1
|
Yadav M, Dahiya N, Janjoter S, Kataria D, Dixit R, Sehrawat N. A review on RNA interference studies in Anophelines to reveal candidate genes for malaria transmission blocking vaccine. Life Sci 2024; 351:122822. [PMID: 38866221 DOI: 10.1016/j.lfs.2024.122822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Malaria is a major public health concern. The development of parasite-based vaccine RTS/AS01 has some therapeutic value but its lower efficacy is one of the major limitations. Mosquito-based transmission-blocking vaccines could have a higher potential for parasite inhibition within the mosquitoes. Several genes of mosquito midgut, salivary gland, hemolymph, etc. get activate in response to the Plasmodium-infected blood and helps in parasite invasion directly or indirectly inside the mosquito. The studies of such genes provided a new insight into developing the more efficient vaccines. In the field of malaria genetics research, RNAi has become an innovative strategy used to identify mosquito candidate genes for transmission-blocking vaccines. This review targeted the gene studies that have been conducted in the period 2000-2023 in different malaria vectors against different malarial parasites using the RNAi approach to reveal mosquito novel gene candidates for vaccine development.
Collapse
Affiliation(s)
- Mahima Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Nisha Dahiya
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Sangeeta Janjoter
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Divya Kataria
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India
| | | | - Neelam Sehrawat
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
2
|
Si S, Zhang X, Yu Y, Zhong X, Zhang X, Yuan J, Li F. Structure and function analyses of the SRC gene in Pacific white shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109433. [PMID: 38336143 DOI: 10.1016/j.fsi.2024.109433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
SRC gene encodes scavenger receptor class C, a member of the scavenger receptor family, and has only been identified and investigated in invertebrates. Our previous studies have revealed that SRC is a novel candidate gene associated with body weight in Pacific white shrimp (Litopenaeus vannamei). In order to comprehend the underlying mechanism by which LvSRC affects shrimp growth, we analyzed the structure, phylogeny, expression profiles and RNA interference (RNAi) of this gene in L. vannamei. We found that LvSRC contains two CCP domains and one MAM domain, with the highest expression level in the heart and relatively low expression level in other tissues. Notably, LvSRC exhibited significantly higher expression levels in the fast-growing group among groups with different growth rates, suggesting its potential involvement as a gene contributing to the growth of L. vannamei. RNAi of LvSRC inhibited body length and body weight gain compared to the control groups. Moreover, through RNA-seq analysis, we identified 598 differentially expressed genes (DEGs), including genes associated with growth, immunity, protein processing and modification, signal transduction, lipid synthesis and metabolism. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed significant changes in the signaling pathways related to growth, lipid metabolism and immune response, suggesting that LvSRC exhibits the potential to participate in diverse physiological processes and immune regulation. These findings deepen our understanding of the structure and function of the SRC in shrimp and lay the foundation for further research into the regulatory mechanism of LvSRC. Additionally, they provide potential applications in shrimp genetics and breeding.
Collapse
Affiliation(s)
- Shuqing Si
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, 430072, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojun Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, 430072, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yang Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, 430072, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiaoyun Zhong
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, 430072, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxi Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jianbo Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, 430072, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, 430072, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049, China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
3
|
Mizushima D, Yamamoto DS, Tabbabi A, Arai M, Kato H. A rare sugar, allose, inhibits the development of Plasmodium parasites in the Anopheles mosquito independently of midgut microbiota. Front Cell Infect Microbiol 2023; 13:1162918. [PMID: 37545855 PMCID: PMC10400720 DOI: 10.3389/fcimb.2023.1162918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
A rare sugar, allose, was reported to inhibit the development of Plasmodium parasites in Anopheles mosquitoes; however, the mechanism remains unknown. The present study addressed the inhibitory mechanism of allose on the development of the Plasmodium parasite by connecting it with bacteria involvement in the midgut. In addition, further inhibitory sugars against Plasmodium infection in mosquitoes were explored. Antibiotic-treated and antibiotic-untreated Anopheles stephensi were fed fructose with or without allose. The mosquitoes were infected with luciferase-expressing Plasmodium berghei, and parasite development was evaluated by luciferase activity. Bacterial composition analysis in gut of their mosquitoes was performed with comprehensive 16S ribosomal RNA sequencing. As the result, allose inhibited the development of oocysts in mosquitoes regardless of prior antibiotic treatment. Microbiome analysis showed that the midgut bacterial composition in mosquitoes before and after blood feeding was not affected by allose. Although allose inhibited transient growth of the midgut microbiota of mosquitoes after blood feeding, neither toxic nor inhibitory effects of allose on the dominant midgut bacteria were observed. Ookinete development in the mosquito midgut was also not affected by allose feeding. Additional 15 sugars including six monosaccharides, four polyols, and five polysaccharides were tested; however, no inhibitory effect against Plasmodium development in mosquitoes was observed. These results indicated that allose inhibits parasite development in midgut stage of the mosquito independently of midgut microbiota. Although further studies are needed, our results suggest that allose may be a useful material for the vector control of malaria as a "transmission-blocking sugar."
Collapse
Affiliation(s)
- Daiki Mizushima
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Daisuke S. Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Ahmed Tabbabi
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Meiji Arai
- Department of International Medical Zoology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa, Japan
| | - Hirotomo Kato
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
4
|
Tavares CS, Mishra R, Ghobrial PN, Bonning BC. Composition and abundance of midgut surface proteins in the Asian citrus psyllid, Diaphorina citri. J Proteomics 2022; 261:104580. [DOI: 10.1016/j.jprot.2022.104580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
|
5
|
Zhou LZ, Wang RJ, Yan YY, Zeng S, Zou Z, Lu Z. Scavenger receptor B1 mediates phagocytosis and the antimicrobial peptide pathway in the endoparasitic wasp Micropilits mediator. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104039. [PMID: 33549640 DOI: 10.1016/j.dci.2021.104039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Scavenger receptors (SRs) are a family of pattern recognition receptors (PRRs) in the immune system. They are required for phagocytosis and act as co-receptors of Toll-like receptors to regulate immune signaling pathways in the fight against pathogens. Little is known about the function of SRs in insects. Here, we reported on a member of the SR family from the parasitic wasp Micropilits mediator (designated MmSR-B1) that is responsive to bacterial infection. The recombinant extracellular CD36 domain of MmSR-B1 produced in Escherichia coli cells is capable of binding to peptidoglycans and bacterial cells, causing agglutination of bacteria. Furthermore, we demonstrated that double-stranded RNA-mediated knockdown of MmSR-B1 impedes hemocyte phagocytosis and downregulates the expression of antimicrobial peptide (AMP) genes defensins and hymenoptaecins. Knockdown of MmSR-B1 led to increased death of the wasps when challenged by bacteria. Our study suggests that MmSR-B1 mediates phagocytosis and the production of AMPs in M. mediator wasps.
Collapse
Affiliation(s)
- Li-Zhen Zhou
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China.
| | - Rui-Juan Wang
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China.
| | - You-Ying Yan
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China.
| | - Shuocheng Zeng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
6
|
Ferdous Z, Fuchs S, Behrends V, Trasanidis N, Waterhouse RM, Vlachou D, Christophides GK. Anopheles coluzzii stearoyl-CoA desaturase is essential for adult female survival and reproduction upon blood feeding. PLoS Pathog 2021; 17:e1009486. [PMID: 34015060 PMCID: PMC8171932 DOI: 10.1371/journal.ppat.1009486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 06/02/2021] [Accepted: 03/19/2021] [Indexed: 01/08/2023] Open
Abstract
Vitellogenesis and oocyte maturation require anautogenous female Anopheles mosquitoes to obtain a bloodmeal from a vertebrate host. The bloodmeal is rich in proteins that are readily broken down into amino acids in the midgut lumen and absorbed by the midgut epithelial cells where they are converted into lipids and then transported to other tissues including ovaries. The stearoyl-CoA desaturase (SCD) plays a pivotal role in this process by converting saturated (SFAs) to unsaturated (UFAs) fatty acids; the latter being essential for maintaining cell membrane fluidity amongst other housekeeping functions. Here, we report the functional and phenotypic characterization of SCD1 in the malaria vector mosquito Anopheles coluzzii. We show that RNA interference (RNAi) silencing of SCD1 and administration of sterculic acid (SA), a small molecule inhibitor of SCD1, significantly impact on the survival and reproduction of female mosquitoes following blood feeding. Microscopic observations reveal that the mosquito thorax is quickly filled with blood, a phenomenon likely caused by the collapse of midgut epithelial cell membranes, and that epithelial cells are depleted of lipid droplets and oocytes fail to mature. Transcriptional profiling shows that genes involved in protein, lipid and carbohydrate metabolism and immunity-related genes are the most affected by SCD1 knock down (KD) in blood-fed mosquitoes. Metabolic profiling reveals that these mosquitoes exhibit increased amounts of saturated fatty acids and TCA cycle intermediates, highlighting the biochemical framework by which the SCD1 KD phenotype manifests as a result of a detrimental metabolic syndrome. Accumulation of SFAs is also the likely cause of the potent immune response observed in the absence of infection, which resembles an auto-inflammatory condition. These data provide insights into mosquito bloodmeal metabolism and lipid homeostasis and could inform efforts to develop novel interventions against mosquito-borne diseases. Female mosquitoes can become infected with malaria parasites upon ingestion of blood from an infected person and can transmit the disease when they bite another person some days later. The bloodmeal is rich in proteins which female mosquitoes use to develop their eggs after converting them first to saturated and then to unsaturated fatty acids inside their gut cells. Here, we present the characterization of the enzyme that mosquitoes use to convert saturated to unsaturated fatty acids and show that when this enzyme is eliminated or inhibited mosquitoes cannot produce eggs and die soon after they feed on blood. The mosquito death appears to be primarily associated with the collapse of their gut epithelial barrier due to the loss of cell membrane integrity, leading to their inner body cavity being filled with the ingested blood. These mosquitoes also suffer from an acute and detrimental auto-inflammatory condition due to mounting of a potent immune response in the absence of any infection. We conclude that this enzyme and the mechanism of converting blood-derived proteins to unsaturated fatty acids as a whole can be a good target of interventions aiming at limiting the mosquito abundance and blocking malaria transmission.
Collapse
Affiliation(s)
- Zannatul Ferdous
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Silke Fuchs
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Volker Behrends
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
- Health Science Research Centre, University of Roehampton, London, United Kingdom
| | - Nikolaos Trasanidis
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Robert M. Waterhouse
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Dina Vlachou
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | |
Collapse
|
7
|
Núñez AI, Esteve-Codina A, Gómez-Garrido J, Brustolin M, Talavera S, Berdugo M, Dabad M, Alioto T, Bensaid A, Busquets N. Alteration in the Culex pipiens transcriptome reveals diverse mechanisms of the mosquito immune system implicated upon Rift Valley fever phlebovirus exposure. PLoS Negl Trop Dis 2020; 14:e0008870. [PMID: 33301456 PMCID: PMC7755283 DOI: 10.1371/journal.pntd.0008870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 12/22/2020] [Accepted: 10/10/2020] [Indexed: 01/02/2023] Open
Abstract
Rift Valley fever phlebovirus (RVFV) causes an emerging zoonotic disease and is mainly transmitted by Culex and Aedes mosquitoes. While Aedes aegypti-dengue virus (DENV) is the most studied model, less is known about the genes involved in infection-responses in other mosquito-arboviruses pairing. The main objective was to investigate the molecular responses of Cx. pipiens to RVFV exposure focusing mainly on genes implicated in innate immune responses. Mosquitoes were fed with blood spiked with RVFV. The fully-engorged females were pooled at 3 different time points: 2 hours post-exposure (hpe), 3- and 14-days post-exposure (dpe). Pools of mosquitoes fed with non-infected blood were also collected for comparisons. Total RNA from each mosquito pool was subjected to RNA-seq analysis and a de novo transcriptome was constructed. A total of 451 differentially expressed genes (DEG) were identified. Most of the transcriptomic alterations were found at an early infection stage after RVFV exposure. Forty-eight DEG related to immune infection-response were characterized. Most of them were related with the RNAi system, Toll and IMD pathways, ubiquitination pathway and apoptosis. Our findings provide for the first time a comprehensive view on Cx. pipiens-RVFV interactions at the molecular level. The early depletion of RNAi pathway genes at the onset of the RVFV infection would allow viral replication in mosquitoes. While genes from the Toll and IMD immune pathways were altered in response to RVFV none of the DEG were related to the JAK/STAT pathway. The fact that most of the DEG involved in the Ubiquitin-proteasome pathway (UPP) or apoptosis were found at an early stage of infection would suggest that apoptosis plays a regulatory role in infected Cx. pipiens midguts. This study provides a number of target genes that could be used to identify new molecular targets for vector control.
Collapse
Affiliation(s)
- Ana I. Núñez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Jèssica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Marco Brustolin
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sandra Talavera
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Miguel Berdugo
- Instituto de Biología Evolutiva, Universitat Pompeu i Fabra-CSIC, Dr. Aigüader 88, Barcelona, Spain
| | - Marc Dabad
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Tyler Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
- Universitat Pompeu i Fabra (UPF), Barcelona, Catalonia, Spain
| | - Albert Bensaid
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Núria Busquets
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
8
|
O'Neal AJ, Butler LR, Rolandelli A, Gilk SD, Pedra JH. Lipid hijacking: a unifying theme in vector-borne diseases. eLife 2020; 9:61675. [PMID: 33118933 PMCID: PMC7595734 DOI: 10.7554/elife.61675] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Vector-borne illnesses comprise a significant portion of human maladies, representing 17% of global infections. Transmission of vector-borne pathogens to mammals primarily occurs by hematophagous arthropods. It is speculated that blood may provide a unique environment that aids in the replication and pathogenesis of these microbes. Lipids and their derivatives are one component enriched in blood and are essential for microbial survival. For instance, the malarial parasite Plasmodium falciparum and the Lyme disease spirochete Borrelia burgdorferi, among others, have been shown to scavenge and manipulate host lipids for structural support, metabolism, replication, immune evasion, and disease severity. In this Review, we will explore the importance of lipid hijacking for the growth and persistence of these microbes in both mammalian hosts and arthropod vectors.
Collapse
Affiliation(s)
- Anya J O'Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - L Rainer Butler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - Stacey D Gilk
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, United States
| | - Joao Hf Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| |
Collapse
|
9
|
Wilson KL, Flanagan KL, Prakash MD, Plebanski M. Malaria vaccines in the eradication era: current status and future perspectives. Expert Rev Vaccines 2019; 18:133-151. [PMID: 30601095 DOI: 10.1080/14760584.2019.1561289] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The challenge to eradicate malaria is an enormous task that will not be achieved by current control measures, thus an efficacious and long-lasting malaria vaccine is required. The licensing of RTS, S/AS01 is a step forward in providing some protection, but a malaria vaccine that protects across multiple transmission seasons is still needed. To achieve this, inducing beneficial immune responses while minimising deleterious non-targeted effects will be essential. AREAS COVERED This article discusses the current challenges and advances in malaria vaccine development and reviews recent human clinical trials for each stage of infection. Pubmed and ScienceDirect were searched, focusing on cell mediated immunity and how T cell subsets might be targeted in future vaccines using novel adjuvants and emerging vaccine technologies. EXPERT COMMENTARY Despite decades of research there is no highly effective licensed malaria vaccine. However, there is cause for optimism as new adjuvants and vaccine systems emerge, and our understanding of correlates of protection increases, especially regarding cellular immunity. The new field of heterologous (non-specific) effects of vaccines also highlights the broader consequences of immunization. Importantly, the WHO led Malaria Vaccine Technology Roadmap illustrates that there is a political will among the global health community to make it happen.
Collapse
Affiliation(s)
- K L Wilson
- a Department of Immunology and Pathology, Faculty of Medicine, Nursing and Health Sciences , Monash University , Melbourne , Australia.,b School of Health and Biomedical Sciences , RMIT University , Bundoora , Australia
| | - K L Flanagan
- a Department of Immunology and Pathology, Faculty of Medicine, Nursing and Health Sciences , Monash University , Melbourne , Australia.,b School of Health and Biomedical Sciences , RMIT University , Bundoora , Australia.,c School of Medicine, Faculty of Health Sciences , University of Tasmania , Launceston , Australia
| | - M D Prakash
- b School of Health and Biomedical Sciences , RMIT University , Bundoora , Australia
| | - M Plebanski
- b School of Health and Biomedical Sciences , RMIT University , Bundoora , Australia
| |
Collapse
|
10
|
Zumaya-Estrada FA, Rodríguez MC, Rodríguez MH. Pathogen-insect interaction candidate molecules for transmission-blocking control strategies of vector borne diseases. SALUD PUBLICA DE MEXICO 2018; 60:77-85. [PMID: 29689660 DOI: 10.21149/8140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/24/2017] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE To analyze the current knowledge of pathogen-insect interactions amenable for the design of molecular-based control strategies of vector-borne diseases. MATERIALS AND METHODS We examined malaria, dengue, and Chagas disease pathogens and insect molecules that participate in interactions during their vectors infection. RESULTS Pathogen molecules that participate in the insect intestine invasion and induced vector immune molecules are presented, and their inclusion in transmission blocking vaccines (TBV) and in genetically modify insect (GMI) vectors or symbiotic bacteria are discussed. CONCLUSIONS Disruption of processes by blocking vector-pathogen interactions provides several candidates for molecular control strategies, but TBV and GMI efficacies are still limited and other secondary effects of GMI (improving transmission of other pathogens, affectation of other organisms) should be discarded.
Collapse
Affiliation(s)
- Federico Alonso Zumaya-Estrada
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. Cuernavaca, Morelos, México
| | - María Carmen Rodríguez
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. Cuernavaca, Morelos, México
| | - Mario Henry Rodríguez
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. Cuernavaca, Morelos, México
| |
Collapse
|
11
|
League GP, Estévez-Lao TY, Yan Y, Garcia-Lopez VA, Hillyer JF. Anopheles gambiae larvae mount stronger immune responses against bacterial infection than adults: evidence of adaptive decoupling in mosquitoes. Parasit Vectors 2017; 10:367. [PMID: 28764812 PMCID: PMC5539753 DOI: 10.1186/s13071-017-2302-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/20/2017] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The immune system of adult mosquitoes has received significant attention because of the ability of females to vector disease-causing pathogens while ingesting blood meals. However, few studies have focused on the immune system of larvae, which, we hypothesize, is highly robust due to the high density and diversity of microorganisms that larvae encounter in their aquatic environments and the strong selection pressures at work in the larval stage to ensure survival to reproductive maturity. Here, we surveyed a broad range of cellular and humoral immune parameters in larvae of the malaria mosquito, Anopheles gambiae, and compared their potency to that of newly-emerged adults and older adults. RESULTS We found that larvae kill bacteria in their hemocoel with equal or greater efficiency compared to newly-emerged adults, and that antibacterial ability declines further with adult age, indicative of senescence. This phenotype correlates with more circulating hemocytes and a differing spatial arrangement of sessile hemocytes in larvae relative to adults, as well as with the individual hemocytes of adults carrying a greater phagocytic burden. The hemolymph of larvae also possesses markedly stronger antibacterial lytic and melanization activity than the hemolymph of adults. Finally, infection induces a stronger transcriptional upregulation of immunity genes in larvae than in adults, including differences in the immunity genes that are regulated. CONCLUSIONS These results demonstrate that immunity is strongest in larvae and declines after metamorphosis and with adult age, and suggest that adaptive decoupling, or the independent evolution of larval and adult traits made possible by metamorphosis, has occurred in the mosquito lineage.
Collapse
Affiliation(s)
- Garrett P. League
- Department of Biological Sciences, Vanderbilt University, Nashville, TN USA
| | | | - Yan Yan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN USA
| | | | - Julián F. Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN USA
| |
Collapse
|
12
|
Hou F, Liu T, Wang Q, Liu Y, Sun C, Liu X. Identification and characterization of two Croquemort homologues in penaeid shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2017; 60:1-5. [PMID: 27670083 DOI: 10.1016/j.fsi.2016.09.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/15/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
Croquemort, the homologue of human CD36, is a member of class B scavenger receptors, which is involved in bacteria phagocytosis and cytokins release. However, there is still less information about Croquemort in crustaceans. Here, a Croquemort from Pacific white shrimp Litopenaeus vannamei (LvCroquemort) and its truncated form (LvCroquemort-S1) cDNA sequences were identified, characterized and their role in bacteria clearance was investigated. The deduced protein of LvCroquemort is 533 amino acids and contains typical domains of CD36: the N-terminus and C-terminus in cytoplasm, two transmembrane regions and a large extracellular loop-like domain. However, LvCroquemort-S1 losses partial cDNA sequence in its middle and its deduced protein losses the C-terminal transmembrane region and C-terminus in cytoplasm, the latter of which is found participating in cytokins release in human CD36. LvCroquemort transcript is highly expressed in gills, hemocytes, testis and slightly in heart, hepatopancreas and nerve. Besides, its responses to bacteria Vibrio anguillarum and white spot syndrome virus were examined. Knock-down of LvCroquemort by specific dsRNA reduces bacteria clearance. These initial data will help to further understand roles of Croquemort in crustacean innate immunity.
Collapse
Affiliation(s)
- Fujun Hou
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, Shaanxi, China
| | - Tao Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, Shaanxi, China
| | - Qiai Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, Shaanxi, China
| | - Yongjie Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, Shaanxi, China
| | - Chengbo Sun
- Fisheries College, Guangdong Ocean University, Guangdong, 524088, China
| | - Xiaolin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, Shaanxi, China.
| |
Collapse
|
13
|
Scavenger Receptor Class B, Type I, a CD36 Related Protein in Macrobrachium nipponense: Characterization, RNA Interference, and Expression Analysis with Different Dietary Lipid Sources. Int J Genomics 2016; 2016:6325927. [PMID: 28003996 PMCID: PMC5143729 DOI: 10.1155/2016/6325927] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/23/2016] [Indexed: 11/17/2022] Open
Abstract
The scavenger receptor class B, type I (SR-BI), is a member of the CD36 superfamily comprising transmembrane proteins involved in mammalian and fish lipid homeostasis regulation. We hypothesize that this receptor plays an important role in Macrobrachium nipponense lipid metabolism. However, little attention has been paid to SR-BI in commercial crustaceans. In the present study, we report a cDNA encoding M. nipponense scavenger receptor class B, type I (designated as MnSR-BI), obtained from a hepatopancreas cDNA library. The complete MnSR-BI coding sequence was 1545 bp, encoding 514 amino acid peptides. The MnSR-BI primary structure consisted of a CD36 domain that contained two transmembrane regions at the N- and C-terminals of the protein. SR-BI mRNA expression was specifically detected in muscle, gill, ovum, intestine, hepatopancreas, stomach, and ovary tissues. Furthermore, its expression in the hepatopancreas was regulated by dietary lipid sources, with prawns fed soybean and linseed oils exhibiting higher expression levels. RNAi-based SR-BI silencing resulted in the suppression of its expression in the hepatopancreas and variation in the expression of lipid metabolism-related genes. This is the first report of SR-BI in freshwater prawns and provides the basis for further studies on SR-BI in crustaceans.
Collapse
|
14
|
Abstract
This article attempts to draw together current knowledge on the biology of Plasmodium and experience gained from past control campaigns to interpret and guide current efforts to discover and develop exciting new strategies targeting the parasite with the objective of interrupting transmission. Particular note is made of the advantages of targeting often unappreciated small, yet vital, bottleneck populations to enhance both the impact and the useful lifetime of hard-won interventions. A case is made for the standardization of methods to measure transmission blockade to permit the rational comparison of how diverse interventions (drugs, vaccines, insecticides, Genetically Modified technologies) targeting disparate aspects of parasite biology may impact upon the commonly used parameter of parasite prevalence in the human population.
Collapse
Affiliation(s)
- R E Sinden
- The Jenner Institute, Oxford, United Kingdom.
| |
Collapse
|
15
|
Smith RC, King JG, Tao D, Zeleznik OA, Brando C, Thallinger GG, Dinglasan RR. Molecular Profiling of Phagocytic Immune Cells in Anopheles gambiae Reveals Integral Roles for Hemocytes in Mosquito Innate Immunity. Mol Cell Proteomics 2016; 15:3373-3387. [PMID: 27624304 DOI: 10.1074/mcp.m116.060723] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Indexed: 11/06/2022] Open
Abstract
The innate immune response is highly conserved across all eukaryotes and has been studied in great detail in several model organisms. Hemocytes, the primary immune cell population in mosquitoes, are important components of the mosquito innate immune response, yet critical aspects of their biology have remained uncharacterized. Using a novel method of enrichment, we isolated phagocytic granulocytes and quantified their proteomes by mass spectrometry. The data demonstrate that phagocytosis, blood-feeding, and Plasmodium falciparum infection promote dramatic shifts in the proteomic profiles of An. gambiae granulocyte populations. Of interest, large numbers of immune proteins were induced in response to blood feeding alone, suggesting that granulocytes have an integral role in priming the mosquito immune system for pathogen challenge. In addition, we identify several granulocyte proteins with putative roles as membrane receptors, cell signaling, or immune components that when silenced, have either positive or negative effects on malaria parasite survival. Integrating existing hemocyte transcriptional profiles, we also compare differences in hemocyte transcript and protein expression to provide new insight into hemocyte gene regulation and discuss the potential that post-transcriptional regulation may be an important component of hemocyte gene expression. These data represent a significant advancement in mosquito hemocyte biology, providing the first comprehensive proteomic profiling of mosquito phagocytic granulocytes during homeostasis blood-feeding, and pathogen challenge. Together, these findings extend current knowledge to further illustrate the importance of hemocytes in shaping mosquito innate immunity and their principal role in defining malaria parasite survival in the mosquito host.
Collapse
Affiliation(s)
- Ryan C Smith
- From the ‡W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205.,**Department of Entomology, Iowa State University, Ames, Iowa 50011
| | - Jonas G King
- From the ‡W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205.,‡‡Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, Mississippi 39762
| | - Dingyin Tao
- From the ‡W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205.,§§Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Oana A Zeleznik
- §Bioinformatics, Institute for Knowledge Discovery, Graz University of Technology, 8010 Graz, Austria.,¶Core Facility Bioinformatics, Austrian Centre of Industrial Biotechnology, 8010 Graz, Austria.,‖BioTechMed OMICS Center Graz, 8010 Graz, Austria
| | - Clara Brando
- From the ‡W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205
| | - Gerhard G Thallinger
- §Bioinformatics, Institute for Knowledge Discovery, Graz University of Technology, 8010 Graz, Austria.,¶Core Facility Bioinformatics, Austrian Centre of Industrial Biotechnology, 8010 Graz, Austria.,‖BioTechMed OMICS Center Graz, 8010 Graz, Austria
| | - Rhoel R Dinglasan
- From the ‡W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205; .,¶¶Emerging Pathogens Institute, Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
16
|
Lecona-Valera AN, Tao D, Rodríguez MH, López T, Dinglasan RR, Rodríguez MC. An antibody against an Anopheles albimanus midgut myosin reduces Plasmodium berghei oocyst development. Parasit Vectors 2016; 9:274. [PMID: 27165123 PMCID: PMC4863318 DOI: 10.1186/s13071-016-1548-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/27/2016] [Indexed: 11/13/2022] Open
Abstract
Background Malaria parasites are transmitted by Anopheles mosquitoes. Although several studies have identified mosquito midgut surface proteins that are putatively important for Plasmodium ookinete invasion, only a few have characterized these protein targets and demonstrated transmission-blocking activity. Molecular information about these proteins is essential for the development of transmission-blocking vaccines (TBV). The aim of the present study was to test three monoclonal antibodies (mAbs), A-140, A-78 and A-10, for their ability to recognize antigens and block oocyst infection of the midgut of Anopheles albimanus, a major malaria vector in Latin America. Method Western-blot of mAbs on antigens from midgut brush border membrane vesicles was used to select antibodies. Three mAbs were tested by membrane feeding assays to evaluate their potential transmission-blocking activity against Plasmodium berghei. The cognate antigens recognized by mAbs with oocyst-reducing activity were determined by immunoprecipitation followed by liquid chromatography tandem mass spectrometry. Results Only one mAb, A-140, significantly reduced oocyst infection intensity. Hence, its probable protein target in the Anopheles albimanus midgut was identified and characterized. It recognized three high-molecular mass proteins from a midgut brush border microvilli vesicle preparation. Chemical deglycosylation assays confirmed the peptide nature of the epitope recognized by mAb A-140. Immunoprecipitation followed by proteomic identification with tandem mass spectrometry revealed five proteins, presumably extracted together as a complex. Of these, AALB007909 had the highest mascot score and corresponds to a protein with a myosin head motor domain, indicating that the target of mAb A-140 is probably myosin located on the microvilli of the mosquito midgut. Conclusion These results provide support for the participation of myosin in mosquito midgut invasion by Plasmodium ookinetes. The potential inclusion of this protein in the design of new multivalent vaccine strategies for blocking Plasmodium transmission is discussed. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1548-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alba N Lecona-Valera
- Center of Research on Infectious Diseases, National Institute of Public Health, Av. Universidad 655, Col. Santa María Ahuacatitlán, Cuernavaca, Morelos, C. P. 62508, Mexico
| | - Dingyin Tao
- W. Harry Feinstone Department of Molecular Microbiology & Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland, 21205, USA
| | - Mario H Rodríguez
- Center of Research on Infectious Diseases, National Institute of Public Health, Av. Universidad 655, Col. Santa María Ahuacatitlán, Cuernavaca, Morelos, C. P. 62508, Mexico
| | - Tomás López
- Instituto de Biotecnología, Universidad Nacional Autónoma de Méxic006F, Av. Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Rhoel R Dinglasan
- W. Harry Feinstone Department of Molecular Microbiology & Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland, 21205, USA
| | - María C Rodríguez
- Center of Research on Infectious Diseases, National Institute of Public Health, Av. Universidad 655, Col. Santa María Ahuacatitlán, Cuernavaca, Morelos, C. P. 62508, Mexico.
| |
Collapse
|
17
|
Dennison NJ, BenMarzouk-Hidalgo OJ, Dimopoulos G. MicroRNA-regulation of Anopheles gambiae immunity to Plasmodium falciparum infection and midgut microbiota. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:170-8. [PMID: 25445902 PMCID: PMC4447300 DOI: 10.1016/j.dci.2014.10.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/24/2014] [Accepted: 10/25/2014] [Indexed: 05/03/2023]
Abstract
Invasion of the malaria vector Anopheles gambiae midgut by Plasmodium parasites triggers transcriptional changes of immune genes that mediate the antiparasitic defense. This response is largely regulated by the Toll and Immune deficiency (IMD) pathways. To determine whether A. gambiae microRNAs (miRNAs) are involved in regulating the anti-Plasmodium defense, we showed that suppression of miRNA biogenesis results in increased resistance to Plasmodium falciparum infection. In silico analysis of A. gambiae immune effector genes identified multiple transcripts with miRNA binding sites. A comparative miRNA microarray abundance analysis of P. falciparum infected and naïve mosquito midgut tissues showed elevated abundance of miRNAs aga-miR-989 and aga-miR-305 in infected midguts. Antagomir inhibition of aga-miR-305 increased resistance to P. falciparum infection and suppressed the midgut microbiota. Conversely, treatment of mosquitoes with an artificial aga-miR-305 mimic increased susceptibility to P. falciparum infection and resulted in expansion of midgut microbiota, suggesting that aga-miR-305 acts as a P. falciparum and gut microbiota agonist by negatively regulating the mosquito immune response. In silico prediction of aga-miR-305 target genes identified several anti-Plasmodium effectors. Our study shows that A. gambiae aga-miR-305 regulates the anti-Plasmodium response and midgut microbiota, likely through post-transcriptional modification of immune effector genes.
Collapse
Affiliation(s)
- Nathan J Dennison
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Omar J BenMarzouk-Hidalgo
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
18
|
Zhang J, Zhang S, Wang Y, Xu W, Zhang J, Jiang H, Huang F. Modulation of Anopheles stephensi gene expression by nitroquine, an antimalarial drug against Plasmodium yoelii infection in the mosquito. PLoS One 2014; 9:e89473. [PMID: 24586804 PMCID: PMC3933544 DOI: 10.1371/journal.pone.0089473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 01/22/2014] [Indexed: 12/30/2022] Open
Abstract
Background Antimalarial drugs may impact mosquito’s defense against Plasmodium parasites. Our previous study showed nitroquine significantly reduced infection of Anopheles stephensi by Plasmodium yoelii, but the underlying mechanism remains unclear. In order to understand how transmission capacity of An. stephensi was affected by nitroquine, we explored the transcriptome of adult females after different treatments, examined changes in gene expression profiles, and identified transcripts affected by the drug and parasite. Methodology/Principal Findings We extended massively parallel sequencing and data analysis (including gene discovery, expression profiling, and function prediction) to An. stephensi before and after Plasmodium infection with or without nitroquine treatment. Using numbers of reads assembled into specific contigs to calculate relative abundances (RAs), we categorized the assembled contigs into four groups according to the differences in RA values infection induced, infection suppressed, drug induced, and drug suppressed. We found both nitroquine in the blood meal and Plasmodium infection altered transcription of mosquito genes implicated in diverse processes, including pathogen recognition, signal transduction, prophenoloxidase activation, cytoskeleton assembling, cell adhesion, and oxidative stress. The differential gene expression may have promoted certain defense responses of An. stephensi against the parasite and decreased its infectivity. Conclusions/Significance Our study indicated that nitroquine may regulate several immune mechanisms at the level of gene transcription in the mosquito against Plasmodium infection. This highlights the need for better understanding of antimalarial drug’s impact on parasite survival and transmission. In addition, our data largely enriched the existing sequence information of An. stephensi, an epidemiologically important vector species.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Pathobiology, The Third Military Medical University, Chongqing, P. R. China
| | - Shuguang Zhang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Yanyan Wang
- Department of Pathobiology, The Third Military Medical University, Chongqing, P. R. China
| | - Wenyue Xu
- Department of Pathobiology, The Third Military Medical University, Chongqing, P. R. China
| | - Jingru Zhang
- Department of Pathobiology, The Third Military Medical University, Chongqing, P. R. China
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, United States of America
- * E-mail: (FH); (HJ)
| | - Fusheng Huang
- Department of Pathobiology, The Third Military Medical University, Chongqing, P. R. China
- * E-mail: (FH); (HJ)
| |
Collapse
|
19
|
Multiple pathways for Plasmodium ookinete invasion of the mosquito midgut. Proc Natl Acad Sci U S A 2014; 111:E492-500. [PMID: 24474798 DOI: 10.1073/pnas.1315517111] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plasmodium ookinete invasion of the mosquito midgut is a crucial step of the parasite life cycle but little is known about the molecular mechanisms involved. Previously, a phage display peptide library screen identified SM1, a peptide that binds to the mosquito midgut epithelium and inhibits ookinete invasion. SM1 was characterized as a mimotope of an ookinete surface enolase and SM1 presumably competes with enolase, the presumed ligand, for binding to a putative midgut receptor. Here we identify a mosquito midgut receptor that binds both SM1 and ookinete surface enolase, termed "enolase-binding protein" (EBP). Moreover, we determined that Plasmodium berghei parasites are heterogeneous for midgut invasion, as some parasite clones are strongly inhibited by SM1 whereas others are not. The SM1-sensitive parasites required the mosquito EBP receptor for midgut invasion whereas the SM1-resistant parasites invaded the mosquito midgut independently of EBP. These experiments provide evidence that Plasmodium ookinetes can invade the mosquito midgut by alternate pathways. Furthermore, another peptide from the original phage display screen, midgut peptide 2 (MP2), strongly inhibited midgut invasion by P. berghei (SM1-sensitive and SM1-resistant) and Plasmodium falciparum ookinetes, suggesting that MP2 binds to a separate, universal receptor for midgut invasion.
Collapse
|
20
|
Rios-Velásquez CM, Martins-Campos KM, Simões RC, Izzo T, dos Santos EV, Pessoa FAC, Lima JBP, Monteiro WM, Secundino NFC, Lacerda MVG, Tadei WP, Pimenta PFP. Experimental Plasmodium vivax infection of key Anopheles species from the Brazilian Amazon. Malar J 2013; 12:460. [PMID: 24359307 PMCID: PMC3878095 DOI: 10.1186/1475-2875-12-460] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 12/17/2013] [Indexed: 01/09/2023] Open
Abstract
Background Anopheles darlingi is the major malaria vector in countries located in the Amazon region. Anopheles aquasalis and Anopheles albitarsis s.l. are also proven vectors in this region. Anopheles nuneztovari s.l. and Anopheles triannulatus s.l. were found infected with Plasmodium vivax; however, their status as vectors is not yet well defined. Knowledge of susceptibility of Amazon anopheline populations to Plasmodium infection is necessary to better understand their vector capacity. Laboratory colonization of An. darlingi, the main Amazon vector, has proven to be difficult and presently An. aquasalis is the only available autonomous colony. Methods Larvae of An. darlingi, An. albitarsis s.l., An. nuneztovari s.l. and An. triannulatus s.l. were collected in the field and reared until adult stage. Adults of An. aquasalis were obtained from a well-established colony. Mosquitoes were blood-fed using a membrane-feeding device containing infected blood from malarial patients. The infection of the distinct Anopheles species was evaluated by the impact variance of the following parameters: (a) parasitaemia density; (b) blood serum inactivation of the infective bloodmeal; (c) influence of gametocyte number on infection rates and number of oocysts. The goal of this work was to compare the susceptibility to P. vivax of four field-collected Anopheles species with colonized An. aquasalis. Results All Anopheles species tested were susceptible to P. vivax infection, nevertheless the proportion of infected mosquitoes and the infection intensity measured by oocyst number varied significantly among species. Inactivation of the blood serum prior to mosquito feeding increased infection rates in An. darlingi and An. triannulatus s.l., but was diminished in An. albitarsis s.l. and An. aquasalis. There was a positive correlation between gametocyte density and the infection rate in all tests (Z = −8.37; p < 0.001) but varied among the mosquito species. Anopheles albitarsis s.l., An. aquasalis and An. nuneztovari s.l. had higher infection rates than An. darlingi. Conclusion All field-collected Anopheles species, as well as colonized An. aquasalis are susceptible to experimental P. vivax infections by membrane feeding assays. Anopheles darlingi, An. albitarsis s.l. and An. aquasalis are very susceptible to P. vivax infection. However, colonized An. aquasalis mosquitoes showed the higher infection intensity represented by infection rate and oocyst numbers. This study is the first to characterize experimental development of Plasmodium infections in Amazon Anopheles vectors and also to endorse that P. vivax infection of colonized An. aquasalis is a feasible laboratory model.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Paulo F P Pimenta
- Fundação de Medicina Tropical Dr, Heitor Vieira Dourado, Manaus, AM, Brazil.
| |
Collapse
|
21
|
Bacteria- and IMD pathway-independent immune defenses against Plasmodium falciparum in Anopheles gambiae. PLoS One 2013; 8:e72130. [PMID: 24019865 PMCID: PMC3760850 DOI: 10.1371/journal.pone.0072130] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 07/11/2013] [Indexed: 01/12/2023] Open
Abstract
The mosquito Anopheles gambiae uses its innate immune system to control bacterial and Plasmodium infection of its midgut tissue. The activation of potent IMD pathway-mediated anti-Plasmodium falciparum defenses is dependent on the presence of the midgut microbiota, which activate this defense system upon parasite infection through a peptidoglycan recognition protein, PGRPLC. We employed transcriptomic and reverse genetic analyses to compare the P. falciparum infection-responsive transcriptomes of septic and aseptic mosquitoes and to determine whether bacteria-independent anti-Plasmodium defenses exist. Antibiotic treated aseptic mosquitoes mounted molecular immune responses representing a variety of immune functions upon P. falciparum infection. Among other immune factors, our analysis uncovered a serine protease inhibitor (SRPN7) and Clip-domain serine protease (CLIPC2) that were transcriptionally induced in the midgut upon P. falciparum infection, independent of bacteria. We also showed that SRPN7 negatively and CLIPC2 positively regulate the anti-Plasmodium defense, independently of the midgut-associated bacteria. Co-silencing assays suggested that these two genes may function together in a signaling cascade. Neither gene was regulated, nor modulated, by infection with the rodent malaria parasite Plasmodium berghei, suggesting that SRPN7 and CLIPC2 are components of a defense system with preferential activity towards P. falciparum. Further analysis using RNA interference determined that these genes do not regulate the anti-Plasmodium defense mediated by the IMD pathway, and both factors act as agonists of the endogenous midgut microbiota, further demonstrating the lack of functional relatedness between these genes and the bacteria-dependent activation of the IMD pathway. This is the first study confirming the existence of a bacteria-independent, anti-P. falciparum defense. Further exploration of this anti-Plasmodium defense will help clarify determinants of immune specificity in the mosquito, and expose potential gene and/or protein targets for malaria intervention strategies based on targeting the parasite in the mosquito vector.
Collapse
|
22
|
Patramool S, Choumet V, Surasombatpattana P, Sabatier L, Thomas F, Thongrungkiat S, Rabilloud T, Boulanger N, Biron DG, Missé D. Update on the proteomics of major arthropod vectors of human and animal pathogens. Proteomics 2012; 12:3510-23. [DOI: 10.1002/pmic.201200300] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/13/2012] [Accepted: 10/02/2012] [Indexed: 12/12/2022]
Affiliation(s)
| | - Valérie Choumet
- Unité de Génétique Moléculaire des Bunyavirus; Institut Pasteur; Paris; France
| | | | - Laurence Sabatier
- Département des Sciences Analytiques Institut Pluridisciplinaire Hubert Curien; Strasbourg; France
| | - Frédéric Thomas
- Laboratoire MIVEGEC; UMR CNRS 5290/IRD 224/UM1; Montpellier; France
| | - Supatra Thongrungkiat
- Department of Medical Entomology; Faculty of Tropical Medicine; Mahidol University; Bangkok; Thailand
| | - Thierry Rabilloud
- CNRS UMR 5249; Chemistry and Biology of Metals; CEA; Grenoble; France
| | - Nathalie Boulanger
- EA4438 Physiopathologie et médecine translationnelle; Faculté de Pharmacie; Illkirch; France
| | - David G. Biron
- CNRS UMR 6023; Laboratoire Microorganismes: Génome et Environnement; Aubière; France
| | - Dorothée Missé
- Laboratoire MIVEGEC; UMR CNRS 5290/IRD 224/UM1; Montpellier; France
| |
Collapse
|
23
|
Ubaida Mohien C, Colquhoun DR, Mathias DK, Gibbons JG, Armistead JS, Rodriguez MC, Rodriguez MH, Edwards NJ, Hartler J, Thallinger GG, Graham DR, Martinez-Barnetche J, Rokas A, Dinglasan RR. A bioinformatics approach for integrated transcriptomic and proteomic comparative analyses of model and non-sequenced anopheline vectors of human malaria parasites. Mol Cell Proteomics 2012; 12:120-31. [PMID: 23082028 PMCID: PMC3536893 DOI: 10.1074/mcp.m112.019596] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Malaria morbidity and mortality caused by both Plasmodium falciparum and Plasmodium vivax extend well beyond the African continent, and although P. vivax causes between 80 and 300 million severe cases each year, vivax transmission remains poorly understood. Plasmodium parasites are transmitted by Anopheles mosquitoes, and the critical site of interaction between parasite and host is at the mosquito's luminal midgut brush border. Although the genome of the “model” African P. falciparum vector, Anopheles gambiae, has been sequenced, evolutionary divergence limits its utility as a reference across anophelines, especially non-sequenced P. vivax vectors such as Anopheles albimanus. Clearly, technologies and platforms that bridge this substantial scientific gap are required in order to provide public health scientists with key transcriptomic and proteomic information that could spur the development of novel interventions to combat this disease. To our knowledge, no approaches have been published that address this issue. To bolster our understanding of P. vivax–An. albimanus midgut interactions, we developed an integrated bioinformatic-hybrid RNA-Seq-LC-MS/MS approach involving An. albimanus transcriptome (15,764 contigs) and luminal midgut subproteome (9,445 proteins) assembly, which, when used with our custom Diptera protein database (685,078 sequences), facilitated a comparative proteomic analysis of the midgut brush borders of two important malaria vectors, An. gambiae and An. albimanus.
Collapse
Affiliation(s)
- Ceereena Ubaida Mohien
- W Harry Feinstone Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health & Malaria Research Institute, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Coggins SA, Estévez-Lao TY, Hillyer JF. Increased survivorship following bacterial infection by the mosquito Aedes aegypti as compared to Anopheles gambiae correlates with increased transcriptional induction of antimicrobial peptides. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:390-401. [PMID: 22326457 DOI: 10.1016/j.dci.2012.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 05/31/2023]
Abstract
Mosquitoes defend themselves from pathogens by mounting cellular and humoral innate immune responses. Bioinformatic analyses have revealed considerable divergence in immune gene repertoires between mosquito species, but interspecies empirical comparisons of immune responses are lacking. Here, we present a comparative analysis of the antimicrobial responses of two distantly related disease vectors: Aedes aegypti and Anopheles gambiae. Survival studies showed that Ae. aegypti are more proficient in surviving a bacterial infection than An. gambiae, and this correlates with Ae. aegypti's superior ability to kill bacteria in their hemocoels. Hemocytes from both species swiftly phagocytose bacteria, but phagocytosis does not explain Ae. aegypti's increased robustness: An. gambiae contain more circulating hemocytes and display a higher phagocytic index, but the phagocytic capacity of individual hemocytes is greater in Ae. aegypti. Then, profiling of 19 immunity genes revealed that transcriptional induction following infection is significantly elevated in Ae. aegypti when compared to An. gambiae, with the largest change seen in the transcription of cecropin and defensin. These data show that Ae. aegypti is better equipped to survive a bacterial infection than An. gambiae, and this correlates with Ae. aegypti's increased transcriptional induction of antimicrobial peptides and other humoral immune factors in response to infection.
Collapse
Affiliation(s)
- Sarah A Coggins
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235-1634, USA
| | | | | |
Collapse
|
25
|
Fang Q, Wang L, Zhu Y, Stanley DW, Chen X, Hu C, Ye G. Pteromalus puparum venom impairs host cellular immune responses by decreasing expression of its scavenger receptor gene. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:852-862. [PMID: 21802512 DOI: 10.1016/j.ibmb.2011.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/30/2011] [Accepted: 07/12/2011] [Indexed: 05/26/2023]
Abstract
Insect host/parasitoid interactions are co-evolved systems in which host defenses are balanced by parasitoid mechanisms to disable or hide from host immune effectors. Although there is a rich literature on these systems, parasitoid immune-disabling mechanisms have not been fully elucidated. Here we report on a newly discovered immune-disabling mechanism in the Pieris rapae/Pteromalus puparum host/parasitoid system. Because venom injections and parasitization suppresses host phagocytosis, we turned attention to the P. rapae scavenger receptor (Pr-SR), posing the hypothesis that P. puparum venom suppresses expression of the host Pr-SR gene. To test our hypothesis, we cloned a full-length cDNA of the Pr-SR. Multiple sequences alignment showed the deduced amino acid sequence of Pr-SR is similar to scavenger receptors of other lepidopterans. Bacterial and bead injections induced Pr-SR mRNA and protein expression, which peaked at 4h post-bead injection. Venom injection inhibited Pr-SR expression. Pr-SR was specifically expressed in granulocytes compared to plasmatocytes. We localized the Pr-SR protein in cytoplasm and cellular membrane, with no evidence of secretion into host plasma. Double-strand RNA designed to Pr-SR mRNA silenced expression of Pr-SR and significantly impaired host phagocytosis and encapsulation reactions. Venom injections similarly silenced Pr-SR expression during the first 8h post-treatment, after which the silencing effects gradually abated. We infer from these findings that one mechanism of impairing P. rapae hemocytic immune reactions is by silencing expression of Pr-SR.
Collapse
Affiliation(s)
- Qi Fang
- State Key Laboratory of Rice Biology & Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Parish LA, Colquhoun DR, Ubaida Mohien C, Lyashkov AE, Graham DR, Dinglasan RR. Ookinete-interacting proteins on the microvillar surface are partitioned into detergent resistant membranes of Anopheles gambiae midguts. J Proteome Res 2011; 10:5150-62. [PMID: 21905706 PMCID: PMC3208356 DOI: 10.1021/pr2006268] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lipid raft microdomains, a component of detergent resistant membranes (DRMs), are routinely exploited by pathogens during host-cell entry. Multiple membrane-surface proteins mediate Plasmodium ookinete invasion of the Anopheles midgut, a critical step in the parasite life cycle that is successfully targeted by transmission-blocking vaccines (TBV). Given that lipid rafts are a common feature of host-pathogen interactions, we hypothesized that they promote the partitioning of midgut surface proteins and thus facilitate ookinete invasion. In support of this hypothesis, we found that five of the characterized Anopheles TBV candidates, including the leading Anopheles TBV candidate, AgAPN1, are present in Anopheles gambiae DRMs. Therefore, to extend the repertoire of putative midgut ligands that can be targeted by TBVs, we analyzed midgut DRMs by tandem mass spectrometry. We identified 1452 proteins including several markers of DRMs. Since glycosylphosphotidyl inositol (GPI)-anchored proteins partition to DRMs, we characterized the GPI subproteome of An. gambiae midgut brush-border microvilli and found that 96.9% of the proteins identified in the GPI-anchored fractions were also present in DRMs. Our study vastly expands the number of candidate malarial TBV targets for subsequent analysis by the broader community and provides an inferred role for midgut plasmalemma microdomains in ookinete cell invasion.
Collapse
Affiliation(s)
- Lindsay A Parish
- W. Harry Feinstone Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
27
|
Genome-wide profiling of diel and circadian gene expression in the malaria vector Anopheles gambiae. Proc Natl Acad Sci U S A 2011; 108:E421-30. [PMID: 21715657 DOI: 10.1073/pnas.1100584108] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Anopheles gambiae, the primary African vector of malaria parasites, exhibits numerous rhythmic behaviors including flight activity, swarming, mating, host seeking, egg laying, and sugar feeding. However, little work has been performed to elucidate the molecular basis for these daily rhythms. To study how gene expression is regulated globally by diel and circadian mechanisms, we have undertaken a DNA microarray analysis of An. gambiae under light/dark cycle (LD) and constant dark (DD) conditions. Adult mated, non-blood-fed female mosquitoes were collected every 4 h for 48 h, and samples were processed with DNA microarrays. Using a cosine wave-fitting algorithm, we identified 1,293 and 600 rhythmic genes with a period length of 20-28 h in the head and body, respectively, under LD conditions, representing 9.7 and 4.5% of the An. gambiae gene set. A majority of these genes was specific to heads or bodies. Examination of mosquitoes under DD conditions revealed that rhythmic programming of the transcriptome is dependent on an interaction between the endogenous clock and extrinsic regulation by the LD cycle. A subset of genes, including the canonical clock components, was expressed rhythmically under both environmental conditions. A majority of genes had peak expression clustered around the day/night transitions, anticipating dawn and dusk. Genes cover diverse biological processes such as transcription/translation, metabolism, detoxification, olfaction, vision, cuticle regulation, and immunity, and include rate-limiting steps in the pathways. This study highlights the fundamental roles that both the circadian clock and light play in the physiology of this important insect vector and suggests targets for intervention.
Collapse
|
28
|
Abstract
Throughout their lifetime, mosquitoes are exposed to pathogens during feeding, through breaks in their cuticle and following pathogen-driven cuticular degradation. To resist infection, mosquitoes mount innate cellular and humoral immune responses that are elicited within minutes of exposure and can lead to pathogen death via three broadly defined mechanisms: lysis, melanization and hemocyte-mediated phagocytosis. This chapter reviews our current understanding of the mosquito immune system, with an emphasis on the physical barriers that prevent pathogens from entering the body, the organs and tissues that regulate immune responses and the mechanistic and molecular bases of immunity.
Collapse
Affiliation(s)
- Julián F Hillyer
- Department of Biological Sciences, Institute for Global Health, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
29
|
Class B scavenger receptor, Croquemort from kuruma shrimp Marsupenaeus japonicus: Molecular cloning and characterization. Mol Cell Probes 2011; 25:94-100. [PMID: 21324353 DOI: 10.1016/j.mcp.2011.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 01/29/2011] [Accepted: 02/07/2011] [Indexed: 11/23/2022]
Abstract
The scavenger receptor, Croquemort is a member of the CD36 superfamily comprising transmembrane proteins involved in the recognition of polyanionic ligands. Various researchers have proved that members of the CD36 superfamily are involved in immunity and developmental processes. In the present study, we report a cDNA encoding the kuruma shrimp, Marsupenaeus japonicus Croquemort scavenger receptor (MjSCRBQ) obtained from a cDNA library of lymphoid organ by RACE amplification. The full-length cDNA of 2098 bp consists an open reading frame of 1596 nucleotides that translates into a 532-amino acid putative protein, with a 5' untranslated region of 323 bp and 3' UTR of 153 bp. The MjSCRBQ is constitutively expressed in gills, heart, hemolymph, hepatopancreas, intestine, lymphoid organ, muscle, nerve, and stomach and at high levels in the brain. Expression analysis in lymphoid organs of shrimp infected with white spot syndrome virus (WSSV) revealed high levels of MjSCRBQ 72 and 120 h post-infection. The MjSCRBQ contains putative functional domains including transmembrane domains and a CD36 domain. Multiple alignments of MjSCRBQ amino acid sequences showed significant identity with Drosophila melanogaster SCRBQ (31%), Salmo salar SCRBQ (29%), Homo sapiens SCRBQ (28%) and Rattus norvegicus SCRBQ (30%). In a phylogenetic analysis, MjSCRBQ was identified in the invertebrate scavenger receptor cluster. This is the first report in crustaceans of the identification and characterization of a Croquemort scavenging receptor.
Collapse
|
30
|
Coutinho-Abreu IV, Sharma NK, Robles-Murguia M, Ramalho-Ortigao M. Targeting the midgut secreted PpChit1 reduces Leishmania major development in its natural vector, the sand fly Phlebotomus papatasi. PLoS Negl Trop Dis 2010; 4:e901. [PMID: 21152058 PMCID: PMC2994919 DOI: 10.1371/journal.pntd.0000901] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 11/01/2010] [Indexed: 11/18/2022] Open
Abstract
Background During its developmental cycle within the sand fly vector, Leishmania must survive an early proteolytic attack, escape the peritrophic matrix, and then adhere to the midgut epithelia in order to prevent excretion with remnants of the blood meal. These three steps are critical for the establishment of an infection within the vector and are linked to interactions controlling species-specific vector competence. PpChit1 is a midgut-specific chitinase from Phlebotomus papatasi presumably involved in maturation and degradation of the peritrophic matrix. Sand fly midgut chitinases, such as PpChit1, whether acting independently or in a synergistic manner with Leishmania-secreted chitinase, possibly play a role in the Leishmania escape from the endoperitrophic space. Thus, we predicted that silencing of sand fly chitinase will lead to reduction or elimination of Leishmania within the gut of the sand fly vector. Methodology/Principal Findings We used injection of dsRNA to induce knock down of PpChit1 transcripts (dsPpChit1) and assessed the effect on protein levels post blood meal (PBM) and on Leishmania major development within P. papatasi. Injection of dsPpChit1 led to a significant reduction of PpChit1 transcripts from 24 hours to 96 hours PBM. More importantly, dsPpChit1 led to a significant reduction in protein levels and in the number of Le. major present in the midgut of infected P. papatasi following a infective blood meal. Conclusion/Significance Our data supports targeting PpChit1 as a potential transmission blocking vaccine candidate against leishmaniasis. For a successful development within the midgut of the sand fly vector, Leishmania must overcome several barriers which are imposed by the vector. The ability to overcome these barriers has been associated with species specificity, and interference with the sand fly vector-parasite balance can change the outcome of the infection in the vector. Recently, our group has carried out a transcriptome assessment of the sand fly Phlebotomus papatasi midgut, uncovering many transcripts possibly associated with the barrier to Leishmania development. In order to validate the role of such genes, we have developed a dedicated RNA interference (RNAi) platform to assess whether RNAi targeting such genes can reduce Leishmania major development. PpChit1 is a midgut-specific chitinase presumably involved in the maturation/degradation of the peritrophic matrix in the gut of the sand fly after a blood meal. Our results show that knockdown of PpChit1 via RNAi led to a significant reduction of Le. major within the gut, supporting the potential use of PpChit1 as a target for transmission blocking strategies against sand fly-transmitted leishmaniasis.
Collapse
Affiliation(s)
| | - Narinder K. Sharma
- Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
| | - Maricela Robles-Murguia
- Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
| | - Marcelo Ramalho-Ortigao
- Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
31
|
Cirimotich CM, Dong Y, Garver LS, Sim S, Dimopoulos G. Mosquito immune defenses against Plasmodium infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:387-95. [PMID: 20026176 PMCID: PMC3462653 DOI: 10.1016/j.dci.2009.12.005] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 12/07/2009] [Accepted: 12/08/2009] [Indexed: 05/11/2023]
Abstract
The causative agent of malaria, Plasmodium, has to undergo complex developmental transitions and survive attacks from the mosquito's innate immune system to achieve transmission from one host to another through the vector. Here we discuss recent findings on the role of the mosquito's innate immune signaling pathways in preventing infection by the Plasmodium parasite, the identification and mechanistic description of novel anti-parasite molecules, the role that natural bacteria harbored in the mosquito midgut might play in this immune defense and the crucial parasite and vector molecules that mediate midgut infection.
Collapse
Affiliation(s)
- Chris M Cirimotich
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
32
|
Vital W, Rezende GL, Abreu L, Moraes J, Lemos FJA, Vaz IDS, Logullo C. Germ band retraction as a landmark in glucose metabolism during Aedes aegypti embryogenesis. BMC DEVELOPMENTAL BIOLOGY 2010; 10:25. [PMID: 20184739 PMCID: PMC2838828 DOI: 10.1186/1471-213x-10-25] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 02/25/2010] [Indexed: 11/17/2022]
Abstract
Background The mosquito A. aegypti is vector of dengue and other viruses. New methods of vector control are needed and can be achieved by a better understanding of the life cycle of this insect. Embryogenesis is a part of A. aegypty life cycle that is poorly understood. In insects in general and in mosquitoes in particular energetic metabolism is well studied during oogenesis, when the oocyte exhibits fast growth, accumulating carbohydrates, lipids and proteins that will meet the regulatory and metabolic needs of the developing embryo. On the other hand, events related with energetic metabolism during A. aegypti embryogenesis are unknown. Results Glucose metabolism was investigated throughout Aedes aegypti (Diptera) embryonic development. Both cellular blastoderm formation (CBf, 5 h after egg laying - HAE) and germ band retraction (GBr, 24 HAE) may be considered landmarks regarding glucose 6-phosphate (G6P) destination. We observed high levels of glucose 6-phosphate dehydrogenase (G6PDH) activity at the very beginning of embryogenesis, which nevertheless decreased up to 5 HAE. This activity is correlated with the need for nucleotide precursors generated by the pentose phosphate pathway (PPP), of which G6PDH is the key enzyme. We suggest the synchronism of egg metabolism with carbohydrate distribution based on the decreasing levels of phosphoenolpyruvate carboxykinase (PEPCK) activity and on the elevation observed in protein content up to 24 HAE. Concomitantly, increasing levels of hexokinase (HK) and pyruvate kinase (PK) activity were observed, and PEPCK reached a peak around 48 HAE. Glycogen synthase kinase (GSK3) activity was also monitored and shown to be inversely correlated with glycogen distribution during embryogenesis. Conclusions The results herein support the hypothesis that glucose metabolic fate changes according to developmental embryonic stages. Germ band retraction is a moment that was characterized as a landmark in glucose metabolism during Aedes aegypti embryogenesis. Furthermore, the results also suggest a role for GSK3 in glycogen balance/distribution during morphological modifications.
Collapse
Affiliation(s)
- Wagner Vital
- Laboratório de Química e Função de Proteínas e Peptídeos and Laboratório de Biotecnologia-CBB-UENF, Horto, CEP 28015-620 Campos dos Goytacazes, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|