1
|
Zarlenga DS, Hoberg EP, Thompson P, Rosenthal B. Trichinella: Becoming a parasite. Vet Parasitol 2024:110220. [PMID: 38910035 DOI: 10.1016/j.vetpar.2024.110220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024]
Abstract
Phylogenetic evidence indicates that free-living nematodes gave rise to parasitic nematodes where parasitism evolved independently at least 15 times. The high level of genetic and biological diversity among parasites dictates an equally high level of diversity in the transition to parasitism. We previously hypothesized that horizontal gene transfer (HGT) played an important role in the evolution of parasitism among early ancestors of Trichinella, mediated by an interplay of ecological and evolutionary pathways that contributed to persistence and diversification. We propose that host selection may have been associated with the metabolism of ammonia and engender a new paradigm whereby the reprogrammed nurse cell is capable of generating cyanate thereby enabling the importance of the Trichinella cyanase in the longevity of the cell. Parasites and parasitism have revealed considerable resilience against a backdrop of climate change and environmental perturbation. Here we provide a putative link between key periods in the evolution of Trichinella and major geological and climatological events dating back 500 million years. A useful lens for exploring such ideas, the Stockholm Paradigm, integrates Ecological Fitting (a foundation for host colonization and diversification), the Oscillation Hypothesis (recurring shifts between trends in generalization and specialization relative to host range), the Geographic Mosaic Theory of Coevolution (microevolutionary co-adaptive processes), and the Taxon Pulse Hypothesis (alternating events of biotic expansion i.e., exploitation in evolutionary and ecological time). Here we examine how one or more of these interactive theories, in a phylogenetic-historical context and in conjunction with HGT, may help explain the scope and depth of diversity among Trichinella genotypes.
Collapse
Affiliation(s)
- Dante S Zarlenga
- USDA-Agricultural Research Service, Animal Parasitic Diseases Lab, Beltsville, MD, USA.
| | - Eric P Hoberg
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, WI, USA
| | - Peter Thompson
- USDA-Agricultural Research Service, Animal Parasitic Diseases Lab, Beltsville, MD, USA
| | - Benjamin Rosenthal
- USDA-Agricultural Research Service, Animal Parasitic Diseases Lab, Beltsville, MD, USA
| |
Collapse
|
2
|
Martinez M, Diaz I. Plant Cyanogenic-Derived Metabolites and Herbivore Counter-Defences. PLANTS (BASEL, SWITZERLAND) 2024; 13:1239. [PMID: 38732453 PMCID: PMC11085660 DOI: 10.3390/plants13091239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
The release of cyanide from cyanogenic precursors is the central core of the plant defences based on the cyanogenesis process. Although cyanide is formed as a coproduct of some metabolic routes, its production is mostly due to the degradation of cyanohydrins originating from cyanogenic glycosides in cyanogenic plants and the 4-OH-ICN route in Brassicaceae. Cyanohydrins are then hydrolysed in a reversible reaction generating cyanide, being both, cyanohydrins and cyanide, toxic compounds with potential defensive properties against pests and pathogens. Based on the production of cyanogenic-derived molecules in response to the damage caused by herbivore infestation, in this review, we compile the actual knowledge of plant cyanogenic events in the plant-pest context. Besides the defensive potential, the mode of action, and the targets of the cyanogenic compounds to combat phytophagous insects and acari, special attention has been paid to arthropod responses and the strategies to overcome the impact of cyanogenesis. Physiological and behavioural adaptations, as well as cyanide detoxification by β-cyanoalanine synthases, rhodaneses, and cyanases are common ways of phytophagous arthropods defences against the cyanide produced by plants. Much experimental work is needed to further understand the complexities and specificities of the defence-counter-defence system to be applied in breeding programs.
Collapse
Affiliation(s)
- Manuel Martinez
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain;
- Departamento de Biotecnologia-Biologia Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politecnica de Madrid, 28040 Madrid, Spain
| | - Isabel Diaz
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain;
- Departamento de Biotecnologia-Biologia Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politecnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
3
|
Bruinsma K, Rioja C, Zhurov V, Santamaria ME, Arbona V, Navarro M, Cazaux M, Auger P, Migeon A, Wybouw N, Van Leeuwen T, Diaz I, Gómez-Cadenas A, Grbic M, Navajas M, Grbic V. Host adaptation and specialization in Tetranychidae mites. PLANT PHYSIOLOGY 2023; 193:2605-2621. [PMID: 37437113 DOI: 10.1093/plphys/kiad412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/15/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
Composite generalist herbivores are comprised of host-adapted populations that retain the ability to shift hosts. The degree and overlap of mechanisms used by host-adapted generalist and specialist herbivores to overcome the same host plant defenses are largely unknown. Tetranychidae mites are exceptionally suited to address the relationship between host adaptation and specialization in herbivores as this group harbors closely related species with remarkably different host ranges-an extreme generalist the two-spotted spider mite (Tetranychus urticae Koch [Tu]) and the Solanaceous specialist Tetranychus evansi (Te). Here, we used tomato-adapted two-spotted spider mite (Tu-A) and Te populations to compare mechanisms underlying their host adaptation and specialization. We show that both mites attenuate induced tomato defenses, including protease inhibitors (PIs) that target mite cathepsin L digestive proteases. While Te solely relies on transcriptional attenuation of PI induction, Tu and Tu-A have elevated constitutive activity of cathepsin L proteases, making them less susceptible to plant anti-digestive proteins. Tu-A and Te also rely on detoxification of tomato constitutive defenses. Te uses esterase and P450 activities, while Tu-A depends on the activity of all major detoxification enzymatic classes to disarm tomato defensive compounds to a lesser extent. Thus, even though both Tu-A and Te use similar mechanisms to counteract tomato defenses, Te can better cope with them. This finding is congruent with the ecological and evolutionary times required to establish mite adaptation and specialization states, respectively.
Collapse
Affiliation(s)
- Kristie Bruinsma
- Department of Biology, The University of Western Ontario, London N6A 5B7, Ontario, Canada
| | - Cristina Rioja
- Department of Biology, The University of Western Ontario, London N6A 5B7, Ontario, Canada
| | - Vladimir Zhurov
- Department of Biology, The University of Western Ontario, London N6A 5B7, Ontario, Canada
| | - Maria Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, 20223 Madrid, Spain
| | - Vicent Arbona
- Department of Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, Campus Riu Sec, E-12071 Castellón, Spain
| | - Marie Navarro
- Department of Biology, The University of Western Ontario, London N6A 5B7, Ontario, Canada
| | - Marc Cazaux
- Department of Biology, The University of Western Ontario, London N6A 5B7, Ontario, Canada
| | - Philippe Auger
- Institut Agro, IRD, Institut national de recherche pour l'agronomie, l'alimentation et l'environnement (INRAE) Centre de Biologie et Gestion des Populations (CBGP), Univ Montpellier, 34988 Montferrier-sur-Lez, France
| | - Alain Migeon
- Institut Agro, IRD, Institut national de recherche pour l'agronomie, l'alimentation et l'environnement (INRAE) Centre de Biologie et Gestion des Populations (CBGP), Univ Montpellier, 34988 Montferrier-sur-Lez, France
| | - Nicky Wybouw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, 20223 Madrid, Spain
| | - Aurelio Gómez-Cadenas
- Department of Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, Campus Riu Sec, E-12071 Castellón, Spain
| | - Miodrag Grbic
- Department of Biology, The University of Western Ontario, London N6A 5B7, Ontario, Canada
- Department of Agriculture and Food, University of La Rioja, Logroño, La Rioja 26006, Spain
- Faculty of Biology, University of Belgrade, Belgrade 11000, Serbia
| | - Maria Navajas
- Institut Agro, IRD, Institut national de recherche pour l'agronomie, l'alimentation et l'environnement (INRAE) Centre de Biologie et Gestion des Populations (CBGP), Univ Montpellier, 34988 Montferrier-sur-Lez, France
| | - Vojislava Grbic
- Department of Biology, The University of Western Ontario, London N6A 5B7, Ontario, Canada
| |
Collapse
|
4
|
Lu X, Simma EA, Spanoghe P, Van Leeuwen T, Dermauw W. Recombinant expression and characterization of GSTd3 from a resistant population of Anopheles arabiensis and comparison of DDTase activity with GSTe2. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105397. [PMID: 37105620 DOI: 10.1016/j.pestbp.2023.105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/15/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
The development of insecticide resistance in malaria vectors is a challenge for the global effort to control and eradicate malaria. Glutathione S-transferases (GSTs) are multifunctional enzymes involved in the detoxification of many classes of insecticides. For mosquitoes, it is known that overexpression of an epsilon GST, GSTe2, confers resistance towards DDT and pyrethroids. In addition to GSTe2, consistent overexpression of a delta class GST, GSTd3, has been observed in insecticide resistant populations of different malaria vector species. However, the functional role of GSTd3 towards DDT resistance has not yet been investigated. Here, we recombinantly expressed both GSTe2 and GSTd3 from Anopheles arabiensis and compared their metabolic activities against DDT. Both AaGSTd3 and AaGSTe2 exhibited CDNB-conjugating and glutathione peroxidase activity and DDT metabolism was observed for both GSTs. However, the DDT dehydrochlorinase activity exhibited by AaGSTe2 was much higher than for AaGSTd3, and AaGSTe2 was also able to eliminate DDE although the metabolite could not be identified. Molecular modeling revealed subtle differences in the binding pocket of both enzymes and a better fit of DDT within the H-site of AaGSTe2. The overexpression but much lower DDT metabolic activity of AaGSTd3, might suggest that AaGSTd3 sequesters DDT. These findings highlight the complexity of insecticide resistance in the major malaria vectors and the difficulties associated with control of the vectors using DDT, which is still used for indoor residual spraying.
Collapse
Affiliation(s)
- Xueping Lu
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| | - Eba Alemayehu Simma
- Department of Biology, College of Natural Sciences, Jimma University, Jimma, Ethiopia.
| | - Pieter Spanoghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| | - Wannes Dermauw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium; Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, 9820 Merelbeke, Belgium.
| |
Collapse
|
5
|
Dixit S, Widemann E, Bensoussan N, Salehipourshirazi G, Bruinsma K, Milojevic M, Shukla A, Romero LC, Zhurov V, Bernards MA, Chruszcz M, Grbić M, Grbić V. β-Cyanoalanine synthase protects mites against Arabidopsis defenses. PLANT PHYSIOLOGY 2022; 189:1961-1975. [PMID: 35348790 PMCID: PMC9342966 DOI: 10.1093/plphys/kiac147] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/07/2022] [Indexed: 05/06/2023]
Abstract
Glucosinolates are antiherbivory chemical defense compounds in Arabidopsis (Arabidopsis thaliana). Specialist herbivores that feed on brassicaceous plants have evolved various mechanisms aimed at preventing the formation of toxic isothiocyanates. In contrast, generalist herbivores typically detoxify isothiocyanates through glutathione conjugation upon exposure. Here, we examined the response of an extreme generalist herbivore, the two-spotted spider mite Tetranychus urticae (Koch), to indole glucosinolates. Tetranychus urticae is a composite generalist whose individual populations have a restricted host range but have an ability to rapidly adapt to initially unfavorable plant hosts. Through comparative transcriptomic analysis of mite populations that have differential susceptibilities to Arabidopsis defenses, we identified β-cyanoalanine synthase of T. urticae (TuCAS), which encodes an enzyme with dual cysteine and β-cyanoalanine synthase activities. We combined Arabidopsis genetics, chemical complementation and mite reverse genetics to show that TuCAS is required for mite adaptation to Arabidopsis through its β-cyanoalanine synthase activity. Consistent with the β-cyanoalanine synthase role in detoxification of hydrogen cyanide (HCN), we discovered that upon mite herbivory, Arabidopsis plants release HCN. We further demonstrated that indole glucosinolates are sufficient for cyanide formation. Overall, our study uncovered Arabidopsis defenses that rely on indole glucosinolate-dependent cyanide for protection against mite herbivory. In response, Arabidopsis-adapted mites utilize the β-cyanoalanine synthase activity of TuCAS to counter cyanide toxicity, highlighting the mite's ability to activate resistant traits that enable this extreme polyphagous herbivore to exploit cyanogenic host plants.
Collapse
Affiliation(s)
| | | | - Nicolas Bensoussan
- Department of Biology, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | | | - Kristie Bruinsma
- Department of Biology, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Maja Milojevic
- Department of Biology, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Akanchha Shukla
- Department of Biology, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, E-41092 Seville, Spain
| | - Vladimir Zhurov
- Department of Biology, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Mark A Bernards
- Department of Biology, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Miodrag Grbić
- Department of Biology, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | | |
Collapse
|
6
|
Arnaiz A, Santamaria ME, Rosa-Diaz I, Garcia I, Dixit S, Vallejos S, Gotor C, Martinez M, Grbic V, Diaz I. Hydroxynitrile lyase defends Arabidopsis against Tetranychus urticae. PLANT PHYSIOLOGY 2022; 189:2244-2258. [PMID: 35474139 PMCID: PMC9342993 DOI: 10.1093/plphys/kiac170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/14/2022] [Indexed: 05/31/2023]
Abstract
Plant-pest interactions involve multifaceted processes encompassing a complex crosstalk of pathways, molecules, and regulators aimed at overcoming defenses developed by each interacting organism. Among plant defensive compounds against phytophagous arthropods, cyanide-derived products are toxic molecules that directly target pest physiology. Here, we identified the Arabidopsis (Arabidopsis thaliana) gene encoding hydroxynitrile lyase (AtHNL, At5g10300) as one gene induced in response to spider mite (Tetranychus urticae) infestation. AtHNL catalyzes the reversible interconversion between cyanohydrins and derived carbonyl compounds with free cyanide. AtHNL loss- and gain-of-function Arabidopsis plants showed that specific activity of AtHNL using mandelonitrile as substrate was higher in the overexpressing lines than in wild-type (WT) and mutant lines. Concomitantly, mandelonitrile accumulated at higher levels in mutant lines than in WT plants and was significantly reduced in the AtHNL overexpressing lines. After mite infestation, mandelonitrile content increased in WT and overexpressing plants but not in mutant lines, while hydrogen cyanide (HCN) accumulated in the three infested Arabidopsis genotypes. Feeding bioassays demonstrated that the AtHNL gene participated in Arabidopsis defense against T. urticae. The reduced leaf damage detected in the AtHNL overexpressing lines reflected the mite's reduced ability to feed on leaves, which consequently restricted mite fecundity. In turn, mites upregulated TuCAS1 encoding β-cyanoalanine synthase to avoid the respiratory damage produced by HCN. This detoxification effect was functionally demonstrated by reduced mite fecundity observed when dsRNA-TuCAS-treated mites fed on WT plants and hnl1 mutant lines. These findings add more players in the Arabidopsis-T. urticae interplay to overcome mutual defenses.
Collapse
Affiliation(s)
- Ana Arnaiz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 20223 Madrid, Spain
| | - M Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 20223 Madrid, Spain
| | - Irene Rosa-Diaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 20223 Madrid, Spain
| | - Irene Garcia
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Sevilla, Spain
| | - Sameer Dixit
- Department of Biology, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Saul Vallejos
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Burgos 09001, Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Sevilla, Spain
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 20223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Vojislava Grbic
- Department of Biology, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, 20223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| |
Collapse
|
7
|
Zarlenga D, Thompson P, Mitreva M, Rosa BA, Hoberg E. Horizontal gene transfer provides insights into the deep evolutionary history and biology of Trichinella. Food Waterborne Parasitol 2022; 27:e00155. [PMID: 35542181 PMCID: PMC9079694 DOI: 10.1016/j.fawpar.2022.e00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 12/03/2022] Open
Abstract
Evolution involves temporal changes in the characteristics of a species that are subsequently propagated or rejected through natural selection. In the case of parasites, host switching also plays a prominent role in the evolutionary process. These changes are rooted in genetic variation and gene flow where genes may be deleted, mutated (sequence), duplicated, rearranged and/or translocated and then transmitted through vertical gene transfer. However, the introduction of new genes is not driven only by Mendelian inheritance and mutation but also by the introduction of DNA from outside a lineage in the form of horizontal gene transfer between donor and recipient organisms. Once introduced and integrated into the biology of the recipient, vertical inheritance then perpetuates the newly acquired genetic factor, where further functionality may involve co-option of what has become a pre-existing physiological capacity. Upon sequencing the Trichinella spiralis (Clade I) genome, a cyanate hydratase (cyanase) gene was identified that is common among bacteria, fungi, and plants, but rarely observed among other eukaryotes. The sequence of the Trichinella cyanase gene clusters with those derived from the Kingdom Plantae in contrast to the genes found in some Clade III and IV nematodes that cluster with cyanases of bacterial origin. Phylogenetic analyses suggest that the Trichinella cyanase was acquired during the Devonian period and independently from those of other nematodes. These data may help inform us of the deep evolutionary history and ecological connectivity of early ancestors within the lineage of contemporary Trichinella. Further, in many extant organisms, cyanate detoxification has been largely superseded by energy requirements for metabolism. Thus, deciphering the function of Trichinella cyanase may provide new avenues for treatment and control.
Collapse
Affiliation(s)
- Dante Zarlenga
- U.S. Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, B1180 BARC-East Beltsville, MD 20705, USA
| | - Peter Thompson
- U.S. Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, B1180 BARC-East Beltsville, MD 20705, USA
| | - Makedonka Mitreva
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- McDonnel Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Bruce A. Rosa
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- McDonnel Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Eric Hoberg
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
8
|
Daneshian L, Renggli I, Hanaway R, Offermann LR, Schlachter CR, Hernandez Arriaza R, Henry S, Prakash R, Wybouw N, Dermauw W, Shimizu LS, Van Leeuwen T, Makris TM, Grbic V, Grbic M, Chruszcz M. Structural and functional characterization of β-cyanoalanine synthase from Tetranychus urticae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 142:103722. [PMID: 35063675 DOI: 10.1016/j.ibmb.2022.103722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Tetranychus urticae is a polyphagous spider mite that can feed on more than 1100 plant species including cyanogenic plants. The herbivore genome contains a horizontally acquired gene tetur10g01570 (TuCAS) that was previously shown to participate in cyanide detoxification. To understand the structure and determine the function of TuCAS in T. urticae, crystal structures of the protein with lysine conjugated pyridoxal phosphate (PLP) were determined. These structures reveal extensive TuCAS homology with the β-substituted alanine synthase family, and they show that this enzyme utilizes a similar chemical mechanism involving a stable α-aminoacrylate intermediate in β-cyanoalanine and cysteine synthesis. We demonstrate that TuCAS is more efficient in the synthesis of β-cyanoalanine, which is a product of the detoxification reaction between cysteine and cyanide, than in the biosynthesis of cysteine. Also, the enzyme carries additional enzymatic activities that were not previously described. We show that TuCAS can detoxify cyanide using O-acetyl-L-serine as a substrate, leading to the direct formation of β-cyanoalanine. Moreover, it catalyzes the reaction between the TuCAS-bound α-aminoacrylate intermediate and aromatic compounds with a thiol group. In addition, we have tested several compounds as TuCAS inhibitors. Overall, this study identifies additional functions for TuCAS and provides new molecular insight into the xenobiotic metabolism of T. urticae.
Collapse
Affiliation(s)
- Leily Daneshian
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Isabella Renggli
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Ryan Hanaway
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Lesa R Offermann
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Caleb R Schlachter
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | | | - Shannon Henry
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Rahul Prakash
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Nicky Wybouw
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Ghent, 9000, Belgium
| | - Wannes Dermauw
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Merelbeke, 9820, Belgium; Department of Plants and Crops, Ghent University, Ghent, 9000, Belgium
| | - Linda S Shimizu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | | | - Thomas M Makris
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA; Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, 27607, USA
| | - Vojislava Grbic
- Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
| | - Miodrag Grbic
- Department of Biology, Western University, London, Ontario, N6A 5B7, Canada; University of La Rioja, Logrono, Spain
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
9
|
Mao X, Chen J, van Oosterhout C, Zhang H, Liu G, Zhuang Y, Mock T. Diversity, prevalence, and expression of cyanase genes (cynS) in planktonic marine microorganisms. THE ISME JOURNAL 2022; 16:602-605. [PMID: 34408267 PMCID: PMC8776842 DOI: 10.1038/s41396-021-01081-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023]
Abstract
Cyanate is utilized by many microbes as an organic nitrogen source. The key enzyme for cyanate metabolism is cyanase, converting cyanate to ammonium and carbon dioxide. Although the cyanase gene cynS has been identified in many species, the diversity, prevalence, and expression of cynS in marine microbial communities remains poorly understood. Here, based on the full-length cDNA sequence of a dinoflagellate cynS and 260 homologs across the tree of life, we extend the conserved nature of cyanases by the identification of additional ultra-conserved residues as part of the modeled holoenzyme structure. Our phylogenetic analysis showed that horizontal gene transfer of cynS appears to be more prominent than previously reported for bacteria, archaea, chlorophytes, and metazoans. Quantitative analyses of marine planktonic metagenomes revealed that cynS is as prevalent as ureC (urease subunit alpha), suggesting that cyanate plays an important role in nitrogen metabolism of marine microbes. Highly abundant cynS transcripts from phytoplankton and nitrite-oxidizing bacteria identified in global ocean metatranscriptomes indicate that cyanases potentially occupy a key position in the marine nitrogen cycle by facilitating photosynthetic assimilation of organic N and its remineralisation to NO3 by the activity of nitrifying bacteria.
Collapse
Affiliation(s)
- Xuewei Mao
- grid.4422.00000 0001 2152 3263Key Laboratory of Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100 China ,grid.484590.40000 0004 5998 3072Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China ,grid.8273.e0000 0001 1092 7967School of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, UK
| | - Jianwei Chen
- grid.21155.320000 0001 2034 1839BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555 China ,grid.21155.320000 0001 2034 1839Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, 266555 China
| | - Cock van Oosterhout
- grid.8273.e0000 0001 1092 7967School of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, UK
| | - Huan Zhang
- grid.63054.340000 0001 0860 4915Department of Marine Sciences, University of Connecticut, Groton, CT 06340 USA
| | - Guangxing Liu
- grid.4422.00000 0001 2152 3263Key Laboratory of Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100 China ,grid.484590.40000 0004 5998 3072Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Yunyun Zhuang
- grid.4422.00000 0001 2152 3263Key Laboratory of Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100 China ,grid.484590.40000 0004 5998 3072Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Thomas Mock
- grid.8273.e0000 0001 1092 7967School of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, UK
| |
Collapse
|
10
|
Salehipourshirazi G, Bruinsma K, Ratlamwala H, Dixit S, Arbona V, Widemann E, Milojevic M, Jin P, Bensoussan N, Gómez-Cadenas A, Zhurov V, Grbic M, Grbic V. Rapid specialization of counter defenses enables two-spotted spider mite to adapt to novel plant hosts. PLANT PHYSIOLOGY 2021; 187:2608-2622. [PMID: 34618096 PMCID: PMC8644343 DOI: 10.1093/plphys/kiab412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/05/2021] [Indexed: 05/06/2023]
Abstract
Genetic adaptation, occurring over a long evolutionary time, enables host-specialized herbivores to develop novel resistance traits and to efficiently counteract the defenses of a narrow range of host plants. In contrast, physiological acclimation, leading to the suppression and/or detoxification of host defenses, is hypothesized to enable broad generalists to shift between plant hosts. However, the host adaptation mechanisms used by generalists composed of host-adapted populations are not known. Two-spotted spider mite (TSSM; Tetranychus urticae) is an extreme generalist herbivore whose individual populations perform well only on a subset of potential hosts. We combined experimental evolution, Arabidopsis thaliana genetics, mite reverse genetics, and pharmacological approaches to examine mite host adaptation upon the shift of a bean (Phaseolus vulgaris)-adapted population to Arabidopsis. We showed that cytochrome P450 monooxygenases are required for mite adaptation to Arabidopsis. We identified activities of two tiers of P450s: general xenobiotic-responsive P450s that have a limited contribution to mite adaptation to Arabidopsis and adaptation-associated P450s that efficiently counteract Arabidopsis defenses. In approximately 25 generations of mite selection on Arabidopsis plants, mites evolved highly efficient detoxification-based adaptation, characteristic of specialist herbivores. This demonstrates that specialization to plant resistance traits can occur within the ecological timescale, enabling the TSSM to shift to novel plant hosts.
Collapse
Affiliation(s)
| | - Kristie Bruinsma
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| | - Huzefa Ratlamwala
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| | - Sameer Dixit
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló de la Plana, E-12071, Spain
| | - Emilie Widemann
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| | - Maja Milojevic
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| | - Pengyu Jin
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| | - Nicolas Bensoussan
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló de la Plana, E-12071, Spain
| | - Vladimir Zhurov
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| | - Miodrag Grbic
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
- Instituto de Ciencias de la Vid y el Vino (CSIC, UR, Gobiernode La Rioja), Logrono 26006, Spain
- Department of Biology, University of Belgrade, Belgrade, Serbia
| | - Vojislava Grbic
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B8, Canada
- Author for communication:
| |
Collapse
|
11
|
Guo L, Xie W, Yang Z, Xu J, Zhang Y. Genome-Wide Identification and Expression Analysis of Udp-Glucuronosyltransferases in the Whitefly Bemisia Tabaci (Gennadius) (HemipterA: Aleyrodidae). Int J Mol Sci 2020; 21:ijms21228492. [PMID: 33187355 PMCID: PMC7697561 DOI: 10.3390/ijms21228492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is an important agricultural pest worldwide. Uridine diphosphate (UDP)-glucuronosyltransferases (UGTs) are one of the largest and most ubiquitous groups of proteins. Because of their role in detoxification, insect UGTs are attracting increasing attention. In this study, we identified and analyzed UGT genes in B. tabaci MEAM1 to investigate their potential roles in host adaptation and reproductive capacity. Based on phylogenetic and structural analyses, we identified 76 UGT genes in the B. tabaci MEAM1 genome. RNA-seq and real-time quantitative PCR (RT-qPCR) revealed differential expression patterns of these genes at different developmental stages and in association with four host plants (cabbage, cucumber, cotton and tomato). RNA interference results of selected UGTs showed that, when UGT352A1, UGT352B1, and UGT354A1 were respectively silenced by feeding on dsRNA, the fecundity of B. tabaci MEAM1 was reduced, suggesting that the expressions of these three UGT genes in this species may be associated with host-related fecundity. Together, our results provide detailed UGTs data in B.tabaci and help guide future studies on the mechanisms of host adaptation by B.tabaci.
Collapse
Affiliation(s)
- Litao Guo
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China;
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (W.X.); (Z.Y.)
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (W.X.); (Z.Y.)
| | - Zezhong Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (W.X.); (Z.Y.)
| | - Jianping Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China;
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
- Correspondence: (J.X.); (Y.Z.)
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (W.X.); (Z.Y.)
- Correspondence: (J.X.); (Y.Z.)
| |
Collapse
|
12
|
Zarlenga D, Thompson P, Pozio E. Trichinella species and genotypes. Res Vet Sci 2020; 133:289-296. [PMID: 33199264 DOI: 10.1016/j.rvsc.2020.08.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
Trichinella spiralis has historically been deemed "the pig parasite" owing to its initial classification within a monospecific genus. However, in recent years, the genus has expanded to include 10 distinct species and at least 3 different genotypes whose taxonomic status remains unstipulated. In contrast to T. spiralis, however, most of these sylvatic species and genotypes do not infect pigs well. Inasmuch as morphological characters cannot be used to define species within this genus, earlier classifications were based upon host and geographical ranges, biological characters, and the presence or absence of a collagen capsule that surrounds the muscle stage larvae. Later, isoenzymes, DNA gel fragmentation patterns and DNA probes were used to help in identification and classification. Today, amidst the "-omics" revolution, new molecular and biochemical-based methodologies have improved detection, differentiation and characterization at all levels including worm populations. These efforts have discernably expanded immunological, epidemiological, and genetic studies resulting in better hypotheses on the evolution of the genus, and on global events, transmission cycles, host associations, and biogeographical histories that contributed to its cosmopolitan distribution. Reviews of this sort are best begun with a background on the genus; however, efforts will divert to the most recent knowledge available on the taxonomy, phylogeny, epidemiology and biochemistry that define this genus in the 21st century.
Collapse
Affiliation(s)
- Dante Zarlenga
- Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA.
| | - Peter Thompson
- Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA
| | - Edoardo Pozio
- Department of Infectious Diseases, Istituto Superiore di Sanita, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
13
|
Dermauw W, Jonckheere W, Riga M, Livadaras I, Vontas J, Van Leeuwen T. Targeted mutagenesis using CRISPR-Cas9 in the chelicerate herbivore Tetranychus urticae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 120:103347. [PMID: 32114158 DOI: 10.1016/j.ibmb.2020.103347] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
The use of CRISPR-Cas9 has revolutionized functional genetic work in many organisms, including more and more insect species. However, successful gene editing or genetic transformation has not yet been reported for chelicerates, the second largest group of terrestrial animals. Within this group, some mite and tick species are economically very important for agriculture and human health, and the availability of a gene-editing tool would be a significant advancement for the field. Here, we report on the use of CRISPR-Cas9 in the spider mite Tetranychus urticae. The ovary of virgin adult females was injected with a mix of Cas9 and sgRNAs targeting the phytoene desaturase gene. Natural mutants of this laterally transferred gene have previously shown an easy-to-score albino phenotype. Albino sons of injected virgin females were mated with wild-type females, and two independent transformed lines where created and further characterized. Albinism inherited as a recessive monogenic trait. Sequencing of the complete target-gene of both lines revealed two different lesions at expected locations near the PAM site in the target-gene. Both lines did not genetically complement each other in dedicated crosses, nor when crossed to a reference albino strain with a known genetic defect in the same gene. In conclusion, two independent mutagenesis events were induced in the spider mite T. urticae using CRISPR-Cas9, hereby providing proof-of-concept that CRISPR-Cas9 can be used to create gene knockouts in mites.
Collapse
Affiliation(s)
- Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Wim Jonckheere
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Maria Riga
- Molecular Entomology Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013, Heraklion, Crete, Greece
| | - Ioannis Livadaras
- Molecular Entomology Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013, Heraklion, Crete, Greece
| | - John Vontas
- Molecular Entomology Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013, Heraklion, Crete, Greece; Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
14
|
Wei P, Demaeght P, De Schutter K, Grigoraki L, Labropoulou V, Riga M, Vontas J, Nauen R, Dermauw W, Van Leeuwen T. Overexpression of an alternative allele of carboxyl/choline esterase 4 (CCE04) of Tetranychus urticae is associated with high levels of resistance to the keto-enol acaricide spirodiclofen. PEST MANAGEMENT SCIENCE 2020; 76:1142-1153. [PMID: 31583806 DOI: 10.1002/ps.5627] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/01/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Spirodiclofen is an acaricide that targets lipid biosynthesis by inhibiting acetyl-coenzyme A carboxylase. Spirodiclofen resistance in spider mites has been previously documented and was associated with overexpression of CYP392E10, a cytochrome P450 mono-oxygenase that metabolizes spirodiclofen. However, additional mechanisms have been suggested in several studies and a carboxyl/choline esterase gene, CCE04, was shown to be overexpressed in two genetically different strains, SR-VP and SR-TK, both exhibiting high spirodiclofen resistance levels. RESULTS We identified two different CCE04 alleles in both resistant strains, CCE04SR-VP and CCE04London , with CCE04SR-VP being highly overexpressed. Isoelectric focusing analysis confirmed the overexpression of a single esterase isozyme, while copy number and random fragment length polymorphism analysis revealed that CCE04SR-VP overexpression was more likely due to selection for the CCE04SR-VP allele rather than gene amplification. Both CCE04 alleles were functionally expressed using the Pichia expression system. Functional enzyme assays revealed only limited kinetic differences between CCE04 isoforms for model substrates. In addition, inhibition/competition experiments with spirodiclofen suggested a similar interaction with both enzymes, whereas its active metabolite, spirodiclofen enol, did not inhibit enzyme activity. CONCLUSION Our study suggests that selection with spirodiclofen results in enrichment of a specific allele of CCE04 (CCE04SR-VP ) in two genetically independent strains, which is highly overexpressed. Based on kinetic enzyme data, however, quantitative rather than qualitative differences between CCE04SR-VP and CCE04London seem more likely to be involved in resistance. Our findings are discussed in the light of a possible spirodiclofen resistance mechanism, with sequestration of spirodiclofen by CCE04SR-VP being a likely hypothesis. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Peng Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Peter Demaeght
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kristof De Schutter
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Linda Grigoraki
- Molecular Entomology Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Heraklion, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Vassiliki Labropoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research, Athens, Greece
| | - Maria Riga
- Molecular Entomology Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Heraklion, Greece
| | - John Vontas
- Molecular Entomology Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Heraklion, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Ralf Nauen
- Bayer AG, CropScience Division, R&D, Pest Control, Monheim, Germany
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Prevalence and Implications of Contamination in Public Genomic Resources: A Case Study of 43 Reference Arthropod Assemblies. G3-GENES GENOMES GENETICS 2020; 10:721-730. [PMID: 31862787 PMCID: PMC7003083 DOI: 10.1534/g3.119.400758] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Thanks to huge advances in sequencing technologies, genomic resources are increasingly being generated and shared by the scientific community. The quality of such public resources are therefore of critical importance. Errors due to contamination are particularly worrying; they are widespread, propagate across databases, and can compromise downstream analyses, especially the detection of horizontally-transferred sequences. However we still lack consistent and comprehensive assessments of contamination prevalence in public genomic data. Here we applied a standardized procedure for foreign sequence annotation to 43 published arthropod genomes from the widely used Ensembl Metazoa database. This method combines information on sequence similarity and synteny to identify contaminant and putative horizontally-transferred sequences in any genome assembly, provided that an adequate reference database is available. We uncovered considerable heterogeneity in quality among arthropod assemblies, some being devoid of contaminant sequences, whereas others included hundreds of contaminant genes. Contaminants far outnumbered horizontally-transferred genes and were a major confounder of their detection, quantification and analysis. We strongly recommend that automated standardized decontamination procedures be systematically embedded into the submission process to genomic databases.
Collapse
|
16
|
FORERO DIMITRI, CAMPOS LUIZALEXANDRE, CASTRO-HUERTAS VALENTINA, BIANCHI FILIPEM. Evolutionary mechanisms for camouflage in Cladomorphus phyllinus (Phasmatodea): A reflection on the role of evidence for hypotheses proposition. AN ACAD BRAS CIENC 2020; 92:e20200197. [DOI: 10.1590/0001-3765202020200197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/20/2020] [Indexed: 11/21/2022] Open
|
17
|
Sousa VC, Zélé F, Rodrigues LR, Godinho DP, Charlery de la Masselière M, Magalhães S. Rapid host-plant adaptation in the herbivorous spider mite Tetranychus urticae occurs at low cost. CURRENT OPINION IN INSECT SCIENCE 2019; 36:82-89. [PMID: 31539789 DOI: 10.1016/j.cois.2019.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/31/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
The herbivorous spider mite Tetranychus urticae is a generalist world crop pest. Early evidence for host races, its fully sequenced genome resolved to the chromosome level, and the development of other molecular tools in this species suggest that this arthropod can be a good model to address host plant adaptation and early stages of speciation. Here, we evaluate this possibility by reviewing recent studies of host-plant adaptation in T. urticae. We find that evidence for costs of adaptation are relatively scarce and that studies involving molecular-genetics and genomics are mostly disconnected from those with phenotypic tests. Still, with the ongoing development of genetic and genomic tools for this species, T. urticae is becoming an attractive model to understand the molecular basis of host-plant adaptation.
Collapse
Affiliation(s)
- Vitor C Sousa
- cE3c, Centre for Ecology, Evolution and Environmental changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2, 1749-016, Lisboa, Portugal.
| | - Flore Zélé
- cE3c, Centre for Ecology, Evolution and Environmental changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2, 1749-016, Lisboa, Portugal
| | - Leonor R Rodrigues
- cE3c, Centre for Ecology, Evolution and Environmental changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2, 1749-016, Lisboa, Portugal
| | - Diogo P Godinho
- cE3c, Centre for Ecology, Evolution and Environmental changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2, 1749-016, Lisboa, Portugal
| | - Maud Charlery de la Masselière
- cE3c, Centre for Ecology, Evolution and Environmental changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2, 1749-016, Lisboa, Portugal
| | - Sara Magalhães
- cE3c, Centre for Ecology, Evolution and Environmental changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2, 1749-016, Lisboa, Portugal.
| |
Collapse
|
18
|
Linder T. Cyanase-independent utilization of cyanate as a nitrogen source in ascomycete yeasts. World J Microbiol Biotechnol 2018; 35:3. [PMID: 30547239 PMCID: PMC6292966 DOI: 10.1007/s11274-018-2579-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/09/2018] [Indexed: 01/07/2023]
Abstract
The occurrence of putative cyanases (EC 4.2.1.104) in the genomes of yeasts belonging to the ascomycete sub-phyla Saccharomycotina (budding yeasts) and Taphrinomycotina (fission yeasts) was investigated. Predicted gene products displaying significant sequence similarity to previously characterized cyanases were identified in the genomes of the budding yeast Lipomyces starkeyi and the fission yeasts Protomyces lactucaedebilis, Saitoella complicata and Taphrina deformans. Li. starkeyi and Sai. complicata were further tested for their ability to utilize cyanate as a nitrogen source. However, neither species displayed significant growth when cyanate was provided as the sole nitrogen source. Cyanate utilization assays of 15 yeast species whose genomes lack detectable cyanase homologs unexpectedly resulted in consistently strong growth in six species as well as variable growth in an additional three species. The present study represents the first known report of cyanase-independent utilization of cyanate as a nitrogen source in ascomycete yeasts. Implications of cyanate utilization for the ecological niches occupied by ascomycete yeasts are discussed.
Collapse
Affiliation(s)
- Tomas Linder
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, 750 07, Uppsala, Sweden.
| |
Collapse
|
19
|
Snoeck S, Wybouw N, Van Leeuwen T, Dermauw W. Transcriptomic Plasticity in the Arthropod Generalist Tetranychus urticae Upon Long-Term Acclimation to Different Host Plants. G3 (BETHESDA, MD.) 2018; 8:3865-3879. [PMID: 30333191 PMCID: PMC6288829 DOI: 10.1534/g3.118.200585] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022]
Abstract
The two-spotted spider mite Tetranychus urticae is an important pest with an exceptionally broad host plant range. This generalist rapidly acclimatizes and adapts to a new host, hereby overcoming nutritional challenges and a novel pallet of constitutive and induced plant defenses. Although recent studies reveal that a broad transcriptomic response upon host plant transfer is associated with a generalist life style in arthropod herbivores, it remains uncertain to what extent these transcriptional changes are general stress responses or host-specific. In the present study, we analyzed and compared the transcriptomic changes that occur in a single T. urticae population upon long-term transfer from Phaseolus vulgaris to a similar, but chemically defended, host (cyanogenic Phaseolus lunatus) and to multiple economically important crops (Glycine max, Gossypium hirsutum, Solanum lycopersicum and Zea mays). These long-term host plant transfers were associated with distinct transcriptomic responses with only a limited overlap in both specificity and directionality, suggestive of a fine-tuned transcriptional plasticity. Nonetheless, analysis at the gene family level uncovered overlapping functional processes, recruiting genes from both well-known and newly discovered detoxification families. Of note, our analyses highlighted a possible detoxification role for Tetranychus-specific short-chain dehydrogenases and single PLAT domain proteins, and manual genome annotation showed that both families are expanded in T. urticae Our results shed new light on the molecular mechanisms underlying the remarkable adaptive potential for host plant use of generalist arthropods and set the stage for functional validation of important players in T. urticae detoxification of plant secondary metabolites.
Collapse
Affiliation(s)
- Simon Snoeck
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Oost-Vlaanderen, Belgium
| | - Nicky Wybouw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Oost-Vlaanderen, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Oost-Vlaanderen, Belgium
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1012 Amsterdam, Noord-Holland, the Netherlands
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Oost-Vlaanderen, Belgium
| |
Collapse
|
20
|
A tale of three kingdoms: members of the Phylum Nematoda independently acquired the detoxifying enzyme cyanase through horizontal gene transfer from plants and bacteria. Parasitology 2018; 146:445-452. [PMID: 30301483 DOI: 10.1017/s0031182018001701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Horizontal gene transfer (HGT) has played an important role in the evolution of nematodes. Among candidate genes, cyanase, which is typically found only in plants, bacteria and fungi, is present in more than 35 members of the Phylum Nematoda, but absent from free-living and clade V organisms. Phylogenetic analyses showed that the cyanases of clade I organisms Trichinella spp., Trichuris spp. and Soboliphyme baturini (Subclass: Dorylaimia) represent a well-supported monophyletic clade with plant cyanases. In contrast, all cyanases found within the Subclass Chromadoria which encompasses filarioids, ascaridoids and strongyloids are homologous to those of bacteria. Western blots exhibited typical multimeric forms of the native molecule in protein extracts of Trichinella spiralis muscle larvae, where immunohistochemical staining localized the protein to the worm hypodermis and underlying muscle. Recombinant Trichinella cyanase was bioactive where gene transcription profiles support functional activity in vivo. Results suggest that: (1) independent HGT in parasitic nematodes originated from different Kingdoms; (2) cyanase acquired an active role in the biology of extant Trichinella; (3) acquisition occurred more than 400 million years ago (MYA), prior to the divergence of the Trichinellida and Dioctophymatida, and (4) early, free-living ancestors of the genus Trichinella had an association with terrestrial plants.
Collapse
|
21
|
Wybouw N, Van Leeuwen T, Dermauw W. A massive incorporation of microbial genes into the genome of Tetranychus urticae, a polyphagous arthropod herbivore. INSECT MOLECULAR BIOLOGY 2018; 27:333-351. [PMID: 29377385 DOI: 10.1111/imb.12374] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A number of horizontal gene transfers (HGTs) have been identified in the spider mite Tetranychus urticae, a chelicerate herbivore. However, the genome of this mite species has at present not been thoroughly mined for the presence of HGT genes. Here, we performed a systematic screen for HGT genes in the T. urticae genome using the h-index metric. Our results not only validated previously identified HGT genes but also uncovered 25 novel HGT genes. In addition to HGT genes with a predicted biochemical function in carbohydrate, lipid and folate metabolism, we also identified the horizontal transfer of a ketopantoate hydroxymethyltransferase and a pantoate β-alanine ligase gene. In plants and bacteria, both genes are essential for vitamin B5 biosynthesis and their presence in the mite genome strongly suggests that spider mites, similar to Bemisia tabaci and nematodes, can synthesize their own vitamin B5. We further show that HGT genes were physically embedded within the mite genome and were expressed in different life stages. By screening chelicerate genomes and transcriptomes, we were able to estimate the evolutionary histories of these HGTs during chelicerate evolution. Our study suggests that HGT has made a significant and underestimated impact on the metabolic repertoire of plant-feeding spider mites.
Collapse
Affiliation(s)
- N Wybouw
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - T Van Leeuwen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - W Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
22
|
Jonckheere W, Dermauw W, Khalighi M, Pavlidi N, Reubens W, Baggerman G, Tirry L, Menschaert G, Kant MR, Vanholme B, Van Leeuwen T. A Gene Family Coding for Salivary Proteins (SHOT) of the Polyphagous Spider Mite Tetranychus urticae Exhibits Fast Host-Dependent Transcriptional Plasticity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:112-124. [PMID: 29094648 DOI: 10.1094/mpmi-06-17-0139-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The salivary protein repertoire released by the herbivorous pest Tetranychus urticae is assumed to hold keys to its success on diverse crops. We report on a spider mite-specific protein family that is expanded in T. urticae. The encoding genes have an expression pattern restricted to the anterior podocephalic glands, while peptide fragments were found in the T. urticae secretome, supporting the salivary nature of these proteins. As peptide fragments were identified in a host-dependent manner, we designated this family as the SHOT (secreted host-responsive protein of Tetranychidae) family. The proteins were divided in three groups based on sequence similarity. Unlike TuSHOT3 genes, TuSHOT1 and TuSHOT2 genes were highly expressed when feeding on a subset of family Fabaceae, while expression was depleted on other hosts. TuSHOT1 and TuSHOT2 expression was induced within 24 h after certain host transfers, pointing toward transcriptional plasticity rather than selection as the cause. Transfer from an 'inducer' to a 'noninducer' plant was associated with slow yet strong downregulation of TuSHOT1 and TuSHOT2, occurring over generations rather than hours. This asymmetric on and off regulation points toward host-specific effects of SHOT proteins, which is further supported by the diversity of SHOT genes identified in Tetranychidae with a distinct host repertoire.
Collapse
Affiliation(s)
- Wim Jonckheere
- 1 Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
- 2 Department of Evolutionary Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Wannes Dermauw
- 1 Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Mousaalreza Khalighi
- 1 Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Nena Pavlidi
- 2 Department of Evolutionary Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Wim Reubens
- 1 Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Geert Baggerman
- 3 Center for Proteomics (CFP), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- 4 Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Luc Tirry
- 1 Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Gerben Menschaert
- 5 Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University
| | - Merijn R Kant
- 6 Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam
| | - Bartel Vanholme
- 7 Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium; and
- 8 Centre for Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, Belgium
| | - Thomas Van Leeuwen
- 1 Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
- 2 Department of Evolutionary Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Rancurel C, Legrand L, Danchin EGJ. Alienness: Rapid Detection of Candidate Horizontal Gene Transfers across the Tree of Life. Genes (Basel) 2017; 8:E248. [PMID: 28961181 PMCID: PMC5664098 DOI: 10.3390/genes8100248] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/22/2017] [Accepted: 09/22/2017] [Indexed: 11/22/2022] Open
Abstract
Horizontal gene transfer (HGT) is the transmission of genes between organisms by other means than parental to offspring inheritance. While it is prevalent in prokaryotes, HGT is less frequent in eukaryotes and particularly in Metazoa. Here, we propose Alienness, a taxonomy-aware web application available at http://alienness.sophia.inra.fr. Alienness parses BLAST results against public libraries to rapidly identify candidate HGT in any genome of interest. Alienness takes as input the result of a BLAST of a whole proteome of interest against any National Center for Biotechnology Information (NCBI) protein library. The user defines recipient (e.g., Metazoa) and donor (e.g., bacteria, fungi) branches of interest in the NCBI taxonomy. Based on the best BLAST E-values of candidate donor and recipient taxa, Alienness calculates an Alien Index (AI) for each query protein. An AI > 0 indicates a better hit to candidate donor than recipient taxa and a possible HGT. Higher AI represent higher gap of E-values between candidate donor and recipient and a more likely HGT. We confirmed the accuracy of Alienness on phylogenetically confirmed HGT of non-metazoan origin in plant-parasitic nematodes. Alienness scans whole proteomes to rapidly identify possible HGT in any species of interest and thus fosters exploration of HGT more easily and largely across the tree of life.
Collapse
Affiliation(s)
- Corinne Rancurel
- INRA, CNRS, ISA, Université Côte d'Azur, 06903 Sophia Antipolis Cedex, France.
| | - Ludovic Legrand
- LIPM, INRA, CNRS, Université de Toulouse, 31326 Castanet-Tolosan Cedex, France.
| | - Etienne G J Danchin
- INRA, CNRS, ISA, Université Côte d'Azur, 06903 Sophia Antipolis Cedex, France.
| |
Collapse
|
24
|
Schlachter CR, Klapper V, Wybouw N, Radford T, Van Leeuwen T, Grbic M, Chruszcz M. Structural Characterization of a Eukaryotic Cyanase from Tetranychus urticae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5453-5462. [PMID: 28613863 DOI: 10.1021/acs.jafc.7b01333] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The two-spotted spider mite Tetranychus urticae is a polyphagous agricultural pest and poses a high risk to global crop production as it is rapidly developing pesticide resistance. Genomic and transcriptomic analysis has revealed the presence of a remarkable cyanase gene in T. urticae and related mite species within the Acariformes lineage. Cyanase catalyzes the detoxification of cyanate and is potentially an attractive protein target for the development of new acaricides. Phylogenetic analysis indicates that within the Acariformes, the cyanase gene originates from a single horizontal gene transfer event, which precedes subsequent speciation. Our structural studies presented here compare and contrast prokaryotic cyanases to T. urticae cyanase, which all form homodecamers and have conserved active site residues, but display different surface areas between homodimers in the overall decameric structure.
Collapse
Affiliation(s)
- Caleb R Schlachter
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Vincent Klapper
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Nicky Wybouw
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Taylor Radford
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Thomas Van Leeuwen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
- Department of Crop Protection, Ghent University , Ghent B-9000, Belgium
| | - Miodrag Grbic
- Department of Biology, Western University , London, Ontario N6A 5B7, Canada
- University of La Rioja , Logrono 26006, Spain
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| |
Collapse
|
25
|
Morales MA, Mendoza BM, Lavine LC, Lavine MD, Walsh DB, Zhu F. Selection of Reference Genes for Expression Studies of Xenobiotic Adaptation in Tetranychus urticae. Int J Biol Sci 2016; 12:1129-39. [PMID: 27570487 PMCID: PMC4997057 DOI: 10.7150/ijbs.16319] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 07/08/2016] [Indexed: 11/25/2022] Open
Abstract
Quantitative real-time PCR (qRT-PCR) is an extensively used, high-throughput method to analyze transcriptional expression of genes of interest. An appropriate normalization strategy with reliable reference genes is required for calculating gene expression across diverse experimental conditions. In this study, we aim to identify the most stable reference genes for expression studies of xenobiotic adaptation in Tetranychus urticae, an extremely polyphagous herbivore causing significant yield reduction of agriculture. We chose eight commonly used housekeeping genes as candidates. The qRT-PCR expression data for these genes were evaluated from seven populations: a susceptible and three acaricide resistant populations feeding on lima beans, and three other susceptible populations which had been shifted host from lima beans to three other plant species. The stability of the candidate reference genes was then assessed using four different algorithms (comparative ΔCt method, geNorm, NormFinder, and BestKeeper). Additionally, we used an online web-based tool (RefFinder) to assign an overall final rank for each candidate gene. Our study found that CycA and Rp49 are best for investigating gene expression in acaricide susceptible and resistant populations. GAPDH, Rp49, and Rpl18 are best for host plant shift studies. And GAPDH and Rp49 were the most stable reference genes when investigating gene expression under changes in both experimental conditions. These results will facilitate research in revealing molecular mechanisms underlying the xenobiotic adaptation of this notorious agricultural pest.
Collapse
Affiliation(s)
- Mariany Ashanty Morales
- Department of Entomology, Washington State University, Pullman, WA 99164, USA
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA
| | | | - Laura Corley Lavine
- Department of Entomology, Washington State University, Pullman, WA 99164, USA
| | - Mark Daniel Lavine
- Department of Entomology, Washington State University, Pullman, WA 99164, USA
| | - Douglas Bruce Walsh
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA
| | - Fang Zhu
- Department of Entomology, Washington State University, Pullman, WA 99164, USA
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA
| |
Collapse
|
26
|
Wybouw N, Pauchet Y, Heckel DG, Van Leeuwen T. Horizontal Gene Transfer Contributes to the Evolution of Arthropod Herbivory. Genome Biol Evol 2016; 8:1785-801. [PMID: 27307274 PMCID: PMC4943190 DOI: 10.1093/gbe/evw119] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2016] [Indexed: 01/07/2023] Open
Abstract
Within animals, evolutionary transition toward herbivory is severely limited by the hostile characteristics of plants. Arthropods have nonetheless counteracted many nutritional and defensive barriers imposed by plants and are currently considered as the most successful animal herbivores in terrestrial ecosystems. We gather a body of evidence showing that genomes of various plant feeding insects and mites possess genes whose presence can only be explained by horizontal gene transfer (HGT). HGT is the asexual transmission of genetic information between reproductively isolated species. Although HGT is known to have great adaptive significance in prokaryotes, its impact on eukaryotic evolution remains obscure. Here, we show that laterally transferred genes into arthropods underpin many adaptations to phytophagy, including efficient assimilation and detoxification of plant produced metabolites. Horizontally acquired genes and the traits they encode often functionally diversify within arthropod recipients, enabling the colonization of more host plant species and organs. We demonstrate that HGT can drive metazoan evolution by uncovering its prominent role in the adaptations of arthropods to exploit plants.
Collapse
Affiliation(s)
- Nicky Wybouw
- Department of Evolutionary Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Thomas Van Leeuwen
- Department of Evolutionary Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| |
Collapse
|
27
|
Van Leeuwen T, Dermauw W. The Molecular Evolution of Xenobiotic Metabolism and Resistance in Chelicerate Mites. ANNUAL REVIEW OF ENTOMOLOGY 2016; 61:475-98. [PMID: 26982444 DOI: 10.1146/annurev-ento-010715-023907] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chelicerate mites diverged from other arthropod lineages more than 400 million years ago and subsequently developed specific and remarkable xenobiotic adaptations. The study of the two-spotted spider mite, Tetranychus urticae, for which a high-quality Sanger-sequenced genome was first available, revealed expansions and radiations in all major detoxification gene families, including P450 monooxygenases, carboxyl/cholinesterases, glutathione-S-transferases, and ATP-binding cassette transporters. Novel gene families that are not well studied in other arthropods, such as major facilitator family transporters and lipocalins, also reflect the evolution of xenobiotic adaptation. The acquisition of genes by horizontal gene transfer provided new routes to handle toxins, for example, the β-cyanoalanine synthase enzyme that metabolizes cyanide. The availability of genomic resources for other mite species has allowed researchers to study the lineage specificity of these gene family expansions and the distinct evolution of genes involved in xenobiotic metabolism in mites. Genome-based tools have been crucial in supporting the idiosyncrasies of mite detoxification and will further support the expanding field of mite-plant interactions.
Collapse
Affiliation(s)
- Thomas Van Leeuwen
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium; ,
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Wannes Dermauw
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium; ,
| |
Collapse
|
28
|
Andam CP, Carver SM, Berthrong ST. Horizontal Gene Flow in Managed Ecosystems. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2015. [DOI: 10.1146/annurev-ecolsys-112414-054126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cheryl P. Andam
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115;
| | - Sarah M. Carver
- Central Research, The Kraft Heinz Company, Glenview, Illinois 60025;
| | - Sean T. Berthrong
- Department of Biological Sciences, Butler University, Indianapolis, Indiana 46208;
| |
Collapse
|
29
|
Bajda S, Dermauw W, Greenhalgh R, Nauen R, Tirry L, Clark RM, Van Leeuwen T. Transcriptome profiling of a spirodiclofen susceptible and resistant strain of the European red mite Panonychus ulmi using strand-specific RNA-seq. BMC Genomics 2015; 16:974. [PMID: 26581334 PMCID: PMC4652392 DOI: 10.1186/s12864-015-2157-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/27/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The European red mite, Panonychus ulmi, is among the most important mite pests in fruit orchards, where it is controlled primarily by acaricide application. However, the species rapidly develops pesticide resistance, and the elucidation of resistance mechanisms for P. ulmi has not kept pace with insects or with the closely related spider mite Tetranychus urticae. The main reason for this lack of knowledge has been the absence of genomic resources needed to investigate the molecular biology of resistance mechanisms. RESULTS Here, we provide a comprehensive strand-specific RNA-seq based transcriptome resource for P. ulmi derived from strains susceptible and resistant to the widely used acaricide spirodiclofen. From a de novo assembly of the P. ulmi transcriptome, we manually annotated detoxification enzyme families, target-sites of commonly used acaricides, and horizontally transferred genes implicated in plant-mite interactions and pesticide resistance. In a comparative analysis that incorporated sequences available for Panonychus citri, T. urticae, and insects, we identified radiations for detoxification gene families following the divergence of Panonychus and Tetranychus genera. Finally, we used the replicated RNA-seq data from the spirodiclofen susceptible and resistant strains to describe gene expression changes associated with resistance. A cytochrome P450 monooxygenase, as well as multiple carboxylcholinesterases, were differentially expressed between the susceptible and resistant strains, and provide a molecular entry point for understanding resistance to spirodiclofen, widely used to control P. ulmi populations. CONCLUSIONS The new genomic resources and data that we present in this study for P. ulmi will substantially facilitate molecular studies of underlying mechanisms involved in acaricide resistance.
Collapse
Affiliation(s)
- Sabina Bajda
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 9424, 1090, GE, Amsterdam, The Netherlands
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| | - Robert Greenhalgh
- Department of Biology, University of Utah, Salt Lake City, 257 South 1400 East, UT, 84112, USA
| | - Ralf Nauen
- Bayer CropScience AG, Research Pest Control, Alfred Nobel Str. 50, D-40789, Monheim, Germany
| | - Luc Tirry
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Richard M Clark
- Department of Biology, University of Utah, Salt Lake City, 257 South 1400 East, UT, 84112, USA.,Center for Cell and Genome Science, University of Utah, Salt Lake City, 257 South 1400 East, UT, 84112, USA
| | - Thomas Van Leeuwen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 9424, 1090, GE, Amsterdam, The Netherlands. .,Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| |
Collapse
|
30
|
Kant MR, Jonckheere W, Knegt B, Lemos F, Liu J, Schimmel BCJ, Villarroel CA, Ataide LMS, Dermauw W, Glas JJ, Egas M, Janssen A, Van Leeuwen T, Schuurink RC, Sabelis MW, Alba JM. Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities. ANNALS OF BOTANY 2015; 115:1015-51. [PMID: 26019168 PMCID: PMC4648464 DOI: 10.1093/aob/mcv054] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/12/2015] [Accepted: 04/24/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND Plants are hotbeds for parasites such as arthropod herbivores, which acquire nutrients and energy from their hosts in order to grow and reproduce. Hence plants are selected to evolve resistance, which in turn selects for herbivores that can cope with this resistance. To preserve their fitness when attacked by herbivores, plants can employ complex strategies that include reallocation of resources and the production of defensive metabolites and structures. Plant defences can be either prefabricated or be produced only upon attack. Those that are ready-made are referred to as constitutive defences. Some constitutive defences are operational at any time while others require activation. Defences produced only when herbivores are present are referred to as induced defences. These can be established via de novo biosynthesis of defensive substances or via modifications of prefabricated substances and consequently these are active only when needed. Inducibility of defence may serve to save energy and to prevent self-intoxication but also implies that there is a delay in these defences becoming operational. Induced defences can be characterized by alterations in plant morphology and molecular chemistry and are associated with a decrease in herbivore performance. These alterations are set in motion by signals generated by herbivores. Finally, a subset of induced metabolites are released into the air as volatiles and function as a beacon for foraging natural enemies searching for prey, and this is referred to as induced indirect defence. SCOPE The objective of this review is to evaluate (1) which strategies plants have evolved to cope with herbivores and (2) which traits herbivores have evolved that enable them to counter these defences. The primary focus is on the induction and suppression of plant defences and the review outlines how the palette of traits that determine induction/suppression of, and resistance/susceptibility of herbivores to, plant defences can give rise to exploitative competition and facilitation within ecological communities "inhabiting" a plant. CONCLUSIONS Herbivores have evolved diverse strategies, which are not mutually exclusive, to decrease the negative effects of plant defences in order to maximize the conversion of plant material into offspring. Numerous adaptations have been found in herbivores, enabling them to dismantle or bypass defensive barriers, to avoid tissues with relatively high levels of defensive chemicals or to metabolize these chemicals once ingested. In addition, some herbivores interfere with the onset or completion of induced plant defences, resulting in the plant's resistance being partly or fully suppressed. The ability to suppress induced plant defences appears to occur across plant parasites from different kingdoms, including herbivorous arthropods, and there is remarkable diversity in suppression mechanisms. Suppression may strongly affect the structure of the food web, because the ability to suppress the activation of defences of a communal host may facilitate competitors, whereas the ability of a herbivore to cope with activated plant defences will not. Further characterization of the mechanisms and traits that give rise to suppression of plant defences will enable us to determine their role in shaping direct and indirect interactions in food webs and the extent to which these determine the coexistence and persistence of species.
Collapse
Affiliation(s)
- M R Kant
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - W Jonckheere
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - B Knegt
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - F Lemos
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - J Liu
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - B C J Schimmel
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - C A Villarroel
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - L M S Ataide
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - W Dermauw
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - J J Glas
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - M Egas
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - A Janssen
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - T Van Leeuwen
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - R C Schuurink
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - M W Sabelis
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - J M Alba
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium and Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| |
Collapse
|
31
|
Ahn SJ, Dermauw W, Wybouw N, Heckel DG, Van Leeuwen T. Bacterial origin of a diverse family of UDP-glycosyltransferase genes in the Tetranychus urticae genome. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 50:43-57. [PMID: 24727020 DOI: 10.1016/j.ibmb.2014.04.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/28/2014] [Accepted: 04/01/2014] [Indexed: 06/03/2023]
Abstract
UDP-glycosyltransferases (UGTs) catalyze the conjugation of a variety of small lipophilic molecules with uridine diphosphate (UDP) sugars, altering them into more water-soluble metabolites. Thereby, UGTs play an important role in the detoxification of xenobiotics and in the regulation of endobiotics. Recently, the genome sequence was reported for the two-spotted spider mite, Tetranychus urticae, a polyphagous herbivore damaging a number of agricultural crops. Although various gene families implicated in xenobiotic metabolism have been documented in T. urticae, UGTs so far have not. We identified 80 UGT genes in the T. urticae genome, the largest number of UGT genes in a metazoan species reported so far. Phylogenetic analysis revealed that lineage-specific gene expansions increased the diversity of the T. urticae UGT repertoire. Genomic distribution, intron-exon structure and structural motifs in the T. urticae UGTs were also described. In addition, expression profiling after host-plant shifts and in acaricide resistant lines supported an important role for UGT genes in xenobiotic metabolism. Expanded searches of UGTs in other arachnid species (Subphylum Chelicerata), including a spider, a scorpion, two ticks and two predatory mites, unexpectedly revealed the complete absence of UGT genes. However, a centipede (Subphylum Myriapoda) and a water flea and a crayfish (Subphylum Crustacea) contain UGT genes in their genomes similar to insect UGTs, suggesting that the UGT gene family might have been lost early in the Chelicerata lineage and subsequently re-gained in the tetranychid mites. Sequence similarity of T. urticae UGTs and bacterial UGTs and their phylogenetic reconstruction suggest that spider mites acquired UGT genes from bacteria by horizontal gene transfer. Our findings show a unique evolutionary history of the T. urticae UGT gene family among other arthropods and provide important clues to its functions in relation to detoxification and thereby host adaptation.
Collapse
Affiliation(s)
- Seung-Joon Ahn
- Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; National Institute of Horticultural and Herbal Science, Rural Development Administration, 441-440 Suwon, Korea.
| | - Wannes Dermauw
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Nicky Wybouw
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Thomas Van Leeuwen
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
32
|
Wybouw N, Dermauw W, Tirry L, Stevens C, Grbić M, Feyereisen R, Van Leeuwen T. A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning. eLife 2014; 3:e02365. [PMID: 24843024 PMCID: PMC4011162 DOI: 10.7554/elife.02365] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/01/2014] [Indexed: 11/13/2022] Open
Abstract
Cyanogenic glucosides are among the most widespread defense chemicals of plants. Upon plant tissue disruption, these glucosides are hydrolyzed to a reactive hydroxynitrile that releases toxic hydrogen cyanide (HCN). Yet many mite and lepidopteran species can thrive on plants defended by cyanogenic glucosides. The nature of the enzyme known to detoxify HCN to β-cyanoalanine in arthropods has remained enigmatic. Here we identify this enzyme by transcriptome analysis and functional expression. Phylogenetic analysis showed that the gene is a member of the cysteine synthase family horizontally transferred from bacteria to phytophagous mites and Lepidoptera. The recombinant mite enzyme had both β-cyanoalanine synthase and cysteine synthase activity but enzyme kinetics showed that cyanide detoxification activity was strongly favored. Our results therefore suggest that an ancient horizontal transfer of a gene originally involved in sulfur amino acid biosynthesis in bacteria was co-opted by herbivorous arthropods to detoxify plant produced cyanide.DOI: http://dx.doi.org/10.7554/eLife.02365.001.
Collapse
Affiliation(s)
- Nicky Wybouw
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Luc Tirry
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Christian Stevens
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Miodrag Grbić
- Department of Biology, University of Western Ontario, London, Canada Instituto de Ciencias de la Vid y el Vino, Logroño, Spain
| | - René Feyereisen
- Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique and Université de Nice Sophia Antipolis, Nice, France
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
33
|
Castagnola A, Stock SP. Common Virulence Factors and Tissue Targets of Entomopathogenic Bacteria for Biological Control of Lepidopteran Pests. INSECTS 2014; 5:139-66. [PMID: 24634779 PMCID: PMC3952272 DOI: 10.3390/insects5010139] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 01/13/2023]
Abstract
This review focuses on common insecticidal virulence factors from entomopathogenic bacteria with special emphasis on two insect pathogenic bacteria Photorhabdus (Proteobacteria: Enterobacteriaceae) and Bacillus (Firmicutes: Bacillaceae). Insect pathogenic bacteria of diverse taxonomic groups and phylogenetic origin have been shown to have striking similarities in the virulence factors they produce. It has been suggested that the detection of phage elements surrounding toxin genes, horizontal and lateral gene transfer events, and plasmid shuffling occurrences may be some of the reasons that virulence factor genes have so many analogs throughout the bacterial kingdom. Comparison of virulence factors of Photorhabdus, and Bacillus, two bacteria with dissimilar life styles opens the possibility of re-examining newly discovered toxins for novel tissue targets. For example, nematodes residing in the hemolymph may release bacteria with virulence factors targeting neurons or neuromuscular junctions. The first section of this review focuses on toxins and their context in agriculture. The second describes the mode of action of toxins from common entomopathogens and the third draws comparisons between Gram positive and Gram negative bacteria. The fourth section reviews the implications of the nervous system in biocontrol.
Collapse
Affiliation(s)
- Anaïs Castagnola
- Center for Insect Science, University of Arizona, 1007 E. Lowell Street, Tucson, AZ 85721, USA; E-Mail:
| | - S. Patricia Stock
- Department of Entomology, University of Arizona, 1140 E. South Campus Dr., Tucson, AZ 85721, USA
| |
Collapse
|
34
|
Bryon A, Wybouw N, Dermauw W, Tirry L, Van Leeuwen T. Genome wide gene-expression analysis of facultative reproductive diapause in the two-spotted spider mite Tetranychus urticae. BMC Genomics 2013; 14:815. [PMID: 24261877 PMCID: PMC4046741 DOI: 10.1186/1471-2164-14-815] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 11/11/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diapause or developmental arrest, is one of the major adaptations that allows mites and insects to survive unfavorable conditions. Diapause evokes a number of physiological, morphological and molecular modifications. In general, diapause is characterized by a suppression of the metabolism, change in behavior, increased stress tolerance and often by the synthesis of cryoprotectants. At the molecular level, diapause is less studied but characterized by a complex and regulated change in gene-expression. The spider mite Tetranychus urticae is a serious polyphagous pest that exhibits a reproductive facultative diapause, which allows it to survive winter conditions. Diapausing mites turn deeply orange in color, stop feeding and do not lay eggs. RESULTS We investigated essential physiological processes in diapausing mites by studying genome-wide expression changes, using a custom built microarray. Analysis of this dataset showed that a remarkable number, 11% of the total number of predicted T. urticae genes, were differentially expressed. Gene Ontology analysis revealed that many metabolic pathways were affected in diapausing females. Genes related to digestion and detoxification, cryoprotection, carotenoid synthesis and the organization of the cytoskeleton were profoundly influenced by the state of diapause. Furthermore, we identified and analyzed an unique class of putative antifreeze proteins that were highly upregulated in diapausing females. We also further confirmed the involvement of horizontally transferred carotenoid synthesis genes in diapause and different color morphs of T. urticae. CONCLUSIONS This study offers the first in-depth analysis of genome-wide gene-expression patterns related to diapause in a member of the Chelicerata, and further adds to our understanding of the overall strategies of diapause in arthropods.
Collapse
Affiliation(s)
- Astrid Bryon
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium.
| | | | | | | | | |
Collapse
|
35
|
Ballhorn DJ, Kautz S, Heil M. Distance and sex determine host plant choice by herbivorous beetles. PLoS One 2013; 8:e55602. [PMID: 23405176 PMCID: PMC3565971 DOI: 10.1371/journal.pone.0055602] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 01/03/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Plants respond to herbivore damage with the release of volatile organic compounds (VOCs). This indirect defense can cause ecological costs when herbivores themselves use VOCs as cues to localize suitable host plants. Can VOCs reliably indicate food plant quality to herbivores? METHODOLOGY We determined the choice behavior of herbivorous beetles (Chrysomelidae: Gynandrobrotica guerreroensis and Cerotoma ruficornis) when facing lima bean plants (Fabaceae: Phaseolus lunatus) with different cyanogenic potential, which is an important constitutive direct defense. Expression of inducible indirect defenses was experimentally manipulated by jasmonic acid treatment at different concentrations. The long-distance responses of male and female beetles to the resulting induced plant volatiles were investigated in olfactometer and free-flight experiments and compared to the short-distance decisions of the same beetles in feeding trials. CONCLUSION Female beetles of both species were repelled by VOCs released from all induced plants independent of the level of induction. In contrast, male beetles were repelled by strongly induced plants, showed no significant differences in choice behavior towards moderately induced plants, but responded positively to VOCs released from little induced plants. Thus, beetle sex and plant VOCs had a significant effect on host searching behavior. By contrast, feeding behavior of both sexes was strongly determined by the cyanogenic potential of leaves, although females again responded more sensitively than males. Apparently, VOCs mainly provide information to these beetles that are not directly related to food quality. Being induced by herbivory and involved in indirect plant defense, such VOCs might indicate the presence of competitors and predators to herbivores. We conclude that plant quality as a food source and finding a potentially enemy-free space is more important for female than for male insect herbivores, whereas the presence of a slightly damaged plant can help males to localize putative mating partners.
Collapse
Affiliation(s)
- Daniel J Ballhorn
- Department of Botany/Plant Ecology, University of Duisburg-Essen, Essen, Germany.
| | | | | |
Collapse
|