pheromone-Binding Chemosensory Protein From the Invasive Sycamore Lace Bug Corythucha ciliata (Say). Front Physiol 2018; 9:354. [PMID: 29681864 PMCID: PMC5897531 DOI: 10.3389/fphys.2018.00354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/20/2018] [Indexed: 01/20/2023] Open
Abstract
The spread of the exotic insect pest sycamore lace bug Corythucha ciliata (Say) is increasing worldwide. The identification of behaviorally active compounds is crucial for reducing the current distribution of this pest. In this study, we identified and documented the expression profiles of genes encoding chemosensory proteins (CSPs) in the sycamore lace bug to identify CSPs that bind to the alarm pheromone geraniol. One CSP (CcilCSP2) that was highly expressed in nymph antennae was found to bind geraniol with high affinity. This finding was confirmed by fluorescence competitive binding assays. We further discovered one candidate chemical, phenyl benzoate, that bound to CcilCSP2 with even higher affinity than geraniol. Behavioral assays revealed that phenyl benzoate, similar to geraniol, significantly repelled sycamore lace bug nymphs but had no activity toward adults. This study has revealed a novel repellent compound involved in behavioral regulation. And, our findings will be beneficial for understanding the olfactory recognition mechanism of sycamore lace bug and developing a push-pull system to manage this pest in the future.
Collapse
Affiliation(s)
- Fengqi Li
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ningning Fu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Du Li
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hetang Chang
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Cheng Qu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ran Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yihua Xu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chen Luo
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
35
|
Waris MI, Younas A, Ul Qamar MT, Hao L, Ameen A, Ali S, Abdelnabby HE, Zeng FF, Wang MQ. Silencing of Chemosensory Protein Gene NlugCSP8 by RNAi Induces Declining Behavioral Responses of Nilaparvata lugens. Front Physiol 2018; 9:379. [PMID: 29706901 PMCID: PMC5906745 DOI: 10.3389/fphys.2018.00379] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/27/2018] [Indexed: 01/05/2023] Open
Abstract
Chemosensory proteins (CSPs) play imperative functions in chemical and biochemical signaling of insects, as they distinguish and transfer ecological chemical indications to a sensory system in order to initiate behavioral responses. The brown planthopper (BPH), Nilaparvata lugens Stål (Hemiptera: Delphacidae), has emerged as the most destructive pest, causing serious damage to rice in extensive areas throughout Asia. Biotic characteristics like monophagy, dual wing forms, and annual long-distance migration imply a critical role of chemoreception in N. lugens. In this study, we cloned the full-length CSP8 gene from N. lugens. Protein sequence analysis indicated that NlugCSP8 shared high sequence resemblance with the CSPs of other insect family members and had the typical four-cysteine signature. Analysis of gene expression indicated that NlugCSP8 mRNA was specifically expressed in the wings of mated 3-day brachypterous females with a 175-fold difference compare to unmated 3-day brachypterous females. The NlugCSP8 mRNA was also highly expressed in the abdomen of unmated 5-day brachypterous males and correlated to the age, gender, adult wing form, and mating status. A competitive ligand-binding assay demonstrated that ligands with long chain carbon atoms, nerolidol, hexanal, and trans-2-hexenal were able to bind to NlugCSP8 in declining order of affinity. By using bioinformatics techniques, three-dimensional protein structure modeling and molecular docking, the binding sites of NlugCSP8 to the volatiles which had high binding affinity were predicted. In addition, behavioral experiments using the compounds displaying the high binding affinity for the NlugCSP8, revealed four compounds able to elicit significant behavioral responses from N. lugens. The in vivo functions of NlugCSP8 were further confirmed through the testing of RNAi and post-RNAi behavioral experiments. The results revealed that reduction in NlugCSP8 transcript abundance caused a decrease in behavioral response to representative attractants. An enhanced understanding of the NlugCSP8 is expected to contribute in the improvement of more effective and eco-friendly control strategies of BPH.
Collapse
Affiliation(s)
- Muhammad I Waris
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aneela Younas
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Liu Hao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Asif Ameen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Saqib Ali
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hazem Elewa Abdelnabby
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,Department of Plant Protection, Faculty of Agriculture, Benha University, Banha, Egypt
| | - Fang-Fang Zeng
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
36
|
The developmental transcriptome of the bamboo snout beetle Cyrtotrachelus buqueti and insights into candidate pheromone-binding proteins. PLoS One 2017; 12:e0179807. [PMID: 28662071 PMCID: PMC5491049 DOI: 10.1371/journal.pone.0179807] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/05/2017] [Indexed: 11/25/2022] Open
Abstract
Cyrtotrachelus buqueti is an extremely harmful bamboo borer, and the larvae of this pest attack clumping bamboo shoots. Pheromone-binding proteins (PBPs) play an important role in identifying insect sex pheromones, but the C. buqueti genome is not readily available for PBP analysis. Developmental transcriptomes of eggs, larvae from the first instar to the prepupal stage, pupae, and adults (females and males) from emergence to mating were built by RNA sequencing (RNA-Seq) in the present study to establish a sequence background of C. buqueti to help understand PBPs. Approximately 164.8 million clean reads were obtained and annotated into 108,854 transcripts. These were assembled into 24,338, 21,597, 24,798, 21,886, 24,642, and 83,115 unigenes for eggs, larvae, pupae, females, males, and the combined datasets, respectively. Unigenes were annotated against NCBI non-redundant protein sequences, NCBI non-redundant nucleotide sequences, Gene Ontology (GO), Protein family, Clusters of Orthologous Groups of Proteins/ Clusters of Eukaryotic Orthologous Groups (KOG), Swiss-Prot, and KEGG Orthology databases. A total of 17,213 unigenes were annotated into 55 sub-categories belonging to three main GO categories; 10,672 unigenes were classified into 26 functional categories by KOG classification, and 8,063 unigenes were classified into five functional KEGG categories. RSEM software for RNA sequencing showed that 4,816, 3,176, 3,661, 2,898, 4,316, 8,019, 7,273, 5,922, 5,844, and 4,570 genes were differentially expressed between larvae and males, larvae and eggs, larvae and pupae, larvae and females, males and females, males and eggs, males and pupae, females and eggs, females and pupae, and eggs and pupae, respectively. Of these, three were confirmed to be significantly differentially expressed between larvae, females, and males. Furthermore, PBP Cbuq7577_g1 was highly expressed in the antenna of males. A comprehensive sequence resource of a desirable quality was constructed from developmental transcriptomes of C. buqueti eggs, larvae, pupae, and adults. This work enriches the genomic data of C. buqueti, and facilitates our understanding of its metamorphosis, development, and response to environmental change. The identified candidate PBP Cbuq7577_g1 might play a crucial role in identifying sex pheromones, and could be used as a targeted gene to control C. buqueti numbers by disrupting sex pheromone communication.
Collapse
|
37
|
Zhang YN, Zhu XY, Ma JF, Dong ZP, Xu JW, Kang K, Zhang LW. Molecular identification and expression patterns of odorant binding protein and chemosensory protein genes in Athetis lepigone (Lepidoptera: Noctuidae). PeerJ 2017; 5:e3157. [PMID: 28382236 PMCID: PMC5376112 DOI: 10.7717/peerj.3157] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/07/2017] [Indexed: 11/20/2022] Open
Abstract
The olfaction system of insects plays an important role in mediating various physiological behaviors, including locating hosts, avoiding predators, and recognizing mates and oviposition sites. Therefore, some key genes in the system present valuable opportunities as targets for developing novel green pesticides. Athetis lepigone, a noctuid moth can feed on more than 30 different host plants making it a serious polyphagous pest worldwide, and it has become one of the major maize pests in northern China since 2011. However, there are no reports on effective and environmentally friendly pesticides for the control of this pest. In this study, we identified 28 genes encoding putative odorant binding proteins (OBPs) and 20 chemosensory protein (CSPs) genes based on our previous A. lepigone transcriptomic data. A tissue expression investigation and phylogenetic analysis were conducted in an effort to postulate the functions of these genes. Our results show that nearly half (46.4%) of the AlOBPs exhibited antennae-biased expression while many of the AlCSPs were highly abundant in non-antennal tissues. These results will aid in exploring the chemosensory mechanisms of A. lepigone and developing environmentally friendly pesticides against this pest in the future.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiu-Yun Zhu
- College of Life Sciences, Huaibei Normal University , Huaibei , China
| | - Ji-Fang Ma
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences , Shijiazhuang , China
| | - Zhi-Ping Dong
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences , Shijiazhuang , China
| | - Ji-Wei Xu
- College of Life Sciences, Huaibei Normal University , Huaibei , China
| | - Ke Kang
- Anhui Vocational & Technical College of Forestry , Hefei , China
| | - Long-Wa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University , Hefei , China
| |
Collapse
|
38
|
Tissue, developmental, and caste-specific expression of odorant binding proteins in a eusocial insect, the red imported fire ant, Solenopsis invicta. Sci Rep 2016; 6:35452. [PMID: 27765943 PMCID: PMC5073229 DOI: 10.1038/srep35452] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/28/2016] [Indexed: 11/13/2022] Open
Abstract
Insects interact with the surrounding environment via chemoreception, and in social insects such as ants, chemoreception functions to mediate diverse behaviors including food acquisition, self/non-self recognition, and intraspecific communication. The invasive red imported fire ant, Solenopsis invicta, has spread worldwide, displaying a remarkable environmental adaptability. Odorant binding proteins (OBPs) are chemical compound carriers, involved in diverse physiological processes including odor detection and chemical transport. S. invicta contains a highly divergent 17-member OBP gene family, that includes an ant-specific expansion and the social organization implicated Gp-9 (OBP3) gene. A systematic gene expression analysis of the SiOBP repertoire was performed across social caste (workers, male and female alates), tissues (antennae, head, thorax, and abdomen), and developmental stages (egg, larvae, and pupae), revealing that although SiOBPs were expressed in the antennae, the major regions of expression were in the head and thorax across all castes, and the abdomen in male and female alates. SiOBPs were very highly expressed in female alates and at somewhat lower levels in male alates and workers. SiOBPs were differentially expressed, with unique signatures in various castes and tissues, suggesting functionality of SiOBPs beyond olfaction Expression patterns of SiOBP subgroups also showed relationships with their evolutionary relatedness.
Collapse
|
39
|
Molecular Characterization and Sex Distribution of Chemosensory Receptor Gene Family Based on Transcriptome Analysis of Scaeva pyrastri. PLoS One 2016; 11:e0155323. [PMID: 27171401 PMCID: PMC4865182 DOI: 10.1371/journal.pone.0155323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/27/2016] [Indexed: 12/02/2022] Open
Abstract
Chemosensory receptors play key roles in insect behavior. Thus, genes encoding these receptors have great potential for use in integrated pest management. The hover fly Scaeva pyrastri (L.) is an important pollinating insect and a natural enemy of aphids, mainly distributed in the Palearctic and Nearctic regions. However, a systematic identification of their chemosensory receptor genes in the antennae has not been reported. In the present study, we assembled the antennal transcriptome of S. pyrastri by using Illumina sequencing technology. Analysis of the transcriptome data identified 60 candidate chemosensory genes, including 38 for odorant receptors (ORs), 16 for ionotropic receptors (IRs), and 6 for gustatory receptors (GRs). The numbers are similar to those of other Diptera species, suggesting that we were able to successfully identify S. pyrastri chemosensory genes. We analyzed the expression patterns of all genes by using reverse transcriptase PCR (RT-PCR), and found that some genes exhibited sex-biased or sex-specific expression. These candidate chemosensory genes and their tissue expression profiles provide information for further studies aimed at fully understanding the molecular basis behind chemoreception-related behaviors in S. pyrastri.
Collapse
|
40
|
Liu G, Ma H, Xie H, Xuan N, Guo X, Fan Z, Rajashekar B, Arnaud P, Offmann B, Picimbon JF. Biotype Characterization, Developmental Profiling, Insecticide Response and Binding Property of Bemisia tabaci Chemosensory Proteins: Role of CSP in Insect Defense. PLoS One 2016; 11:e0154706. [PMID: 27167733 PMCID: PMC4864240 DOI: 10.1371/journal.pone.0154706] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 04/18/2016] [Indexed: 02/03/2023] Open
Abstract
Chemosensory proteins (CSPs) are believed to play a key role in the chemosensory process in insects. Sequencing genomic DNA and RNA encoding CSP1, CSP2 and CSP3 in the sweet potato whitefly Bemisia tabaci showed strong variation between B and Q biotypes. Analyzing CSP-RNA levels showed not only biotype, but also age and developmental stage-specific expression. Interestingly, applying neonicotinoid thiamethoxam insecticide using twenty-five different dose/time treatments in B and Q young adults showed that Bemisia CSP1, CSP2 and CSP3 were also differentially regulated over insecticide exposure. In our study one of the adult-specific gene (CSP1) was shown to be significantly up-regulated by the insecticide in Q, the most highly resistant form of B. tabaci. Correlatively, competitive binding assays using tryptophan fluorescence spectroscopy and molecular docking demonstrated that CSP1 protein preferentially bound to linoleic acid, while CSP2 and CSP3 proteins rather associated to another completely different type of chemical, i.e. α-pentyl-cinnamaldehyde (jasminaldehyde). This might indicate that some CSPs in whiteflies are crucial to facilitate the transport of fatty acids thus regulating some metabolic pathways of the insect immune response, while some others are tuned to much more volatile chemicals known not only for their pleasant odor scent, but also for their potent toxic insecticide activity.
Collapse
Affiliation(s)
- Guoxia Liu
- Shandong Academy of Agricultural Sciences, Biotechnology Research Center, Jinan, China
| | - Hongmei Ma
- Shandong Academy of Agricultural Sciences, Biotechnology Research Center, Jinan, China
| | - Hongyan Xie
- Shandong Academy of Agricultural Sciences, Biotechnology Research Center, Jinan, China
| | - Ning Xuan
- Shandong Academy of Agricultural Sciences, Biotechnology Research Center, Jinan, China
| | - Xia Guo
- Shandong Academy of Agricultural Sciences, Biotechnology Research Center, Jinan, China
| | - Zhongxue Fan
- Shandong Academy of Agricultural Sciences, Biotechnology Research Center, Jinan, China
| | - Balaji Rajashekar
- University of Tartu, Institute of Computer Science, 2 Liivi, Tartu, Estonia
| | - Philippe Arnaud
- University of Nantes, Protein Engineering and Functionality Unit, UMR CNRS 6286, 2 La Houssinière, Nantes, France
| | - Bernard Offmann
- University of Nantes, Protein Engineering and Functionality Unit, UMR CNRS 6286, 2 La Houssinière, Nantes, France
| | | |
Collapse
|
41
|
Chemosensory proteins of the eastern honeybee, Apis cerana: Identification, tissue distribution and olfactory related functional characterization. Comp Biochem Physiol B Biochem Mol Biol 2016; 194-195:11-9. [DOI: 10.1016/j.cbpb.2015.11.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 10/20/2015] [Accepted: 11/05/2015] [Indexed: 11/18/2022]
|
42
|
Zeng FF, Zhao ZF, Yan MJ, Zhou W, Zhang Z, Zhang A, Lu ZX, Wang MQ. Identification and Comparative Expression Profiles of Chemoreception Genes Revealed from Major Chemoreception Organs of the Rice Leaf Folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). PLoS One 2015; 10:e0144267. [PMID: 26657286 PMCID: PMC4676629 DOI: 10.1371/journal.pone.0144267] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 11/16/2015] [Indexed: 11/19/2022] Open
Abstract
To better understand the olfactory mechanisms in the rice leaf folder, Cnaphalocrocis medinalis (Guenée), a serious pest of rice in Asia, we established six partial transcriptomes from antennae, protarsus, and reproductive organs of male and female adults. A total of 102 transcripts were identified, including 29 odorant receptors (ORs), 15 ionotropic receptors (IRs), 30 odorant-binding proteins (OBPs), 26 chemosensory proteins (CSPs), and 2 sensory neuron membrane proteins (SNMPs). The expression patterns of these genes were calculated by fragments per kilobase of exon per million fragments mapped (FPKM) and validated by real-time quantitative PCR (RT-qPCR). Some transcripts were exclusively expressed in specific organs, such as female protarsus, whereas others were universally expressed, this varied expression profile may provide insights into the specific functions mediated by chemoreception proteins in insects. To the best of our knowledge, among the 102 identified transcripts, 81 are novel and have never been reported before. In addition, it also is the first time that ORs and IRs are identified in C. medinalis. Our findings significantly enhance the currently limited understanding olfactory mechanisms of the olfactory mechanisms underlying the chemoreception system in C. medinalis.
Collapse
Affiliation(s)
- Fang-Fang Zeng
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Zhen-Fei Zhao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Miao-Jun Yan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Wen Zhou
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Zan Zhang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Aijun Zhang
- Invasive Insect Biocontrol and Behavior Laboratory, BARC-West, USDA-ARS, Beltsville, Maryland, 20705–2350, United States of America
| | - Zhong-Xian Lu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, P. R. China
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| |
Collapse
|
43
|
Li XM, Zhu XY, Wang ZQ, Wang Y, He P, Chen G, Sun L, Deng DG, Zhang YN. Candidate chemosensory genes identified in Colaphellus bowringi by antennal transcriptome analysis. BMC Genomics 2015; 16:1028. [PMID: 26626891 PMCID: PMC4667470 DOI: 10.1186/s12864-015-2236-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/23/2015] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Since chemosensory genes play key roles in insect behaviour, they can potentially be used as new targets for pest control. The cabbage beetle, Colaphellus bowringi, is a serious insect pest of cruciferous vegetables in China and other Asian countries. However, a systematic identification of the chemosensory genes expressed in the antennae has not been reported. RESULTS We assembled the antennal transcriptome of C. bowringi by using Illumina sequencing technology and identified 104 candidate chemosensory genes by analyzing transcriptomic data, which included transcripts encoding 26 odorant-binding proteins (OBPs), 12 chemosensory proteins (CSPs), four sensory neuron membrane proteins (SNMPs), 43 odorant receptors (ORs), nine ionotropic receptors (IRs), and ten gustatory receptors (GRs). The data obtained are similar to those found in other coleopteran species, suggesting that our approach successfully identified the chemosensory genes of C. bowringi. The expression patterns of 43 OR genes, some of which were predominately found in the antenna or associated with sex-biased expression, were analyzed using quantitative real time RT-PCR (qPCR). CONCLUSIONS Our study revealed that a large number of chemosensory genes are expressed in C. bowringi. These candidate chemosensory genes and their expression profiles in various tissues provide further information on understanding their function in C. bowringi as well as other insects, and identifying potential targets to disrupt the odorant system in C. bowringi so that new methods for pest management can be developed.
Collapse
Affiliation(s)
- Xiao-Ming Li
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Xiu-Yun Zhu
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Zhi-Qiang Wang
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Yi Wang
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| | - Geng Chen
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Liang Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Dao-Gui Deng
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| |
Collapse
|
44
|
Li K, Yang X, Xu G, Cao Y, Lu B, Peng Z. Identification of putative odorant binding protein genes in Asecodes hispinarum, a parasitoid of coconut leaf beetle (Brontispa longissima) by antennal RNA-Seq analysis. Biochem Biophys Res Commun 2015; 467:514-20. [PMID: 26454175 DOI: 10.1016/j.bbrc.2015.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/02/2015] [Indexed: 01/09/2023]
Abstract
Asecodes hispinarum (Hymenoptera: Eulophidae) is an endoparasitoid and an efficient biological control agent which attacks larvae of Brontispa longissima, a serious insect pest of Palmae plants in China. Odorant binding proteins (OBPs) are believed to be important for transporting semiochemicals through the aqueous sensillar lymph to the olfactory receptor cells within the insect antennal sensilla. No previous study has reported on OBPs in A. hispinarum. In this study, we conducted the large-scale identification of OBP genes from the antennae of A. hispinarum by using transcriptome sequencing. Approximately 28.4 million total raw reads and about 27.3 million total clean reads were obtained, and then 46,363 unigenes were assembled. Of these unigenes, a total of 21,263 can be annotated in the NCBI non-redundant database. Among the annotated unigenes, 16,623 of them can be assigned to GO (Gene Ontology). Furthermore, we identified 8 putative OBP genes, and a phylogenetic tree analysis was performed to characterize the 8 OBP genes. In addition, the expression of the 8 OBP genes in different A. hispinarum body tissues was analyzed by real-time quantitative polymerase chain reaction (qRT-PCR). The results indicated that the 8 OBP genes were expressed accordingly to sexes and tissues, but all highly expressed in antennae. The finding of this study will lay the foundation for unraveling molecular mechanisms of A. hispinarum chemoperception.
Collapse
Affiliation(s)
- Keming Li
- Institute of Banana and Plantain, Chinese Academy of Tropical Agricultural Sciences, Haikou 570102, China; Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 570101, China.
| | - Xiangbing Yang
- Texas A&M Agrilife Research and Extension Center, Texas A&M University System, Weslaco, TX 78596, USA.
| | - Guiying Xu
- Institute of Banana and Plantain, Chinese Academy of Tropical Agricultural Sciences, Haikou 570102, China.
| | - Yang Cao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Baoqian Lu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 570101, China.
| | - Zhengqiang Peng
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 570101, China.
| |
Collapse
|
45
|
Qi Y, Teng Z, Gao L, Wu S, Huang J, Ye G, Fang Q. Transcriptome analysis of an endoparasitoid wasp Cotesia chilonis (Hymenoptera: Braconidae) reveals genes involved in successful parasitism. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 88:203-221. [PMID: 25336406 DOI: 10.1002/arch.21214] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
For successful parasitization, parasitiods usually depend on the chemosensory cues for the selection of hosts, as well as a variety of virulence factors introduced into their hosts to overcome host immunity and prevent rejection of progeny development. In bracovirus-carrying wasps, the symbiotic polydnaviruses act in manipulating development and immunity of hosts. The endoparasitoid Cotesia chilonis carrying bracovirus as a key host immunosuppressive factor is a superior endoparasitoid of rice stem borer, Chilo suppressalis. So far, genomic information for C. chilonis is not available and transcriptomic data may provide valuable resources for global studying on physiological processes of C. chilonis, including chemosensation and parasitism at molecular level. Here, we performed RNA-seq to characterize the transcriptome of C. chilonis adults. We obtained 27,717,892 reads, assembled into 38,318 unigenes with a mean size of 690 bp. Approximately, 62.1% of the unigenes were annotated using NCBI databases. A large number of chemoreception-related genes encoding proteins including odorant receptors, gustatory receptors, odorant-binding proteins, chemosensory proteins, transient receptor potential ion channels, and sensory neuron membrane proteins were identified in silico. Totally, 72 transcripts possessing high identities with the bracovirus-related genes were identified. We investigated the mRNA expression levels of several transcripts at different developmental stages (including egg, larva, pupae, and adult) by quantitative real-time PCR analysis. The results revealed that some genes had adult-specific expression, indicating their potential significance for mating and parasitism. Overall, these results provide comprehensive insights into transcriptomic data of a polydnavirus-carrying parasitoid of a rice pest.
Collapse
Affiliation(s)
- Yixiang Qi
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Wang L, Zhu JY, Qian C, Fang Q, Ye GY. Venom of the parasitoid wasp Pteromalus puparum contains an odorant binding protein. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 88:101-110. [PMID: 25256903 DOI: 10.1002/arch.21206] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Odorant binding proteins (OBPs) are crucial for insects to detect food, mates, predators, or other purposes. They are mostly located on antennae and other olfactory sensilla. In this study, we identified an OBP from the venom of Pteromalus puparum, designated as PpOBP. The cDNA of PpOBP is 517 bp in length, encoding 132 amino acids. Phylogenetic analysis revealed that PpOBP was clustered with OBP68 and OBP67 of Nasonia vitripennis. PpOBP was highly expressed in the venom apparatus at the transcriptional and translational levels. PpOBP was located in all parts of venom apparatus including venom gland, venom reservoir, and Dufour's gland. During 0-6 days post adult eclosion, the PpOBP mRNA level peaked at 2 days in the venom apparatus, whereas the protein remained at a high level. In the venom apparatus, the PpOBP mRNA was significantly upregulated following feeding with honey and parasitization. We propose that PpOBP is involved in parasitoid-host interactions.
Collapse
Affiliation(s)
- Lei Wang
- College of Life Science, Anhui Agricultural University, Hefei, China; State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | |
Collapse
|
47
|
Zhang ZK, Lei ZR. Identification, expression profiling and fluorescence-based binding assays of a chemosensory protein gene from the Western flower thrips, Frankliniella occidentalis. PLoS One 2015; 10:e0117726. [PMID: 25635391 PMCID: PMC4311994 DOI: 10.1371/journal.pone.0117726] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/31/2014] [Indexed: 11/18/2022] Open
Abstract
Using RT-PCR and RACE-PCR strategies, we cloned and identified a new chemosensory protein (FoccCSP) from the Western flower thrips, Frankliniella occidentalis, a species for which no chemosensory protein (CSP) has yet been identified. The FoccCSP gene contains a 387 bp open-reading frame encoding a putative protein of 128 amino acids with a molecular weight of 14.51 kDa and an isoelectric point of 5.41. The deduced amino acid sequence contains a putative signal peptide of 19 amino acid residues at the N-terminus, as well as the typical four-cysteine signature found in other insect CSPs. As FoccCSP is from a different order of insect than other known CSPs, the GenBank FoccCSP homolog showed only 31-50% sequence identity with them. A neighbor-joining tree was constructed and revealed that FoccCSP is in a group with CSPs from Homopteran insects (e.g., AgosCSP4, AgosCSP10, ApisCSP, and NlugCSP9), suggesting that these genes likely developed from a common ancestral gene. The FoccCSP gene expression profile of different tissues and development stages was measured by quantitative real-time PCR. The results of this analysis revealed this gene is predominantly expressed in the antennae and also highly expressed in the first instar nymph, suggesting a function for FoccCSP in olfactory reception and in particular life activities during the first instar nymph stage. We expressed recombinant FoccCSP protein in a prokaryotic expression system and purified FoccCSP protein by affinity chromatography using a Ni-NTA-Sepharose column. Using N-phenyl-1-naphthylamine (1-NPN) as a fluorescent probe in fluorescence-based competitive binding assay, we determined the binding affinities of 19 volatile substances for FoccCSP protein. This analysis revealed that anisic aldehyde, geraniol and methyl salicylate have high binding affinities for FoccCSP, with KD values of 10.50, 15.35 and 35.24 μM, respectively. Thus, our study indicates that FoccCSP may play an important role in regulating the development of the first instar nymph and mediate F. occidentalis host recognition.
Collapse
Affiliation(s)
- Zhi-Ke Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Zhong-Ren Lei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
48
|
Niu D, Zheng H, Corona M, Lu Y, Chen X, Cao L, Sohr A, Hu F. Transcriptome comparison between inactivated and activated ovaries of the honey bee Apis mellifera L. INSECT MOLECULAR BIOLOGY 2014; 23:668-681. [PMID: 25039886 DOI: 10.1111/imb.12114] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ovarian activity not only influences fertility, but is also involved with the regulation of division of labour between reproductive and behavioural castes of female honey bees. In order to identify candidate genes associated with ovarian activity, we compared the gene expression patterns between inactivated and activated ovaries of queens and workers by means of high-throughput RNA-sequencing technology. A total of 1615 differentially expressed genes (DEGs) was detected between ovaries of virgin and mated queens, and more than 5300 DEGs were detected between inactivated and activated worker ovaries. Intersection analysis of DEGs amongst five libraries revealed that a similar set of genes (824) participated in the ovary activation of both queens and workers. A large number of these DEGs were predominantly related to cellular, cell and cell part, binding, biological regulation and metabolic processes. In addition, over 1000 DEGs were linked to more than 230 components of Kyoto Encyclopedia of Genes and Genomes pathways, including 25 signalling pathways. The reliability of the RNA-sequencing results was confirmed by means of quantitative real-time PCR. Our results provide new insights into the molecular mechanisms involved in ovary activation and reproductive division of labour.
Collapse
Affiliation(s)
- D Niu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
McKenzie SK, Oxley PR, Kronauer DJC. Comparative genomics and transcriptomics in ants provide new insights into the evolution and function of odorant binding and chemosensory proteins. BMC Genomics 2014; 15:718. [PMID: 25159315 PMCID: PMC4161878 DOI: 10.1186/1471-2164-15-718] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 08/14/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The complex societies of ants and other social insects rely on sophisticated chemical communication. Two families of small soluble proteins, the odorant binding and chemosensory proteins (OBPs and CSPs), are believed to be important in insect chemosensation. To better understand the role of these proteins in ant olfaction, we examined their evolution and expression across the ants using phylogenetics and sex- and tissue-specific RNA-seq. RESULTS We find that subsets of both OBPs and CSPs are expressed in the antennae, contradicting the previous hypothesis that CSPs have replaced OBPs in ant olfaction. Both protein families have several highly conserved clades with a single ortholog in all eusocial hymenopterans, as well as clades with more dynamic evolution and many taxon-specific radiations. The dynamically evolving OBPs and CSPs have been hypothesized to function in chemical communication. Intriguingly, we find that seven members of the conserved clades are expressed specifically in the antennae of the clonal raider ant Cerapachys biroi, whereas only one dynamically evolving CSP is antenna specific. The orthologs of the conserved, antenna-specific C. biroi genes are also expressed in antennae of the ants Camponotus floridanus and Harpegnathos saltator, indicating that antenna-specific expression of these OBPs and CSPs is conserved across ants. Most members of the dynamically evolving clades in both protein families are expressed primarily in non-chemosensory tissues and thus likely do not fulfill chemosensory functions. CONCLUSIONS Our results identify candidate OBPs and CSPs that are likely involved in conserved aspects of ant olfaction, and suggest that OBPs and CSPs may not rapidly evolve to recognize species-specific signals.
Collapse
Affiliation(s)
- Sean K McKenzie
- Laboratory of Insect Social Evolution, The Rockefeller University, 1230 York Avenue, 10065 New York, NY, USA.
| | | | | |
Collapse
|
50
|
Yi X, Zhao H, Wang P, Hu M, Zhong G. Bdor\Orco is important for oviposition-deterring behavior induced by both the volatile and non-volatile repellents in Bactrocera dorsalis (Diptera: Tephritidae). JOURNAL OF INSECT PHYSIOLOGY 2014; 65:51-56. [PMID: 24831178 DOI: 10.1016/j.jinsphys.2014.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 06/03/2023]
Abstract
Several studies have shown that the selections of gravid females to potential oviposition sites from a distance were mediated by volatile signals, however, the means by which the sensory cues from non-volatile chemicals affected the insect behavior were still a controversial subject. Chemosensory in insect is a complex process, which is mediated by multigene families of chemoreceptors, including olfactory receptors, olfactory co-receptors, and odorant-binding proteins. To elucidate the chemoreception mechanism of volatile and non-volatile chemicals, the roles of Orco and OBP in oviposition-deterrent activities induced by citronellal and Rhodojaponin-III were investigated. Our results suggested that RNAi-mediated expression inhibition was successfully achieved by feeding dsRNA in Bactrocera dorsalis. High levels of Bdor\Orco expression were essential for recognizing two chemicals of different physical properties, whereas the expression of Bdor\OBP was only imperative in perception of volatile chemical. The results suggested that volatile and non-volatile chemicals may evoke distinct molecular basis for chemosensory in the flies, while Orco was essential in the perception of both chemicals. The study highlighted that the central role of Orco in chemical recognition, which enabled it to be the universally applied target of designing new botanical pesticide.
Collapse
Affiliation(s)
- Xin Yi
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou 510642, PR China
| | - Haiming Zhao
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou 510642, PR China
| | - Peidan Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou 510642, PR China
| | - Meiying Hu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou 510642, PR China
| | - Guohua Zhong
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|