1
|
Attygalle AB, Hearth KB, Iyengar VK, Morgan RC. Biosynthesis of Quinoline by a Stick Insect. JOURNAL OF NATURAL PRODUCTS 2021; 84:527-530. [PMID: 33497223 DOI: 10.1021/acs.jnatprod.0c00945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Peruvian stick insect Oreophoetes peruana is the only known animal source for unsubstituted quinoline in nature. When disturbed, these insects discharge a defensive secretion containing quinoline. Analysis of samples obtained from l-[2',4',5',6,'7'-2H5]tryptophan-fed stick insects demonstrated that the insects convert it to [5,6,7,8-2H4]quinoline by removing the 2'-CH moiety in the indole ring of tryptophan. Analogous experiments using l-[1'-15N]tryptophan and l-[1'-15N,15NH2]tryptophan showed that the indole-N atom is retained while the α-amino group is eliminated during the biosynthesis. Mass spectra recorded from quinoline derived from [2-13C1]tryptophan-fed insects indicated that the α-carbon atom of tryptophan is incorporated as the C-2 atom of the quinoline ring.
Collapse
Affiliation(s)
- Athula B Attygalle
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Kithsiri B Hearth
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Vikram K Iyengar
- Department of Biology, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Randy C Morgan
- Insectarium, Cincinnati Zoo & Botanical Garden, Cincinnati, Ohio 45220, United States
| |
Collapse
|
2
|
Geng J, Weitz AC, Dornevil K, Hendrich MP, Liu A. Kinetic and Spectroscopic Characterization of the Catalytic Ternary Complex of Tryptophan 2,3-Dioxygenase. Biochemistry 2020; 59:2813-2822. [PMID: 32659080 DOI: 10.1021/acs.biochem.0c00179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The first step of the kynurenine pathway for l-tryptophan (l-Trp) degradation is catalyzed by heme-dependent dioxygenases, tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase. In this work, we employed stopped-flow optical absorption spectroscopy to study the kinetic behavior of the Michaelis complex of Cupriavidus metallidurans TDO (cmTDO) to improve our understanding of oxygen activation and initial oxidation of l-Trp. On the basis of the stopped-flow results, rapid freeze-quench (RFQ) experiments were performed to capture and characterize this intermediate by Mössbauer spectroscopy. By incorporating the chlorite dismutase-chlorite system to produce high concentrations of solubilized O2, we were able to capture the Michaelis complex of cmTDO in a nearly quantitative yield. The RFQ-Mössbauer results confirmed the identity of the Michaelis complex as an O2-bound ferrous species. They revealed remarkable similarities between the electronic properties of the Michaelis complex and those of the O2 adduct of myoglobin. We also found that the decay of this reactive intermediate is the rate-limiting step of the catalytic reaction. An inverse α-secondary substrate kinetic isotope effect was observed with a kH/kD of 0.87 ± 0.03 when (indole-d5)-l-Trp was employed as the substrate. This work provides an important piece of spectroscopic evidence of the chemical identity of the Michaelis complex of bacterial TDO.
Collapse
Affiliation(s)
- Jiafeng Geng
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Andrew C Weitz
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kednerlin Dornevil
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States.,Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Michael P Hendrich
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Aimin Liu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States.,Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
3
|
Yuasa HJ. A comprehensive comparison of the metazoan tryptophan degrading enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140247. [PMID: 31276825 DOI: 10.1016/j.bbapap.2019.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/28/2019] [Accepted: 06/30/2019] [Indexed: 01/15/2023]
Abstract
Tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) have an independent origin; however, they have distinctly evolved to catalyze the same reaction. In general, TDO is a single-copy gene in each metazoan species, and TDO enzymes demonstrate similar enzyme activity regardless of their biological origin. In contrast, multiple IDO paralogues are observed in many species, and they display various enzymatic properties. Similar to vertebrate IDO2, invertebrate IDOs generally show low affinity/catalytic efficiency for L-Trp. Meanwhile, two IDO isoforms from scallop (IDO-I and -III) and sponge IDOs show high L-Trp catalytic activity, which is comparable to vertebrate IDO1. Site-directed mutagenesis experiments have revealed that primarily two residues, Tyr located at the 2nd residue on the F-helix (F2nd) and His located at the 9th residue on the G-helix (G9th), are crucial for the high affinity/catalytic efficiency of these 'high performance' invertebrate IDOs. Conversely, those two amino acid substitutions (F2nd/Tyr and G9th/His) resulted in high affinity and catalytic activity in other molluscan 'low performance' IDOs. In human IDO1, G9th is Ser167, whereas the counterpart residue of G9th in human TDO is His76. Previous studies have shown that Ser167 could not be substituted by His because the human IDO1 Ser167His variant showed significantly low catalytic activity. However, this may be specific for human IDO1 because G9th/His was demonstrated to be very effective in increasing the L-Trp affinity even in vertebrate IDOs. Therefore, these findings indicate that the active sites of TDO and IDO are more similar to each other than previously expected.
Collapse
Affiliation(s)
- Hajime Julie Yuasa
- Laboratory of Biochemistry, Department of Applied Science, Faculty of Science and Technology, National University Corporation Kochi University, Kochi 780-8520, Japan.
| |
Collapse
|
4
|
Tryptophan 2,3-dioxygenase inhibitory activities of tryptanthrin derivatives. Eur J Med Chem 2018; 160:133-145. [DOI: 10.1016/j.ejmech.2018.10.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 01/21/2023]
|
5
|
Malpighian Tubules as Novel Targets for Mosquito Control. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14020111. [PMID: 28125032 PMCID: PMC5334665 DOI: 10.3390/ijerph14020111] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/06/2017] [Accepted: 01/22/2017] [Indexed: 11/17/2022]
Abstract
The Malpighian tubules and hindgut are the renal excretory tissues of mosquitoes; they are essential to maintaining hemolymph water and solute homeostasis. Moreover, they make important contributions to detoxifying metabolic wastes and xenobiotics in the hemolymph. We have focused on elucidating the molecular mechanisms of Malpighian tubule function in adult female mosquitoes and developing chemical tools as prototypes for next-generation mosquitocides that would act via a novel mechanism of action (i.e., renal failure). To date, we have targeted inward rectifier potassium (Kir) channels expressed in the Malpighian tubules of the yellow fever mosquito Aedes aegypti and malaria mosquito Anopheles gambiae. Inhibition of these channels with small molecules inhibits transepithelial K⁺ and fluid secretion in Malpighian tubules, leading to a disruption of hemolymph K⁺ and fluid homeostasis in adult female mosquitoes. In addition, we have used next-generation sequencing to characterize the transcriptome of Malpighian tubules in the Asian tiger mosquito Aedes albopictus, before and after blood meals, to reveal new molecular targets for potentially disrupting Malpighian tubule function. Within 24 h after a blood meal, the Malpighian tubules enhance the mRNA expression of genes encoding mechanisms involved with the detoxification of metabolic wastes produced during blood digestion (e.g., heme, NH₃, reactive oxygen species). The development of chemical tools targeting these molecular mechanisms in Malpighian tubules may offer a promising avenue for the development of mosquitocides that are highly-selective against hematophagous females, which are the only life stage that transmits pathogens.
Collapse
|
6
|
Raven EL. A short history of heme dioxygenases: rise, fall and rise again. J Biol Inorg Chem 2016; 22:175-183. [PMID: 27909919 PMCID: PMC5350241 DOI: 10.1007/s00775-016-1412-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/10/2016] [Indexed: 01/20/2023]
Abstract
It is well established that there are two different classes of enzymes—tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO)—that catalyse the O2-dependent oxidation of l-tryptophan to N-formylkynurenine. But it was not always so. This perspective presents a short history of the early TDO and IDO literature, the people that were involved in creating it, and the legacy that this left for the future.
Collapse
Affiliation(s)
- Emma L Raven
- Department of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
7
|
Tian N, Tang Y, Chen Y, Zhen Z, Long J, Liu Z, Liu S. WITHDRAWN: Identification of an antimycin gene cluster and characterization of the tryptophan 2,3-dioxygenase from the deep sea-derived Streptomyces somaliensis HND1201. Biochem Biophys Res Commun 2015:S0006-291X(15)30788-9. [PMID: 26525851 DOI: 10.1016/j.bbrc.2015.10.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/18/2015] [Indexed: 11/29/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Na Tian
- Hunan Collaborative Innovation for Utilization of Botanical Functional Ingredients, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture and Hardening, Hunan Agricultural University, Changsha 410128, China
| | - Yuwei Tang
- Hunan Collaborative Innovation for Utilization of Botanical Functional Ingredients, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture and Hardening, Hunan Agricultural University, Changsha 410128, China
| | - Yuhong Chen
- Key Lab of Tea Science, Ministry of Education, Changsha 410128, China
| | - Zehua Zhen
- Hunan Collaborative Innovation for Utilization of Botanical Functional Ingredients, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture and Hardening, Hunan Agricultural University, Changsha 410128, China
| | - Jinhua Long
- Hunan Collaborative Innovation for Utilization of Botanical Functional Ingredients, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture and Hardening, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- Hunan Collaborative Innovation for Utilization of Botanical Functional Ingredients, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture and Hardening, Hunan Agricultural University, Changsha 410128, China; Key Lab of Tea Science, Ministry of Education, Changsha 410128, China
| | - Shuoqian Liu
- Hunan Collaborative Innovation for Utilization of Botanical Functional Ingredients, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture and Hardening, Hunan Agricultural University, Changsha 410128, China; Key Lab of Tea Science, Ministry of Education, Changsha 410128, China.
| |
Collapse
|
8
|
Wu JS, Lin SY, Liao FY, Hsiao WC, Lee LC, Peng YH, Hsieh CL, Wu MH, Song JS, Yueh A, Chen CH, Yeh SH, Liu CY, Lin SY, Yeh TK, Hsu JTA, Shih C, Ueng SH, Hung MS, Wu SY. Identification of Substituted Naphthotriazolediones as Novel Tryptophan 2,3-Dioxygenase (TDO) Inhibitors through Structure-Based Virtual Screening. J Med Chem 2015; 58:7807-19. [PMID: 26348881 DOI: 10.1021/acs.jmedchem.5b00921] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A structure-based virtual screening strategy, comprising homology modeling, ligand-support binding site optimization, virtual screening, and structure clustering analysis, was developed and used to identify novel tryptophan 2,3-dioxygenase (TDO) inhibitors. Compound 1 (IC50 = 711 nM), selected by virtual screening, showed inhibitory activity toward TDO and was subjected to structural modifications and molecular docking studies. This resulted in the identification of a potent TDO selective inhibitor (11e, IC50 = 30 nM), making it a potential compound for further investigation as a cancer therapeutic and other TDO-related targeted therapy.
Collapse
Affiliation(s)
- Jian-Sung Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Shu-Yu Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Fang-Yu Liao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Wen-Chi Hsiao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Lung-Chun Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Yi-Hui Peng
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Chia-Ling Hsieh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Mine-Hsine Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Andrew Yueh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Chun-Hwa Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Shiu-Hwa Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Chia-Yeh Liu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Shu-Yi Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - John T-A Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Chuan Shih
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Shau-Hua Ueng
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Ming-Shiu Hung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| | - Su-Ying Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan, ROC
| |
Collapse
|
9
|
Reyes Ocampo J, Lugo Huitrón R, González-Esquivel D, Ugalde-Muñiz P, Jiménez-Anguiano A, Pineda B, Pedraza-Chaverri J, Ríos C, Pérez de la Cruz V. Kynurenines with neuroactive and redox properties: relevance to aging and brain diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:646909. [PMID: 24693337 PMCID: PMC3945746 DOI: 10.1155/2014/646909] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/12/2013] [Accepted: 12/15/2013] [Indexed: 11/18/2022]
Abstract
The kynurenine pathway (KP) is the main route of tryptophan degradation whose final product is NAD(+). The metabolism of tryptophan can be altered in ageing and with neurodegenerative process, leading to decreased biosynthesis of nicotinamide. This fact is very relevant considering that tryptophan is the major source of body stores of the nicotinamide-containing NAD(+) coenzymes, which is involved in almost all the bioenergetic and biosynthetic metabolism. Recently, it has been proposed that endogenous tryptophan and its metabolites can interact and/or produce reactive oxygen species in tissues and cells. This subject is of great importance due to the fact that oxidative stress, alterations in KP metabolites, energetic deficit, cell death, and inflammatory events may converge each other to enter into a feedback cycle where each one depends on the other to exert synergistic actions among them. It is worth mentioning that all these factors have been described in aging and in neurodegenerative processes; however, has so far no one established any direct link between alterations in KP and these factors. In this review, we describe each kynurenine remarking their redox properties, their effects in experimental models, their alterations in the aging process.
Collapse
Affiliation(s)
- Jazmin Reyes Ocampo
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., Insurgentes Sur 3877, 14269 México, DF, Mexico
- Área de Neurociencias, Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, 09340 México, DF, Mexico
| | - Rafael Lugo Huitrón
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., Insurgentes Sur 3877, 14269 México, DF, Mexico
| | - Dinora González-Esquivel
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., Insurgentes Sur 3877, 14269 México, DF, Mexico
| | - Perla Ugalde-Muñiz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., Insurgentes Sur 3877, 14269 México, DF, Mexico
| | - Anabel Jiménez-Anguiano
- Área de Neurociencias, Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, 09340 México, DF, Mexico
| | - Benjamín Pineda
- Laboratorio de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., 14269 México, DF, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510 México, DF, Mexico
| | - Camilo Ríos
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., Insurgentes Sur 3877, 14269 México, DF, Mexico
| | - Verónica Pérez de la Cruz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., Insurgentes Sur 3877, 14269 México, DF, Mexico
| |
Collapse
|
10
|
Geng J, Liu A. Heme-dependent dioxygenases in tryptophan oxidation. Arch Biochem Biophys 2013; 544:18-26. [PMID: 24295960 DOI: 10.1016/j.abb.2013.11.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 12/29/2022]
Abstract
L-Tryptophan is an essential amino acid for mammals. It is utilized not only for protein synthesis but also for the biosynthesis of serotonin and melatonin by the serotonin pathway as well as nicotinamide adenine dinucleotide by the kynurenine pathway. Although the kynurenine pathway is responsible for the catabolism of over 90% of l-tryptophan in the mammalian intracellular and extracellular pools, the scientific field was dominated in the last century by studies of the serotonin pathway, due to the physiological significance of the latter's catabolic intermediates and products. However, in the past decade, the focus gradually reversed as the link between the kynurenine pathway and various neurodegenerative disorders and immune diseases is increasingly highlighted. Notably, the first step of this pathway, which is catalyzed by heme-dependent dioxygenases, has been proven to be a potential target for immune regulation and cancer treatment. A thorough understanding of the intriguing chemistry of the heme-dependent dioxygenases may yield insight for the drug discovery of these prevalent illnesses. In this review, we survey enzymatic and mechanistic studies, initially started by Kotake and Masayama over 70 years ago, at the molecular level on the heme-dependent tryptophan dioxygenation reactions.
Collapse
Affiliation(s)
- Jiafeng Geng
- Department of Chemistry, Georgia State University, 50 Decatur Street SE, Atlanta, GA 30303, United States
| | - Aimin Liu
- Department of Chemistry, Georgia State University, 50 Decatur Street SE, Atlanta, GA 30303, United States.
| |
Collapse
|
11
|
Geng J, Dornevil K, Liu A. Chemical Rescue of the Distal Histidine Mutants of Tryptophan 2,3-Dioxygenase. J Am Chem Soc 2012; 134:12209-18. [DOI: 10.1021/ja304164b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jiafeng Geng
- Department of Chemistry & Center for Diagnostics and Therapeutics, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, Georgia 30303, United States
| | - Kednerlin Dornevil
- Department of Chemistry & Center for Diagnostics and Therapeutics, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, Georgia 30303, United States
| | - Aimin Liu
- Department of Chemistry & Center for Diagnostics and Therapeutics, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, Georgia 30303, United States
| |
Collapse
|
12
|
Fu R, Gupta R, Geng J, Dornevil K, Wang S, Zhang Y, Hendrich MP, Liu A. Enzyme reactivation by hydrogen peroxide in heme-based tryptophan dioxygenase. J Biol Chem 2011; 286:26541-54. [PMID: 21632548 PMCID: PMC3143619 DOI: 10.1074/jbc.m111.253237] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 05/29/2011] [Indexed: 11/06/2022] Open
Abstract
An intriguing mystery about tryptophan 2,3-dioxygenase is its hydrogen peroxide-triggered enzyme reactivation from the resting ferric oxidation state to the catalytically active ferrous form. In this study, we found that such an odd Fe(III) reduction by an oxidant depends on the presence of L-Trp, which ultimately serves as the reductant for the enzyme. In the peroxide reaction with tryptophan 2,3-dioxygenase, a previously unknown catalase-like activity was detected. A ferryl species (δ = 0.055 mm/s and ΔE(Q) = 1.755 mm/s) and a protein-based free radical (g = 2.0028 and 1.72 millitesla linewidth) were characterized by Mössbauer and EPR spectroscopy, respectively. This is the first compound ES-type of ferryl intermediate from a heme-based dioxygenase characterized by EPR and Mössbauer spectroscopy. Density functional theory calculations revealed the contribution of secondary ligand sphere to the spectroscopic properties of the ferryl species. In the presence of L-Trp, the reactivation was demonstrated by enzyme assays and by various spectroscopic techniques. A Trp-Trp dimer and a monooxygenated L-Trp were both observed as the enzyme reactivation by-products by mass spectrometry. Together, these results lead to the unraveling of an over 60-year old mystery of peroxide reactivation mechanism. These results may shed light on how a metalloenzyme maintains its catalytic activity in an oxidizing environment.
Collapse
Affiliation(s)
- Rong Fu
- From the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Rupal Gupta
- the Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, and
| | - Jiafeng Geng
- From the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Kednerlin Dornevil
- From the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Siming Wang
- From the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Yong Zhang
- the Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, New Jersey 07030
| | - Michael P. Hendrich
- the Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, and
| | - Aimin Liu
- From the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
13
|
Efimov I, Basran J, Thackray SJ, Handa S, Mowat CG, Raven EL. Structure and reaction mechanism in the heme dioxygenases. Biochemistry 2011; 50:2717-24. [PMID: 21361337 PMCID: PMC3092302 DOI: 10.1021/bi101732n] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
![]()
As members of the family of heme-dependent enzymes, the heme dioxygenases are differentiated by virtue of their ability to catalyze the oxidation of l-tryptophan to N-formylkynurenine, the first and rate-limiting step in tryptophan catabolism. In the past several years, there have been a number of important developments that have meant that established proposals for the reaction mechanism in the heme dioxygenases have required reassessment. This focused review presents a summary of these recent advances, written from a structural and mechanistic perspective. It attempts to present answers to some of the long-standing questions, to highlight as yet unresolved issues, and to explore the similarities and differences of other well-known catalytic heme enzymes such as the cytochromes P450, NO synthase, and peroxidases.
Collapse
Affiliation(s)
- Igor Efimov
- Department of Chemistry, George Porter Building, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | | | | | | | | | | |
Collapse
|