1
|
Zhou Y, Li T, He X, Wang X, Wang F, Li X. Efficient Biosynthesis of (+)-α-Pinene and de Novo Synthesis of (+)- cis-Verbenol in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18890-18897. [PMID: 39140858 DOI: 10.1021/acs.jafc.4c05387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Bark beetles, major pests that bore into forest stems, cause significant economic damage to forests globally. (+)-α-Pinene is the precursor to (+)-cis-verbenol, a crucial component of the aggregation pheromones produced by bark beetles. This paper describes the de novo synthesis of (+)-cis-verbenol in Escherichia coli. Initially, the truncation position of (+)-α-pinene synthase (PtPS30 from Pinus taeda) and monoterpene precursor (geranyl diphosphate/neryl diphosphate) synthases were evaluated. Neryl diphosphate synthase from Solanum lycopersicum (SlNPPS1) and truncated (+)-α-pinene synthase (PtPS30-39) were selected as promising candidates. Subsequently, the titer of (+)-α-pinene was significantly increased 8.9-fold by using the fusion tag CM29, which enhanced the solubility of PtPS30-39. In addition, by optimizing expression elements (ribosomal binding sites, linkers, and up elements) and overexpressing CM29*PtPS30-39, a yield of 134.12 mg/L (+)-α-pinene was achieved. Finally, the first de novo synthesis of enantiopure (+)-cis-verbenol was achieved by introducing a cytochrome P450 mutant from Pseudomonas putida (P450camF89W,Y98F,L246A), resulting in a yield of 11.13 mg/L. This study lays the groundwork for developing verbenol-based trapping technology for controlling bark beetles.
Collapse
Affiliation(s)
- Yujunjie Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Tao Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xilong He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xun Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Fei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| |
Collapse
|
2
|
Xue M, Xia X, Deng Y, Teng F, Zhao S, Li H, Hao D, Chen WY. Identification and Functional Analysis of an Epsilon Class Glutathione S-Transferase Gene Associated with α-Pinene Adaptation in Monochamus alternatus. Int J Mol Sci 2023; 24:17376. [PMID: 38139205 PMCID: PMC10743883 DOI: 10.3390/ijms242417376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/29/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Alpha-pinene is one of the main defensive components in conifers. Monochamus alternatus (Coleoptera: Cerambycidae), a wood borer feeding on Pinaceae plants, relies on its detoxifying enzymes to resist the defensive terpenoids. Here, we assayed the peroxide level and GST activity of M. alternatus larvae treated with different concentrations of α-pinene. Meanwhile, a gst gene (MaGSTe3) was isolated and analyzed. We determined its expression level and verified its function. The results showed that α-pinene treatment led to membrane lipid peroxidation and thus increased the GST activity. Expression of MaGSTe3 was significantly upregulated in guts following exposure to α-pinene, which has a similar pattern with the malonaldehyde level. In vitro expression and disk diffusion assay showed that the MaGSTe3 protein had high antioxidant capacity. However, RNAi treatment of MaGSTe3 did not reduce the hydrogen peroxide and malonaldehyde levels, while GST activity was significantly reduced. These results suggested MaGSTe3 takes part in α-pinene adaptation, but it does not play a great role in the resistance of M. alternatus larvae to α-pinene.
Collapse
Affiliation(s)
- Mingyu Xue
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China (Y.D.); (H.L.)
| | - Xiaohong Xia
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China (Y.D.); (H.L.)
| | - Yadi Deng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China (Y.D.); (H.L.)
| | - Fei Teng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China (Y.D.); (H.L.)
| | - Shiyue Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China (Y.D.); (H.L.)
| | - Hui Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China (Y.D.); (H.L.)
| | - Dejun Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China (Y.D.); (H.L.)
| | - Wei-Yi Chen
- Soochow College, Soochow University, Suzhou 215006, China
| |
Collapse
|
3
|
Li W, Zou J, Yang X, Yang M, Jiang P, Wang X, Huang C, He Y. Identification of metabolizing enzyme genes associated with xenobiotics and odorants in the predatory stink bug Arma custos based on transcriptome analysis. Heliyon 2023; 9:e18657. [PMID: 37576196 PMCID: PMC10412767 DOI: 10.1016/j.heliyon.2023.e18657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023] Open
Abstract
The predatory stink bug, Arma custos, is a highly effective beneficial predator of crop pests. The lack of gene information related to xenobiotic detoxification and odorant degrading enzymes in the predator stink bugs to date has limited our ability for more in-depth studies of biological control. Hence, we conducted de novo assembly of the A. custos transcriptome from guts, antennae, and other tiussue samples of 5th instar larvae using Illumina sequencing technology. A total of 91, 50 and 23 genes of cytochrome P450 monooxygenases (CYPs), carboxyl/choline esterases (CCEs) and glutathione S-transferases (GSTs) genes were identified, respectively. Gene expansions of CYP3 and CYP4 clans and the hormone and pheromone processing CCE class were found in A. custos. Analysis of tissue-specific expression patterns showed that 37 CYPs, 14 CCEs and 8 GSTs were enriched in guts, and 6 CYPs, 5 CCEs and 2 GSTs were up-regulated in antennae, suggesting their potential roles on xenobiotics detoxification and ordorant degradation. Gene information data presented here could be useful for a deeper understanding of the ecology, physiology and behavior of this beneficial species and could be helpful to improve their bio-control efficiency.
Collapse
Affiliation(s)
- Wenhong Li
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Jingmiao Zou
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiang Yang
- Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi, 563000, China
| | - Mingwei Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Po Jiang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinyi Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunyang Huang
- Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi, 563000, China
| | - Yueping He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
4
|
Cheng M, Meng F, Qi H, Mo F, Wang P, Chen X, Wang A. Escaping drought: The pectin methylesterase inhibitor gene Slpmei27 can significantly change drought resistance in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:207-217. [PMID: 36265205 DOI: 10.1016/j.plaphy.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Drought stress will lead to a decrease in tomato yield and poor flavour, yield and quality, resulting in economic losses in agricultural production. Mining the key genes regulating tomato drought resistance is of great significance to improve the drought resistance of tomato plants. The cell wall can directly participate in the plant drought stress response as one of the main components of the cell wall, and the regulation of pectin content in plant drought resistance is still unclear. Here, the candidate gene Solyc08g006690 (Slpmei27) was obtained by fine mapping based on genome sequencing technology (BSA-seq) of late-maturing stress-resistant tomato mutants found in the field. Slpmei27 is expressed in the cell wall. The transient silencing of Slpmei27 by VIGS significantly improved the drought resistance of tomato. Meanwhile, Slpmei27 silencing could significantly change the cell wall structure of plants, change the stomatal pass rate, reduce the water loss rate of plants, improve the scavenging ability of reactive oxygen species, change the redox balance in plants, and thus improve the drought resistance of tomato. The promoter region of this gene contains a large number of hormone-response and stress-response binding sites. The promoter region of the Slpmei27 gene in the mutant could lower the expression of downstream genes. Through this study, the mechanism by which Slpmei27 improves tomato drought resistance was revealed, and the relationship between pectin methyl ester metabolism and plant drought resistance was established, providing a theoretical basis for the production of high-quality tomato materials with high drought resistance.
Collapse
Affiliation(s)
- Mozhen Cheng
- College of School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China.
| | - Fanyue Meng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China; College of Life Sciences, Northeast Agricultural University, Harbin, China.
| | - Haonan Qi
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China; College of Life Sciences, Northeast Agricultural University, Harbin, China.
| | - Fulei Mo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China; College of Life Sciences, Northeast Agricultural University, Harbin, China.
| | - Peiwen Wang
- College of School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; College of Life Sciences, Northeast Agricultural University, Harbin, China.
| | - Xiuling Chen
- College of School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China.
| | - Aoxue Wang
- College of School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China; College of Life Sciences, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
5
|
Li W, Wang X, Jiang P, Yang M, Li Z, Huang C, He Y. A full-length transcriptome and gene expression analysis of three detoxification gene families in a predatory stink bug, Picromerus lewisi. Front Physiol 2022; 13:1016582. [PMID: 36299261 PMCID: PMC9589283 DOI: 10.3389/fphys.2022.1016582] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/16/2022] [Indexed: 12/02/2022] Open
Abstract
The predatory stink bug P. Lewisi shows potential for Integrated Pest Management programs for controlling Lepidoptera pest insects in crops and forests. The importance of this insect for biological control has stimulated several studies into its biology and ecology. However, P. lewisi has little genetic information available. In the present study, PacBio single-molecule real-time (SMRT) sequencing and Illumina RNA-seq sequencing technologies were used to reveal the full-length transcriptome profiling and tissue-specific expression patterns of P. lewisi. A total of 12,997 high-quality transcripts with an average length of 2,292 bp were obtained from different stages of P. lewisi using SMRT sequencing. Among these, 12,101 were successfully annotated in seven public databases. A total of 67 genes of cytochrome P450 monooxygenases, 43 carboxylesterase genes, and 18 glutathione S-transferase genes were identified, most of which were obtained with full-length ORFs. Then, tissue-specific expression patterns of 5th instar nymphs were analyzed using Illumina sequencing. Several candidate genes related to detoxification of insecticides and other xenobiotics as well as the degradation of odors, were identified in the guts and antennae of P. lewisi. The current study offered in-depth knowledge to understand the biology and ecology of this beneficial predator and related species.
Collapse
Affiliation(s)
- Wenhong Li
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Xinyi Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Po Jiang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mingwei Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhimo Li
- Guizhou Provincial Tobacco Company, Zunyi Branch, Zunyi, China
| | - Chunyang Huang
- Guizhou Provincial Tobacco Company, Zunyi Branch, Zunyi, China
- *Correspondence: Chunyang Huang, ; Yueping He,
| | - Yueping He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Chunyang Huang, ; Yueping He,
| |
Collapse
|
6
|
Chiu CC, Bohlmann J. Mountain Pine Beetle Epidemic: An Interplay of Terpenoids in Host Defense and Insect Pheromones. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:475-494. [PMID: 35130442 DOI: 10.1146/annurev-arplant-070921-103617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The mountain pine beetle epidemic has highlighted the complex interactions of bark beetles with conifer host defenses. In these interactions, oleoresin terpenoids and volatiles, produced and released by the host tree, can be both harmful and beneficial to the beetle's success in colonizing a tree and completing its life cycle. The insect spends almost its entire life, from egg to adult, within the bark and phloem of a pine host, exposed to large quantities of complex mixtures of oleoresin terpenoids. Conifer oleoresin comprises mostly monoterpenes and diterpene resin acids as well as many different sesquiterpenes. It functions as a major chemical and physical defense system. However, the insect has evolved host colonization behavior and enzymes for terpenoid metabolism and detoxification that allow it to overcome some of the terpenoid defenses and, importantly, to co-opt pine monoterpenes as cues for host search and as a precursor for its own pheromone system. The insect-associated microbiome also plays a role in the metabolism of conifer terpenoids.
Collapse
Affiliation(s)
- Christine C Chiu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada;
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada;
| |
Collapse
|
7
|
The Genome of Rhyzopertha dominica (Fab.) (Coleoptera: Bostrichidae): Adaptation for Success. Genes (Basel) 2022; 13:genes13030446. [PMID: 35328000 PMCID: PMC8956072 DOI: 10.3390/genes13030446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
The lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae), is a major global pest of cereal grains. Infestations are difficult to control as larvae feed inside grain kernels, and many populations are resistant to both contact insecticides and fumigants. We sequenced the genome of R. dominica to identify genes responsible for important biological functions and develop more targeted and efficacious management strategies. The genome was assembled from long read sequencing and long-range scaffolding technologies. The genome assembly is 479.1 Mb, close to the predicted genome size of 480.4 Mb by flow cytometry. This assembly is among the most contiguous beetle assemblies published to date, with 139 scaffolds, an N50 of 53.6 Mb, and L50 of 4, indicating chromosome-scale scaffolds. Predicted genes from biologically relevant groups were manually annotated using transcriptome data from adults and different larval tissues to guide annotation. The expansion of carbohydrase and serine peptidase genes suggest that they combine to enable efficient digestion of cereal proteins. A reduction in the copy number of several detoxification gene families relative to other coleopterans may reflect the low selective pressure on these genes in an insect that spends most of its life feeding internally. Chemoreceptor genes contain elevated numbers of pseudogenes for odorant receptors that also may be related to the recent ontogenetic shift of R. dominica to a diet consisting primarily of stored grains. Analysis of repetitive sequences will further define the evolution of bostrichid beetles compared to other species. The data overall contribute significantly to coleopteran genetic research.
Collapse
|
8
|
Torres-Banda V, Obregón-Molina G, Viridiana Soto-Robles L, Albores-Medina A, Fernanda López M, Zúñiga G. Gut transcriptome of two bark beetle species stimulated with the same kairomones reveals molecular differences in detoxification pathways. Comput Struct Biotechnol J 2022; 20:3080-3095. [PMID: 35782727 PMCID: PMC9233182 DOI: 10.1016/j.csbj.2022.06.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/29/2022] Open
Abstract
Dendroctonus bark beetles are the most destructive agents in coniferous forests. These beetles come into contact with the toxic compounds of their host's chemical defenses throughout their life cycle, some of which are also used by the insects as kairomones to select their host trees during the colonization process. However, little is known about the molecular mechanisms by which the insects counteract the toxicity of these compounds. Here, two sibling species of bark beetles, D. valens and D. rhizophagus, were stimulated with vapors of a blend of their main kairomones (α-pinene, β-pinene and 3-carene), in order to compare the transcriptional response of their gut. A total of 48 180 unigenes were identified in D. valens and 43 704 in D. rhizophagus, in response to kairomones blend. The analysis of differential gene expression showed a transcriptional response in D. valens (739 unigenes, 0.58–10.36 Log2FC) related to digestive process and in D. rhizophagus (322 unigenes 0.87–13.08 Log2FC) related to xenobiotics metabolism. The expression profiles of detoxification genes mainly evidenced the up-regulation of COEs and GSTs in D. valens, and the up-regulation of P450s in D. rhizophagus. Results suggest that terpenes metabolism comes accompanied by an integral hormetic response, result of compensatory mechanisms, including the activation of other metabolic pathways, to ensure the supply of energy and the survival of organisms which is specific for each species, according to its life history and ecological strategy.
Collapse
Affiliation(s)
- Verónica Torres-Banda
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
| | - Gabriel Obregón-Molina
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
| | - L. Viridiana Soto-Robles
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
| | - Arnulfo Albores-Medina
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Mexico City, CP 07360, Mexico
| | - María Fernanda López
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
- Corresponding authors.
| | - Gerardo Zúñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
- Corresponding authors.
| |
Collapse
|
9
|
Keeling CI, Campbell EO, Batista PD, Shegelski VA, Trevoy SAL, Huber DPW, Janes JK, Sperling FAH. Chromosome-level genome assembly reveals genomic architecture of northern range expansion in the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae). Mol Ecol Resour 2021; 22:1149-1167. [PMID: 34637588 DOI: 10.1111/1755-0998.13528] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
Genome sequencing methods and assembly tools have improved dramatically since the 2013 publication of draft genome assemblies for the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae). We conducted proximity ligation library sequencing and scaffolding to improve contiguity, and then used linkage mapping and recent bioinformatic tools for correction and further improvement. The new assemblies have dramatically improved contiguity and gaps compared to the originals: N50 values increased 26- to 36-fold, and the number of gaps were reduced by half. Ninety per cent of the content of the assemblies is now contained in 12 and 11 scaffolds for the female and male assemblies, respectively. Based on linkage mapping information, the 12 largest scaffolds in both assemblies represent all 11 autosomal chromosomes and the neo-X chromosome. These assemblies now have nearly chromosome-sized scaffolds and will be instrumental for studying genomic architecture, chromosome evolution, population genomics, functional genomics, and adaptation in this and other pest insects. We also identified regions in two chromosomes, including the ancestral-X portion of the neo-X chromosome, with elevated differentiation between northern and southern Canadian populations.
Collapse
Affiliation(s)
- Christopher I Keeling
- Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, Québec, QC, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, QC, Canada
| | - Erin O Campbell
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Philip D Batista
- Faculty of Environment, University of Northern British Columbia, Prince George, BC, Canada
| | - Victor A Shegelski
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Stephen A L Trevoy
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Dezene P W Huber
- Faculty of Environment, University of Northern British Columbia, Prince George, BC, Canada
| | - Jasmine K Janes
- Biology Department, Vancouver Island University, Nanaimo, BC, Canada.,School of Environmental and Rural Studies, University of New England, Armidale, NSW, Australia
| | - Felix A H Sperling
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
10
|
Dai L, Gao H, Chen H. Expression Levels of Detoxification Enzyme Genes from Dendroctonus armandi (Coleoptera: Curculionidae) Fed on a Solid Diet Containing Pine Phloem and Terpenoids. INSECTS 2021; 12:insects12100926. [PMID: 34680695 PMCID: PMC8541301 DOI: 10.3390/insects12100926] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The bark beetle is the most well-known pest in coniferous trees worldwide. These insects only leave the host pine bark when they disperse to locate a new host. Determining how Dendroctonus armandi overcome the trees’ terpene-based defense systems has been the key problem in the study of bark beetles. Therefore, the aim of this study was to discover the molecular mechanism of insect detoxification enzymes’ ability to confer resistance to terpenes. For this purpose, the genes of cytochrome P450s, glutathione S-transferases, and carboxylesterases were studied in beetles given diets containing terpenes. The results suggest that beetles express different genes in response to terpenoids, and the responses of multiple detoxifying enzymes indicate these insects’ adaption to their chemical environment. Abstract Bark beetles overcome the toxic terpenoids produced by pine trees by both detoxifying and converting them into a pheromone system. Detoxification enzymes such as cytochrome P450s, glutathione S-transferases, and carboxylesterases are involved in the ability of Dendroctonus armandi to adapt to its chemical environment. Ten genes from these three major classes of detoxification enzymes were selected to study how these enzymes help D. armandi to respond to the host defenses. The expression profile of these detoxification enzyme genes was observed in adult beetles after feeding on different types of diet. Significant differences were observed between two types of seminatural diet containing the phloem of pines, and a purely artificial diet containing five monoterpenes ((−)-α-pinene, (−)-β-pinene, (+)-3-carene, (±)-limonene, and turpentine oil) also caused differential transcript levels in the detoxification enzyme genes. The results suggest that monoterpenes enter the beetles through different routes (i.e., respiratory and digestive systems) and cause the expression of different genes in response, which might be involved in pheromone metabolism. In addition, the xenobiotic metabolism in bark beetles should be considered as a system comprising multiple detoxifying enzymes.
Collapse
Affiliation(s)
- Lulu Dai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210000, China;
| | - Haiming Gao
- College of Forestry, Northwest A&F University, Xianyang 712100, China;
| | - Hui Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-020-85280256
| |
Collapse
|
11
|
Joga MR, Mogilicherla K, Smagghe G, Roy A. RNA Interference-Based Forest Protection Products (FPPs) Against Wood-Boring Coleopterans: Hope or Hype? FRONTIERS IN PLANT SCIENCE 2021; 12:733608. [PMID: 34567044 PMCID: PMC8461336 DOI: 10.3389/fpls.2021.733608] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/17/2021] [Indexed: 06/01/2023]
Abstract
Forest insects are emerging in large extension in response to ongoing climatic changes, penetrating geographic barriers, utilizing novel hosts, and influencing many hectares of conifer forests worldwide. Current management strategies have been unable to keep pace with forest insect population outbreaks, and therefore novel and aggressive management strategies are urgently required to manage forest insects. RNA interference (RNAi), a Noble Prize-winning discovery, is an emerging approach that can be used for forest protection. The RNAi pathway is triggered by dsRNA molecules, which, in turn, silences genes and disrupts protein function, ultimately causing the death of the targeted insect. RNAi is very effective against pest insects; however, its proficiency varies significantly among insect species, tissues, and genes. The coleopteran forest insects are susceptible to RNAi and can be the initial target, but we lack practical means of delivery, particularly in systems with long-lived, endophagous insects such as the Emerald ash borer, Asian longhorn beetles, and bark beetles. The widespread use of RNAi in forest pest management has major challenges, including its efficiency, target gene selection, dsRNA design, lack of reliable dsRNA delivery methods, non-target and off-target effects, and potential resistance development in wood-boring pest populations. This review focuses on recent innovations in RNAi delivery that can be deployed against forest pests, such as cationic liposome-assisted (lipids), nanoparticle-enabled (polymers or peptides), symbiont-mediated (fungi, bacteria, and viruses), and plant-mediated deliveries (trunk injection, root absorption). Our findings guide future risk analysis of dsRNA-based forest protection products (FPPs) and risk assessment frameworks incorporating sequence complementarity-based analysis for off-target predictions. This review also points out barriers to further developing RNAi for forest pest management and suggests future directions of research that will build the future use of RNAi against wood-boring coleopterans.
Collapse
Affiliation(s)
- Mallikarjuna Reddy Joga
- Excellent Team for Mitigation, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Kanakachari Mogilicherla
- EVA.4 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Amit Roy
- Excellent Team for Mitigation, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
- EVA.4 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
12
|
Zhao N, Mao X, Liu N, Liu L, Zhang Z, Ze S, Yang B. Transcriptomic Characterization of Odorant Binding Proteins in Cacia cretifera thibetana and Their Association with Different Host Emitted Volatiles. INSECTS 2021; 12:insects12090787. [PMID: 34564227 PMCID: PMC8469897 DOI: 10.3390/insects12090787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The odorant binding proteins (OBPs) interact with host chemical compounds to elicit olfactory responses. Transcriptome analysis of six different tissues of male and female Cacia cretifera thibetana was performed to unravel the interaction of OBPs with host compounds. In both sexes, differentially expressed genes were associated with the KEGG pathways such as cutin, suberine and wax biosynthesis, glycerophospholipid metabolism, choline metabolism in cancer, and the chemokine signaling pathway. The expression of 11 out of 31 OBPs were confirmed by quantitative RT-PCR and seven were found to be specifically expressed in antennae. CcreOBP6 and CcreOBP10 showed strong affinity for terpineol and trans-2-hexenal exhibiting their potential role as an attractant or repellent to control C. cretifera thibetana. Abstract This study characterized the transcriptome of Cacia cretifera thibetana and explored odorant binding proteins (OBPs) and their interaction with host-specific compounds. A total of 36 samples from six different organs including antennae, head, thorax, abdomen, wings, and legs (12 groups with 3 replicates per group) from both male and female insects were collected for RNA extraction. Transcriptomic analysis revealed a total of 89,897 transcripts as unigenes, with an average length of 1036 bp. Between male and female groups, 31,095 transcripts were identified as differentially expressed genes (DEGs). The KEGG pathway analysis revealed 26 DEGs associated with cutin, suberine, and wax biosynthesis and 70, 48, and 62 were linked to glycerophospholipid metabolism, choline metabolism in cancer, and chemokine signaling pathways, respectively. A total of 31 OBP genes were identified. Among them, the relative expression of 11 OBP genes (OBP6, 10, 12, 14, 17, 20, 22, 26, 28, 30, and 31) was confirmed by quantitative RT-PCR in different tissues. Seven OBP genes including CcreOBP6 and CcreOBP10 revealed antennae-specific expression. Further, we selected two OBPs (CcreOBP6 and CcreOBP10) for functional analysis to evaluate their binding affinity with 20 host odorant compounds. The CcreOBP6 and CcreOBP10 exhibited strong binding affinities with terpineol and trans-2-hexenal revealing their potential as an attractant or repellent for controlling C. cretifera thibetana.
Collapse
Affiliation(s)
- Ning Zhao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (N.Z.); (X.M.); (N.L.)
| | - Xiangzhong Mao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (N.Z.); (X.M.); (N.L.)
| | - Naiyong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (N.Z.); (X.M.); (N.L.)
| | - Ling Liu
- Yunnan Academy of Forestry and Grassland, Kunming 650224, China; (L.L.); (Z.Z.)
| | - Zhixiao Zhang
- Yunnan Academy of Forestry and Grassland, Kunming 650224, China; (L.L.); (Z.Z.)
| | - Sangzi Ze
- Yunnan Forestry and Grassland Pest Control and Quarantine Bureau, Kunming 650051, China;
| | - Bin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (N.Z.); (X.M.); (N.L.)
- Correspondence:
| |
Collapse
|
13
|
Gao H, Dai L, Fu D, Sun Y, Chen H. Isolation, Expression Profiling, and Regulation via Host Allelochemicals of 16 Glutathione S-Transferases in the Chinese White Pine Beetle, Dendroctonus armandi. Front Physiol 2020; 11:546592. [PMID: 33281609 PMCID: PMC7689161 DOI: 10.3389/fphys.2020.546592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 09/24/2020] [Indexed: 11/13/2022] Open
Abstract
The Chinese white pine beetle (Dendroctonus armandi) is undoubtedly one of the most important pests causing ecological damage in the Qinling Mountains. When bark beetles invade conifers, they must overcome host tree defenses, including primary resistance and induced resistance responses. Moreover, this induced resistance occurs following herbivory by bark beetles. Bark beetles have a corresponding defense mechanism for degrading toxic compounds, and glutathione S-transferases (GSTs) can catalyze the binding of endogenous substances that reduce glutathione (GSH) to various harmful electrophilic substrates, increasing their solubility and facilitating their excretion from cells. In this experiment, we successfully obtained sixteen full-length sequences of D. armandi, which belonged to four GST categories (delta, epsilon, sigma, and theta). The transcript levels of sixteen GSTs in D. armandi were compared at four developmental stages (larvae, pupae, teneral adults, and adults), three different tissues (antennae, gut, and reproductive organs), and under various levels of terpenoid stimuli during feeding on phloem tissue to evaluate the various relevant modes of action. This study aids in the understanding of the interaction between monoterpenes and beetles, and beetles’ detoxification through GSTs.
Collapse
Affiliation(s)
- Haiming Gao
- College of Forestry, Northwest A&F University, Yangling, China
| | - Lulu Dai
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Danyang Fu
- College of Forestry, Northwest A&F University, Yangling, China
| | - Yaya Sun
- College of Forestry, Northwest A&F University, Yangling, China
| | - Hui Chen
- College of Forestry, Northwest A&F University, Yangling, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Gao P, Liu Z, Wen J. Expression Profiling of Plant Cell Wall-Degrading Enzyme Genes in Eucryptorrhynchus scrobiculatus Midgut. Front Physiol 2020; 11:1111. [PMID: 33013475 PMCID: PMC7500146 DOI: 10.3389/fphys.2020.01111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/11/2020] [Indexed: 11/17/2022] Open
Abstract
In China, the wood-boring weevil Eucryptorrhynchus scrobiculatus damages and eventually kills the tree of heaven Ailanthus altissima. To feed and digest the cell wall of A. altissima, E. scrobiculatus requires plant cell wall-degrading enzymes (PCWDEs). In the present study, we used next-generation sequencing to analyze the midgut transcriptome of E. scrobiculatus. Using three midgut transcriptomes, we assembled 21,491 unigenes from 167,714,100 clean reads. We identified 25 putative PCWDEs, including 11 cellulases and 14 pectinases. We constructed phylogenetic trees with a maximum likelihood algorithm to elucidate the relationships between sequences of the PCWDE protein families and speculate the functions of the PCWDE genes in E. scrobiculatus. The expression patterns of 17 enzymes in the midgut transcriptome were analyzed in various tissues by quantitative real-time PCR (RT-qPCR). The relative expression levels of 12 genes in the midgut and two genes in the proboscis were significantly higher than those in the other tissues. The proboscis and midgut are the digestive organs of insects, and the high expression level indirectly indicates that these genes are related to digestion. The present study has enabled us to understand the types and numbers of the PCWDEs of E. scrobiculatus and will be helpful for research regarding other weevils’ PCWDEs in the future.
Collapse
Affiliation(s)
- Peng Gao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Zhenkai Liu
- Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, China
| | - Junbao Wen
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| |
Collapse
|
15
|
Dai L, Zheng J, Wang Y, Sun Y, Chen H. Survival physiology and sex ratio of the Chinese white pine beetle Dendroctonus armandi (Coleoptera: Scolytinae) during host colonization and overwintering. BULLETIN OF ENTOMOLOGICAL RESEARCH 2020; 110:115-122. [PMID: 31138336 DOI: 10.1017/s0007485319000361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Chinese white pine beetle Dendroctonus armandi (Coleoptera: Scolytinae) typically displays bivoltinism at altitudes below 1700 m in the Qinling Mountains, China. The periods of host colonization and larval overwintering are two important phases in the life cycle of bark beetles, as it is during these periods that they have to contend with host plant defences and periods of intense cold, respectively. Although during different seasons, the females and males of Chinese white pine beetles show varying tolerances to host plant terpenoids, the sex ratio and survival physiology condition of the two beetle generations are unknown. We investigated the sex ratio of individuals, and also examined the body mass, energy stores, and detoxication enzymes of males and females in each of the two generations in order to determine the overall population stability of each generation. We identified a female-biased sex ratio among adults in both generations. Furthermore, patterns of body mass, energy stores, and detoxication enzymes were found to differ between the two sexes and two seasons. Compared with the males, the females have a larger body mass and higher amounts of stored lipids, which are assumed to be adaptations designed to overcome host resistance and facilitate subsequent oviposition.
Collapse
Affiliation(s)
- L Dai
- College of Forestry, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | - J Zheng
- College of Forestry, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | - Y Wang
- College of Forestry, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | - Y Sun
- College of Forestry, Northwest A and F University, Yangling, 712100, Shaanxi, China
| | - H Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources (South China Agricultural University), Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
16
|
Hearn J, Blaxter M, Schönrogge K, Nieves-Aldrey JL, Pujade-Villar J, Huguet E, Drezen JM, Shorthouse JD, Stone GN. Genomic dissection of an extended phenotype: Oak galling by a cynipid gall wasp. PLoS Genet 2019; 15:e1008398. [PMID: 31682601 PMCID: PMC6855507 DOI: 10.1371/journal.pgen.1008398] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/14/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Galls are plant tissues whose development is induced by another organism for the inducer's benefit. 30,000 arthropod species induce galls, and in most cases the inducing effectors and target plant systems are unknown. Cynipid gall wasps are a speciose monophyletic radiation that induce structurally complex galls on oaks and other plants. We used a model system comprising the gall wasp Biorhiza pallida and the oak Quercus robur to characterise inducer and host plant gene expression at defined stages through the development of galled and ungalled plant tissues, and tested alternative hypotheses for the origin and type of galling effectors and plant metabolic pathways involved. Oak gene expression patterns diverged markedly during development of galled and normal buds. Young galls showed elevated expression of oak genes similar to legume root nodule Nod factor-induced early nodulin (ENOD) genes and developmental parallels with oak buds. In contrast, mature galls showed substantially different patterns of gene expression to mature leaves. While most oak transcripts could be functionally annotated, many gall wasp transcripts of interest were novel. We found no evidence in the gall wasp for involvement of third-party symbionts in gall induction, for effector delivery using virus-like-particles, or for gallwasp expression of genes coding for plant hormones. Many differentially and highly expressed genes in young larvae encoded secretory peptides, which we hypothesise are effector proteins exported to plant tissues. Specifically, we propose that host arabinogalactan proteins and gall wasp chitinases interact in young galls to generate a somatic embryogenesis-like process in oak tissues surrounding the gall wasp larvae. Gall wasp larvae also expressed genes encoding multiple plant cell wall degrading enzymes (PCWDEs). These have functional orthologues in other gall inducing cynipids but not in figitid parasitoid sister groups, suggesting that they may be evolutionary innovations associated with cynipid gall induction. Plant galls are induced by organisms that manipulate host plant development to produce novel structures. The organisms involved range from mutualistic (such as nitrogen fixing bacteria) to parasitic. In the case of parasites, the gall benefits only the gall-inducing partner. A wide range of organisms can induce galls, but the processes involved are understood only for some bacterial and fungal galls. Cynipid gall wasps induce diverse and structurally complex galls, particularly on oaks (Quercus). We used transcriptome and genome sequencing for one gall wasp and its host oak to identify genes active in gall development. On the plant side, when compared to normally developing bud tissues, young gall tissues showed elevated expression of loci similar to those found in nitrogen-fixing root nodules of leguminous plants. On the wasp side, we found no evidence for involvement of viruses or microorganisms carried by the insects in gall induction or delivery of inducing stimuli. We found that gall wasps express many genes whose products may be secreted to the host, including enzymes that degrade plant cell walls. Genome comparisons between galling and non-galling relatives showed cell wall-degrading enzymes are restricted to gall inducers, and hence potentially key components of a gall inducing lifestyle.
Collapse
Affiliation(s)
- Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Institute of Evolutionary Biology, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
- * E-mail: (JH); (GNS)
| | - Mark Blaxter
- Institute of Evolutionary Biology, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
| | | | - José-Luis Nieves-Aldrey
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | | | - Elisabeth Huguet
- UMR 7261 CNRS, Institut de Recherche sur la Biologie de l’Insecte, Faculté des Sciences et Techniques, Université de Tours, France
| | - Jean-Michel Drezen
- UMR 7261 CNRS, Institut de Recherche sur la Biologie de l’Insecte, Faculté des Sciences et Techniques, Université de Tours, France
| | | | - Graham N. Stone
- Institute of Evolutionary Biology, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
- * E-mail: (JH); (GNS)
| |
Collapse
|
17
|
Noriega DD, Arias PL, Barbosa HR, Arraes FBM, Ossa GA, Villegas B, Coelho RR, Albuquerque EVS, Togawa RC, Grynberg P, Wang H, Vélez AM, Arboleda JW, Grossi-de-Sa MF, Silva MCM, Valencia-Jiménez A. Transcriptome and gene expression analysis of three developmental stages of the coffee berry borer, Hypothenemus hampei. Sci Rep 2019; 9:12804. [PMID: 31488852 PMCID: PMC6728347 DOI: 10.1038/s41598-019-49178-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 08/20/2019] [Indexed: 12/18/2022] Open
Abstract
Coffee production is a global industry valued at approximately 173 billion US dollars. One of the main challenges facing coffee production is the management of the coffee berry borer (CBB), Hypothenemus hampei, which is considered the primary arthropod pest of coffee worldwide. Current control strategies are inefficient for CBB management. Although biotechnological alternatives, including RNA interference (RNAi), have been proposed in recent years to control insect pests, characterizing the genetics of the target pest is essential for the successful application of these emerging technologies. In this study, we employed RNA-seq to obtain the transcriptome of three developmental stages of the CBB (larva, female and male) to increase our understanding of the CBB life cycle in relation to molecular features. The CBB transcriptome was sequenced using Illumina Hiseq and assembled de novo. Differential gene expression analysis was performed across the developmental stages. The final assembly produced 29,434 unigenes, of which 4,664 transcripts were differentially expressed. Genes linked to crucial physiological functions, such as digestion and detoxification, were determined to be tightly regulated between the reproductive and nonreproductive stages of CBB. The data obtained in this study help to elucidate the critical roles that several genes play as regulatory elements in CBB development.
Collapse
Affiliation(s)
- Daniel D Noriega
- Department of Cellular Biology, University of Brasília, Brasília-DF, Brazil.
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil.
| | - Paula L Arias
- Departamento de Ciencias Biológicas, Universidad de Caldas, Manizales, Colombia
| | - Helena R Barbosa
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil
- Biotechnology Center, UFRGS, Porto Alegre-RS, Brazil
| | - Fabricio B M Arraes
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil
- Biotechnology Center, UFRGS, Porto Alegre-RS, Brazil
| | - Gustavo A Ossa
- Departamento de Ciencias Biológicas, Universidad de Caldas, Manizales, Colombia
| | - Bernardo Villegas
- Departamento de Producción Agropecuaria, Universidad de Caldas, Manizales, Colombia
| | - Roberta R Coelho
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil
| | | | - Roberto C Togawa
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil
| | | | - Haichuan Wang
- University of Nebraska-Lincoln, Nebraska, United States of America
| | - Ana M Vélez
- University of Nebraska-Lincoln, Nebraska, United States of America
| | - Jorge W Arboleda
- Centro de Investigaciones en Medio Ambiente y Desarrollo - CIMAD, Universidad de Manizales, Manizales, Caldas, Colombia
| | - Maria F Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil.
- Catholic University of Brasília - Postgraduate Program in Genomic Sciences and Biotechnology, Brasília-DF, Brazil.
| | - Maria C M Silva
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil
| | | |
Collapse
|
18
|
Andersson MN, Keeling CI, Mitchell RF. Genomic content of chemosensory genes correlates with host range in wood-boring beetles (Dendroctonus ponderosae, Agrilus planipennis, and Anoplophora glabripennis). BMC Genomics 2019; 20:690. [PMID: 31477011 PMCID: PMC6720082 DOI: 10.1186/s12864-019-6054-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/21/2019] [Indexed: 12/24/2022] Open
Abstract
Background Olfaction and gustation underlie behaviors that are crucial for insect fitness, such as host and mate selection. The detection of semiochemicals is mediated via proteins from large and rapidly evolving chemosensory gene families; however, the links between a species’ ecology and the diversification of these genes remain poorly understood. Hence, we annotated the chemosensory genes from genomes of select wood-boring coleopterans, and compared the gene repertoires from stenophagous species with those from polyphagous species. Results We annotated 86 odorant receptors (ORs), 60 gustatory receptors (GRs), 57 ionotropic receptors (IRs), 4 sensory neuron membrane proteins (SNMPs), 36 odorant binding proteins (OBPs), and 11 chemosensory proteins (CSPs) in the mountain pine beetle (Dendroctonus ponderosae), and 47 ORs, 30 GRs, 31 IRs, 4 SNMPs, 12 OBPs, and 14 CSPs in the emerald ash borer (Agrilus planipennis). Four SNMPs and 17 CSPs were annotated in the polyphagous wood-borer Anoplophora glabripennis. The gene repertoires in the stenophagous D. ponderosae and A. planipennis are reduced compared with those in the polyphagous A. glabripennis and T. castaneum, which is largely manifested through small gene lineage expansions and entire lineage losses. Alternative splicing of GR genes was limited in D. ponderosae and apparently absent in A. planipennis, which also seems to have lost one carbon dioxide receptor (GR1). A. planipennis has two SNMPs, which are related to SNMP3 in T. castaneum. D. ponderosae has two alternatively spliced OBP genes, a novel OBP “tetramer”, and as many as eleven IR75 members. Simple orthology was generally rare in beetles; however, we found one clade with orthologues of putative bitter-taste GRs (named the “GR215 clade”), and conservation of IR60a from Drosophila melanogaster. Conclusions Our genome annotations represent important quantitative and qualitative improvements of the original datasets derived from transcriptomes of D. ponderosae and A. planipennis, facilitating evolutionary analysis of chemosensory genes in the Coleoptera where only a few genomes were previously annotated. Our analysis suggests a correlation between chemosensory gene content and host specificity in beetles. Future studies should include additional species to consolidate this correlation, and functionally characterize identified proteins as an important step towards improved control of these pests. Electronic supplementary material The online version of this article (10.1186/s12864-019-6054-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin N Andersson
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden.
| | - Christopher I Keeling
- Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, 1055 rue du P.E.P.S, Stn. Sainte-Foy, P.O. Box 10380, Québec, QC, G1V 4C7, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, pavillon Alexandre-Vachon, 1045, av. de la Médecine, local 3428, Québec, QC, G1V 0A6, Canada
| | - Robert F Mitchell
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI, 54901, USA
| |
Collapse
|
19
|
Functions of mountain pine beetle cytochromes P450 CYP6DJ1, CYP6BW1 and CYP6BW3 in the oxidation of pine monoterpenes and diterpene resin acids. PLoS One 2019; 14:e0216753. [PMID: 31071168 PMCID: PMC6508646 DOI: 10.1371/journal.pone.0216753] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/26/2019] [Indexed: 01/17/2023] Open
Abstract
The mountain pine beetle (MPB; Dendroctonus ponderosae) is a forest insect pest that attacks several different pine (Pinus) species in its native range of distribution in western North America. MPB are exposed for most of their life cycle to the chemical defenses of their hosts. These defenses are dominated by oleoresin secretions containing mostly various monoterpenes and diterpene resin acids (DRAs). Cytochrome P450 enzymes (P450s) of the MPB are thought to be involved in the metabolism of at least some of these defense compounds. Here we describe the cloning and characterization of three MPB P450s, CYP6DJ1, CYP6BW1 and CYP6BW3, and their functions in the oxidation of various monoterpenes and diterpene resin acids. CYP6DJ1 oxidizes the monoterpenes (+)-(4R)-limonene, (-)-(4S)-limonene and terpinolene and produces (4R,8R)-limonene-8,9-epoxide, (4R,8S)-limonene-8,9-epoxide, (4S,8S)-limonene-8,9-epoxide, (4S,8R)-limonene-8,9-epoxide, perilla alcohol and several unidentified oxidized compounds. These products of CYP6DJ1 were also identified in extracts of MPB treated with the same monoterpenes. CYP6BW1 and CYP6BW3 both oxidize the DRAs abietic acid, dehydroabietic acid, neoabietic acid, levopimaric acid, palustric acid, and isopimaric acid, producing hydroxylated and epoxidized DRAs. CYP6DJ1, CYP6BW1 and CYP6BW3 appear to contribute to the metabolism of oleoresin terpenes as part of the MPB's ability to cope with host defenses.
Collapse
|
20
|
Sarabia LE, López MF, Pineda-Mendoza RM, Obregón-Molina G, Gonzalez-Escobedo R, Albores-Medina A, Zúñiga G. Time-Course of CYP450 Genes Expression From Dendroctonus rhizophagus (Curculionidae: Scolytinae) During Early Hours of Drilling Bark and Settling Into the Host Tree. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5494808. [PMID: 31115475 PMCID: PMC6529903 DOI: 10.1093/jisesa/iez046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Indexed: 06/09/2023]
Abstract
Dendroctonus bark beetles (Scolytinae) are one of the most important disturbance agents of coniferous forests in North and Central America. These beetles spend their lives almost entirely under the tree bark, and their survival and reproductive success depend on their ability to overcome the toxic effect of the trees' oleoresin. The cytochromes P450 (CYPs) are associated with the detoxification process of xenobiotics, as well as other physiological processes. Different cytochromes (families 4, 6, and 9) in the Dendroctonus species have been expressed under several experimental conditions; nevertheless, the expression time-course of these genes is unknown. To explore the induction speed of CYPs, we evaluated the relative expression of the CYP6BW5, CYP6DG1, CYP6DJ2, CYP9Z18, and CYP9Z20 genes at the early hours of drilling and settling into a tree (1, 2, 4, 6, 8, 12, 18 h) both in females and males, solitary or paired, of the bark beetle Dendroctonus rhizophagus Thomas and Bright. Our findings show that the five genes were rapidly overexpressed in the early hours (1 to 6 h) in both sexes and in solitary and paired conditions, suggesting their participation in the detoxification process. Additionally, the CYPs expression shows up- and down-regulation patterns through these short times, suggesting their probable participation in other physiological processes as the biosynthesis of hormones, pheromones or compounds related to reproduction.
Collapse
Affiliation(s)
- Laura E Sarabia
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, Mexico
| | - María F López
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, Mexico
| | - Rosa M Pineda-Mendoza
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, Mexico
| | - Gabriel Obregón-Molina
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, Mexico
| | - Roman Gonzalez-Escobedo
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, Mexico
| | - Arnulfo Albores-Medina
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Mexico City, Mexico
| | - Gerardo Zúñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, Mexico
| |
Collapse
|
21
|
Chiu CC, Keeling CI, Bohlmann J. The cytochrome P450 CYP6DE1 catalyzes the conversion of α-pinene into the mountain pine beetle aggregation pheromone trans-verbenol. Sci Rep 2019; 9:1477. [PMID: 30728428 PMCID: PMC6365528 DOI: 10.1038/s41598-018-38047-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
The recent outbreak of the mountain pine beetle (Dendroctonus ponderosae; MPB) has affected over 20 M hectares of pine forests in western North America. During the colonization of host trees, female MPB release the aggregation pheromone (-)-trans-verbenol. (-)-trans-Verbenol is thought to be produced from the pine defense compound (-)-α-pinene by cytochrome P450 (P450) dependent hydroxylation. MPB may also use P450s for the detoxification of other monoterpenes of the pine defense system. Here we describe the functional characterization of MPB CYP6DE1. CYP6DE1, but not the closely related CYP6DE2, used the bicyclic monoterpenes (-)-α-pinene, (+)-α-pinene, (-)-β-pinene, (+)-β-pinene and (+)-3-carene as substrates. CYP6DE1 was not active with other monoterpenes or diterpene resin acids that were tested as substrates. trans-Verbenol is the major product of CYP6DE1 activity with (-)-α-pinene or (+)-α-pinene as substrates. When tested with blends of different ratios of (-)-α-pinene and (+)-α-pinene, CYP6DE1 produced trans-verbenol with an enantiomeric profile that was similar to that produced by female MPB exposed to the α-pinene enantiomers.
Collapse
Affiliation(s)
- Christine C Chiu
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, B.C., V6T 1Z4, Canada.,Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, B.C., V6T 1Z4, Canada
| | - Christopher I Keeling
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, B.C., V6T 1Z4, Canada.,Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, B.C., V6T 1Z4, Canada. .,Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, B.C., V6T 1Z4, Canada.
| |
Collapse
|
22
|
Calla B, MacLean M, Liao LH, Dhanjal I, Tittiger C, Blomquist GJ, Berenbaum MR. Functional characterization of CYP4G11-a highly conserved enzyme in the western honey bee Apis mellifera. INSECT MOLECULAR BIOLOGY 2018; 27:661-674. [PMID: 29896786 DOI: 10.1111/imb.12516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Determining the functionality of CYP4G11, the only CYP4G in the genome of the western honey bee Apis mellifera, can provide insight into its reduced CYP4 inventory. Toward this objective, CYP4G11 transcripts were quantified, and CYP4G11 was expressed as a fusion protein with housefly CPR in Sf9 cells. Transcript levels varied with age, task, and tissue type in a manner consistent with the need for cuticular hydrocarbon production to prevent desiccation or with comb wax production. Young larvae, with minimal need for desiccation protection, expressed CYP4G11 at very low levels. Higher levels were observed in nurses, and even higher levels in wax producers and foragers, the latter of which risk desiccation upon leaving the hive. Recombinant CYP4G11 readily converted octadecanal to n-heptadecane in a time-dependent manner, demonstrating its functions as an oxidative decarbonylase. CYP4G11 expression levels are high in antennae; heterologously expressed CYP4G11 converted tetradecanal to n-tridecane, demonstrating that it metabolizes shorter-chain aldehydes. Together, these findings confirm the involvement of CYP4G11 in cuticular hydrocarbon production and suggest a possible role in clearing pheromonal and phytochemical compounds from antennae. This possible dual functionality of CYP4G11, i.e., cuticular hydrocarbon and comb wax production and antennal odorant clearance, may explain how honey bees function with a reduced CYP4G inventory.
Collapse
Affiliation(s)
- B Calla
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - M MacLean
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - L-H Liao
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - I Dhanjal
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - C Tittiger
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - G J Blomquist
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - M R Berenbaum
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
23
|
Cytochromes P450 Preferentially Expressed in Antennae of the Mountain Pine Beetle. J Chem Ecol 2018; 45:178-186. [DOI: 10.1007/s10886-018-0999-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/25/2018] [Accepted: 07/18/2018] [Indexed: 01/14/2023]
|
24
|
Monoterpenyl esters in juvenile mountain pine beetle and sex-specific release of the aggregation pheromone trans-verbenol. Proc Natl Acad Sci U S A 2018; 115:3652-3657. [PMID: 29555742 PMCID: PMC5889670 DOI: 10.1073/pnas.1722380115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
trans-Verbenol is a critical aggregation pheromone of the female mountain pine beetle. It is derived from a compound of the host defense, the monoterpene α-pinene. We found that beetles accumulate monoterpenyl esters during early life stages. These may serve as a previously unknown reservoir for the sex-specific release of aggregation pheromone when female beetles synchronize the mass colonization of a new host tree. The improved knowledge of the mountain pine beetle pheromone system can inform prediction of bark beetle outbreaks and invasion of new habitats. A recent outbreak of mountain pine beetle (MPB) has spread over more than 25 million hectares of pine forests in western North America, affecting pine species of sensitive boreal and mountain ecosystems. During initial host colonization, female MPB produce and release the aggregation pheromone trans-verbenol to coordinate a mass attack of individual trees. trans-Verbenol is formed by hydroxylation of α-pinene, a monoterpene of the pine oleoresin defense. It is thought that adult females produce and immediately release trans-verbenol when encountering α-pinene on a new host tree. Here, we show that both sexes of MPB accumulate the monoterpenyl esters verbenyl oleate and verbenyl palmitate during their development in the brood tree. Verbenyl oleate and verbenyl palmitate were retained in adult female MPB until the time of emergence from brood trees, but were depleted in males. Adult females released trans-verbenol in response to treatment with juvenile hormone III (JHIII). While both sexes produced verbenyl esters when exposed to α-pinene, only females responded to JHIII with release of trans-verbenol. Accumulation of verbenyl esters at earlier life stages may allow adult females to release the aggregation pheromone trans-verbenol upon landing on a new host tree, independent of access to α-pinene. Formation of verbenyl esters may be part of a general detoxification system to overcome host monoterpene defenses in both sexes, from which a specialized and female-specific system of pheromone biosynthesis and release may have evolved.
Collapse
|
25
|
Bansal R, Michel A. Expansion of cytochrome P450 and cathepsin genes in the generalist herbivore brown marmorated stink bug. BMC Genomics 2018; 19:60. [PMID: 29347977 PMCID: PMC5774168 DOI: 10.1186/s12864-017-4281-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/03/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The brown marmorated stink bug (Halyomorpha halys) is an invasive pest in North America which causes severe economic losses on tree fruits, ornamentals, vegetables, and field crops. The H. halys is an extreme generalist and this feeding behaviour may have been a major contributor behind its establishment and successful adaptation in invasive habitats of North America. To develop an understanding into the mechanism of H. halys' generalist herbivory, here we specifically focused on genes putatively facilitating its adaptation on diverse host plants. RESULTS We generated over 142 million reads via sequencing eight RNA-Seq libraries, each representing an individual H. halys adult. The de novo assembly contained 79,855 high quality transcripts, totalling 39,600,178 bases. Following a comprehensive transcriptome analysis, H. halys had an expanded suite of cytochrome P450 and cathepsin-L genes compared to other insects. Detailed characterization of P450 genes from the CYP6 family, known for herbivore adaptation on host plants, strongly hinted towards H. halys-specific expansions involving gene duplications. In subsequent RT-PCR experiments, both P450 and cathepsin genes exhibited tissue-specific or distinct expression patterns which supported their principal roles of detoxification and/or digestion in a particular tissue. CONCLUSIONS Our analysis into P450 and cathepsin genes in H. halys offers new insights into potential mechanisms for understanding generalist herbivory and adaptation success in invasive habitats. Additionally, the large-scale transcriptomic resource developed here provides highly useful data for gene discovery; functional, population and comparative genomics as well as efforts to assemble and annotate the H. halys genome.
Collapse
Affiliation(s)
- Raman Bansal
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Andy Michel
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| |
Collapse
|
26
|
Chiu CC, Keeling CI, Bohlmann J. Toxicity of Pine Monoterpenes to Mountain Pine Beetle. Sci Rep 2017; 7:8858. [PMID: 28821756 PMCID: PMC5562797 DOI: 10.1038/s41598-017-08983-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/20/2017] [Indexed: 12/18/2022] Open
Abstract
The mountain pine beetle (Dendroctonus ponderosae; MPB) is an eruptive bark beetle species affecting pine forests of western North America. MPB are exposed to volatile monoterpenes, which are important host defense chemicals. We assessed the toxicity of the ten most abundant monoterpenes of lodgepole pine (Pinus contorta), a major host in the current MPB epidemic, against adult MPB from two locations in British Columbia, Canada. Monoterpenes were tested as individual volatiles and included (-)-β-phellandrene, (+)-3-carene, myrcene, terpinolene, and both enantiomers of α-pinene, β-pinene and limonene. Dose-mortality experiments identified (-)-limonene as the most toxic (LC50: 32 μL/L), and (-)-α-pinene (LC50: 290 μL/L) and terpinolene (LC50: >500 μL/L) as the least toxic. MPB body weight had a significant positive effect on the ability to survive most monoterpene volatiles, while sex did not have a significant effect with most monoterpenes. This study helps to quantitatively define the effects of individual monoterpenes towards MPB mortality, which is critical when assessing the variable monoterpene chemical defense profiles of its host species.
Collapse
Affiliation(s)
- Christine C Chiu
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, B.C., V6T, 1Z4, Canada
- Botany Department, University of British Columbia, 6270 University Blvd, Vancouver, B.C., V6T 1Z4, Canada
| | - Christopher I Keeling
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, B.C., V6T, 1Z4, Canada
- Laurentian Forestry Centre, Natural Resources Canada, P.O. Box 10380, Stn. Sainte-Foy, 1055 du P.E.P.S., Quebec City, QC, G1V 4C7, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, B.C., V6T, 1Z4, Canada.
- Botany Department, University of British Columbia, 6270 University Blvd, Vancouver, B.C., V6T 1Z4, Canada.
| |
Collapse
|
27
|
Fraser JD, Bonnett TR, Keeling CI, Huber DPW. Seasonal shifts in accumulation of glycerol biosynthetic gene transcripts in mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), larvae. PeerJ 2017. [PMID: 28626604 PMCID: PMC5472040 DOI: 10.7717/peerj.3284] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Winter mortality is a major factor regulating population size of the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae). Glycerol is the major cryoprotectant in this freeze intolerant insect. We report findings from a gene expression study on an overwintering mountain pine beetle population over the course of 35 weeks. mRNA transcript levels suggest glycerol production in the mountain pine beetle occurs through glycogenolytic, gluconeogenic and potentially glyceroneogenic pathways, but not from metabolism of lipids. A two-week lag period between fall glycogen phosphorylase transcript and phosphoenolpyruvate carboxykinase transcript up-regulation suggests that gluconeogenesis serves as a secondary glycerol-production process, subsequent to exhaustion of the primary glycogenolytic source. These results provide a first look at the details of seasonal gene expression related to the production of glycerol in the mountain pine beetle.
Collapse
Affiliation(s)
- Jordie D Fraser
- Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Tiffany R Bonnett
- Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Christopher I Keeling
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dezene P W Huber
- Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| |
Collapse
|
28
|
Transcriptome analysis and identification of induced genes in the response of Harmonia axyridis to cold hardiness. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 22:78-89. [DOI: 10.1016/j.cbd.2017.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 01/18/2017] [Accepted: 01/27/2017] [Indexed: 11/22/2022]
|
29
|
Nadeau JA, Petereit J, Tillett RL, Jung K, Fotoohi M, MacLean M, Young S, Schlauch K, Blomquist GJ, Tittiger C. Comparative transcriptomics of mountain pine beetle pheromone-biosynthetic tissues and functional analysis of CYP6DE3. BMC Genomics 2017; 18:311. [PMID: 28427347 PMCID: PMC5397757 DOI: 10.1186/s12864-017-3696-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/11/2017] [Indexed: 12/14/2022] Open
Abstract
Background The mountain pine beetle (MPB, Dendroctonus ponderosae Hopkins) is a highly destructive pest of pine forests in western North America. During flight to a new host tree and initiation of feeding, mountain pine beetles release aggregation pheromones. The biosynthetic pathways of these pheromones are sex-specific and localized in the midgut and fat body, but the enzymes involved have not all been identified or characterized. Results We used a comparative RNA-Seq analysis between fed and unfed male and female MPB midguts and fat bodies to identify candidate genes involved in pheromone biosynthesis. The 13,407 potentially unique transcripts showed clear separation based on feeding state and gender. Gene co-expression network construction and examination using petal identified gene groups that were tightly connected. This, as well as other co-expression and gene ontology analyses, identified all four known pheromone biosynthetic genes, confirmed the tentative identification of four others from a previous study, and suggested nine novel candidates. One cytochrome P450 monooxygenase, CYP6DE3, identified as a possible exo-brevicomin-biosynthetic enzyme in this study, was functionally characterized and likely is involved in resin detoxification rather than pheromone biosynthesis. Conclusions Our analysis supported previously characterized pheromone-biosynthetic genes involved in exo-brevicomin and frontalin biosynthesis and identified a number of candidate cytochrome P450 monooxygenases and a putative cyclase for further studies. Functional analyses of CYP6DE3 suggest its role in resin detoxification and underscore the limitation of using high-throughput data to tentatively identify candidate genes. Further functional analyses of candidate genes found in this study should lead to the full characterization of MPB pheromone biosynthetic pathways and the identification of molecular targets for possible pest management strategies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3696-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J A Nadeau
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - J Petereit
- Biomedical Engineering Department, University of Nevada, Reno, NV, 89557, USA
| | - R L Tillett
- Nevada INBRE Bioinformatics Core, University of Nevada, Reno, NV, 89557, USA
| | - K Jung
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - M Fotoohi
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - M MacLean
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - S Young
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - K Schlauch
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - G J Blomquist
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - C Tittiger
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA.
| |
Collapse
|
30
|
Zhang C, Ma Z, Zhang X, Wu H. Transcriptomic alterations in Sitophilus zeamais in response to allyl isothiocyanate fumigation. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 137:62-70. [PMID: 28364805 DOI: 10.1016/j.pestbp.2016.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/26/2016] [Accepted: 10/08/2016] [Indexed: 06/07/2023]
Abstract
To study the fumigation mechanisms of Allyl isothiocyanate (AITC) a promising biorational alternative to present fumigants (phosphine and methyl bromide), and provide theoretical basis for its further development in the control of stored grain pests, this research presents a transcriptome analysis of Sitophilus zeamais fumigated with AITC at the concentration of LC50 (5.69μg/mL) and control over 8h. 21,869,022 and 23,873,110 clean reads in insects fumigated with AITC and control were gained, respectively. The results of RNA-seq were confirmed by qRT-PCR determination of the expression levels of NADH dehydrogenase subunit 6 and Vacuolar ATP synthase subunit B in the insects fumigated with AITC at different concentrations. After enrichment analysis of differentially expressed genes, 117 over-expressed and 271 down-regulated transcripts were gained. Following GO enrichment, these transcripts were classified into 38 GO subgroups (at level 2), and the majority enriched GO terms were "Binding" "Cell process" and "metabolic". KEGG enrichment analysis showed that the majority enriched pathway were "Folding, sorting and degradation", "Transport and catabolism", "Energy metabolism", and "Carbohydrate metabolism". Connected with previous researches on mechanisms of isothiocyanates, cytoskeleton collapse and mitochondria dysfunction are proposed to be significant lethal mechanisms of AITC.
Collapse
Affiliation(s)
- Chao Zhang
- Research and Development Center of Biorational Pesticide, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, PR China
| | - Zhiqing Ma
- Research and Development Center of Biorational Pesticide, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, PR China
| | - Xing Zhang
- Research and Development Center of Biorational Pesticide, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, PR China.
| | - Hua Wu
- Research and Development Center of Biorational Pesticide, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
31
|
Benton MA, Kenny NJ, Conrads KH, Roth S, Lynch JA. Deep, Staged Transcriptomic Resources for the Novel Coleopteran Models Atrachya menetriesi and Callosobruchus maculatus. PLoS One 2016; 11:e0167431. [PMID: 27907180 PMCID: PMC5132259 DOI: 10.1371/journal.pone.0167431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/14/2016] [Indexed: 11/18/2022] Open
Abstract
Despite recent efforts to sample broadly across metazoan and insect diversity, current sequence resources in the Coleoptera do not adequately describe the diversity of the clade. Here we present deep, staged transcriptomic data for two coleopteran species, Atrachya menetriesi (Faldermann 1835) and Callosobruchus maculatus (Fabricius 1775). Our sampling covered key stages in ovary and early embryonic development in each species. We utilized this data to build combined assemblies for each species which were then analysed in detail. The combined A. menetriesi assembly consists of 228,096 contigs with an N50 of 1,598 bp, while the combined C. maculatus assembly consists of 128,837 contigs with an N50 of 2,263 bp. For these assemblies, 34.6% and 32.4% of contigs were identified using Blast2GO, and 97% and 98.3% of the BUSCO set of metazoan orthologs were present, respectively. We also carried out manual annotation of developmental signalling pathways and found that nearly all expected genes were present in each transcriptome. Our analyses show that both transcriptomes are of high quality. Lastly, we performed read mapping utilising our timed, stage specific RNA samples to identify differentially expressed contigs. The resources presented here will provide a firm basis for a variety of experimentation, both in developmental biology and in comparative genomic studies.
Collapse
Affiliation(s)
- Matthew A. Benton
- Institute for Developmental Biology, University of Cologne, Cologne, Germany
| | - Nathan J. Kenny
- Simon F.S. Li School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kai H. Conrads
- Institute for Developmental Biology, University of Cologne, Cologne, Germany
| | - Siegfried Roth
- Institute for Developmental Biology, University of Cologne, Cologne, Germany
- * E-mail: (SR); (JAL)
| | - Jeremy A. Lynch
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail: (SR); (JAL)
| |
Collapse
|
32
|
Petereit J, Smith S, Harris FC, Schlauch KA. petal: Co-expression network modelling in R. BMC SYSTEMS BIOLOGY 2016; 10 Suppl 2:51. [PMID: 27490697 PMCID: PMC4977474 DOI: 10.1186/s12918-016-0298-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background Networks provide effective models to study complex biological systems, such as gene and protein interaction networks. With the advent of new sequencing technologies, many life scientists are grasping for user-friendly methods and tools to examine biological components at the whole-systems level. Gene co-expression network analysis approaches are frequently used to successfully associate genes with biological processes and demonstrate great potential to gain further insights into the functionality of genes, thus becoming a standard approach in Systems Biology. Here the objective is to construct biologically meaningful and statistically strong co-expression networks, the identification of research dependent subnetworks, and the presentation of self-contained results. Results We introduce petal, a novel approach to generate gene co-expression network models based on experimental gene expression measures. petal focuses on statistical, mathematical, and biological characteristics of both, input data and output network models. Often over-looked issues of current co-expression analysis tools include the assumption of data normality, which is seldom the case for hight-throughput expression data obtained from RNA-seq technologies. petal does not assume data normality, making it a statistically appropriate method for RNA-seq data. Also, network models are rarely tested for their known typical architecture: scale-free and small-world. petal explicitly constructs networks based on both these characteristics, thereby generating biologically meaningful models. Furthermore, many network analysis tools require a number of user-defined input variables, these often require tuning and/or an understanding of the underlying algorithm; petal requires no user input other than experimental data. This allows for reproducible results, and simplifies the use of petal. Lastly, this approach is specifically designed for very large high-throughput datasets; this way, petal’s network models represent as much of the entire system as possible to provide a whole-system approach. Conclusion petal is a novel tool for generating co-expression network models of whole-genomics experiments. It is implemented in R and available as a library. Its application to several whole-genome experiments has generated novel meaningful results and has lead the way to new testing hypothesizes for further biological investigation. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0298-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juli Petereit
- University of Nevada, Reno, 1664 N. Virginia Street, Reno, 89557, USA.
| | - Sebastian Smith
- University of Nevada, Reno, 1664 N. Virginia Street, Reno, 89557, USA
| | | | - Karen A Schlauch
- University of Nevada, Reno, 1664 N. Virginia Street, Reno, 89557, USA
| |
Collapse
|
33
|
Robert JA, Bonnett T, Pitt C, Spooner LJ, Fraser J, Yuen MMS, Keeling CI, Bohlmann J, Huber DPW. Gene expression analysis of overwintering mountain pine beetle larvae suggests multiple systems involved in overwintering stress, cold hardiness, and preparation for spring development. PeerJ 2016; 4:e2109. [PMID: 27441109 PMCID: PMC4941763 DOI: 10.7717/peerj.2109] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/16/2016] [Indexed: 11/30/2022] Open
Abstract
Cold-induced mortality has historically been a key aspect of mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), population control, but little is known about the molecular basis for cold tolerance in this insect. We used RNA-seq analysis to monitor gene expression patterns of mountain pine beetle larvae at four time points during their overwintering period—early-autumn, late-autumn, early-spring, and late-spring. Changing transcript profiles over the winter indicates a multipronged physiological response from larvae that is broadly characterized by gene transcripts involved in insect immune responses and detoxification during the autumn. In the spring, although transcripts associated with developmental process are present, there was no particular biological process dominating the transcriptome.
Collapse
Affiliation(s)
- Jeanne A Robert
- Department of Ecosystem Science and Management, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Tiffany Bonnett
- Department of Ecosystem Science and Management, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Caitlin Pitt
- Department of Ecosystem Science and Management, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Luke J Spooner
- Department of Ecosystem Science and Management, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Jordie Fraser
- Department of Ecosystem Science and Management, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Macaire M S Yuen
- Department of Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher I Keeling
- Department of Michael Smith Laboratories, University of British Columbia,Vancouver,British Columbia,Canada; Department of Biological Sciences, Simon Fraser University,Burnaby,British Columbia,Canada
| | - Jörg Bohlmann
- Department of Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dezene P W Huber
- Department of Ecosystem Science and Management, University of Northern British Columbia, Prince George, British Columbia, Canada
| |
Collapse
|
34
|
Ma J, Wang R, Li X, Gao B, Chen S. Transcriptome and Gene Expression Analysis of Cylas formicarius (Coleoptera: Brentidae) During Different Development Stages. JOURNAL OF INSECT SCIENCE (ONLINE) 2016; 16:iew053. [PMID: 28076281 PMCID: PMC7261484 DOI: 10.1093/jisesa/iew053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/29/2016] [Indexed: 05/11/2023]
Abstract
The sweet potato weevil, Cylas formicarius (F.) (Coleoptera: Brentidae), is an important pest of sweet potato worldwide. However, there is limited knowledge on the molecular mechanisms underlying growth and differentiation of C. formicarius The transcriptomes of the eggs, second instar larvae, third instar larvae (L3), pupae, females, and males of C. formicarius were sequenced using Illumina sequencing technology for obtaining global insights into developing transcriptome characteristics and elucidating the relative functional genes. A total of 54,255,544 high-quality reads were produced, trimmed, and de novo assembled into 115,281 contigs. 61,686 unigenes were obtained, with an average length of 1,009 nt. Among these unigenes, 17,348 were annotated into 59 Gene Ontology (GO) terms and 12,660 were assigned to 25 Cluster of Orthologous Groups classes, whereas 24,796 unigenes were mapped to 258 pathways. Differentially expressed unigenes between various developmental stages of C. formicarius were detected. Higher numbers of differentially expressed genes (DEGs) were recorded in the eggs versus L3 and eggs versus male samples (2,141 and 2,058 unigenes, respectively) than the others. Genes preferentially expressed in each stage were also identified. GO and pathway-based enrichment analysis were used to further investigate the functions of the DEGs. In addition, the expression profiles of ten DEGs were validated by quantitative real-time PCR. The transcriptome profiles presented in this study and these DEGs detected by comparative analysis of different developed stages of C. formicarius will facilitate the understanding of the molecular mechanism of various living process and will contribute to further genome-wide research.
Collapse
Affiliation(s)
- Juan Ma
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences/IPM Centre of Hebei Province/Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, 437 Dongguan Street, Baoding 071000, China (; ; ; ; )
| | - Rongyan Wang
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences/IPM Centre of Hebei Province/Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, 437 Dongguan Street, Baoding 071000, China (; ; ; ; )
| | - Xiuhua Li
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences/IPM Centre of Hebei Province/Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, 437 Dongguan Street, Baoding 071000, China (; ; ; ; )
| | - Bo Gao
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences/IPM Centre of Hebei Province/Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, 437 Dongguan Street, Baoding 071000, China (; ; ; ; )
| | - Shulong Chen
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences/IPM Centre of Hebei Province/Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, 437 Dongguan Street, Baoding 071000, China (; ; ; ; )
| |
Collapse
|
35
|
Kent LM, Loo TS, Melton LD, Mercadante D, Williams MAK, Jameson GB. Structure and Properties of a Non-processive, Salt-requiring, and Acidophilic Pectin Methylesterase from Aspergillus niger Provide Insights into the Key Determinants of Processivity Control. J Biol Chem 2015; 291:1289-306. [PMID: 26567911 DOI: 10.1074/jbc.m115.673152] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Indexed: 12/17/2022] Open
Abstract
Many pectin methylesterases (PMEs) are expressed in plants to modify plant cell-wall pectins for various physiological roles. These pectins are also attacked by PMEs from phytopathogens and phytophagous insects. The de-methylesterification by PMEs of the O6-methyl ester groups of the homogalacturonan component of pectin, exposing galacturonic acids, can occur processively or non-processively, respectively, describing sequential versus single de-methylesterification events occurring before enzyme-substrate dissociation. The high resolution x-ray structures of a PME from Aspergillus niger in deglycosylated and Asn-linked N-acetylglucosamine-stub forms reveal a 10⅔-turn parallel β-helix (similar to but with less extensive loops than bacterial, plant, and insect PMEs). Capillary electrophoresis shows that this PME is non-processive, halophilic, and acidophilic. Molecular dynamics simulations and electrostatic potential calculations reveal very different behavior and properties compared with processive PMEs. Specifically, uncorrelated rotations are observed about the glycosidic bonds of a partially de-methyl-esterified decasaccharide model substrate, in sharp contrast to the correlated rotations of processive PMEs, and the substrate-binding groove is negatively not positively charged.
Collapse
Affiliation(s)
- Lisa M Kent
- From Riddet Institute and Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Trevor S Loo
- From Riddet Institute and Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Laurence D Melton
- From Riddet Institute and School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Davide Mercadante
- From Riddet Institute and Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg, 69118 Heidelberg, Germany, and
| | - Martin A K Williams
- From Riddet Institute and Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand, MacDiarmid Institute for Advanced Materials and Nanotechnology, Palmerston North 4442, New Zealand
| | - Geoffrey B Jameson
- From Riddet Institute and Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand, MacDiarmid Institute for Advanced Materials and Nanotechnology, Palmerston North 4442, New Zealand
| |
Collapse
|
36
|
Dai L, Ma M, Wang C, Shi Q, Zhang R, Chen H. Cytochrome P450s from the Chinese white pine beetle, Dendroctonus armandi (Curculionidae: Scolytinae): Expression profiles of different stages and responses to host allelochemicals. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 65:35-46. [PMID: 26319543 DOI: 10.1016/j.ibmb.2015.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/17/2015] [Accepted: 08/21/2015] [Indexed: 06/04/2023]
Abstract
Bark beetles oxidize the defensive allelochemicals from their host trees to both detoxify and convert these materials into components of their pheromone system. The ability of this insect to adapt to its chemical environment might be explained by the action of major detoxification enzymes such as cytochrome P450s (or CYPs). Sixty-four sequences coding for P450s were identified, and most of the transcripts were found to be expressed in the larvae, pupae and adults of Dendroctonus armandi. To gain information on how these genes help D. armandi overcome the host defense, differential transcript levels of the CYP genes were observed between sexes and within the sexes. Significant differences were observed among developmental stages, in feeding on the phloem of Pinus armandi and in exposure to stimuli ((±)-α-pinene, (S)-(-)-α-pinene, (S)-(-)-β-pinene, (+)-3-carene, (±)-limonene and turpentine oil) for 8 h. We investigated the effect of sex and generations on the survivorship of individual D. armandi that were exposed to host volatiles at concentrations comparable to constitutive and induced levels of defense using fumigant exposure to understand the ability of the beetles to tolerate host defensive chemicals. The differential transcript accumulation patterns of CYP genes of these bark beetle provided insight into the ecological interactions of D. armandi with its host pine.
Collapse
Affiliation(s)
- Lulu Dai
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mingyuan Ma
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunyan Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qi Shi
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ranran Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hui Chen
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
37
|
Liu J, Song K, Teng H, Zhang B, Li W, Xue H, Yang X. Endogenous cellulolytic enzyme systems in the longhorn beetle Mesosa myops (Insecta: Coleoptera) studied by transcriptomic analysis. Acta Biochim Biophys Sin (Shanghai) 2015; 47:741-8. [PMID: 26319402 DOI: 10.1093/abbs/gmv070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The Cerambycidae (longhorn beetle) is a large family of Coleoptera with xylophagous feeding habits. Cellulose digestion plays an important role in these wood-feeding insects. In this study, transcriptomic technology was used to obtain one glycoside hydrolase family 45 (GH45) cellulase and seven GH5 cellulases from Mesosa myops, a typical longhorn beetle. Analyses of expression dynamics and evolutionary relationships provided a complete description of the cellulolytic system. The expression dynamics related to individual development indicated that endogenous GH45 and GH5 cellulases dominate cellulose digestion in M. myops. Evolutionary analyses suggested that GH45 cellulase gene is a general gene in the Coleoptera Suborder Polyphaga. Evolutionary analyses also indicated that the GH5 cellulase group in Lamiinae longhorn beetles is closely associated with wood feeding. This study demonstrated that there is a complex endogenous cellulolytic system in M. myops that is dominated by cellulases belonging to two glycoside hydrolase families.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Keqing Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huajing Teng
- University of Chinese Academy of Sciences, Beijing 100049, China Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenzhu Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huaijun Xue
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xingke Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
38
|
Linard B, Crampton-Platt A, Gillett CPDT, Timmermans MJTN, Vogler AP. Metagenome Skimming of Insect Specimen Pools: Potential for Comparative Genomics. Genome Biol Evol 2015; 7:1474-89. [PMID: 25979752 PMCID: PMC4494052 DOI: 10.1093/gbe/evv086] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2015] [Indexed: 01/08/2023] Open
Abstract
Metagenomic analyses are challenging in metazoans, but high-copy number and repeat regions can be assembled from low-coverage sequencing by "genome skimming," which is applied here as a new way of characterizing metagenomes obtained in an ecological or taxonomic context. Illumina shotgun sequencing on two pools of Coleoptera (beetles) of approximately 200 species each were assembled into tens of thousands of scaffolds. Repeated low-coverage sequencing recovered similar scaffold sets consistently, although approximately 70% of scaffolds could not be identified against existing genome databases. Identifiable scaffolds included mitochondrial DNA, conserved sequences with hits to expressed sequence tag and protein databases, and known repeat elements of high and low complexity, including numerous copies of rRNA and histone genes. Assemblies of histones captured a diversity of gene order and primary sequence in Coleoptera. Scaffolds with similarity to multiple sites in available coleopteran genome sequences for Dendroctonus and Tribolium revealed high specificity of scaffolds to either of these genomes, in particular for high-copy number repeats. Numerous "clusters" of scaffolds mapped to the same genomic site revealed intra- and/or intergenomic variation within a metagenome pool. In addition to effect of taxonomic composition of the metagenomes, the number of mapped scaffolds also revealed structural differences between the two reference genomes, although the significance of this striking finding remains unclear. Finally, apparently exogenous sequences were recovered, including potential food plants, fungal pathogens, and bacterial symbionts. The "metagenome skimming" approach is useful for capturing the genomic diversity of poorly studied, species-rich lineages and opens new prospects in environmental genomics.
Collapse
Affiliation(s)
- Benjamin Linard
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Alex Crampton-Platt
- Department of Life Sciences, Natural History Museum, London, United Kingdom Department of Genetics, Evolution and Environment, University College London, United Kingdom
| | | | - Martijn J T N Timmermans
- Department of Life Sciences, Natural History Museum, London, United Kingdom Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, United Kingdom
| | - Alfried P Vogler
- Department of Life Sciences, Natural History Museum, London, United Kingdom Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, United Kingdom
| |
Collapse
|
39
|
Evangelista DE, de Paula FFP, Rodrigues A, Henrique-Silva F. Pectinases from Sphenophorus levis Vaurie, 1978 (Coleoptera: Curculionidae): putative accessory digestive enzymes. JOURNAL OF INSECT SCIENCE (ONLINE) 2015; 15:168. [PMID: 25673050 PMCID: PMC4535137 DOI: 10.1093/jisesa/ieu168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 11/24/2014] [Indexed: 05/29/2023]
Abstract
The cell wall in plants offers protection against invading organisms and is mainly composed of the polysaccharides pectin, cellulose, and hemicellulose, which can be degraded by plant cell wall degrading enzymes (PCWDEs). Such enzymes are often synthesized by free living microorganisms or endosymbionts that live in the gut of some animals, including certain phytophagous insects. Thus, the ability of an insect to degrade the cell wall was once thought to be related to endosymbiont enzyme activity. However, recent studies have revealed that some phytophagous insects are able to synthesize their own PCWDEs by endogenous genes, although questions regarding the origin of these genes remain unclear. This study describes two pectinases from the sugarcane weevil, Sphenophorus levis Vaurie, 1978 (Sl-pectinases), which is considered one of the most serious agricultural pests in Brazil. Two cDNA sequences identified in a cDNA library of the insect larvae coding for a pectin methylesterase (PME) and an endo-polygalacturonase (endo-PG)-denominated Sl-PME and Sl-endoPG, respectively-were isolated and characterized. The quantitative real-time reverse transcriptase polymerase chain reaction expression profile for both Sl-pectinases showed mRNA production mainly in the insect feeding stages and exclusively in midgut tissue of the larvae. This analysis, together Western blotting data, suggests that Sl-pectinases have a digestive role. Phylogenetic analyses indicate that Sl-PME and Sl-endoPG sequences are closely related to bacteria and fungi, respectively. Moreover, the partial genomic sequences of the pectinases were amplified from insect fat body DNA, which was certified to be free of endosymbiotic DNA. The analysis of genomic sequences revealed the existence of two small introns with 53 and 166 bp in Sl-endoPG, which is similar to the common pattern in fungal introns. In contrast, no intron was identified in the Sl-PME genomic sequence, as generally observed in bacteria. These data support the theory of horizontal gene transfer proposed for the origin of insect pectinases, reinforcing the acquisition of PME genes from bacteria and endo-PG genes from fungi.
Collapse
Affiliation(s)
- Danilo Elton Evangelista
- Laboratory of Molecular Biology, Department of Genetics and Evolution, Federal University of São Carlos, Road Washington Luis Km 235, São Carlos, 13565-905 São Paulo, Brazil
| | - Fernando Fonseca Pereira de Paula
- Laboratory of Molecular Biology, Department of Genetics and Evolution, Federal University of São Carlos, Road Washington Luis Km 235, São Carlos, 13565-905 São Paulo, Brazil
| | - André Rodrigues
- Department of Biochemistry and Microbiology, UNESP-São Paulo State University, Av. 24A, n. 1515-Bela Vista, Rio Claro, São Paulo 13506-900, Brazil
| | - Flávio Henrique-Silva
- Laboratory of Molecular Biology, Department of Genetics and Evolution, Federal University of São Carlos, Road Washington Luis Km 235, São Carlos, 13565-905 São Paulo, Brazil
| |
Collapse
|
40
|
Prentice K, Pertry I, Christiaens O, Bauters L, Bailey A, Niblett C, Ghislain M, Gheysen G, Smagghe G. Transcriptome analysis and systemic RNAi response in the African sweetpotato weevil (Cylas puncticollis, Coleoptera, Brentidae). PLoS One 2015; 10:e0115336. [PMID: 25590333 PMCID: PMC4295849 DOI: 10.1371/journal.pone.0115336] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/21/2014] [Indexed: 01/04/2023] Open
Abstract
The African sweetpotato weevil (SPW) Cylas puncticollis Boheman is one of the most important constraints of sweetpotato production in Sub-Saharan Africa and yet is largely an uncharacterized insect pest. Here, we report on the transcriptome analysis of SPW generated using an Illumina platform. More than 213 million sequencing reads were obtained and assembled into 89,599 contigs. This assembly was followed by a gene ontology annotation. Subsequently, a transcriptome search showed that the necessary RNAi components relevant to the three major RNAi pathways, were found to be expressed in SPW. To address the functionality of the RNAi mechanism in this species, dsRNA was injected into second instar larvae targeting laccase2, a gene which encodes an enzyme involved in the sclerotization of insect exoskeleton. The body of treated insects showed inhibition of sclerotization, leading eventually to death. Quantitative Real Time PCR (qPCR) confirmed this phenotype to be the result of gene silencing. Together, our results provide valuable sequence data on this important insect pest and demonstrate that a functional RNAi pathway with a strong and systemic effect is present in SPW and can further be explored as a new strategy for controlling this important pest.
Collapse
Affiliation(s)
- Katterinne Prentice
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
- International Potato Center (CIP), Genomics and Biotechnology Program, Nairobi 00603, Kenya
| | - Ine Pertry
- VIB, Institute of Plant Biotechnology Outreach, Technologiepark 3, B-9052 Ghent, Belgium
- Ghent University, Department Molecular Biotechnology, Institute of Plant Biotechnology Outreach, Technologiepark 3, B-9052 Ghent, Belgium
| | - Olivier Christiaens
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Lander Bauters
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Ana Bailey
- Venganza Inc., St. Augustine, FL 32080, United States of America
| | - Chuck Niblett
- Venganza Inc., St. Augustine, FL 32080, United States of America
| | - Marc Ghislain
- International Potato Center (CIP), Genomics and Biotechnology Program, Nairobi 00603, Kenya
| | - Godelieve Gheysen
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
- * E-mail:
| |
Collapse
|
41
|
Pitt C, Robert JA, Bonnett TR, Keeling CI, Bohlmann J, Huber DPW. Proteomics indicators of the rapidly shifting physiology from whole mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae), adults during early host colonization. PLoS One 2014; 9:e110673. [PMID: 25360753 PMCID: PMC4215907 DOI: 10.1371/journal.pone.0110673] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/16/2014] [Indexed: 01/08/2023] Open
Abstract
We developed proteome profiles for host colonizing mountain pine beetle adults, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae). Adult insects were fed in pairs on fresh host lodgepole pine, Pinus contorta Dougl. ex Loud, phloem tissue. The proteomes of fed individuals were monitored using iTRAQ and compared to those of starved beetles, revealing 757 and 739 expressed proteins in females and males, respectively, for which quantitative information was obtained. Overall functional category distributions were similar for males and females, with the majority of proteins falling under carbohydrate metabolism (glycolysis, gluconeogenesis, citric acid cycle), structure (cuticle, muscle, cytoskeleton), and protein and amino acid metabolism. Females had 23 proteins with levels that changed significantly with feeding (p<0.05, FDR<0.20), including chaperones and enzymes required for vitellogenesis. In males, levels of 29 proteins changed significantly with feeding (p<0.05, FDR<0.20), including chaperones as well as motor proteins. Only two proteins, both chaperones, exhibited a significant change in both females and males with feeding. Proteins with differential accumulation patterns in females exhibited higher fold changes with feeding than did those in males. This difference may be due to major and rapid physiological changes occurring in females upon finding a host tree during the physiological shift from dispersal to reproduction. The significant accumulation of chaperone proteins, a cytochrome P450, and a glutathione S-transferase, indicate secondary metabolite-induced stress physiology related to chemical detoxification during early host colonization. The females' activation of vitellogenin only after encountering a host indicates deliberate partitioning of resources and a balancing of the needs of dispersal and reproduction.
Collapse
Affiliation(s)
- Caitlin Pitt
- Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, BC, Canada
- * E-mail: (DH); (CP)
| | - Jeanne A. Robert
- Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, BC, Canada
| | - Tiffany R. Bonnett
- Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, BC, Canada
| | | | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Dezene P. W. Huber
- Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, BC, Canada
- * E-mail: (DH); (CP)
| |
Collapse
|
42
|
Dai L, Wang C, Zhang X, Yu J, Zhang R, Chen H. Two CYP4 genes of the Chinese white pine beetle, Dendroctonus armandi (Curculionidae: Scolytinae), and their transcript levels under different development stages and treatments. INSECT MOLECULAR BIOLOGY 2014; 23:598-610. [PMID: 25039485 DOI: 10.1111/imb.12108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Bark beetles oxidize the defensive monoterpenes of their host trees both to detoxify them and to convert them into components of their pheromone system. This oxidation is catalysed by cytochrome P450 (CYP) enzymes and occurs in different stages of the insect. We identified two new CYP4 genes in the Chinese white pine beetle (Dendroctonus armandi), and carried out bioinformatic analysis one the full-length nucleic acid sequences and deduced amino acid sequences. Differential expression of the CYP4 genes was observed between sexes, and within these significant differences amongst development stages, fed on phloem of Pinus armandi and exposed to stimuli((±)- α-pinene, (R)-(+)- α-pinene, (S)-(-)-α-pinene, (S)-(-)-β-pinene and (+)-3-carene) at 8 and 24 h, and their interactions were found upon exposure to host monoterpenes. Increased expression of CYP4 genes suggested that they play a role in the detoxification of monoterpenes released by the host trees. The differential transcript accumulation patterns of these bark beetle CYP4 genes provides insight into the ecological interactions of D. armandi with its host pine.
Collapse
Affiliation(s)
- L Dai
- College of Forestry, Northwest A&F University, Yangling, China
| | | | | | | | | | | |
Collapse
|
43
|
TransPS: A Transcriptome Post Scaffolding Method for Assembling High Quality Contigs. ACTA ACUST UNITED AC 2014; 2014. [PMID: 28261602 DOI: 10.1155/2014/961823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
MOTIVATION As the development of the high throughput sequencing technologies, transcriptome can be sequenced with a low price and high efficiency. Sequence assembly approaches have been renewed to meet the new requirements from new sequencing technologies. Assembly strategies are important for biologists who need to assemble the transcriptome generated in their experiments. However, some modern de novo assembly strategies generate a large section of redundant contigs due to sequence variations, which greatly affect downstream analysis and experiments. This work proposed TransPS, a post transcriptome scaffolding method to generate high quality transcriptomes. RESULTS TransPS shows promising results on the test transcriptome data sets where the redundancy is greatly reduced by at least 50%, while the coverage is improved considerately. AVAILABILITY The web server and source code are available at https://bioinformatics.cs.vt.edu/zhanglab/transps/.
Collapse
|
44
|
Janes JK, Li Y, Keeling CI, Yuen MMS, Boone CK, Cooke JEK, Bohlmann J, Huber DPW, Murray BW, Coltman DW, Sperling FAH. How the mountain pine beetle (Dendroctonus ponderosae) breached the Canadian Rocky Mountains. Mol Biol Evol 2014; 31:1803-15. [PMID: 24803641 PMCID: PMC4069619 DOI: 10.1093/molbev/msu135] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins), a major pine forest pest native to western North America, has extended its range north and eastward during an ongoing outbreak. Determining how the MPB has expanded its range to breach putative barriers, whether physical (nonforested prairie and high elevation of the Rocky Mountains) or climatic (extreme continental climate where temperatures can be below −40 °C), may contribute to our general understanding of range changes as well as management of the current epidemic. Here, we use a panel of 1,536 single nucleotide polymorphisms (SNPs) to assess population genetic structure, connectivity, and signals of selection within this MPB range expansion. Biallelic SNPs in MPB from southwestern Canada revealed higher genetic differentiation and lower genetic connectivity than in the northern part of its range. A total of 208 unique SNPs were identified using different outlier detection tests, of which 32 returned annotations for products with putative functions in cholesterol synthesis, actin filament contraction, and membrane transport. We suggest that MPB has been able to spread beyond its previous range by adjusting its cellular and metabolic functions, with genome scale differentiation enabling populations to better withstand cooler climates and facilitate longer dispersal distances. Our study is the first to assess landscape-wide selective adaptation in an insect. We have shown that interrogation of genomic resources can identify shifts in genetic diversity and putative adaptive signals in this forest pest species.
Collapse
Affiliation(s)
- Jasmine K Janes
- Department of Biological Sciences, University of Alberta, Edmonton, AB, CanadaAlberta Biodiversity Monitoring Institute, University of Alberta, Edmonton, AB, Canada
| | - Yisu Li
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | | | - Macaire M S Yuen
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Celia K Boone
- Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, BC, Canada
| | - Janice E K Cooke
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Dezene P W Huber
- Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, BC, Canada
| | - Brent W Murray
- Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, BC, Canada
| | - David W Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Felix A H Sperling
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
45
|
Molecular evolution of glycoside hydrolase genes in the Western corn rootworm (Diabrotica virgifera virgifera). PLoS One 2014; 9:e94052. [PMID: 24718603 PMCID: PMC3981738 DOI: 10.1371/journal.pone.0094052] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/11/2014] [Indexed: 12/20/2022] Open
Abstract
Cellulose is an important nutritional resource for a number of insect herbivores. Digestion of cellulose and other polysaccharides in plant-based diets requires several types of enzymes including a number of glycoside hydrolase (GH) families. In a previous study, we showed that a single GH45 gene is present in the midgut tissue of the western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). However, the presence of multiple enzymes was also suggested by the lack of a significant biological response when the expression of the gene was silenced by RNA interference. In order to clarify the repertoire of cellulose-degrading enzymes and related GH family proteins in D. v. virgifera, we performed next-generation sequencing and assembled transcriptomes from the tissue of three different developmental stages (eggs, neonates, and third instar larvae). Results of this study revealed the presence of seventy-eight genes that potentially encode GH enzymes belonging to eight families (GH45, GH48, GH28, GH16, GH31, GH27, GH5, and GH1). The numbers of GH45 and GH28 genes identified in D. v. virgifera are among the largest in insects where these genes have been identified. Three GH family genes (GH45, GH48, and GH28) are found almost exclusively in two coleopteran superfamilies (Chrysomeloidea and Curculionoidea) among insects, indicating the possibility of their acquisitions by horizontal gene transfer rather than simple vertical transmission from ancestral lineages of insects. Acquisition of GH genes by horizontal gene transfers and subsequent lineage-specific GH gene expansion appear to have played important roles for phytophagous beetles in specializing on particular groups of host plants and in the case of D. v. virgifera, its close association with maize.
Collapse
|
46
|
Tang B, Chen J, Hou Y, Meng E. Transcriptome immune analysis of the invasive beetle Octodonta nipae (Maulik) (Coleoptera: Chrysomelidae) parasitized by Tetrastichus brontispae Ferrière (Hymenoptera: Eulophidae). PLoS One 2014; 9:e91482. [PMID: 24614330 PMCID: PMC3948882 DOI: 10.1371/journal.pone.0091482] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 02/10/2014] [Indexed: 11/24/2022] Open
Abstract
The beetle Octodonta nipae (Maulik) (Coleoptera: Chrysomelidae) is a serious invasive insect pest of palm plants in southern China, and the endoparasitoid Tetrastichus brontispae Ferrière (Hymenoptera: Eulophidae) is a natural enemy of this pest that exhibits great ability in the biocontrol of O. nipae. For successful parasitism, endoparasitoids often introduce or secrete various virulence factors to suppress host immunity. To investigate the effects of parasitization by T. brontispae on the O. nipae immune system, the transcriptome of O. nipae pupae was analyzed with a focus on immune-related genes through Illumina sequencing. De novo assembly generated 49,919 unigenes with a mean length of 598 bp. Of these genes, 27,490 unigenes (55.1% of all unigenes) exhibited clear homology to known genes in the NCBI nr database. Parasitization had significant effects on the transcriptome profile of O. nipae pupae, and most of these differentially expressed genes were down-regulated. Importantly, the expression profiles of immune-related genes were significantly regulated after parasitization. Taken together, these transcriptome sequencing efforts shed valuable light on the host (O. nipae) manipulation mechanisms induced by T. brontispae, which will pave the way for the development of novel immune defense-based management strategies of O. nipae, and provide a springboard for further molecular analyses, particularly of O. nipae invasion.
Collapse
Affiliation(s)
- Baozhen Tang
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P. R. China
- Key Laboratory of Integrated Pest Management on Crops in Fujian-Taiwan, Ministry of Agriculture, Fuzhou, Fujian, P. R. China
| | - Jun Chen
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P. R. China
- Key Laboratory of Integrated Pest Management on Crops in Fujian-Taiwan, Ministry of Agriculture, Fuzhou, Fujian, P. R. China
| | - Youming Hou
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P. R. China
- Key Laboratory of Integrated Pest Management on Crops in Fujian-Taiwan, Ministry of Agriculture, Fuzhou, Fujian, P. R. China
- * E-mail:
| | - E. Meng
- Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P. R. China
- Key Laboratory of Integrated Pest Management on Crops in Fujian-Taiwan, Ministry of Agriculture, Fuzhou, Fujian, P. R. China
| |
Collapse
|
47
|
Mercadante D, Melton LD, Jameson GB, Williams MAK. Processive pectin methylesterases: the role of electrostatic potential, breathing motions and bond cleavage in the rectification of Brownian motions. PLoS One 2014; 9:e87581. [PMID: 24503943 PMCID: PMC3913658 DOI: 10.1371/journal.pone.0087581] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/23/2013] [Indexed: 12/26/2022] Open
Abstract
Pectin methylesterases (PMEs) hydrolyze the methylester groups that are found on the homogalacturonan (HG) chains of pectic polysaccharides in the plant cell wall. Plant and bacterial PMEs are especially interesting as the resulting de-methylesterified (carboxylated) sugar residues are found to be arranged contiguously, indicating a so-called processive nature of these enzymes. Here we report the results of continuum electrostatics calculations performed along the molecular dynamics trajectory of a PME-HG-decasaccharide complex. In particular it was observed that, when the methylester groups of the decasaccharide were arranged in order to mimic the just-formed carboxylate product of de-methylesterification, a net unidirectional sliding of the model decasaccharide was subsequently observed along the enzyme’s binding groove. The changes that occurred in the electrostatic binding energy and protein dynamics during this translocation provide insights into the mechanism by which the enzyme rectifies Brownian motions to achieve processivity. The free energy that drives these molecular motors is thus demonstrated to be incorporated endogenously in the methylesterified groups of the HG chains and is not supplied exogenously.
Collapse
Affiliation(s)
- Davide Mercadante
- The Riddet Institute, Palmerston North, New Zealand
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Laurence D. Melton
- The Riddet Institute, Palmerston North, New Zealand
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Geoffrey B. Jameson
- The Riddet Institute, Palmerston North, New Zealand
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University, Wellington, New Zealand
| | - Martin A. K. Williams
- The Riddet Institute, Palmerston North, New Zealand
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University, Wellington, New Zealand
- * E-mail:
| |
Collapse
|
48
|
Vogel H, Badapanda C, Knorr E, Vilcinskas A. RNA-sequencing analysis reveals abundant developmental stage-specific and immunity-related genes in the pollen beetle Meligethes aeneus. INSECT MOLECULAR BIOLOGY 2014; 23:98-112. [PMID: 24252113 DOI: 10.1111/imb.12067] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The pollen beetle (Meligethes aeneus) is a major pest of oilseed rape (Brassica napus) and other cruciferous crops in Europe. Pesticide-resistant pollen beetle populations are emerging, increasing the economic impact of this species. We isolated total RNA from the larval and adult stages, the latter either naïve or immunized by injection with bacteria and yeast. High-throughput RNA sequencing (RNA-Seq) was carried out to establish a comprehensive transcriptome catalogue and to screen for developmental stage-specific and immunity-related transcripts. We assembled the transcriptome de novo by combining sequence tags from all developmental stages and treatments. Gene expression data based on normalized read counts revealed several functional gene categories that were differentially expressed between larvae and adults, particularly genes associated with digestion and detoxification that were induced in larvae, and genes associated with reproduction and environmental signalling that were induced in adults. We also identified many genes associated with microbe recognition, immunity-related signalling and defence effectors, such as antimicrobial peptides (AMPs) and lysozymes. Digital gene expression analysis revealed significant differences in the profile of AMPs expressed in larvae, naïve adults and immune-challenged adults, providing insight into the steady-state differences between developmental stages and the complex transcriptional remodelling that occurs following the induction of immunity. Our data provide insight into the adaptive mechanisms used by phytophagous insects and could lead to the development of more effective control strategies for insect pests.
Collapse
Affiliation(s)
- H Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | | | | |
Collapse
|
49
|
González-Caballero N, Rodríguez-Vega A, Dias-Lopes G, Valenzuela JG, Ribeiro JMC, Carvalho PC, Valente RH, Brazil RP, Cuervo P. Expression of the mevalonate pathway enzymes in the Lutzomyia longipalpis (Diptera: Psychodidae) sex pheromone gland demonstrated by an integrated proteomic approach. J Proteomics 2014; 96:117-32. [PMID: 24185139 PMCID: PMC3917562 DOI: 10.1016/j.jprot.2013.10.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 10/01/2013] [Accepted: 10/19/2013] [Indexed: 12/31/2022]
Abstract
In Latin America, Lutzomyia longipalpis is the main vector of the protozoan parasite Leishmania infantum, which is the causal agent of American Visceral Leishmaniasis. This insect uses male-produced pheromones for mate recognition. Elucidation of pheromone biogenesis or its regulation may enable molecular strategies for mating disruption and, consequently, the vector's population management. Motivated by our recent results of the transcriptomic characterization of the L. longipalpis pheromone gland, we performed a proteomic analysis of this tissue combining SDS-PAGE, and mass spectrometry followed by an integrative data analysis. Considering that annotated genome sequences of this sand fly are not available, we designed an alternative workflow searching MS/MS data against two customized databases using three search engines: Mascot, OMSSA and ProLuCID. A total of 542 proteins were confidently characterized, 445 of them using a Uniref100-insect protein database, and 97 using a transcript translated database. In addition, use of PEAKS for de novo peptide sequencing of MS/MS data confirmed ~90% identifications made with the combination of the three search engines. Our results include the identification of six of the seven enzymes of the mevalonate-pathway, plus the enzymes involved in sesquiterpenoid biosynthesis, all of which are proposed to be involved in pheromone production in L. longipalpis. BIOLOGICAL SIGNIFICANCE L. longipalpis is the main vector of the protozoan parasite L. infantum, which is the causal agent of American Visceral Leishmaniasis. One of the control measures of such disease is focused on vector population control. As this insect uses male-produced pheromones for mate recognition, the elucidation of pheromone biogenesis or its regulating process may enable molecular strategies for mating disruption and, consequently, this vector's population management. On this regard, in this manuscript we report expression evidence, at the protein level, of several molecules potentially involved in the pheromone production of L. longipalpis. Our results include the identification of the mevalonate-pathway enzymes, plus the enzymes involved in sesquiterpenoid biosynthesis, all of which are proposed to be involved in pheromone production in L. longipalpis. In addition, considering that the annotated genome sequences of this sand fly are not yet available, we designed an alternative workflow searching MS/MS data against proteomic and transcript translated customized databases, using three search engines: Mascot, OMSSA, and ProLuCID. In addition, a de novo peptide sequencing software (PEAKS) was used to further analyze the MS/MS data. This approach made it possible to identify and annotate 542 proteins for the pheromone gland of L. longipalpis. Importantly, all annotated protein sequences and raw data are available for the research community in protein repositories that provide free access to the data.
Collapse
Affiliation(s)
| | | | - Geovane Dias-Lopes
- Pós-graduação Biologia Parasitaria, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institutes of Health Rockville, MD, USA
| | - Jose M C Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institutes of Health Rockville, MD, USA
| | - Paulo Costa Carvalho
- Laboratório de Proteômica e Engenharia de Proteínas, Instituto Carlos Chagas, FIOCRUZ, Curitiba, Brazil
| | - Richard H Valente
- Laboratório de Toxinologia, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Reginaldo P Brazil
- Laboratório de Bioquímica e Fisiologia de Insetos, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Patricia Cuervo
- Laboratório de Pesquisa em Leishmaniose, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
50
|
Nanoth Vellichirammal N, Zera AJ, Schilder RJ, Wehrkamp C, Riethoven JJM, Brisson JA. De novo transcriptome assembly from fat body and flight muscles transcripts to identify morph-specific gene expression profiles in Gryllus firmus. PLoS One 2014; 9:e82129. [PMID: 24416137 PMCID: PMC3885399 DOI: 10.1371/journal.pone.0082129] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 10/22/2013] [Indexed: 11/19/2022] Open
Abstract
Wing polymorphism is a powerful model for examining many aspects of adaptation. The wing dimorphic cricket species, Gryllus firmus, consists of a long-winged morph with functional flight muscles that is capable of flight, and two flightless morphs. One (obligately) flightless morph emerges as an adult with vestigial wings and vestigial flight muscles. The other (plastic) flightless morph emerges with fully-developed wings but later in adulthood histolyzes its flight muscles. Importantly both flightless morphs have substantially increased reproductive output relative to the flight-capable morph. Much is known about the physiological and biochemical differences between the morphs with respect to adaptations for flight versus reproduction. In contrast, little is known about the molecular genetic basis of these morph-specific adaptations. To address this issue, we assembled a de novo transcriptome of G. firmus using 141.5 million Illumina reads generated from flight muscles and fat body, two organs that play key roles in flight and reproduction. We used the resulting 34,411 transcripts as a reference transcriptome for differential gene expression analyses. A comparison of gene expression profiles from functional flight muscles in the flight-capable morph versus histolyzed flight muscles in the plastic flight incapable morph identified a suite of genes involved in respiration that were highly expressed in pink (functional) flight muscles and genes involved in proteolysis highly expressed in the white (histolyzed) flight muscles. A comparison of fat body transcripts from the obligately flightless versus the flight-capable morphs revealed differential expression of genes involved in triglyceride biosynthesis, lipid transport, immune function and reproduction. These data provide a valuable resource for future molecular genetics research in this and related species and provide insight on the role of gene expression in morph-specific adaptations for flight versus reproduction.
Collapse
Affiliation(s)
| | - Anthony J. Zera
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Rudolf J. Schilder
- Department of Biology, Penn State University, State College, Pennsylvania, United States of America
| | - Cody Wehrkamp
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Jean-Jack M. Riethoven
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- Bioinformatics Core Research Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Jennifer A. Brisson
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|