1
|
Lee DE, Han JH, Lee GC, Choi J, Kwun W, Lee SH, Kim JH. Differences in seasonal dynamics and pyrethroid resistance development among Anopheles Hyrcanus group species. Parasit Vectors 2024; 17:417. [PMID: 39369247 PMCID: PMC11456232 DOI: 10.1186/s13071-024-06462-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/21/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND The Anopheles Hyrcanus group, which transmits Plasmodium vivax, consists of six confirmed species in South Korea. An epidemiological study revealed differences in the seasonal occurrence patterns of each species. Pyrethroid resistance in An. sinensis dates back to the early 2000s, whereas information on pyrethroid resistance in other species is lacking despite their greater significance in malaria epidemiology. METHODS Anopheles mosquitoes were collected from two malaria-endemic regions in South Korea for 2 years and their knockdown resistance (kdr) mutations were genotyped. The larval susceptibility to λ-cyhalothrin was compared in six Anopheles species and its seasonal changes in three species were investigated. The full-length sequences of the voltage-sensitive sodium channel (VSSC) were compared across six species to evaluate potential target-site insensitivity. The contribution of the kdr mutation to phenotypic resistance was confirmed by comparing median lethal time (LT50) to λ-cyhalothrin between populations of Anopheles belenrae with distinct genotypes. RESULTS The composition and seasonal occurrence of rare species (Anopheles kleini, Anopheles lestri, and Anopheles sineroides) varied considerably, whereas An. sinensis occurs continuously throughout the season. A kdr mutation in the form of heterozygous allele was newly identified in An. belenrae, An. lesteri, An. pullus, and An. sineroides. The baseline susceptibility to λ-cyhalothrin was the highest in An. belenrae, followed by An. lesteri, An. sineroides, An. kleini, An. pullus, and An. sinensis, with median lethal concentration (LC50) values ranging from 6.0- to 73.5-fold higher than that of An. belenrae. The susceptibility of An. sinensis and An. pullus varied by season, whereas that of An. belenrae remained stable. The kdr-heterozygous An. belenare population exhibited 5.1 times higher LT50 than that of the susceptible population. Species-specific VSSC sequence differences were observed among the six species. CONCLUSIONS Our findings suggest that the status and extent of pyrethroid resistance vary among Anopheles Hyrcanus group species. While An. sinensis, the predominant species, developed a considerable level of pyrethroid resistance through kdr mutation, the resistance levels of other species appeared to be less pronounced. Large-scale monitoring is crucial to fully understand species-specific seasonal occurrence and resistance status for effective management strategies, considering the ongoing impact of climate change on their vectorial capacity.
Collapse
Affiliation(s)
- Do Eun Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Heum Han
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Gang Chan Lee
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Junhyeong Choi
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Wonyong Kwun
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Si Hyeock Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ju Hyeon Kim
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
2
|
Zak H, Rozenfeld E, Levi M, Deng P, Gorelick D, Pozeilov H, Israel S, Paas Y, Paas Y, Li JB, Parnas M, Shohat-Ophir G. A highly conserved A-to-I RNA editing event within the glutamate-gated chloride channel GluClα is necessary for olfactory-based behaviors in Drosophila. SCIENCE ADVANCES 2024; 10:eadi9101. [PMID: 39231215 PMCID: PMC11373593 DOI: 10.1126/sciadv.adi9101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/29/2024] [Indexed: 09/06/2024]
Abstract
A-to-I RNA editing is a cellular mechanism that generates transcriptomic and proteomic diversity, which is essential for neuronal and immune functions. It involves the conversion of specific adenosines in RNA molecules to inosines, which are recognized as guanosines by cellular machinery. Despite the vast number of editing sites observed across the animal kingdom, pinpointing critical sites and understanding their in vivo functions remains challenging. Here, we study the function of an evolutionary conserved editing site in Drosophila, located in glutamate-gated chloride channel (GluClα). Our findings reveal that flies lacking editing at this site exhibit reduced olfactory responses to odors and impaired pheromone-dependent social interactions. Moreover, we demonstrate that editing of this site is crucial for the proper processing of olfactory information in projection neurons. Our results highlight the value of using evolutionary conservation as a criterion for identifying editing events with potential functional significance and paves the way for elucidating the intricate link between RNA modification, neuronal physiology, and behavior.
Collapse
Affiliation(s)
- Hila Zak
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan University, Ramat Gan 5290002, Israel
- The Nanotechnology Institute, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Eyal Rozenfeld
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mali Levi
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan University, Ramat Gan 5290002, Israel
- The Nanotechnology Institute, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Patricia Deng
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - David Gorelick
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan University, Ramat Gan 5290002, Israel
- The Nanotechnology Institute, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Hadar Pozeilov
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan University, Ramat Gan 5290002, Israel
- The Nanotechnology Institute, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Shai Israel
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan University, Ramat Gan 5290002, Israel
- The Nanotechnology Institute, Bar-Ilan University, Ramat Gan 5290002, Israel
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Yoav Paas
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yoav Paas
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Moshe Parnas
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Galit Shohat-Ophir
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan University, Ramat Gan 5290002, Israel
- The Nanotechnology Institute, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
3
|
Fan Y, Qin Y, Dong X, Wang Z, Zhou H. Identification and expression patterns of voltage-gated sodium channel genes with intron retentions in different strains of Bactrocera dorsalis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106084. [PMID: 39277397 DOI: 10.1016/j.pestbp.2024.106084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/17/2024]
Abstract
Pyrethroid are the primary insecticides used for controlling of Bactricera dorsalis, a highly destructive and invasive fruit pest. Field populations have developed serious resistance, especially to β-cypermethrin. While mutations in the voltage-gated sodium channel (Vgsc) are a common mechanism of pyrethroid resistance, variations in BdVgsc associated with β-cypermethrin resistance remain unclear. Here, we reported the resistance levels of five field populations from China, with resistance ratio ranging from 1.54 to 21.34-fold. Cloning the full length of BdVgsc revealed no specific or known amino acid mutations between the most resistant population and the susceptible strain. However, three types of partial intron retention (IRE4-5, IRE19-f and IREL-24) were identified in BdVgsc transcripts, with these intron retentions containing stop codons. The expression of IRE4-5 transcripts and total BdVgsc showed different trends across developmental stages and tissues. Exposure to β-cypermethrin led to increased expression of IRE4-5. Comparison of genomic and transcriptional sequences reveled that IRE4-5 transcripts had two types (IRE4-5.5 T and IRE4-5.6 T) caused by genomic variations. Both field and congenic strains indicated that homozygotes for IRE4-5.5 T had lower IRE4-5 transcript levels than homozygotes for IRE4-5.6 T. However, congenic and field strains exhibited inconsistent results about the association of expression levels of IRE4-5 transcripts with sensitivity to β-cypermethrin. In summary, this study is the first to identify intron retention transcripts in the Vgsc gene from B. dorsalis and to examine their expression patterns across different developmental stages, tissues, and strains with varying sensitivities to β-cypermethrin. The potential role of the intron retentions of BdVgsc in insecticide toxicity is also discussed.
Collapse
Affiliation(s)
- Yinjun Fan
- Shandong Engineering Research Center for Environment-friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Shandong Province Centre for Bio-invasions and Eco-security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, Qingdao 266109, PR China
| | - Yu Qin
- Shandong Engineering Research Center for Environment-friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Shandong Province Centre for Bio-invasions and Eco-security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, Qingdao 266109, PR China
| | - Xinyi Dong
- Shandong Engineering Research Center for Environment-friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Shandong Province Centre for Bio-invasions and Eco-security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, Qingdao 266109, PR China
| | - Zixuan Wang
- Shandong Engineering Research Center for Environment-friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Shandong Province Centre for Bio-invasions and Eco-security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, Qingdao 266109, PR China
| | - Hongxu Zhou
- Shandong Engineering Research Center for Environment-friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Shandong Province Centre for Bio-invasions and Eco-security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, Qingdao 266109, PR China.
| |
Collapse
|
4
|
Yuan L, Zhang K, Wang Z, Xian L, Liu K, Wu S. Functional diversity of voltage-gated sodium channel in Drosophila suzukii (Matsumura). PEST MANAGEMENT SCIENCE 2024; 80:592-601. [PMID: 37740934 DOI: 10.1002/ps.7786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/22/2023] [Accepted: 09/23/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND The larvae of Drosophila suzukii Matsumura feed directly inside the fruit, causing catastrophic damage to orchards. The misuse of pyrethroid insecticides during the control period has led to increasing resistance of D. suzukii to pyrethroids acting on the voltage-gated sodium channel (VGSC). RESULTS In this study, the sodium channel of D. suzukii was cloned (DsNav 5 GenBank number: OQ871532). The results of multiple-sequence alignment showed that the homology of sodium channel between D. suzukii and Drosophila melanogaster was as high as 95.3%. Analysis of transcripts from 62 variants of D. suzukii VGSC revealed a total of six alternative splicing sites (exons u, j, a, b, e, and h) and 33 RNA editing. Exons j, a, b, e, and h are conserved in D. melanogaster and other insects, whereas exon u has never been reported before. The number of A-to-I was distinctly more than that of U-to-C for RNA editing. All D. suzukii VGSC variants were expressed in Xenopus oocytes, but only one (type 5) was able to produce robust currents and nine produce weak currents. DsNav 5 with TipE of D. melanogaster co-expresses current better than its own TipE. Subsequently, tetrodotoxin was verified to be a blocker of VGSC, and the gating properties of DsNav 5 were investigated. CONCLUSION These findings proved that the VGSC of D. suzukii has not only the basic gating properties, but also the diversity of gating properties. This study also laid a foundation for the study of pyrethroid resistance mechanism of VGSC in D. suzukii. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Linlin Yuan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Yazhou Bay Science and Technology City, Sanya, China
| | - Kun Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Yazhou Bay Science and Technology City, Sanya, China
| | - Zhenglei Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Yazhou Bay Science and Technology City, Sanya, China
| | - Limin Xian
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Yazhou Bay Science and Technology City, Sanya, China
| | - Kaiyang Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Yazhou Bay Science and Technology City, Sanya, China
| | - Shaoying Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Yazhou Bay Science and Technology City, Sanya, China
| |
Collapse
|
5
|
Chen L, Wang Y, Zhang K, Wu S. Functional diversity of sodium channel variants in common eastern bumblebee, Bombus impatiens. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22052. [PMID: 37672296 DOI: 10.1002/arch.22052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/05/2023] [Accepted: 08/16/2023] [Indexed: 09/07/2023]
Abstract
For the past decade, Colony Collapse Disorder has been reported worldwide. Insecticides containing pyrethroids may be responsible for a decline in bees, which are more sensitive to pyrethroids compared with other insects. Voltage-gated sodium channels (Nav ) are the major target sites of pyrethroids, and the sodium channel diversity is generated through extensive alternative splicing and RNA editing. In this study, we cloned and analyzed the function of variants of the Nav channel, BiNav , from Bombus impatiens. BiNav covers a 46 kb genome region including 30 exons. Sequence analysis of 56 clones showed that the clones can be grouped into 22 splice types with 11 optional exons (exons j, w, p, q, r, b, e, t, l/k, and z). Here, a special alternative exon w is identified, encoding a stretch of 31 amino acid resides in domain I between S3 and S4. RNA editing generates 18 amino acid changes in different positions in individual variants. Among 56 variants examined, only six variants generated sufficient sodium currents for functional characterization in Xenopus oocytes. In the presence of B. impatiens TipE and TEH1, the sodium current amplitude of BiNav 1-1 increased by fourfold, while TipE of other insect species had no effect on the expression. Abundant alternative splicing and RNA editing of BiNav suggests the molecular and functional pharmacology diversity of the Nav channel for bumblebees. This study provides a theoretical basis for the design of insecticides that specifically target pests without affecting beneficial insects.
Collapse
Affiliation(s)
- Longwei Chen
- College of Breeding and Multiplication, Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou, China
| | - Yuquan Wang
- College of Breeding and Multiplication, Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou, China
| | - Kun Zhang
- College of Breeding and Multiplication, Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou, China
| | - Shaoying Wu
- College of Breeding and Multiplication, Hainan University, Sanya, China
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou, China
| |
Collapse
|
6
|
Pahutski TF, Ahmad OK, Marshall EA, Joraski K, Barry JD, Keathley C, Cordova D, Benner E, Nesnow D, Christianson L, Slack RD, Lahm GP. Discovery of novel (N-aryl-4-methylpiperidinyl)pyrazoles: a new class of potent lepidopteran insecticides. PEST MANAGEMENT SCIENCE 2023; 79:1743-1749. [PMID: 36622037 DOI: 10.1002/ps.7349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Insects of the order Lepidoptera are among the most destructive global pests, causing billions of dollars in damage annually. A new class of N-arylpyrazole-4-methylpiperidines with potent activity on lepidopteran species has been discovered. RESULTS In a high-throughput insecticide screen compound 1 was identified to possess modest activity on the lepidopteran insect Plutella xylostella. Optimization of 1 to compound 42 resulted in a compound with excellent activity on Spodoptera exigua, Spodoptera frugiperda, and Helicoverpa zea with median lethal concentrations values of 2.8, 1.4, and 12.5 ppm respectively. Although the mode of action remains unknown, these compounds do not appear to work by many of the known biochemical mechanisms of insect control. CONCLUSION N-Arylpyrazole-4-methylpiperidines represent a new class of insecticides with excellent activity on a broad spectrum of lepidopteran pests. Studies to date indicate the potential for a novel mode of action; however, the target site is unknown at present. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Thomas F Pahutski
- Stine Research Center, FMC Agricultural Solutions, Newark, Delaware, USA
| | - Omar K Ahmad
- Stine Research Center, FMC Agricultural Solutions, Newark, Delaware, USA
| | - Eric A Marshall
- Stine Research Center, FMC Agricultural Solutions, Newark, Delaware, USA
| | - Kathleen Joraski
- Stine Research Center, FMC Agricultural Solutions, Newark, Delaware, USA
| | - James D Barry
- Stine Research Center, FMC Agricultural Solutions, Newark, Delaware, USA
| | - Craig Keathley
- Stine Research Center, FMC Agricultural Solutions, Newark, Delaware, USA
| | - Daniel Cordova
- Stine Research Center, FMC Agricultural Solutions, Newark, Delaware, USA
| | - Eric Benner
- Stine Research Center, FMC Agricultural Solutions, Newark, Delaware, USA
| | - David Nesnow
- Stine Research Center, FMC Agricultural Solutions, Newark, Delaware, USA
| | | | - Rachel D Slack
- Stine Research Center, FMC Agricultural Solutions, Newark, Delaware, USA
| | - George P Lahm
- Stine Research Center, FMC Agricultural Solutions, Newark, Delaware, USA
| |
Collapse
|
7
|
Maksymchuk N, Sakurai A, Cox DN, Cymbalyuk G. Transient and Steady-State Properties of Drosophila Sensory Neurons Coding Noxious Cold Temperature. Front Cell Neurosci 2022; 16:831803. [PMID: 35959471 PMCID: PMC9358291 DOI: 10.3389/fncel.2022.831803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/09/2022] [Indexed: 12/04/2022] Open
Abstract
Coding noxious cold signals, such as the magnitude and rate of temperature change, play essential roles in the survival of organisms. We combined electrophysiological and computational neuroscience methods to investigate the neural dynamics of Drosophila larva cold-sensing Class III (CIII) neurons. In response to a fast temperature change (-2 to -6°C/s) from room temperature to noxious cold, the CIII neurons exhibited a pronounced peak of a spiking rate with subsequent relaxation to a steady-state spiking. The magnitude of the peak was higher for a higher rate of temperature decrease, while slow temperature decrease (-0.1°C/s) evoked no distinct peak of the spiking rate. The rate of the steady-state spiking depended on the magnitude of the final temperature and was higher at lower temperatures. For each neuron, we characterized this dependence by estimating the temperature of the half activation of the spiking rate by curve fitting neuron's spiking rate responses to a Boltzmann function. We found that neurons had a temperature of the half activation distributed over a wide temperature range. We also found that CIII neurons responded to decrease rather than increase in temperature. There was a significant difference in spiking activity between fast and slow returns from noxious cold to room temperature: The CIII neurons usually stopped activity abruptly in the case of the fast return and continued spiking for some time in the case of the slow return. We developed a biophysical model of CIII neurons using a generalized description of transient receptor potential (TRP) current kinetics with temperature-dependent activation and Ca2+-dependent inactivation. This model recapitulated the key features of the spiking rate responses found in experiments and suggested mechanisms explaining the transient and steady-state activity of the CIII neurons at different cold temperatures and rates of their decrease and increase. We conclude that CIII neurons encode at least three types of cold sensory information: the rate of temperature decrease by a peak of the firing rate, the magnitude of cold temperature by the rate of steady spiking activity, and direction of temperature change by spiking activity augmentation or suppression corresponding to temperature decrease and increase, respectively.
Collapse
Affiliation(s)
- Natalia Maksymchuk
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Akira Sakurai
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Daniel N Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Gennady Cymbalyuk
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States.,Department of Physics and Astronomy, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
8
|
Grau-Bové X, Weetman D. RNA editing: an overlooked source of fine-scale adaptation in insect vectors? CURRENT OPINION IN INSECT SCIENCE 2020; 40:48-55. [PMID: 32599511 DOI: 10.1016/j.cois.2020.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
RNA editing is a source of molecular diversity that regulates the functional repertoire of animal transcriptomes. Multiple studies in Drosophila have revealed that conserved editing events can be a source of evolutionary adaptations, and there is a solid body of evidence linking editing and the fine-tuning of neural genes, which are often targeted by insecticides used in vector control. Yet, despite these suggestive connections, genome-wide analyses of editing in insect vectors are conspicuously lacking. Future advances will require complementing the growing wealth of vector genomes with targeted transcriptome analyses. Here, we review recent investigations of the genetic footprints of adaptive RNA editing in insects and provide an overview of new methodologies applicable to studies of RNA editing in insect vectors.
Collapse
Affiliation(s)
- Xavier Grau-Bové
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
9
|
Thompson AJ, Verdin PS, Burton MJ, Davies TGE, Williamson MS, Field LM, Baines RA, Mellor IR, Duce IR. The effects of knock-down resistance mutations and alternative splicing on voltage-gated sodium channels in Musca domestica and Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 122:103388. [PMID: 32376273 DOI: 10.1016/j.ibmb.2020.103388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Voltage-gated sodium channels (VGSCs) are a major target site for the action of pyrethroid insecticides and resistance to pyrethroids has been ascribed to mutations in the VGSC gene. VGSCs in insects are encoded by only one gene and their structural and functional diversity results from posttranscriptional modification, particularly, alternative splicing. Using whole cell patch clamping of neurons from pyrethroid susceptible (wild-type) and resistant strains (s-kdr) of housefly, Musca domestica, we have shown that the V50 for activation and steady state inactivation of sodium currents (INa+) is significantly depolarised in s-kdr neurons compared with wild-type and that 10 nM deltamethrin significantly hyperpolarised both of these parameters in the neurons from susceptible but not s-kdr houseflies. Similarly, tail currents were more sensitive to deltamethrin in wild-type neurons (EC15 14.5 nM) than s-kdr (EC15 133 nM). We also found that in both strains, INa+ are of two types: a strongly inactivating (to 6.8% of peak) current, and a more persistent (to 17.1% of peak) current. Analysis of tail currents showed that the persistent current in both strains (wild-type EC15 5.84 nM) was more sensitive to deltamethrin than was the inactivating type (wild-type EC15 35.1 nM). It has been shown previously, that the presence of exon l in the Drosophila melanogaster VGSC gives rise to a more persistent INa+ than does the alternative splice variant containing exon k and we used PCR with housefly head cDNA to confirm the presence of the housefly orthologues of splice variants k and l. Their effect on deltamethrin sensitivity was determined by examining INa+ in Xenopus oocytes expressing either the k or l variants of the Drosophila para VGSC. Analysis of tail currents, in the presence of various concentrations of deltamethrin, showed that the l splice variant was significantly more sensitive (EC50 42 nM) than the k splice variant (EC50 866 nM). We conclude that in addition to the presence of point mutations, target site resistance to pyrethroids may involve the differential expression of splice variants.
Collapse
Affiliation(s)
- Andrew J Thompson
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Paul S Verdin
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Mark J Burton
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - T G Emyr Davies
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
| | - Martin S Williamson
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
| | - Linda M Field
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
| | - Richard A Baines
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, United Kingdom
| | - Ian R Mellor
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Ian R Duce
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom.
| |
Collapse
|
10
|
Zhang K, Chen M, Wang H, Duan W, Wang Q, Li F, Deng D, Bandason E, Wu S. Molecular characterization and functional expression of voltage-gated sodium channel variants in Apolygus lucorum (Meyer-Dür). PEST MANAGEMENT SCIENCE 2020; 76:2095-2104. [PMID: 31944525 DOI: 10.1002/ps.5748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/30/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Apolygus lucorum (Meyer-Dür) is a serious worldwide agricultural pest, especially for Bt cotton in China. Pyrethroids, neonicotinoids and organophosphates are the most effective insecticides to control piercing and sucking insects, including A. lucorum. The voltage-gated sodium channel (Nav ) is major target site of pyrethroids. Extensive alternative splicing and RNA editing, two major post-transcriptional mechanisms, contribute to generate different functional sodium channel variants. In our research, we characterized the sodium channel variants of A. lucorum. RESULTS In this study, we isolated numerous sodium channel variants that cover the entire coding region of the VGSC gene from A. lucorum. All clones could be grouped into 47 splice types based on the presence of nine alternative exons (exons j, n, o, a, p, b, s, q and t). Exons j, b and t were located independently, while exons n, o, a and p were located adjacently, as were exons s and q. We also found 35 nucleotide changes in different positions in individual variants, of which 18 nucleotide changes were A-to-I RNA editing, 11 nucleotide changes were likely due to U-to-C or C-to-U editing, and the others were likely natural sequence polymorphisms in the population. Furthermore, we expressed all of the variants in Xenopus oocytes. Eighteen of them were expressed in oocytes and sensitive to tetrodotoxin. CONCLUSION Our results provide a functional basis for understanding how A. lucorum sodium channel variants work in regulating channel expression, pharmacology and gating properties for agricultural insects. Apolygus lucorum is widely distributed in cotton production. Our results suggest how AlNav (the sodium channel of A.lucorum) variants work in regulating channel expression, pharmacology and sodium channel gating for agricultural insects in the future. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kun Zhang
- College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Mengli Chen
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Hao Wang
- College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Wenbo Duan
- College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Qiang Wang
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Fen Li
- College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Denghui Deng
- College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Elizabeth Bandason
- Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Shaoying Wu
- College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| |
Collapse
|
11
|
Sun H, Du Y, Liu Z, Dong K. Distinct functional properties of sodium channel variants are associated with usage of alternative exons in Nilaparvata lugens. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 118:103292. [PMID: 31811885 PMCID: PMC7085919 DOI: 10.1016/j.ibmb.2019.103292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/26/2019] [Accepted: 12/01/2019] [Indexed: 05/04/2023]
Abstract
Voltage-gated sodium channels (Nav) are essential for electrical signaling in the nervous system. They are also the primary targets of several classes of insecticides including pyrethroids. There is only one sodium channel gene in most insect species, whereas mammals possess at least nine sodium channel genes. Extensive alternative splicing and RNA editing of sodium channel transcripts have been documented in many insect species. However, the functional consequences of these post-transcriptional events have been evaluated only in DmNav and BgNav from Drosophila melanogaster and Blattella germanica, respectively. In this study, we isolated 41 full-length cDNA clones encoding 34 sodium channel (NlNav) variants from a major rice pest, the brown planthopper (Nilaparvata lugens Stål). The 34 NlNav variants represent 24 distinct splicing types based on the usage of nine alternative exons, six of which, including exon b, have been previously reported in other insect species. When expressed in Xenopus oocytes, NlNav variants lacking exon b generated significantly larger sodium currents than variants possessing exon b, suggesting an inhibitory effect of exon b on sodium current expression. A similar effect has been reported for exon b from BgNav. Mutational analysis showed that three conserved amino acid residues encoded by exon b are critical for its inhibitory effect. In addition, mutually exclusive exons k/l contribute to distinct functional properties and channel sensitivity to pyrethroids. Altogether, these results show that alternative splicing generates functional diversity of sodium channels in this insect species and that the role of exon b in regulating neuronal excitability is likely conserved among insect species.
Collapse
Affiliation(s)
- Huahua Sun
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China; Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI, 48824, USA
| | - Yuzhe Du
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI, 48824, USA
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ke Dong
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
12
|
Piggott BJ, Peters CJ, He Y, Huang X, Younger S, Jan LY, Jan YN. Paralytic, the Drosophila voltage-gated sodium channel, regulates proliferation of neural progenitors. Genes Dev 2019; 33:1739-1750. [PMID: 31753914 PMCID: PMC6942049 DOI: 10.1101/gad.330597.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/28/2019] [Indexed: 12/23/2022]
Abstract
Proliferating cells, typically considered "nonexcitable," nevertheless, exhibit regulation by bioelectric signals. Notably, voltage-gated sodium channels (VGSC) that are crucial for neuronal excitability are also found in progenitors and up-regulated in cancer. Here, we identify a role for VGSC in proliferation of Drosophila neuroblast (NB) lineages within the central nervous system. Loss of paralytic (para), the sole gene that encodes Drosophila VGSC, reduces neuroblast progeny cell number. The type II neuroblast lineages, featuring a population of transit-amplifying intermediate neural progenitors (INP) similar to that found in the developing human cortex, are particularly sensitive to para manipulation. Following a series of asymmetric divisions, INPs normally exit the cell cycle through a final symmetric division. Our data suggests that loss of Para induces apoptosis in this population, whereas overexpression leads to an increase in INPs and overall neuroblast progeny cell numbers. These effects are cell autonomous and depend on Para channel activity. Reduction of Para expression not only affects normal NB development, but also strongly suppresses brain tumor mass, implicating a role for Para in cancer progression. To our knowledge, our studies are the first to identify a role for VGSC in neural progenitor proliferation. Elucidating the contribution of VGSC in proliferation will advance our understanding of bioelectric signaling within development and disease states.
Collapse
Affiliation(s)
- Beverly J Piggott
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
- Howard Hughes Medical Institute
| | - Christian J Peters
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Ye He
- Neuroscience Initiative, Advanced Science Research Center, the Graduate Center, City University of New York, New York 10031, New York
| | - Xi Huang
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Susan Younger
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
- Howard Hughes Medical Institute
| | - Lily Yeh Jan
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
- Howard Hughes Medical Institute
| | - Yuh Nung Jan
- Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
- Howard Hughes Medical Institute
| |
Collapse
|
13
|
Convergent and parallel evolution in a voltage-gated sodium channel underlies TTX-resistance in the Greater Blue-ringed Octopus: Hapalochlaena lunulata. Toxicon 2019; 170:77-84. [DOI: 10.1016/j.toxicon.2019.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/24/2022]
|
14
|
Postnatal Increases in Axonal Conduction Velocity of an Identified Drosophila Interneuron Require Fast Sodium, L-Type Calcium and Shaker Potassium Channels. eNeuro 2019; 6:ENEURO.0181-19.2019. [PMID: 31253715 PMCID: PMC6709211 DOI: 10.1523/eneuro.0181-19.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 11/21/2022] Open
Abstract
During early postnatal life, speed up of signal propagation through many central and peripheral neurons has been associated with an increase in axon diameter or/and myelination. Especially in unmyelinated axons postnatal adjustments of axonal membrane conductances is potentially a third mechanism but solid evidence is lacking. Here, we show that axonal action potential (AP) conduction velocity in the Drosophila giant fiber (GF) interneuron, which is required for fast long-distance signal conduction through the escape circuit, is increased by 80% during the first day of adult life. Genetic manipulations indicate that this postnatal increase in AP conduction velocity in the unmyelinated GF axon is likely owed to adjustments of ion channel expression or properties rather than axon diameter increases. Specifically, targeted RNAi knock-down of either Para fast voltage-gated sodium, Shaker potassium (Kv1 homologue), or surprisingly, L-type like calcium channels counteracts postnatal increases in GF axonal conduction velocity. By contrast, the calcium-dependent potassium channel Slowpoke (BK) is not essential for postnatal speeding, although it also significantly increases conduction velocity. Therefore, we identified multiple ion channels that function to support fast axonal AP conduction velocity, but only a subset of these are regulated during early postnatal life to maximize conduction velocity. Despite its large diameter (∼7 µm) and postnatal regulation of multiple ionic conductances, mature GF axonal conduction velocity is still 20-60 times slower than that of vertebrate Aβ sensory axons and α motoneurons, thus unraveling the limits of long-range information transfer speed through invertebrate circuits.
Collapse
|
15
|
Kasuya J, Iyengar A, Chen HL, Lansdon P, Wu CF, Kitamoto T. Milk-whey diet substantially suppresses seizure-like phenotypes of paraShu, a Drosophila voltage-gated sodium channel mutant. J Neurogenet 2019; 33:164-178. [PMID: 31096839 DOI: 10.1080/01677063.2019.1597082] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Drosophila mutant paraShu harbors a dominant, gain-of-function allele of the voltage-gated sodium channel gene, paralytic (para). The mutant flies display severe seizure-like phenotypes, including neuronal hyperexcitability, spontaneous spasms, ether-induced leg shaking, and heat-induced convulsions. We unexpectedly found that two distinct food recipes used routinely in the Drosophila research community result in a striking difference in severity of the paraShu phenotypes. Namely, when paraShu mutants were raised on the diet originally formulated by Edward Lewis in 1960, they showed severe neurological defects as previously reported. In contrast, when they were raised on the diet developed by Frankel and Brousseau in 1968, these phenotypes were substantially suppressed. Comparison of the effects of these two well-established food recipes revealed that the diet-dependent phenotypic suppression is accounted for by milk whey, which is present only in the latter. Inclusion of milk whey in the diet during larval stages was critical for suppression of the adult paraShu phenotypes, suggesting that this dietary modification affects development of the nervous system. We also found that milk whey has selective effects on other neurological mutants. Among the behavioral phenotypes of different para mutant alleles, those of paraGEFS+ and parabss were suppressed by milk whey, while those of paraDS and parats1 were not significantly affected. Overall, our study demonstrates that different diets routinely used in Drosophila labs could have considerably different effects on neurological phenotypes of Drosophila mutants. This finding provides a solid foundation for further investigation into how dietary modifications affect development and function of the nervous system and, ultimately, how they influence behavior.
Collapse
Affiliation(s)
- Junko Kasuya
- a Department of Anesthesia, Carver College of Medicine , University of Iowa , Iowa city , IA , USA
| | - Atulya Iyengar
- b Department of Biology, College of Liberal Arts and Sciences , University of Iowa , Iowa city , IA , USA.,c Interdisciplinary Graduate Program in Neuroscience , University of Iowa , Iowa city , IA , USA
| | - Hung-Lin Chen
- d Department of Medical Research , Tung's Taichung MetroHarbor Hospital , Taichung , Taiwan 43503 , ROC
| | - Patrick Lansdon
- e Interdisciplinary Graduate Program in Genetics , University of Iowa , Iowa city , IA , USA
| | - Chun-Fang Wu
- b Department of Biology, College of Liberal Arts and Sciences , University of Iowa , Iowa city , IA , USA.,c Interdisciplinary Graduate Program in Neuroscience , University of Iowa , Iowa city , IA , USA.,e Interdisciplinary Graduate Program in Genetics , University of Iowa , Iowa city , IA , USA
| | - Toshihiro Kitamoto
- a Department of Anesthesia, Carver College of Medicine , University of Iowa , Iowa city , IA , USA.,c Interdisciplinary Graduate Program in Neuroscience , University of Iowa , Iowa city , IA , USA.,e Interdisciplinary Graduate Program in Genetics , University of Iowa , Iowa city , IA , USA
| |
Collapse
|
16
|
Carmona-Antoñanzas G, Helgesen KO, Humble JL, Tschesche C, Bakke MJ, Gamble L, Bekaert M, Bassett DI, Horsberg TE, Bron JE, Sturm A. Mutations in voltage-gated sodium channels from pyrethroid resistant salmon lice (Lepeophtheirus salmonis). PEST MANAGEMENT SCIENCE 2019; 75:527-536. [PMID: 30062864 DOI: 10.1002/ps.5151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/22/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Parasitic salmon lice (Lepeophtheirus salmonis) cause high economic losses in Atlantic salmon farming. Pyrethroids, which block arthropod voltage-gated sodium channels (Nav 1), are used for salmon delousing. However, pyrethroid resistance is common in L. salmonis. The present study characterized Nav 1 homologues in L. salmonis in order to identify channel mutations associated to resistance, called kdr (knockdown) mutations. RESULTS Genome scans identified three L. salmonis Nav 1 homologues, LsNav 1.1, LsNav 1.2 and LsNav 1.3. Arthropod kdr mutations map to specific Nav 1 regions within domains DI-III, namely segments S5 and S6 and the linker helix connecting S4 and S5. The above channel regions were amplified by RT-PCR and sequenced in deltamethrin-susceptible and deltamethrin-resistant L. salmonis. While LsNav 1.1 and LsNav 1.2 lacked nucleotide polymorphisms showing association to resistance, LsNav 1.3 showed a non-synonymous mutation in S5 of DII occurring in deltamethrin-resistant parasites. The mutation is homologous to a previously described kdr mutation (I936V, numbering according to Musca domestica Vssc1) and was present in two pyrethroid-resistant L. salmonis strains (allele frequencies of 0.800 and 0.357), but absent in two pyrethroid-susceptible strains. CONCLUSIONS The present study indicates that a kdr-mutation in LsNaV 1.3 may contribute to deltamethrin resistance in L. salmonis. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Greta Carmona-Antoñanzas
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
- Imegen, Parc Científic de la Universitat de València, Paterna, Spain
| | - Kari O Helgesen
- Department of Epidemiology, Norwegian Veterinary Institute, Oslo, Norway
| | - Joseph L Humble
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Claudia Tschesche
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Marit J Bakke
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Sea Lice Research Centre, Oslo, Norway
| | - Louise Gamble
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Michaël Bekaert
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - David I Bassett
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Tor E Horsberg
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Sea Lice Research Centre, Oslo, Norway
| | - James E Bron
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Armin Sturm
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| |
Collapse
|
17
|
Abstract
A fundamental question in contemporary neuroscience is how the remarkable cellular diversity required for the intricate function of the nervous system is achieved. Here, we bridge the gap between a cellular machinery that is known to diversify the transcriptome and the existence of distinct neuronal populations that compose the Drosophila brain. Adenosine-to-inosine (A-to-I) RNA editing is a ubiquitous mechanism that generates transcriptomic diversity in cells by recoding certain adenosines within the pre-mRNA sequence into inosines. We present a spatial map of RNA editing across different neuronal populations in Drosophila brain. Each neuronal population has a distinct editing signature, with the majority of differential editing occurring in highly conserved regions of transcripts that encode ion channels and other essential neuronal genes. Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by ADAR enzymes, is a ubiquitous mechanism that generates transcriptomic diversity. This process is particularly important for proper neuronal function; however, little is known about how RNA editing is dynamically regulated between the many functionally distinct neuronal populations of the brain. Here, we present a spatial RNA editing map in the Drosophila brain and show that different neuronal populations possess distinct RNA editing signatures. After purifying and sequencing RNA from genetically marked groups of neuronal nuclei, we identified a large number of editing sites and compared editing levels in hundreds of transcripts across nine functionally different neuronal populations. We found distinct editing repertoires for each population, including sites in repeat regions of the transcriptome and differential editing in highly conserved and likely functional regions of transcripts that encode essential neuronal genes. These changes are site-specific and not driven by changes in Adar expression, suggesting a complex, targeted regulation of editing levels in key transcripts. This fine-tuning of the transcriptome between different neurons by RNA editing may account for functional differences between distinct populations in the brain.
Collapse
|
18
|
Scott JG. Life and Death at the Voltage-Sensitive Sodium Channel: Evolution in Response to Insecticide Use. ANNUAL REVIEW OF ENTOMOLOGY 2019; 64:243-257. [PMID: 30629893 DOI: 10.1146/annurev-ento-011118-112420] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The voltage-sensitive sodium channel (VSSC) is a critical component of the insect nervous system. Pyrethroids and DDT are insecticides that have been widely used, and they kill insects by perturbations of the VSSC. Decades of insecticide use selected for mutations in Vssc that give rise to resistance in almost all pest insects. However, the mutations responsible for the resistance are not always the same, and some unusual patterns have emerged. This review focuses on what pyrethroid/DDT selection has done, in terms of Vssc changes that have occurred, using four well-studied species as examples of the differences that have evolved. Information is provided about the mutations that occur, potential pathways by which alleles with multiple mutations arose, the relative fitness of the alleles, the levels of resistance conferred, and the geographic distribution of the mutations. The lessons learned and exciting new areas of research are discussed.
Collapse
Affiliation(s)
- Jeffrey G Scott
- Department of Entomology, Cornell University, Ithaca, New York 14853, USA;
| |
Collapse
|
19
|
Unraveling Synaptic GCaMP Signals: Differential Excitability and Clearance Mechanisms Underlying Distinct Ca 2+ Dynamics in Tonic and Phasic Excitatory, and Aminergic Modulatory Motor Terminals in Drosophila. eNeuro 2018; 5:eN-NWR-0362-17. [PMID: 29464198 PMCID: PMC5818553 DOI: 10.1523/eneuro.0362-17.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/27/2018] [Accepted: 02/02/2018] [Indexed: 11/21/2022] Open
Abstract
GCaMP is an optogenetic Ca2+ sensor widely used for monitoring neuronal activities but the precise physiological implications of GCaMP signals remain to be further delineated among functionally distinct synapses. The Drosophila neuromuscular junction (NMJ), a powerful genetic system for studying synaptic function and plasticity, consists of tonic and phasic glutamatergic and modulatory aminergic motor terminals of distinct properties. We report a first simultaneous imaging and electric recording study to directly contrast the frequency characteristics of GCaMP signals of the three synapses for physiological implications. Different GCaMP variants were applied in genetic and pharmacological perturbation experiments to examine the Ca2+ influx and clearance processes underlying the GCaMP signal. Distinct mutational and drug effects on GCaMP signals indicate differential roles of Na+ and K+ channels, encoded by genes including paralytic (para), Shaker (Sh), Shab, and ether-a-go-go (eag), in excitability control of different motor terminals. Moreover, the Ca2+ handling properties reflected by the characteristic frequency dependence of the synaptic GCaMP signals were determined to a large extent by differential capacity of mitochondria-powered Ca2+ clearance mechanisms. Simultaneous focal recordings of synaptic activities further revealed that GCaMPs were ineffective in tracking the rapid dynamics of Ca2+ influx that triggers transmitter release, especially during low-frequency activities, but more adequately reflected cytosolic residual Ca2+ accumulation, a major factor governing activity-dependent synaptic plasticity. These results highlight the vast range of GCaMP response patterns in functionally distinct synaptic types and provide relevant information for establishing basic guidelines for the physiological interpretations of presynaptic GCaMP signals from in situ imaging studies.
Collapse
|
20
|
Molecular basis of selective resistance of the bumblebee BiNa v1 sodium channel to tau-fluvalinate. Proc Natl Acad Sci U S A 2017; 114:12922-12927. [PMID: 29158414 DOI: 10.1073/pnas.1711699114] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Insecticides are widely used to control pests in agriculture and insect vectors that transmit human diseases. However, these chemicals can have a negative effect on nontarget, beneficial organisms including bees. Discovery and deployment of selective insecticides is a major mission of modern toxicology and pest management. Pyrethroids exert their toxic action by acting on insect voltage-gated sodium channels. Honeybees and bumblebees are highly sensitive to most pyrethroids, but are resistant to a particular pyrethroid, tau-fluvalinate (τ-FVL). Because of its unique selectivity, τ-FVL is widely used to control not only agricultural pests but also varroa mites, the principal ectoparasite of honeybees. However, the mechanism of bee resistance to τ-FVL largely remains elusive. In this study, we functionally characterized the sodium channel BiNav1-1 from the common eastern bumblebee (Bombus impatiens) in Xenopus oocytes and found that the BiNav1-1 channel is highly sensitive to six commonly used pyrethroids, but resistant to τ-FVL. Phylogenetic and mutational analyses revealed that three residues, which are conserved in sodium channels from 12 bee species, underlie resistance to τ-FVL or sensitivity to the other pyrethroids. Further computer modeling and mutagenesis uncovered four additional residues in the pyrethroid receptor sites that contribute to the unique selectivity of the bumblebee sodium channel to τ-FVL versus other pyrethroids. Our data contribute to understanding a long-standing enigma of selective pyrethroid toxicity in bees and may be used to guide future modification of pyrethroids to achieve highly selective control of pests with minimal effects on nontarget organisms.
Collapse
|
21
|
Azevedo AW, Wilson RI. Active Mechanisms of Vibration Encoding and Frequency Filtering in Central Mechanosensory Neurons. Neuron 2017; 96:446-460.e9. [PMID: 28943231 DOI: 10.1016/j.neuron.2017.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/26/2017] [Accepted: 09/05/2017] [Indexed: 12/11/2022]
Abstract
To better understand biophysical mechanisms of mechanosensory processing, we investigated two cell types in the Drosophila brain (A2 and B1 cells) that are postsynaptic to antennal vibration receptors. A2 cells receive excitatory synaptic currents in response to both directions of movement: thus, twice per vibration cycle. The membrane acts as a low-pass filter, so that voltage and spiking mainly track the vibration envelope rather than individual cycles. By contrast, B1 cells are excited by only forward or backward movement, meaning they are sensitive to vibration phase. They receive oscillatory synaptic currents at the stimulus frequency, and they bandpass filter these inputs to favor specific frequencies. Different cells prefer different frequencies, due to differences in their voltage-gated conductances. Both Na+ and K+ conductances suppress low-frequency synaptic inputs, so cells with larger voltage-gated conductances prefer higher frequencies. These results illustrate how membrane properties and voltage-gated conductances can extract distinct stimulus features into parallel channels.
Collapse
Affiliation(s)
- Anthony W Azevedo
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Liu B, Coy MR, Wang JJ, Stelinski LL. Characterization of the voltage-gated sodium channel of the Asian citrus psyllid, Diaphorina citri. INSECT SCIENCE 2017; 24:47-59. [PMID: 26537022 DOI: 10.1111/1744-7917.12288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is an important insect pest of citrus. It is the vector of 'Candidatus' Liberibacter asiaticus, a phloem-limited bacterium that infects citrus, resulting in the disease Huanglongbing (HLB). Disease management relies heavily on suppression of D. citri populations with insecticides, including pyrethroids. In recent annual surveys to monitor insecticide resistance, reduced susceptibility to fenpropathrin was identified in several field populations of D. citri. The primary target of pyrethroids is the voltage-gated sodium channel (VGSC). The VGSC is prone to target-site insensitivity because of mutations that either reduce pyrethroid binding and/or alter gating kinetics. These mutations, known as knockdown resistance or kdr, have been reported in a wide diversity of arthropod species. Alternative splicing, in combination with kdr mutations, has been also associated with reduced pyrethroid efficacy. Here we report the molecular characterization of the VGSC in D. citri along with a survey of alternative splicing across developmental stages of this species. Previous studies demonstrated that D. citri has an exquisite enzymatic arsenal to detoxify insecticides resulting in reduced efficacy. The results from the current investigation demonstrate that target-site insensitivity is also a potential basis for insecticide resistance to pyrethroids in D. citri. The VGSC sequence and its molecular characterization should facilitate early elucidation of the underlying cause of an established case of resistance to pyrethroids. This is the first characterization of a VGSC from a hemipteran to this level of detail, with the majority of the previous studies on dipterans and lepidopterans.
Collapse
Affiliation(s)
- Bin Liu
- Entomology and Nematology Department, Citrus Research and Education Center, University of Florida, Florida, USA
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Monique R Coy
- Entomology and Nematology Department, Citrus Research and Education Center, University of Florida, Florida, USA
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Lukasz L Stelinski
- Entomology and Nematology Department, Citrus Research and Education Center, University of Florida, Florida, USA
| |
Collapse
|
23
|
Jiang XZ, Pei YX, Lei W, Wang KY, Shang F, Jiang HB, Wang JJ. Characterization of an insect heterodimeric voltage-gated sodium channel with unique alternative splicing mode. Comp Biochem Physiol B Biochem Mol Biol 2017; 203:149-158. [DOI: 10.1016/j.cbpb.2016.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/20/2016] [Accepted: 10/31/2016] [Indexed: 12/22/2022]
|
24
|
Lithium-Responsive Seizure-Like Hyperexcitability Is Caused by a Mutation in the Drosophila Voltage-Gated Sodium Channel Gene paralytic. eNeuro 2016; 3:eN-NWR-0221-16. [PMID: 27844061 PMCID: PMC5103163 DOI: 10.1523/eneuro.0221-16.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/06/2016] [Indexed: 01/01/2023] Open
Abstract
Shudderer (Shu) is an X-linked dominant mutation in Drosophila melanogaster identified more than 40 years ago. A previous study showed that Shu caused spontaneous tremors and defects in reactive climbing behavior, and that these phenotypes were significantly suppressed when mutants were fed food containing lithium, a mood stabilizer used in the treatment of bipolar disorder (Williamson, 1982). This unique observation suggested that the Shu mutation affects genes involved in lithium-responsive neurobiological processes. In the present study, we identified Shu as a novel mutant allele of the voltage-gated sodium (Nav) channel gene paralytic (para). Given that hypomorphic para alleles and RNA interference-mediated para knockdown reduced the severity of Shu phenotypes, Shu was classified as a para hypermorphic allele. We also demonstrated that lithium could improve the behavioral abnormalities displayed by other Nav mutants, including a fly model of the human generalized epilepsy with febrile seizures plus. Our electrophysiological analysis of Shu showed that lithium treatment did not acutely suppress Nav channel activity, indicating that the rescue effect of lithium resulted from chronic physiological adjustments to this drug. Microarray analysis revealed that lithium significantly alters the expression of various genes in Shu, including those involved in innate immune responses, amino acid metabolism, and oxidation-reduction processes, raising the interesting possibility that lithium-induced modulation of these biological pathways may contribute to such adjustments. Overall, our findings demonstrate that Nav channel mutants in Drosophila are valuable genetic tools for elucidating the effects of lithium on the nervous system in the context of neurophysiology and behavior.
Collapse
|
25
|
Abstract
Ion channels remain the primary target of most of the small molecule insecticides. This review examines how the subunit composition of heterologously expressed receptors determines their insecticide-specific pharmacology and how the pharmacology of expressed receptors differs from those found in the insect nervous system. We find that the insecticide-specific pharmacology of some receptors, like that containing subunits of the Rdl encoded GABA receptor, can be reconstituted with very few of the naturally occurring subunits expressed. In contrast, workers have struggled even to express functional insect nicotinic acetylcholine receptors (nAChRs), and work has therefore often relied upon the expression of vertebrate receptor subunits in their place. We also examine the extent to which insecticide-resistance-associated mutations, such as those in the para encoded voltage-gated sodium channel, can reveal details of insecticide-binding sites and mode of action. In particular, we examine whether mutations are present in the insecticide-binding site and/or at sites that allosterically affect the drug preferred conformation of the receptor. We also discuss the ryanodine receptor as a target for the recently developed diamides. Finally, we examine the lethality of the genes encoding these receptor subunits and discuss how this might determine the degree of conservation of the resistance-associated mutations found.
Collapse
Affiliation(s)
| | - Martin S Williamson
- b Biological Chemistry and Crop Protection, Rothamsted Research , Harpenden , Hertfordshire , UK
| | - T G Emyr Davies
- b Biological Chemistry and Crop Protection, Rothamsted Research , Harpenden , Hertfordshire , UK
| | - Chris Bass
- a Biosciences , University of Exeter in Cornwall , Falmouth , UK
| |
Collapse
|
26
|
Insight into the Mode of Action of Haedoxan A from Phryma leptostachya. Toxins (Basel) 2016; 8:53. [PMID: 26907348 PMCID: PMC4773806 DOI: 10.3390/toxins8020053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/14/2016] [Accepted: 02/15/2016] [Indexed: 11/26/2022] Open
Abstract
Haedoxan A (HA) is a major active ingredient in the herbaceous perennial plant lopseed (Phryma leptostachya L.), which is used as a natural insecticide against insect pests in East Asia. Here, we report that HA delayed the decay rate of evoked excitatory junctional potentials (EJPs) and increased the frequency of miniature EJPs (mEJPs) on the Drosophila neuromuscular junction. HA also caused a significant hyperpolarizing shift of the voltage dependence of fast inactivation of insect sodium channels expressed in Xenopus oocytes. Our results suggest that HA acts on both axonal conduction and synaptic transmission, which can serve as a basis for elucidating the mode of action of HA for further designing and developing new effective insecticides.
Collapse
|
27
|
Schutte SS, Schutte RJ, Barragan EV, O'Dowd DK. Model systems for studying cellular mechanisms of SCN1A-related epilepsy. J Neurophysiol 2016; 115:1755-66. [PMID: 26843603 DOI: 10.1152/jn.00824.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/22/2016] [Indexed: 11/22/2022] Open
Abstract
Mutations in SCN1A, the gene encoding voltage-gated sodium channel NaV1.1, cause a spectrum of epilepsy disorders that range from genetic epilepsy with febrile seizures plus to catastrophic disorders such as Dravet syndrome. To date, more than 1,250 mutations in SCN1A have been linked to epilepsy. Distinct effects of individual SCN1A mutations on neuronal function are likely to contribute to variation in disease severity and response to treatment in patients. Several model systems have been used to explore seizure genesis in SCN1A epilepsies. In this article we review what has been learned about cellular mechanisms and potential new therapies from these model systems, with a particular emphasis on the novel model system of knock in Drosophila and a look toward the future with expanded use of patient-specific induced pluripotent stem cell-derived neurons.
Collapse
Affiliation(s)
- Soleil S Schutte
- Department of Developmental and Cell Biology and Department of Anatomy and Neurobiology, University of California, Irvine, California
| | - Ryan J Schutte
- Department of Developmental and Cell Biology and Department of Anatomy and Neurobiology, University of California, Irvine, California
| | - Eden V Barragan
- Department of Developmental and Cell Biology and Department of Anatomy and Neurobiology, University of California, Irvine, California
| | - Diane K O'Dowd
- Department of Developmental and Cell Biology and Department of Anatomy and Neurobiology, University of California, Irvine, California
| |
Collapse
|
28
|
Berger SD, Crook SM. Modeling the Influence of Ion Channels on Neuron Dynamics in Drosophila. Front Comput Neurosci 2015; 9:139. [PMID: 26635592 PMCID: PMC4649037 DOI: 10.3389/fncom.2015.00139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 10/28/2015] [Indexed: 11/24/2022] Open
Abstract
Voltage gated ion channels play a major role in determining a neuron's firing behavior, resulting in the specific processing of synaptic input patterns. Drosophila and other invertebrates provide valuable model systems for investigating ion channel kinetics and their impact on firing properties. Despite the increasing importance of Drosophila as a model system, few computational models of its ion channel kinetics have been developed. In this study, experimentally observed biophysical properties of voltage gated ion channels from the fruitfly Drosophila melanogaster are used to develop a minimal, conductance based neuron model. We investigate the impact of the densities of these channels on the excitability of the model neuron. Changing the channel densities reproduces different in situ observed firing patterns and induces a switch from integrator to resonator properties. Further, we analyze the preference to input frequency and how it depends on the channel densities and the resulting bifurcation type the system undergoes. An extension to a three dimensional model demonstrates that the inactivation kinetics of the sodium channels play an important role, allowing for firing patterns with a delayed first spike and subsequent high frequency firing as often observed in invertebrates, without altering the kinetics of the delayed rectifier current.
Collapse
Affiliation(s)
- Sandra D Berger
- School of Life Sciences, Arizona State University Tempe, AZ, USA
| | - Sharon M Crook
- School of Life Sciences, Arizona State University Tempe, AZ, USA ; School of Mathematical and Statistical Sciences, Arizona State University Tempe, AZ, USA
| |
Collapse
|
29
|
Bourdin CM, Guérineau NC, Murillo L, Quinchard S, Dong K, Legros C. Molecular and functional characterization of a novel sodium channel TipE-like auxiliary subunit from the American cockroach Periplaneta americana. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 66:136-144. [PMID: 26524962 DOI: 10.1016/j.ibmb.2015.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 06/05/2023]
Abstract
In Drosophila melanogaster, the functions of voltage-gated sodium (Nav) channels are modulated by TipE and its orthologs. Here, we describe a novel TipE homolog of the American cockroach, Periplaneta americana, called PaTipE. Like DmTipE, PaTipE mRNAs are ubiquitously expressed. Surprisingly, PaTipE mRNA was undetectable in neurosecretory cells identified as dorsal unpaired median neurons. Phylogenetic analysis placed this new sequence in TipE clade, indicating an independent evolution from a common ancestor. Contrary to previous reports, our data indicate that the auxiliary subunits of insect Nav channels are very distant from the mammalian BKCa auxiliary subunits. To decipher the functional roles of PaTipE, we characterized the gating properties of DmNav1-1 channels co-expressed with DmTipE or PaTipE, in Xenopus oocytes. Compared to DmTipE, PaTipE increased Na(+) currents by a 4.2-fold. The voltage-dependence of steady-state fast inactivation of DmNav1-1/PaTipE channels was shifted by 5.8 mV to more negative potentials than that of DmNav1-1/DmTipE channels. DmNav1-1/PaTipE channels recovered 3.2-fold slower from the fast-inactivated state than DmNav1-1/DmTipE channels. In conclusion, this study supports that the insect Nav auxiliary subunits share functional features with their mammalian counterparts, although structurally and phylogenetically distant.
Collapse
Affiliation(s)
- Céline M Bourdin
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM), UPRES EA 2647/USC, INRA 1330, SFR QUASAV n° 4207, Université d'Angers, UFR Sciences, 2 boulevard Lavoisier, F-49045, Angers Cedex, France
| | - Nathalie C Guérineau
- Laboratoire de Biologie Neurovasculaire et Mitochondriale Intégrée, CNRS UMR 6214, INSERM U1083, UFR de Sciences Médicales, Université d'Angers, rue Haute de Reculée, F-49045, Angers Cedex, France; Institut de Génomique Fonctionnelle, UMR CNRS 5203, INSERM U661, Université de Montpellier, 141 rue de la Cardonille, F-34094, Montpellier Cedex 5, France
| | - Laurence Murillo
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM), UPRES EA 2647/USC, INRA 1330, SFR QUASAV n° 4207, Université d'Angers, UFR Sciences, 2 boulevard Lavoisier, F-49045, Angers Cedex, France; Laboratoire LIttoral ENvironnement et Sociétés (LIENSs), UMR 7266 CNRS Université de La Rochelle, Institut du Littoral et de l'Environnement, 2 rue Olympe de Gouges, F-17000, La Rochelle, France
| | - Sophie Quinchard
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM), UPRES EA 2647/USC, INRA 1330, SFR QUASAV n° 4207, Université d'Angers, UFR Sciences, 2 boulevard Lavoisier, F-49045, Angers Cedex, France
| | - Ke Dong
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, 106 CIPS, MI 48824, USA
| | - Christian Legros
- Laboratoire de Biologie Neurovasculaire et Mitochondriale Intégrée, CNRS UMR 6214, INSERM U1083, UFR de Sciences Médicales, Université d'Angers, rue Haute de Reculée, F-49045, Angers Cedex, France.
| |
Collapse
|
30
|
Kroll JR, Saras A, Tanouye MA. Drosophila sodium channel mutations: Contributions to seizure-susceptibility. Exp Neurol 2015; 274:80-7. [PMID: 26093037 DOI: 10.1016/j.expneurol.2015.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 06/14/2015] [Accepted: 06/16/2015] [Indexed: 01/10/2023]
Abstract
This paper reviews Drosophila voltage-gated Na(+) channel mutations encoded by the para (paralytic) gene and their contributions to seizure disorders in the fly. Numerous mutations cause seizure-sensitivity, for example, para(bss1), with phenotypes that resemble human intractable epilepsy in some aspects. Seizure phenotypes are also seen with human GEFS+ spectrum mutations that have been knocked into the Drosophila para gene, para(GEFS+) and para(DS) alleles. Other para mutations, para(ST76) and para(JS) act as seizure-suppressor mutations reverting seizure phenotypes in other mutants. Seizure-like phenotypes are observed from mutations and other conditions that cause a persistent Na(+) current through either changes in mRNA splicing or protein structure.
Collapse
Affiliation(s)
- Jason R Kroll
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Arunesh Saras
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Mark A Tanouye
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
31
|
Wang L, Du Y, Nomura Y, Dong K. Distinct modulating effects of TipE-homologs 2-4 on Drosophila sodium channel splice variants. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 60:24-32. [PMID: 25744892 DOI: 10.1016/j.ibmb.2015.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 02/13/2015] [Accepted: 02/14/2015] [Indexed: 06/04/2023]
Abstract
The Drosophila melanogaster TipE protein is thought to be an insect sodium channel auxiliary subunit functionally analogous to the β subunits of mammalian sodium channels. Besides TipE, four TipE-homologous proteins (TEH1-4) have been identified. It has been reported that TipE and TEH1 have both common and distinct effects on the gating properties of splice variants of the Drosophila sodium channel, DmNav. However, limited information is available on the effects of TEH2, TEH3 and TEH4 on the function of DmNav channel variants. In this study, we found that TEH2 increased the amplitude of peak current, but did not alter the gating properties of three examined DmNav splice variants expressed in Xenopus oocytes. In contrast, TEH4 had no effect on peak current, yet altered the gating properties of all three channel variants. Furthermore, TEH4 enhanced persistent current and slowed sodium current decay. The effects of TEH3 on DmNav variants are similar to those of TEH4, but the data were collected from a small portion of oocytes because co-expression of TEH3 with DmNav variants generated a large leak current in the majority of oocytes examined. In addition, TEH3 and TEH4 enhanced the expression of endogenous currents in oocytes. Taken together, our results reveal distinct roles of TEH proteins in modulating the function of sodium channels and suggest that TEH proteins might provide an important layer of regulation of membrane excitability in vivo. Our results also raise an intriguing possibility of TEH3/TEH4 as auxiliary subunits of other voltage-gated ion channels besides sodium channels.
Collapse
Affiliation(s)
- Lingxin Wang
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI 48823, USA
| | - Yuzhe Du
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI 48823, USA
| | - Yoshiko Nomura
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI 48823, USA
| | - Ke Dong
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI 48823, USA.
| |
Collapse
|
32
|
Moran Y, Barzilai MG, Liebeskind BJ, Zakon HH. Evolution of voltage-gated ion channels at the emergence of Metazoa. J Exp Biol 2015; 218:515-25. [DOI: 10.1242/jeb.110270] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Voltage-gated ion channels are large transmembrane proteins that enable the passage of ions through their pore across the cell membrane. These channels belong to one superfamily and carry pivotal roles such as the propagation of neuronal and muscular action potentials and the promotion of neurotransmitter secretion in synapses. In this review, we describe in detail the current state of knowledge regarding the evolution of these channels with a special emphasis on the metazoan lineage. We highlight the contribution of the genomic revolution to the understanding of ion channel evolution and for revealing that these channels appeared long before the appearance of the first animal. We also explain how the elucidation of channel selectivity properties and function in non-bilaterian animals such as cnidarians (sea anemones, corals, jellyfish and hydroids) can contribute to the study of channel evolution. Finally, we point to open questions and future directions in this field of research.
Collapse
Affiliation(s)
- Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Maya Gur Barzilai
- Department of Molecular Biology and Ecology of Plants, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Benjamin J. Liebeskind
- Department of Integrative Biology and Center for Computational Biology and Bioinformatics, University of Texas, Austin, TX 78712, USA
| | - Harold H. Zakon
- Department of Integrative Biology and Center for Computational Biology and Bioinformatics, University of Texas, Austin, TX 78712, USA
- Department of Neuroscience, University of Texas at Austin, TX 78712, USA
- Josephine Bay Paul Center for Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
33
|
Rinkevich FD, Du Y, Tolinski J, Ueda A, Wu CF, Zhorov BS, Dong K. Distinct roles of the DmNav and DSC1 channels in the action of DDT and pyrethroids. Neurotoxicology 2015; 47:99-106. [PMID: 25687544 DOI: 10.1016/j.neuro.2015.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 12/22/2022]
Abstract
Voltage-gated sodium channels (Nav channels) are critical for electrical signaling in the nervous system and are the primary targets of the insecticides DDT and pyrethroids. In Drosophila melanogaster, besides the canonical Nav channel, Para (also called DmNav), there is a sodium channel-like cation channel called DSC1 (Drosophila sodium channel 1). Temperature-sensitive paralytic mutations in DmNav (para(ts)) confer resistance to DDT and pyrethroids, whereas DSC1 knockout flies exhibit enhanced sensitivity to pyrethroids. To further define the roles and interaction of DmNav and DSC1 channels in DDT and pyrethroid neurotoxicology, we generated a DmNav/DSC1 double mutant line by introducing a para(ts1) allele (carrying the I265N mutation) into a DSC1 knockout line. We confirmed that the I265N mutation reduced the sensitivity to two pyrethroids, permethrin and deltamethrin of a DmNav variant expressed in Xenopus oocytes. Computer modeling predicts that the I265N mutation confers pyrethroid resistance by allosterically altering the second pyrethroid receptor site on the DmNav channel. Furthermore, we found that I265N-mediated pyrethroid resistance in para(ts1) mutant flies was almost completely abolished in para(ts1);DSC1(-/-) double mutant flies. Unexpectedly, however, the DSC1 knockout flies were less sensitive to DDT, compared to the control flies (w(1118A)), and the para(ts1);DSC1(-/-) double mutant flies were even more resistant to DDT compared to the DSC1 knockout or para(ts1) mutant. Our findings revealed distinct roles of the DmNav and DSC1 channels in the neurotoxicology of DDT vs. pyrethroids and implicate the exciting possibility of using DSC1 channel blockers or modifiers in the management of pyrethroid resistance.
Collapse
Affiliation(s)
- Frank D Rinkevich
- Department of Entomology, Michigan State University, East Lansing, MI 48824, United States
| | - Yuzhe Du
- Department of Entomology, Michigan State University, East Lansing, MI 48824, United States
| | - Josh Tolinski
- Department of Entomology, Michigan State University, East Lansing, MI 48824, United States
| | - Atsushi Ueda
- Department of Biology, University of Iowa, Iowa City, IA 52242, United States
| | - Chun-Fang Wu
- Department of Biology, University of Iowa, Iowa City, IA 52242, United States
| | - Boris S Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Ke Dong
- Department of Entomology, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
34
|
Kadala A, Charreton M, Jakob I, Cens T, Rousset M, Chahine M, Le Conte Y, Charnet P, Collet C. Pyrethroids differentially alter voltage-gated sodium channels from the honeybee central olfactory neurons. PLoS One 2014; 9:e112194. [PMID: 25390654 PMCID: PMC4229128 DOI: 10.1371/journal.pone.0112194] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/13/2014] [Indexed: 11/29/2022] Open
Abstract
The sensitivity of neurons from the honey bee olfactory system to pyrethroid insecticides was studied using the patch-clamp technique on central ‘antennal lobe neurons’ (ALNs) in cell culture. In these neurons, the voltage-dependent sodium currents are characterized by negative potential for activation, fast kinetics of activation and inactivation, and the presence of cumulative inactivation during train of depolarizations. Perfusion of pyrethroids on these ALN neurons submitted to repetitive stimulations induced (1) an acceleration of cumulative inactivation, and (2) a marked slowing of the tail current recorded upon repolarization. Cypermethrin and permethrin accelerated cumulative inactivation of the sodium current peak in a similar manner and tetramethrin was even more effective. The slow-down of channel deactivation was markedly dependent on the type of pyrethroid. With cypermethrin, a progressive increase of the tail current amplitude along with successive stimulations reveals a traditionally described use-dependent recruitment of modified sodium channels. However, an unexpected decrease in this tail current was revealed with tetramethrin. If one considers the calculated percentage of modified channels as an index of pyrethroids effects, ALNs are significantly more susceptible to tetramethrin than to permethrin or cypermethrin for a single depolarization, but this difference attenuates with repetitive activity. Further comparison with peripheral neurons from antennae suggest that these modifications are neuron type specific. Modeling the sodium channel as a multi-state channel with fast and slow inactivation allows to underline the effects of pyrethroids on a set of rate constants connecting open and inactivated conformations, and give some insights to their specificity. Altogether, our results revealed a differential sensitivity of central olfactory neurons to pyrethroids that emphasize the ability for these compounds to impair detection and processing of information at several levels of the bees olfactory pathway.
Collapse
Affiliation(s)
- Aklesso Kadala
- INRA, UR 406 Abeilles et Environnement, Toxicologie Environnementale, Avignon, France
| | - Mercedes Charreton
- INRA, UR 406 Abeilles et Environnement, Toxicologie Environnementale, Avignon, France
- UMT Protection des Abeilles dans l'Environnement, Avignon, France
| | - Ingrid Jakob
- INRA, UR 406 Abeilles et Environnement, Toxicologie Environnementale, Avignon, France
| | - Thierry Cens
- CNRS, UMR 5237, Centre de Recherche de Biochimie Macromoléculaire, Université Montpellier 2, Montpellier, France
| | - Matthieu Rousset
- CNRS, UMR 5237, Centre de Recherche de Biochimie Macromoléculaire, Université Montpellier 2, Montpellier, France
| | - Mohamed Chahine
- Department of medicine, Laval University, Québec city, Canada
| | - Yves Le Conte
- INRA, UR 406 Abeilles et Environnement, Toxicologie Environnementale, Avignon, France
- UMT Protection des Abeilles dans l'Environnement, Avignon, France
| | - Pierre Charnet
- CNRS, UMR 5237, Centre de Recherche de Biochimie Macromoléculaire, Université Montpellier 2, Montpellier, France
| | - Claude Collet
- INRA, UR 406 Abeilles et Environnement, Toxicologie Environnementale, Avignon, France
- UMT Protection des Abeilles dans l'Environnement, Avignon, France
- * E-mail:
| |
Collapse
|
35
|
Dong K, Du Y, Rinkevich F, Nomura Y, Xu P, Wang L, Silver K, Zhorov BS. Molecular biology of insect sodium channels and pyrethroid resistance. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 50:1-17. [PMID: 24704279 PMCID: PMC4484874 DOI: 10.1016/j.ibmb.2014.03.012] [Citation(s) in RCA: 304] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/24/2014] [Accepted: 03/24/2014] [Indexed: 05/06/2023]
Abstract
Voltage-gated sodium channels are essential for the initiation and propagation of the action potential in neurons and other excitable cells. Because of their critical roles in electrical signaling, sodium channels are targets of a variety of naturally occurring and synthetic neurotoxins, including several classes of insecticides. This review is intended to provide an update on the molecular biology of insect sodium channels and the molecular mechanism of pyrethroid resistance. Although mammalian and insect sodium channels share fundamental topological and functional properties, most insect species carry only one sodium channel gene, compared to multiple sodium channel genes found in each mammalian species. Recent studies showed that two posttranscriptional mechanisms, alternative splicing and RNA editing, are involved in generating functional diversity of sodium channels in insects. More than 50 sodium channel mutations have been identified to be responsible for or associated with knockdown resistance (kdr) to pyrethroids in various arthropod pests and disease vectors. Elucidation of molecular mechanism of kdr led to the identification of dual receptor sites of pyrethroids on insect sodium channels. Many of the kdr mutations appear to be located within or close to the two receptor sites. The accumulating knowledge of insect sodium channels and their interactions with insecticides provides a foundation for understanding the neurophysiology of sodium channels in vivo and the development of new and safer insecticides for effective control of arthropod pests and human disease vectors.
Collapse
Affiliation(s)
- Ke Dong
- Department of Entomology, Neuroscience and Genetics Programs, Michigan State University, East Lansing, MI, USA.
| | - Yuzhe Du
- Department of Entomology, Neuroscience and Genetics Programs, Michigan State University, East Lansing, MI, USA
| | - Frank Rinkevich
- Department of Entomology, Neuroscience and Genetics Programs, Michigan State University, East Lansing, MI, USA
| | - Yoshiko Nomura
- Department of Entomology, Neuroscience and Genetics Programs, Michigan State University, East Lansing, MI, USA
| | - Peng Xu
- Department of Entomology, Neuroscience and Genetics Programs, Michigan State University, East Lansing, MI, USA
| | - Lingxin Wang
- Department of Entomology, Neuroscience and Genetics Programs, Michigan State University, East Lansing, MI, USA
| | - Kristopher Silver
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Boris S Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
36
|
Lin WH, Baines RA. Regulation of membrane excitability: a convergence on voltage-gated sodium conductance. Mol Neurobiol 2014; 51:57-67. [PMID: 24677068 PMCID: PMC4309913 DOI: 10.1007/s12035-014-8674-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/11/2014] [Indexed: 11/30/2022]
Abstract
The voltage-gated sodium channel (Nav) plays a key role in regulation of neuronal excitability. Aberrant regulation of Nav expression and/or function can result in an imbalance in neuronal activity which can progress to epilepsy. Regulation of Nav activity is achieved by coordination of a multitude of mechanisms including RNA alternative splicing and translational repression. Understanding of these regulatory mechanisms is complicated by extensive genetic redundancy: the mammalian genome encodes ten Navs. By contrast, the genome of the fruitfly, Drosophila melanogaster, contains just one Nav homologue, encoded by paralytic (DmNa v ). Analysis of splicing in DmNa v shows variants exhibit distinct gating properties including varying magnitudes of persistent sodium current (INaP). Splicing by Pasilla, an identified RNA splicing factor, alters INaP magnitude as part of an activity-dependent mechanism. Enhanced INaP promotes membrane hyperexcitability that is associated with seizure-like behaviour in Drosophila. Nova-2, a mammalian Pasilla homologue, has also been linked to splicing of Navs and, moreover, mouse gene knockouts display seizure-like behaviour.Expression level of Navs is also regulated through a mechanism of translational repression in both flies and mammals. The translational repressor Pumilio (Pum) can bind to Na v transcripts and repress the normal process of translation, thus regulating sodium current (INa) density in neurons. Pum2-deficient mice exhibit spontaneous EEG abnormalities. Taken together, aberrant regulation of Nav function and/or expression is often epileptogenic. As such, a better understanding of regulation of membrane excitability through RNA alternative splicing and translational repression of Navs should provide new leads to treat epilepsy.
Collapse
Affiliation(s)
- Wei-Hsiang Lin
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, UK
| | | |
Collapse
|
37
|
Gao R, Du Y, Wang L, Nomura Y, Satar G, Gordon D, Gurevitz M, Goldin AL, Dong K. Sequence variations at I260 and A1731 contribute to persistent currents in Drosophila sodium channels. Neuroscience 2014; 268:297-308. [PMID: 24662849 DOI: 10.1016/j.neuroscience.2014.03.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 02/02/2014] [Accepted: 03/09/2014] [Indexed: 12/19/2022]
Abstract
Tetrodotoxin-sensitive persistent sodium currents, INaP, that activate at subthreshold voltages, have been detected in numerous vertebrate and invertebrate neurons. These currents are believed to be critical for regulating neuronal excitability. However, the molecular mechanism underlying INaP is controversial. In this study, we identified an INaP with a broad range of voltage dependence, from -60mV to 20mV, in a Drosophila sodium channel variant expressed in Xenopus oocytes. Mutational analysis revealed that two variant-specific amino acid changes, I260T in the S4-S5 linker of domain I (ILS4-S5) and A1731V in the voltage sensor S4 of domain IV (IVS4), contribute to the INaP. I260T is critical for the portion of INaP at hyperpolarized potentials. The T260-mediated INaP is likely the result of window currents flowing in the voltage range where the activation and inactivation curves overlap. A1731V is responsible for impaired inactivation and contributes to the portion of INaP at depolarized potentials. Furthermore, A1731V causes enhanced activity of two site-3 toxins which induce persistent currents by inhibiting the outward movement of IVS4, suggesting that A1731V inhibits the outward movement of IVS4. These results provided molecular evidence for the involvement of distinct mechanisms in the generation of INaP: T260 contributes to INaP via enhancement of the window current, whereas V1731 impairs fast inactivation probably by inhibiting the outward movement of IVS4.
Collapse
Affiliation(s)
- R Gao
- Department of Entomology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - Y Du
- Department of Entomology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - L Wang
- Department of Entomology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - Y Nomura
- Department of Entomology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - G Satar
- Department of Entomology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - D Gordon
- Department of Plant Molecular Biology & Ecology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Israel
| | - M Gurevitz
- Department of Plant Molecular Biology & Ecology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Israel
| | - A L Goldin
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697, United States
| | - K Dong
- Department of Entomology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
38
|
Bao WX, Kataoka Y, Kohara Y, Sonoda S. Genomic analyses of sodium channel α-subunit genes from strains of melon thrips, Thrips palmi, with different sensitivities to cypermethrin. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2014; 108:80-85. [PMID: 24485319 DOI: 10.1016/j.pestbp.2013.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/22/2013] [Accepted: 12/29/2013] [Indexed: 06/03/2023]
Abstract
We examined the genomic organization of the sodium channel α-subunit gene in two strains of melon thrips, Thrips palmi, having differing sensitivity to cypermethrin. The nucleotide sequences of the strains included 18 or 16 putative exons which covered the entire coding region of the gene producing 2039 amino acid residues. Deduced amino acid sequences of both strains showed 80% homology with those of Periplaneta americana and Cimex lectularius. Comparison of deduced amino acid sequences of both strains showed no consistent amino acid difference. In addition to the previously reported resistant amino acid (Ile) at the T929I site, both strains encoded another resistant amino acids at two positions which are involved in pyrethroid resistance in other arthropods. These amino acids might also involve in the basal levels of resistance to pyrethroids of both strains.
Collapse
Affiliation(s)
- Wen Xue Bao
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Yoko Kataoka
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Yoko Kohara
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Shoji Sonoda
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan.
| |
Collapse
|
39
|
Silver KS, Du Y, Nomura Y, Oliveira EE, Salgado VL, Zhorov BS, Dong K. Voltage-Gated Sodium Channels as Insecticide Targets. ADVANCES IN INSECT PHYSIOLOGY 2014; 46:389-433. [PMID: 29928068 PMCID: PMC6005695 DOI: 10.1016/b978-0-12-417010-0.00005-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Voltage-gated sodium channels are critical for the generation and propagation of action potentials. They are the primary target of several classes of insecticides, including DDT, pyrethroids and sodium channel blocker insecticides (SCBIs). DDT and pyrethroids preferably bind to open sodium channels and stabilize the open state, causing prolonged currents. In contrast, SCBIs block sodium channels by binding to the inactivated state. Many sodium channel mutations are associated with knockdown resistance (kdr) to DDT and pyrethroids in diverse arthropod pests. Functional characterization of kdr mutations together with computational modelling predicts dual pyrethroid receptor sites on sodium channels. In contrast, the molecular determinants of the SCBI receptor site remain largely unknown. In this review, we summarize current knowledge about the molecular mechanisms of action of pyrethroids and SCBIs, and highlight the differences in the molecular interaction of these insecticides with insect versus mammalian sodium channels.
Collapse
Affiliation(s)
- Kristopher S Silver
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, USA
| | - Yuzhe Du
- Department of Entomology, Neuroscience and Genetics Programs, Michigan State University, East Lansing, Michigan, USA
| | - Yoshiko Nomura
- Department of Entomology, Neuroscience and Genetics Programs, Michigan State University, East Lansing, Michigan, USA
| | - Eugenio E Oliveira
- Departamento de Entomologia, Universidade Federal de Vic¸osa, Vic¸osa, Minas Gerais, Brasil
| | - Vincent L Salgado
- BASF Agricultural Products, BASF Corporation, Research Triangle Park, North Carolina, USA
| | - Boris S Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Sechenov Institute of Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Ke Dong
- Department of Entomology, Neuroscience and Genetics Programs, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
40
|
Jiang XZ, Wei DD, Yang WJ, Dou W, Chen SC, Wang JJ. Molecular characterization and alternative splicing of a sodium channel and DSC1 ortholog genes in Liposcelis bostrychophila Badonnel (Psocoptera: Liposcelididae). Int J Biol Sci 2013; 9:989-1003. [PMID: 24155671 PMCID: PMC3805903 DOI: 10.7150/ijbs.6978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 09/14/2013] [Indexed: 12/23/2022] Open
Abstract
Alternative splicing greatly contributes to the structural and functional diversity of voltage-gated sodium channels (VGSCs) by generating various isoforms with unique functional and pharmacological properties. Here, we identified a new optional exon 23 located in the linker between domains II and III, and four mutually exclusive exons (exons 27A, 27B, 27C, and 27D) in domains IIIS3 and IIIS4 of the sodium channel of Liposcelis bostrychophila (termed as LbVGSC). This suggested that more alternative splicing phenomena remained to be discovered in VGSCs. Inclusion of exon 27C might lead to generation of non-functional isoforms. Meanwhile, identification of three alternative exons (exons 11, 13A, and 13B), which were located in the linker between domains II and III, indicated that abundant splicing events occurred in the DSC1 ortholog channel of L. bostrychophila (termed as LbSC1). Exons 13A and 13B were generated by intron retention, and the presence of exon 13B relied on the inclusion of exon 13A. Exon 13B was specifically expressed in the embryonic stage and contained an in-frame stop codon, inclusion of which led to generation of truncated proteins with only the first two domains. Additionally, several co-occurring RNA editing events were identified in LbSC1. Furthermore, remarkable similarity between the structure and expression patterns of LbVGSC and LbSC1 were discovered, and a closer evolutionary relationship between VGSCs and DSC1 orthologs was verified. Taken together, the data provided abundant molecular information on VGSC and DSC1 orthologs in L. bostrychophila, a representative Psocoptera storage pest, and insights into the alternative splicing of these two channels.
Collapse
Affiliation(s)
- Xuan-Zhao Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, P. R. China
| | | | | | | | | | | |
Collapse
|
41
|
Bourdin CM, Moignot B, Wang L, Murillo L, Juchaux M, Quinchard S, Lapied B, Guérineau NC, Dong K, Legros C. Intron retention in mRNA encoding ancillary subunit of insect voltage-gated sodium channel modulates channel expression, gating regulation and drug sensitivity. PLoS One 2013; 8:e67290. [PMID: 23967047 PMCID: PMC3744522 DOI: 10.1371/journal.pone.0067290] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/16/2013] [Indexed: 12/19/2022] Open
Abstract
Insect voltage-gated sodium (Nav) channels are formed by a well-known pore-forming α-subunit encoded by para-like gene and ancillary subunits related to TipE from the mutation “temperature-induced-paralysis locus E.” The role of these ancillary subunits in the modulation of biophysical and pharmacological properties of Na+ currents are not enough documented. The unique neuronal ancillary subunit TipE-homologous protein 1 of Drosophila melanogaster (DmTEH1) strongly enhances the expression of insect Nav channels when heterologously expressed in Xenopus oocytes. Here we report the cloning and functional expression of two neuronal DmTEH1-homologs of the cockroach, Periplaneta americana, PaTEH1A and PaTEH1B, encoded by a single bicistronic gene. In PaTEH1B, the second exon encoding the last 11-amino-acid residues of PaTEH1A is shifted to 3′UTR by the retention of a 96-bp intron-containing coding-message, thus generating a new C-terminal end. We investigated the gating and pharmacological properties of the Drosophila Nav channel variant (DmNav1-1) co-expressed with DmTEH1, PaTEH1A, PaTEH1B or a truncated mutant PaTEH1Δ(270-280) in Xenopus oocytes. PaTEH1B caused a 2.2-fold current density decrease, concomitant with an equivalent α-subunit incorporation decrease in the plasma membrane, compared to PaTEH1A and PaTEH1Δ(270-280). PaTEH1B positively shifted the voltage-dependences of activation and slow inactivation of DmNav1-1 channels to more positive potentials compared to PaTEH1A, suggesting that the C-terminal end of both proteins may influence the function of the voltage-sensor and the pore of Nav channel. Interestingly, our findings showed that the sensitivity of DmNav1-1 channels to lidocaine and to the pyrazoline-type insecticide metabolite DCJW depends on associated TEH1-like subunits. In conclusion, our work demonstrates for the first time that density, gating and pharmacological properties of Nav channels expressed in Xenopus oocytes can be modulated by an intron retention process in the transcription of the neuronal TEH1-like ancillary subunits of P. americana.
Collapse
Affiliation(s)
- Céline M. Bourdin
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM) UPRES EA 2647/USC INRA 1330, SFR QUASAV 4207, UFR Sciences, Université d'Angers, Angers, France
| | - Bénédicte Moignot
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM) UPRES EA 2647/USC INRA 1330, SFR QUASAV 4207, UFR Sciences, Université d'Angers, Angers, France
| | - Lingxin Wang
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, Michigan, United States of America
| | - Laurence Murillo
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM) UPRES EA 2647/USC INRA 1330, SFR QUASAV 4207, UFR Sciences, Université d'Angers, Angers, France
- Laboratoire LIttoral ENvironnement et Sociétés (LIENSs), UMR 7266 CNRS, Institut du Littoral et de l'Environnement, Université de La Rochelle, La Rochelle, France
| | | | - Sophie Quinchard
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM) UPRES EA 2647/USC INRA 1330, SFR QUASAV 4207, UFR Sciences, Université d'Angers, Angers, France
| | - Bruno Lapied
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM) UPRES EA 2647/USC INRA 1330, SFR QUASAV 4207, UFR Sciences, Université d'Angers, Angers, France
| | - Nathalie C. Guérineau
- Laboratoire de Biologie Neurovasculaire et Mitochondriale Intégrée, UMR CNRS 6214, INSERM 1083, UFR de Sciences Médicales, Université d'Angers, Angers, France
| | - Ke Dong
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, Michigan, United States of America
| | - Christian Legros
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM) UPRES EA 2647/USC INRA 1330, SFR QUASAV 4207, UFR Sciences, Université d'Angers, Angers, France
- Laboratoire de Biologie Neurovasculaire et Mitochondriale Intégrée, UMR CNRS 6214, INSERM 1083, UFR de Sciences Médicales, Université d'Angers, Angers, France
- * E-mail:
| |
Collapse
|
42
|
Wang L, Nomura Y, Du Y, Dong K. Differential effects of TipE and a TipE-homologous protein on modulation of gating properties of sodium channels from Drosophila melanogaster. PLoS One 2013; 8:e67551. [PMID: 23874427 PMCID: PMC3715519 DOI: 10.1371/journal.pone.0067551] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/20/2013] [Indexed: 12/19/2022] Open
Abstract
β subunits of mammalian sodium channels play important roles in modulating the expression and gating of mammalian sodium channels. However, there are no orthologs of β subunits in insects. Instead, an unrelated protein, TipE in Drosophila melanogaster and its orthologs in other insects, is thought to be a sodium channel auxiliary subunit. In addition, there are four TipE-homologous genes (TEH1-4) in D. melanogaster and three to four orthologs in other insect species. TipE and TEH1-3 have been shown to enhance the peak current of various insect sodium channels expressed in Xenopus oocytes. However, limited information is available on how these proteins modulate the gating of sodium channels, particularly sodium channel variants generated by alternative splicing and RNA editing. In this study, we compared the effects of TEH1 and TipE on the function of three Drosophila sodium channel splice variants, DmNav9-1, DmNav22, and DmNav26, in Xenopus oocytes. Both TipE and TEH1 enhanced the amplitude of sodium current and accelerated current decay of all three sodium channels tested. Strikingly, TEH1 caused hyperpolarizing shifts in the voltage-dependence of activation, fast inactivation and slow inactivation of all three variants. In contrast, TipE did not alter these gating properties except for a hyperpolarizing shift in the voltage-dependence of fast inactivation of DmNav26. Further analysis of the gating kinetics of DmNav9-1 revealed that TEH1 accelerated the entry of sodium channels into the fast inactivated state and slowed the recovery from both fast- and slow-inactivated states, thereby, enhancing both fast and slow inactivation. These results highlight the differential effects of TipE and TEH1 on the gating of insect sodium channels and suggest that TEH1 may play a broader role than TipE in regulating sodium channel function and neuronal excitability in vivo.
Collapse
Affiliation(s)
- Lingxin Wang
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, Michigan, United States of America
| | - Yoshiko Nomura
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, Michigan, United States of America
| | - Yuzhe Du
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, Michigan, United States of America
| | - Ke Dong
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
43
|
Molecular evidence for dual pyrethroid-receptor sites on a mosquito sodium channel. Proc Natl Acad Sci U S A 2013; 110:11785-90. [PMID: 23821746 DOI: 10.1073/pnas.1305118110] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Pyrethroid insecticides are widely used as one of the most effective control measures in the global fight against agricultural arthropod pests and mosquito-borne diseases, including malaria and dengue. They exert toxic effects by altering the function of voltage-gated sodium channels, which are essential for proper electrical signaling in the nervous system. A major threat to the sustained use of pyrethroids for vector control is the emergence of mosquito resistance to pyrethroids worldwide. Here, we report the successful expression of a sodium channel, AaNav1-1, from Aedes aegypti in Xenopus oocytes, and the functional examination of nine sodium channel mutations that are associated with pyrethroid resistance in various Ae. aegypti and Anopheles gambiae populations around the world. Our analysis shows that five of the nine mutations reduce AaNav1-1 sensitivity to pyrethroids. Computer modeling and further mutational analysis revealed a surprising finding: Although two of the five confirmed mutations map to a previously proposed pyrethroid-receptor site in the house fly sodium channel, the other three mutations are mapped to a second receptor site. Discovery of this second putative receptor site provides a dual-receptor paradigm that could explain much of the molecular mechanisms of pyrethroid action and resistance as well as the high selectivity of pyrethroids on insect vs. mammalian sodium channels. Results from this study could impact future prediction and monitoring of pyrethroid resistance in mosquitoes and other arthropod pests and disease vectors.
Collapse
|
44
|
Ransdell JL, Temporal S, West NL, Leyrer ML, Schulz DJ. Characterization of inward currents and channels underlying burst activity in motoneurons of crab cardiac ganglion. J Neurophysiol 2013; 110:42-54. [DOI: 10.1152/jn.00009.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Large cell motoneurons in the Cancer borealis cardiac ganglion generate rhythmic bursts of action potentials responsible for cardiac contractions. While it is well known that these burst potentials are dependent on coordinated interactions among depolarizing and hyperpolarizing conductances, the depolarizing currents present in these cells, and their biophysical characteristics, have not been thoroughly described. In this study we used a combined molecular biology and electrophysiology approach to look at channel identity, expression, localization, and biophysical properties for two distinct high-voltage-activated calcium currents present in these cells: a slow calcium current ( ICaS) and a transient calcium current ( ICaT). Our data indicate that CbCaV1 is a putative voltage-gated calcium channel subunit in part responsible for an L-type current, while CbCaV2 (formerly cacophony) is a subunit in part responsible for a P/Q-type current. These channels appear to be localized primarily to the somata of the motoneurons. A third calcium channel gene (CbCaV3) was identified that encodes a putative T-type calcium channel subunit and is expressed in these cells, but electrophysiological studies failed to detect this current in motoneuron somata. In addition, we identify and characterize for the first time in these cells a calcium-activated nonselective cationic current ( ICAN), as well as a largely noninactivating TTX-sensitive current reminiscent of a persistent sodium current. The identification and further characterization of these currents allow both biological and modeling studies to move forward with more attention to the complexity of interactions among these distinct components underlying generation of bursting output in motoneurons.
Collapse
Affiliation(s)
- Joseph L. Ransdell
- Department of Biological Sciences, University of Missouri, Columbia, Missouri
| | - Simone Temporal
- Department of Biological Sciences, University of Missouri, Columbia, Missouri
| | - Nicole L. West
- Department of Biological Sciences, University of Missouri, Columbia, Missouri
| | - Megan L. Leyrer
- Department of Biological Sciences, University of Missouri, Columbia, Missouri
| | - David J. Schulz
- Department of Biological Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
45
|
Herrera-Valdez MA, McKiernan EC, Berger SD, Ryglewski S, Duch C, Crook S. Relating ion channel expression, bifurcation structure, and diverse firing patterns in a model of an identified motor neuron. J Comput Neurosci 2013; 34:211-29. [PMID: 22878689 PMCID: PMC6595220 DOI: 10.1007/s10827-012-0416-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 06/19/2012] [Accepted: 07/09/2012] [Indexed: 01/12/2023]
Abstract
Neurons show diverse firing patterns. Even neurons belonging to a single chemical or morphological class, or the same identified neuron, can display different types of electrical activity. For example, motor neuron MN5, which innervates a flight muscle of adult Drosophila, can show distinct firing patterns under the same recording conditions. We developed a two-dimensional biophysical model and show that a core complement of just two voltage-gated channels is sufficient to generate firing pattern diversity. We propose Shab and DmNa v to be two candidate genes that could encode these core currents, and find that changes in Shab channel expression in the model can reproduce activity resembling the main firing patterns observed in MN5 recordings. We use bifurcation analysis to describe the different transitions between rest and spiking states that result from variations in Shab channel expression, exposing a connection between ion channel expression, bifurcation structure, and firing patterns in models of membrane potential dynamics.
Collapse
Affiliation(s)
- Marco A Herrera-Valdez
- Institute of Interdisciplinary Research, University of Puerto Rico at Cayey, 205 Antonio R. Barcelo Ave., Cayey, PR 00736, USA.
| | | | | | | | | | | |
Collapse
|
46
|
He L, Li T, Zhang L, Liu N. Multiple sodium channel variants in the mosquito Culex quinquefasciatus. Int J Biol Sci 2012; 8:1291-309. [PMID: 23139629 PMCID: PMC3492789 DOI: 10.7150/ijbs.4966] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/27/2012] [Indexed: 12/28/2022] Open
Abstract
Voltage-gated sodium channels are the target sites of both DDT and pyrethroid insecticides. The importance of alternative splicing as a key mechanism governing the structural and functional diversity of sodium channels and the resulting development of insecticide and acaricide resistance is widely recognized, as shown by the extensive research on characterizing alternative splicing and variants of sodium channels in medically and agriculturally important insect species. Here we present the first comparative study of multiple variants of the sodium channel transcripts in the mosquito Culex quinquefasciatus. The variants were classified into two categories, CxNa-L and CxNa-S based on their distinguishing sequence sizes of ~6.5 kb and ~4.0 kb, respectively, and generated via major extensive alternative splicing with minor small deletions/ insertions in susceptible S-Lab, low resistant HAmCq(G0), and highly resistant HAmCq(G8)Culex strains. Four alternative Cx-Na-L splice variants were identified, including three full length variants with three optional exons (2, 5, and 21i) and one with in-frame-stop codons. Large, multi-exon-alternative splices were identified in the CxNa-S category. All CxNa-S splicing variants in the S-Lab and HAmCq(G0) strains contained in-frame stop codons, suggesting that any resulting proteins would be truncated. The ~1000 to ~3000-fold lower expression of these splice variants with stop codons compared with the CxNa-L splicing variants may support the lower importance of these variants in S-Lab and HAmCq(G0). Interestingly, two alternative splicing variants of CxNa-S in HAmCq(G8) included entire ORFs but lacked exons 5 to18 and these two variants had much higher expression levels in HAmCq(G8) than in S-Lab and HAmCq(G0). These results provide a functional basis for further characterizing how alternative splicing of a voltage-gated sodium channel contributes to diversity in neuronal signaling in mosquitoes in response to pyrethroids, and possibly indicates the role of these variants in the development of pyrethroid resistance.
Collapse
Affiliation(s)
- Lin He
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | | | | | | |
Collapse
|
47
|
Abstract
Alternative splicing expands the coding capacity of metazoan genes, and it was largely genetic studies in the fruit-fly Drosophila melanogaster that established the principle that regulated alternative splicing results in tissue- and stage-specific protein isoforms with different functions in development. Alternative splicing is particularly prominent in germ cells, muscle and the central nervous system where it modulates the expression of various proteins including cell-surface molecules and transcription factors. Studies in flies have given us numerous insights into alternative splicing in terms of upstream regulation, the exquisite diversity of their forms and the key differential cellular functions of alternatively spliced gene products. The current inundation of transcriptome sequencing data from Drosophila provides an unprecedented opportunity to gain a comprehensive view of alternative splicing.
Collapse
Affiliation(s)
- Julian P Venables
- Université Montpellier 2, UMR 5535, Institut de Génétique Moléculaire de Montpellier, CNRS, 1919 Route de Mende, 34293 Montpellier cedex 05, France
| | | | | |
Collapse
|
48
|
Zhang T, Liu Z, Song W, Du Y, Dong K. Molecular characterization and functional expression of the DSC1 channel. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:451-8. [PMID: 21571069 PMCID: PMC3119376 DOI: 10.1016/j.ibmb.2011.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 04/22/2011] [Accepted: 04/26/2011] [Indexed: 05/12/2023]
Abstract
Drosophila Sodium Channel 1 (DSC1) was predicted to encode a sodium channel based on a high sequence similarity with vertebrate and invertebrate sodium channel genes. However, BSC1, a DSC1 ortholog in Blattella germanica, was recently shown to encode a cation channel with ion selectivity toward Ca(2+). In this study, we isolated a total of 20 full-length cDNA clones that cover the entire coding region of the DSC1 gene from adults of Drosophila melanogaster by reverse transcription-polymerase chain reaction. Sequence analysis of the 20 clones revealed nine optional exons, four of which contain in-frame stop codons; and 13 potential A-to-I RNA editing sites. The 20 clones can be grouped into eight splice types and represent 20 different transcripts because of unique RNA editing. Three variants generated DSC1 currents when expressed in Xenopus oocytes. Like the BSC1 channel, all three functional DSC1 channels are permeable to Ca(2+) and Ba(2+), and also to Na(+) in the absence of external Ca(2+). Furthermore, the DSC1 channel is insensitive to tetrodotoxin, a potent and specific sodium channel blocker. Our study shows that DSC1 encodes a voltage-gated cation channel similar to the BSC1 channel in B. germanica. Extensive alternative splicing and RNA editing of the DSC1 transcripts suggest the molecular and functional diversity of the DSC1 channel.
Collapse
Affiliation(s)
- Tianxiang Zhang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48823
| | - Zhiqi Liu
- Department of Entomology, Michigan State University, East Lansing, Michigan 48823
| | - Weizhong Song
- Department of Entomology, Michigan State University, East Lansing, Michigan 48823
| | - Yuzhe Du
- Department of Entomology, Michigan State University, East Lansing, Michigan 48823
| | - Ke Dong
- Department of Entomology, Michigan State University, East Lansing, Michigan 48823
- Corresponding author. 438 Giltner Hall, Michigan State University, East Lansing, MI 48824, USA. Tel.: +1 517 432 2034; Fax: 517-353-4354; (K. Dong)
| |
Collapse
|
49
|
Drosophila as a model for epilepsy: bss is a gain-of-function mutation in the para sodium channel gene that leads to seizures. Genetics 2010; 187:523-34. [PMID: 21115970 DOI: 10.1534/genetics.110.123299] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report the identification of bang senseless (bss), a Drosophila melanogaster mutant exhibiting seizure-like behaviors, as an allele of the paralytic (para) voltage-gated Na(+) (Na(V)) channel gene. Mutants are more prone to seizure episodes than normal flies because of a lowered seizure threshold. The bss phenotypes are due to a missense mutation in a segment previously implicated in inactivation, termed the "paddle motif" of the Na(V) fourth homology domain. Heterologous expression of cDNAs containing the bss(1) lesion, followed by electrophysiology, shows that mutant channels display altered voltage dependence of inactivation compared to wild type. The phenotypes of bss are the most severe of the bang-sensitive mutants in Drosophila and can be ameliorated, but not suppressed, by treatment with anti-epileptic drugs. As such, bss-associated seizures resemble those of pharmacologically resistant epilepsies caused by mutation of the human Na(V) SCN1A, such as severe myoclonic epilepsy in infants or intractable childhood epilepsy with generalized tonic-clonic seizures.
Collapse
|
50
|
Günay C, Dharmar L, Sieling F, Marley R, Lin WH, Baines RA, Prinz AA. Modeling Drosophila motoneurons to examine the functional effect of Na channel splice variants. BMC Neurosci 2010. [PMCID: PMC3090851 DOI: 10.1186/1471-2202-11-s1-p147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|