1
|
Yang L, Cheng Y, Wang Q, Dong H, Shen T, Gong J, Xia Q, Hou Y. Distinct enzyme activities of serine protease p37k in silkworm midgut and molting fluid. Int J Biol Macromol 2024; 261:129778. [PMID: 38296126 DOI: 10.1016/j.ijbiomac.2024.129778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024]
Abstract
Serine proteases possess various biological functions. The serine protease p37k exhibits gelatinolytic activity in the silkworm midgut and degrades cuticular proteins in the molting fluid. In this study, we analyzed the activity changes of recombinant p37k (re-p37k) and p37k in the midgut and molting fluid of Bombyx mori. Firstly, in vitro-expressed re-p37k was activated when a 22 kDa band was observed by western blot. Re-p37k exhibits strong gelatinolytic activity, with the highest activity observed at pH 7.0-9.0 and 45 °C. Compared to p37k in the midgut, re-p37k loses thermal stability but can be restored by midgut extract or ions. E64, AEBSF, and an inhibitor cocktail inhibited the hydrolytic activity of re-p37k on epidermal proteins but did not inhibit the gelatinolytic activity. Subsequently, zymography showed that the positions of gelatinolytic band produced by p37k in the midgut and molting fluid were different, 35 kDa and 40 kDa, respectively. Finally, when heated midgut extract was added to re-p37k or molting fluid, the gelatinolytic band shifted from 40 kDa to 35 kDa, and the proteolytic activity of p37k in the molting fluid was inhibited. Collectively, our results demonstrate that p37k exhibits different activities in various tissues, suggesting its distinct tissue-specific functions during insect metamorphosis.
Collapse
Affiliation(s)
- Lingzhen Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
| | - Yuejing Cheng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
| | - Qinglang Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
| | - Haonan Dong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
| | - Taixia Shen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
| | - Jing Gong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China
| | - Yong Hou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Wang Q, Yang L, Tian T, Sun Y, Dong H, Gong J, Hou Y. Proteomic Analysis of the Midgut Contents of Silkworm in the Pupal Stage. INSECTS 2023; 14:953. [PMID: 38132625 PMCID: PMC10743435 DOI: 10.3390/insects14120953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
The silkworm Bombyx mori, a lepidopteran insect, possesses an 8-10-day pupal stage, during which significant changes occur in the midgut, where it first condenses into the yellow body, and then undergoes decomposition. To gain insights into this transformation process, proteomics was performed on Bombyx mori midgut contents on day 2 and day 7 after pupation. The results revealed the identification of 771 proteins with more than one unique peptide. An analysis using AgriGO demonstrated that these proteins were predominantly associated with catalytic activity. Among the identified proteins, a considerable number were found to be involved in carbohydrate metabolism, amino acid metabolism, lipid metabolism, nucleic acid degradation, and energy support. Additionally, variations in the levels of certain proteases were observed between the midgut contents on day 2 and day 7 after pupation. An in-depth analysis of the two-dimensional electrophoresis of the midgut contents on day 7 after pupation led to the identification of twelve protein spots with potential gelatinolytic activity. Among these, six proteases were identified through mass spectrometry, including the p37k protease, vitellin-degrading protease, chymotrypsin-2, etc. These proteases may be responsible for the digestion of the yellow body during the later stages of pupal development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yong Hou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China; (Q.W.); (L.Y.); (T.T.); (Y.S.); (H.D.); (J.G.)
| |
Collapse
|
3
|
Xie YC, Zhang HH, Li HJ, Zhang XY, Luo XM, Jiang MX, Zhang CX. Molting-related proteases in the brown planthopper, Nilaparvata lugens. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 152:103893. [PMID: 36513274 DOI: 10.1016/j.ibmb.2022.103893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/24/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Digestion and absorption of old cuticles during insect molting are necessary for new cuticle formation, during which complicated enzyme catalysis is essential. To date, a few carboxypeptidases, aminopeptidases and serine proteases (mostly trypsins) connected with cuticle digestion, zymogen activation and histological differentiation during the ecdysis of lepidopteran, dipteran and hymenopteran insects have been identified. However, little is known about these proteins in hemimetabolous insects. In this study, we identified 33 candidate trypsin and trypsin-like homologs, 14 metallocarboxypeptidase and 32 aminopeptidase genes in the brown planthopper Nilaparvata lugens, a hemipteran rice pest. Among the proteins encoded by these genes, 9 trypsin-like proteases, 3 metallocarboxypeptidases and 1 aminopeptidase were selected as potential procuticle hydrolases by bioinformatics analysis and in vivo validation. RNA interference targeting these genes demonstrated that 3 trypsin-like proteases (NlTrypsin-8, NlTrypsin-29 and NlTrypsin-32) genes and 1 metallocarboxypeptidase (NlCpB) gene were found to be essential for ecdysis in N. lugens; specifically, gene silencing led to incomplete cuticle degradation and arrested ecdysis, causing lethal morphological phenotype acquisition. Spatiotemporal expression profiling by quantitative PCR and western blotting revealed their specific expression in the integument and their periodic expression during each stadium, with a peak before ecdysis and eclosion. Transmission electron microscopy demonstrated corresponding ultrastructural defects after RNAi targeting, with NlCpB-silenced specimens having the most undigested old procuticles. Immunohistochemical staining revealed that NlTrypsin-8, NlTrypsin-29 and NlCpB were predominantly located in the exuvial space. This research further adds to our understanding of proteases and its potential role in insect ecdysis.
Collapse
Affiliation(s)
- Yu-Cheng Xie
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Hou-Hong Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Han-Jing Li
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Ya Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Xu-Mei Luo
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Xing Jiang
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Chuan-Xi Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
4
|
Hou Y, Yang L, Xu S, Zhang Y, Cheng Y, Li Y, Gong J, Xia Q. Trypsin-type serine protease p37k hydrolyzes CPAP3-type cuticle proteins in the molting fluid of the silkworm Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 137:103610. [PMID: 34182106 DOI: 10.1016/j.ibmb.2021.103610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Cuticular proteins analogous to peritrophin 3 (CPAP3)-type cuticle proteins constitute a family of proteins with three chitin-binding domains (CBDs) that play an important role in cuticle formation by associating with chitin. In our previous study, we identified CPAP3-type cuticle proteins in the silkworm genome, of which we characterized CPAP3-A2 (BmCBP1), a protein highly expressed in the epidermis. In this study, to elucidate the digestion mechanism of CPAP3-type cuticle proteins, we incubated CPAP3-A2 with molting fluid in vitro and found that its hydrolysis, which was inhibited by serine and cysteine protease inhibitors, produced two major bands with a molecular weight of approximately 22 kD and 11 kD. A trypsin-type serine protease, p37k, was presumed to be responsible for hydrolyzing CPAP3-A2 based on liquid chromatography-tandem mass spectrometry analysis of naturally purified molting fluid. To verify this, p37k was subsequently expressed in Sf9 cells using the Bac-to-Bac baculovirus expression system. In its active form, the recombinant protease could successfully hydrolyze CPAP3-A2. Finally, we analyzed the CPAP3-A2 molting fluid digestion site. When arginine 169 of CPAP3-A2 was mutated to alanine, a weaker hydrolysis of mutant CPAP3-A2 was observed compared to that of normal CPAP3-A2. Collectively, we identified a trypsin-type serine protease that is involved in the degradation of CPAP3-type cuticle proteins, including CPAP3-A2, suggesting that this protease plays an important role during molting in Bombyx mori. These findings provide the basis for further elucidation of the mechanisms underlying insect molting and metamorphosis.
Collapse
Affiliation(s)
- Yong Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, 400716, China
| | - Lingzhen Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Shuping Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Yuhao Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Yuejing Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Yi Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Jing Gong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
5
|
Zhu GH, Chereddy SCRR, Howell JL, Palli SR. Genome editing in the fall armyworm, Spodoptera frugiperda: Multiple sgRNA/Cas9 method for identification of knockouts in one generation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 122:103373. [PMID: 32276113 DOI: 10.1016/j.ibmb.2020.103373] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
The CRISPR/Cas9 system is an efficient genome editing method that can be used in functional genomics research. The fall armyworm, Spodoptera frugiperda, is a serious agricultural pest that has spread over most of the world. However, very little information is available on functional genomics for this insect. We performed CRISPR/Cas9-mediated site-specific mutagenesis of three target genes: two marker genes [Biogenesis of lysosome-related organelles complex 1 subunit 2 (BLOS2) and tryptophan 2, 3-dioxygenase (TO)], and a developmental gene, E93 (a key ecdysone-induced transcription factor that promotes adult development). The knockouts (KO) of BLOS2, TO and E93 induced translucent mosaic integument, olive eye color, and larval-pupal intermediate phenotypes, respectively. Sequencing RNA isolated from wild-type and E93 KO insects showed that E93 promotes adult development by influencing the expression of the genes coding for transcription factor, Krüppel homolog 1, the pupal specifier, Broad-Complex, serine proteases, and heat shock proteins. Often, gene-edited insects display mosaicism in which only a fraction of the cells are edited as intended, and establishing a homozygous line is both costly and time-consuming. To overcome these limitations, a method to completely KO the target gene in S. frugiperda by injecting the Cas9 protein and multiple sgRNAs targeting one exon of the E93 gene into embryos was developed. Ten percent of the G0 larvae exhibited larval-pupal intermediates. The mutations were confirmed by T7E1 assay, and the mutation frequency was determined as >80%. Complete KO of the E93 gene was achieved in one generation using the multiple sgRNA method, demonstrating a powerful approach to improve genome editing in lepidopteran and other non-model insects.
Collapse
Affiliation(s)
- Guan-Heng Zhu
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Shankar C R R Chereddy
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Jeffrey L Howell
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
6
|
Liu H, Heng J, Wang L, Tang X, Guo P, Li Y, Xia Q, Zhao P. Identification, characterization, and expression analysis of clip-domain serine protease genes in the silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 105:103584. [PMID: 31863792 DOI: 10.1016/j.dci.2019.103584] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Clip-domain serine proteases (CLIPs), characterized by regulatory module clip domains, constitute an important serine protease family identified in insects and other arthropods. They participate in host immune response and embryonic development in a cascade-activated manner. Here, we present a genome-wide identification and expression analysis of CLIP genes in the silkworm, Bombyx mori. A total of 26 CLIP genes were identified in the silkworm genome. Bioinformatics analysis indicated that these CLIPs clustered into four subfamilies (CLIPA-D), and exhibit a close evolutionary relationship with CLIPs of Manduca sexta. Tissue expression profiling revealed that silkworm CLIP genes are mainly expressed in the integument, head, fat body, and hemocytes. Temporal expression profiles showed that 15 CLIP genes were predominantly expressed during the fifth-instar larval stage, early and later period of the pupal stage, and adult stage, whereas 10 CLIP genes were mainly expressed in the wandering stage and middle to later period of the pupal stage in the integument. Pathogens and 20-hydroxyecdysone (20E) induction analysis indicated that 14 CLIP genes were positively regulated by 20E, 9 were negatively regulated by 20E but positively regulated by pathogens, and 5 were positively regulated by both factors in the integument. Together, these results suggested that silkworm CLIP genes may play multiple functions in integument development, including melanization of new cuticle, molting and immune defense. Our data provide a comprehensive understanding of CLIP genes in the silkworm integument and lays a foundation for further functional studies of CLIP genes in the silkworm.
Collapse
Affiliation(s)
- Huawei Liu
- Biological Science Research Center Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Jingya Heng
- Biological Science Research Center Southwest University, Chongqing, 400715, China
| | - Luoling Wang
- Biological Science Research Center Southwest University, Chongqing, 400715, China
| | - Xin Tang
- Biological Science Research Center Southwest University, Chongqing, 400715, China
| | - Pengchao Guo
- Biological Science Research Center Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Youshan Li
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi Province, China
| | - Qingyou Xia
- Biological Science Research Center Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Ping Zhao
- Biological Science Research Center Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
7
|
Zhang J, Huang W, Yuan C, Lu Y, Yang B, Wang CY, Zhang P, Dobens L, Zou Z, Wang C, Ling E. Prophenoloxidase-Mediated Ex Vivo Immunity to Delay Fungal Infection after Insect Ecdysis. Front Immunol 2017; 8:1445. [PMID: 29163517 PMCID: PMC5671992 DOI: 10.3389/fimmu.2017.01445] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/17/2017] [Indexed: 11/30/2022] Open
Abstract
Skin immunity protects animals from airborne pathogen infection. Unlike mammals, arthropods, including insects, undergo periodic ecdysis to grow and develop. Newly molted insects emerge with unsclerotized thin cuticles but successfully escape pathogenic infections during the post-molt period. Here we show that prophenoloxidases (PPOs) in molting fluids remain bioactive on the integument and impede fungal infection after ecdysis. We found that the purified plasma PPOs or recombinant PPOs could effectively bind to fungal spores (conidia) by targeting the cell wall components chitin and β-1,3-glucan. Pretreatment of the spores of the fungal pathogen Beauveria bassiana with PPOs increased spore hydrophilicity and reduced spore adhesion activity, resulting in a significant decrease in virulence as compared with mock infection. We also identified a spore-secreted protease BPS8, a member of peptidase S8 family of protease that degrade PPOs at high levels to benefit fungal infection, but which at lower doses activate PPOs to inhibit spore germination after melanization. These data indicate that insects have evolved a distinct strategy of ex vivo immunity to survive pathogen infections after ecdysis using PPOs in molting fluids retained on the underdeveloped and tender integument of newly molted insects for protection against airborne fungal infection.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Shanghai Institute of Organic Chemistry Chinese Academy of Sciences, Shanghai, China
| | - Wuren Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chuanfei Yuan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Virology and China Center for Virus Culture Collection, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yuzhen Lu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bing Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Cheng-Yuan Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Leonard Dobens
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Erjun Ling
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
8
|
Liu HW, Li YS, Tang X, Guo PC, Wang DD, Zhou CY, Xia QY, Zhao P. A midgut-specific serine protease, BmSP36, is involved in dietary protein digestion in the silkworm, Bombyx mori. INSECT SCIENCE 2017; 24:753-767. [PMID: 27311916 DOI: 10.1111/1744-7917.12369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/06/2016] [Indexed: 06/06/2023]
Abstract
Serine proteases play important roles in digestion and immune responses during insect development. In the present study, the serine protease gene BmSP36, which encodes a 292-residue protein, was cloned from the midgut cells of Bombyx mori. BmSP36 contains an intact catalytic triad (H57, D102 and S195) and a conserved substrate-binding site (G189, H216 and G226), suggesting that it is a serine protease with chymotrypsin-like specificity. The temporal and spatial expression patterns of BmSP36 indicated that its messenger RNA and protein expression mainly occurred in the midgut at the feeding stages. Western blotting, immunofluorescence and liquid chromatography-tandem mass spectrometry analyses revealed secretion of BmSP36 protein from epithelial cells into the midgut lumen. The transcriptional and translational expression of BmSP36 was down-regulated after starvation but up-regulated after refeeding. Moreover, expression of the BmSP36 gene could be up-regulated by a juvenile hormone analogue. These results enable us to better define the potential role of BmSP36 in dietary protein digestion at the feeding stages during larval development.
Collapse
Affiliation(s)
- Hua-Wei Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - You-Shan Li
- Vitamin D Research Institute, Shaanxi Sci-Tech University, Hanzhong, Shaanxi Province, China
| | - Xin Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Peng-Chao Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Dan-Dan Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Chun-Yan Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Qing-You Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
9
|
Kannan M, Ramya T, Anbalagan S, Suriya J, Krishnan M. Proteomic analysis of pupal gut serine protease of Silkworm, Bombyx mori : Partial purification and biochemical characterization. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Yang B, Huang W, Zhang J, Xu Q, Zhu S, Zhang Q, Beerntsen BT, Song H, Ling E. Analysis of gene expression in the midgut of Bombyx mori during the larval molting stage. BMC Genomics 2016; 17:866. [PMID: 27809786 PMCID: PMC5096333 DOI: 10.1186/s12864-016-3162-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 10/12/2016] [Indexed: 11/15/2022] Open
Abstract
Background Insects can be models for understanding human intestinal infection and pathology. Molting, a special period during which the old insect cuticle is shed and a new one is produced, is crucial for insect development. Holometabolous insects may experience several larva-to-larva moltings to become larger, a pupal molt and adult eclosion to become adults. During the larval molts, they stop feeding and become quiescent. Although the molting larvae become quiescent, it is not known if changes in microbiome, physiology, development and immunity of midguts occur. Results Transcriptome analysis indicated that functions such as metabolism, digestion, and transport may become reduced due to the downregulated expression of many associated genes. During the molting stage, midguts harbor less microflora and DNA synthesis decreases. Both ecdysone and juvenile hormone in the larval midgut likely degrade after entering the larva-to-larva molting stage. However, at 12 h after ecdysis, the feeding larvae of 5th instars that were injected with 20-hydroxyecdysone entered a molting-like stage, during which changes in midgut morphology, DNA synthesis, gene expression, and microflora exhibited the same patterns as observed in the actual molting state. Conclusion This study is important for understanding insect midgut physiology, development and immunity during a special development stage when no food is ingested. Although the molting larva becomes immobile and quiescent, we demonstrate that numerous changes occur in midgut morphology, physiology, metabolism and microbiome during this period. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3162-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bing Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wuren Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jie Zhang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qiuyun Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shoulin Zhu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qiaoli Zhang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Brenda T Beerntsen
- Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Hongsheng Song
- College of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Erjun Ling
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
11
|
Zhang J, Lu A, Kong L, Zhang Q, Ling E. Functional analysis of insect molting fluid proteins on the protection and regulation of ecdysis. J Biol Chem 2014; 289:35891-906. [PMID: 25368323 DOI: 10.1074/jbc.m114.599597] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Molting fluid accumulates between the old and new cuticles during periodical ecdysis in Ecdysozoa. Natural defects in insect ecdysis are frequently associated with melanization (an immunity response) occurring primarily in molting fluids, suggesting that molting fluid may impact immunity as well as affect ecdysis. To address this hypothesis, proteomic analysis of molting fluids from Bombyx mori during three different types of ecdysis was performed. Many proteins were newly identified, including immunity-related proteins, in each molting fluid. Molting fluids inhibited the growth of bacteria in vitro. The entomopathogenic fungi Beauveria bassiana, which can escape immune responses in feeding larvae, is quickly recognized by larvae during ecdysis, followed by melanization in molting fluid and old cuticle. Fungal conidia germination was delayed, and no hyphae were detected in the hemocoels of pharate instar insects. Molting fluids protect the delicate pharate instar insects with extremely thin cuticles against microorganisms. To explore the function of molting fluids in ecdysis regulation, based on protein similarity, 32 genes were selected for analysis in ecdysis regulation through RNAi in Tribolium castaneum, a model commonly used to study integument development because RNAi is difficult to achieve in B. mori. We identified 24 molting proteins that affected ecdysis after knockdown, with different physiological functions, including old cuticle protein recycling, molting fluid pressure balance, detoxification, and signal detection and transfer of molting fluids. We report that insects secrete molting fluid for protection and regulation of ecdysis, which indicates a way to develop new pesticides through interrupting insect ecdysis in the future.
Collapse
Affiliation(s)
- Jie Zhang
- From the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China and
| | - Anrui Lu
- From the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China and
| | - Lulu Kong
- the College of Agriculture and Biology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qiaoli Zhang
- From the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China and
| | - Erjun Ling
- From the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China and
| |
Collapse
|
12
|
Cathepsin D-Like Aspartic Proteinase Occurring in a Maize Weevil,Sitophilus zeamais, as a Candidate Digestive Enzyme. Biosci Biotechnol Biochem 2014; 73:2338-40. [DOI: 10.1271/bbb.90372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Saikia M, Singh YT, Bhattacharya A, Mazumdar-Leighton S. Expression of diverse midgut serine proteinases in the sericigenous Lepidoptera Antheraea assamensis (Helfer) is influenced by choice of host plant species. INSECT MOLECULAR BIOLOGY 2011; 20:1-13. [PMID: 20854480 DOI: 10.1111/j.1365-2583.2010.01048.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Antheraea assamensis is reared on various species of the Lauraceae family from north-east India for its distinctive cocoon silk. We demonstrate differential expression of digestive trypsin and chymotrypsins in larvae feeding on a primary host, Persea bombycina Kosterm., in comparison to larvae feeding on Litsea monopetala Roxb. using in vitro proteolytic assays, zymogram analyses with proteinase inhibitors, restriction digestion of RNA-PCR amplicons and quantitative real-time PCR (RT-PCR). Eight novel members of the serine proteinase gene family were identified, including an intron-spliced trypsin (AaPb4) and seven putative chymotrypsins (AaPb2, AaPb4, AaPb12, AaLm4, AaLm6, AaLm19 and AaLm29). Midgut transcript levels of the putative trypsin were higher in larvae fed P. bombycina whereas levels of transcripts encoding putative chymotrypsins were higher in larvae reared on L. monopetala. Complex, differential expression of sequence divergent midgut serine proteinases may reflect the ability of lepidopteran larvae to feed on different species of host plants. Possible implications of host plant choice on the digestive physiology of A. assamensis are discussed.
Collapse
Affiliation(s)
- M Saikia
- Insect-Plant Interactions Group, Department of Botany, University of Delhi, Delhi, India.
| | | | | | | |
Collapse
|
14
|
Lee JH, Kim CH, Shin YP, Park HJ, Park S, Lee HM, Kim BS, Lee IH. Characterization of Kunitz-type protease inhibitor purified from hemolymph of Galleria mellonella larvae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:873-882. [PMID: 20826210 DOI: 10.1016/j.ibmb.2010.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/27/2010] [Accepted: 08/30/2010] [Indexed: 05/29/2023]
Abstract
We characterized a Kunitz-type protease inhibitor (Gm KTPI) obtained from the hemolymph of Galleria mellonella larvae immunized with Escherichia coli. The structural analysis of the cloned cDNA showed that it consists of 56 residues derived from the precursor of 75 amino acids. The peptide was constitutively produced in the fat bodies, but not in the midgut nor the integument of larvae. In our analysis of stage-dependent expression, its transcript was detected within the midgut, the fat bodies and the integument of the prepupae, which undergo tissue remodeling. The inhibition assays showed that Gm KTPI was capable of inhibiting only the trypsin-like activity of the larval midgut extracts. Furthermore, it was determined that Gm KTPI induced the activation of extracellular signal-regulated kinase (ERK) in the fat bodies and integument cells, and this kinase is known to perform a central role in cell proliferation signaling. Its effect on ERK activation was also verified in a control experiment using a human endothelial cell culture. Collectively, it was suggested that Gm KTPI might be responsible for the protection of other tissues against proteolytic attack by trypsin-like protease(s) from larval midgut during metamorphosis, and might play a role in the proliferation of cells in the fat body and integument.
Collapse
Affiliation(s)
- Joon Ha Lee
- Department of Biotechnology, Hoseo University, Asan-Si, Chungnam, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhao P, Wang GH, Dong ZM, Duan J, Xu PZ, Cheng TC, Xiang ZH, Xia QY. Genome-wide identification and expression analysis of serine proteases and homologs in the silkworm Bombyx mori. BMC Genomics 2010; 11:405. [PMID: 20576138 PMCID: PMC2996933 DOI: 10.1186/1471-2164-11-405] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Accepted: 06/24/2010] [Indexed: 11/23/2022] Open
Abstract
Background Serine proteases (SPs) and serine proteases homologs (SPHs) are a large group of proteolytic enzymes, with important roles in a variety of physiological processes, such as cell signalling, defense and development. Genome-wide identification and expression analysis of serine proteases and their homologs in the silkworm might provide valuable information about their biological functions. Results In this study, 51 SP genes and 92 SPH genes were systematically identified in the genome of the silkworm Bombyx mori. Phylogenetic analysis indicated that six gene families have been amplified species-specifically in the silkworm, and the members of them showed chromosomal distribution of tandem repeats. Microarray analysis suggests that many silkworm-specific genes, such as members of SP_fam12, 13, 14 and 15, show expression patterns that are specific to tissues or developmental stages. The roles of SPs and SPHs in resisting pathogens were investigated in silkworms when they were infected by Escherichia coli, Bacillus bombysepticus, Batrytis bassiana and B. mori nucleopolyhedrovirus, respectively. Microarray experiment and real-time quantitative RT-PCR showed that 18 SP or SPH genes were significantly up-regulated after pathogen induction, suggesting that SP and SPH genes might participate in pathogenic microorganism resistance in B. mori. Conclusion Silkworm SP and SPH genes were identified. Comparative genomics showed that SP and SPH genes belong to a large family, whose members are generated mainly by tandem repeat evolution. We found that silkworm has species-specific SP and SPH genes. Phylogenetic and microarray analyses provide an overview of the silkworm SP and SPHs, and facilitate future functional studies on these enzymes.
Collapse
Affiliation(s)
- Ping Zhao
- The Key Sericultural Laboratory of Agricultural Ministry, Southwest University, Chongqing 400715, PR China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Speicher KD, Gorman N, Speicher DW. N-terminal sequence analysis of proteins and peptides. ACTA ACUST UNITED AC 2009; Chapter 11:11.10.1-11.10.31. [PMID: 19688733 DOI: 10.1002/0471140864.ps1110s57] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Automated N-terminal sequence analysis involves a series of chemical reactions that derivatize and remove one amino acid at a time from the N-terminus of purified peptides or intact proteins. At least several picomoles of a purified protein or 10 to 20 pmol of a purified peptide with an unmodified N-terminus is required to obtain useful sequence information. In recent years, the demand for N-terminal sequencing has decreased substantially as some applications for protein identification and characterization can now be more effectively performed using mass spectrometry. However, N-terminal sequencing remains the method of choice for verifying the N-terminal boundary of recombinant proteins, determining the N-terminus of protease-resistant domains, identifying proteins isolated from species where most of the genome has not yet been sequenced, and mapping modified or crosslinked sites in proteins that prove to be refractory to analysis by mass spectrometry.
Collapse
|
17
|
Reim DF, Speicher DW. N-terminal sequence analysis of proteins and peptides. ACTA ACUST UNITED AC 2008; Chapter 11:Unit 11.10. [PMID: 18429102 DOI: 10.1002/0471140864.ps1110s08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Amino-terminal (N-terminal) sequence analysis is used to identify the order of amino acids of proteins or peptides, starting at their N-terminal end. This unit describes the sequence analysis of protein or peptide samples in solution or bound to PVDF membranes using a Perkin-Elmer Procise Sequencer. Sequence analysis of protein or peptide samples in solution or bound to PVDF membranes using a Hewlett-Packard Model G1005A sequencer is also described. Methods are provided for optimizing separation of PTH amino acid derivatives on Perkin-Elmer instruments and for increasing the proportion of sample injected onto the PTH analyzer on older Perkin-Elmer instruments by installing a modified sample loop. The amount of data obtained from a single sequencer run is substantial, and careful interpretation of this data by an experienced scientist familiar with the current operation performance of the instrument used for this analysis is critically important. A discussion of data interpretation is therefore provided. Finally, discussion of optimization of sequencer performance as well as possible solutions to frequently encountered problems is included.
Collapse
Affiliation(s)
- D F Reim
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|