1
|
Dang C, Xiao S, Wang F, Fang Q, Yao H, He K, Li F, Xue D, Ye G. miRNA-mediated insect-resistant transgenic rice poses no risk to a non-target parasitoid, Cotesia chilonis, via direct feeding or through its target host. INSECT SCIENCE 2024. [PMID: 39039789 DOI: 10.1111/1744-7917.13415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024]
Abstract
MicroRNAs (miRNAs) have started to play an important role in pest control, and novel miRNA-based transgenic insect-resistant plants are now emerging. However, an environmental risk assessment of these novel transgenic plants expressing insect miRNAs must be undertaken before promoting their application. Here, transgenic miR-14 rice, which has high resistance to the rice stem borer Chilo suppressalis, was used as an example for evaluation in this study. Taking the tier 1 risk assessment method in Bacillus thuringiensis (Bt) crops as a reference, the effects of the direct exposure of a non-target parasitoid, Cotesia chilonis, to a high concentration of miRNA were evaluated. The results showed that direct feeding with miR-14 at high concentration had no significant effects on the biological parameters of Co. chilonis, whereas when miR-14 was injected into Ch. suppressalis-parasitized larvae, the development duration of Co. chilonis was significantly affected. In combination with the real conditions of the rice paddy field, it could be inferred that transgenic miR-14 rice has no significant negative effects on the important non-target parasitoid, Co. chilonis. These results will provide a foundation for the establishment of a new safety evaluation system for novel RNAi-based transgenic plants.
Collapse
Affiliation(s)
- Cong Dang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- National Key Laboratory of Rice Biology and Breeding, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shan Xiao
- National Key Laboratory of Rice Biology and Breeding, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- Ningbo Academy of Agricultural Sciences, Ningbo, Zhejiang Province, China
| | - Fang Wang
- National Key Laboratory of Rice Biology and Breeding, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- National Key Laboratory of Rice Biology and Breeding, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hongwei Yao
- National Key Laboratory of Rice Biology and Breeding, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Kang He
- National Key Laboratory of Rice Biology and Breeding, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fei Li
- National Key Laboratory of Rice Biology and Breeding, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Gongyin Ye
- National Key Laboratory of Rice Biology and Breeding, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Ding T, Li W, Li F, Ren M, Wang W. microRNAs: Key Regulators in Plant Responses to Abiotic and Biotic Stresses via Endogenous and Cross-Kingdom Mechanisms. Int J Mol Sci 2024; 25:1154. [PMID: 38256227 PMCID: PMC10816238 DOI: 10.3390/ijms25021154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Dramatic shifts in global climate have intensified abiotic and biotic stress faced by plants. Plant microRNAs (miRNAs)-20-24 nucleotide non-coding RNA molecules-form a key regulatory system of plant gene expression; playing crucial roles in plant growth; development; and defense against abiotic and biotic stress. Moreover, they participate in cross-kingdom communication. This communication encompasses interactions with other plants, microorganisms, and insect species, collectively exerting a profound influence on the agronomic traits of crops. This article comprehensively reviews the biosynthesis of plant miRNAs and explores their impact on plant growth, development, and stress resistance through endogenous, non-transboundary mechanisms. Furthermore, this review delves into the cross-kingdom regulatory effects of plant miRNAs on plants, microorganisms, and pests. It proceeds to specifically discuss the design and modification strategies for artificial miRNAs (amiRNAs), as well as the protection and transport of miRNAs by exosome-like nanovesicles (ELNVs), expanding the potential applications of plant miRNAs in crop breeding. Finally, the current limitations associated with harnessing plant miRNAs are addressed, and the utilization of synthetic biology is proposed to facilitate the heterologous expression and large-scale production of miRNAs. This novel approach suggests a plant-based solution to address future biosafety concerns in agriculture.
Collapse
Affiliation(s)
- Tianze Ding
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.D.); (W.L.); (F.L.)
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wenkang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.D.); (W.L.); (F.L.)
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fuguang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.D.); (W.L.); (F.L.)
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Maozhi Ren
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.D.); (W.L.); (F.L.)
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wenjing Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.D.); (W.L.); (F.L.)
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
3
|
Muthu Lakshmi Bavithra C, Murugan M, Pavithran S, Naveena K. Enthralling genetic regulatory mechanisms meddling insecticide resistance development in insects: role of transcriptional and post-transcriptional events. Front Mol Biosci 2023; 10:1257859. [PMID: 37745689 PMCID: PMC10511911 DOI: 10.3389/fmolb.2023.1257859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Insecticide resistance in insects severely threatens both human health and agriculture, making insecticides less compelling and valuable, leading to frequent pest management failures, rising input costs, lowering crop yields, and disastrous public health. Insecticide resistance results from multiple factors, mainly indiscriminate insecticide usage and mounted selection pressure on insect populations. Insects respond to insecticide stress at the cellular level by modest yet significant genetic propagations. Transcriptional, co-transcriptional, and post-transcriptional regulatory signals of cells in organisms regulate the intricate processes in gene expressions churning the genetic information in transcriptional units into proteins and non-coding transcripts. Upregulation of detoxification enzymes, notably cytochrome P450s (CYPs), glutathione S-transferases (GSTs), esterases [carboxyl choline esterase (CCE), carboxyl esterase (CarE)] and ATP Binding Cassettes (ABC) at the transcriptional level, modification of target sites, decreased penetration, or higher excretion of insecticides are the noted insect physiological responses. The transcriptional regulatory pathways such as AhR/ARNT, Nuclear receptors, CncC/Keap1, MAPK/CREB, and GPCR/cAMP/PKA were found to regulate the detoxification genes at the transcriptional level. Post-transcriptional changes of non-coding RNAs (ncRNAs) such as microRNAs (miRNA), long non-coding RNAs (lncRNA), and epitranscriptomics, including RNA methylation, are reported in resistant insects. Additionally, genetic modifications such as mutations in the target sites and copy number variations (CNV) are also influencing insecticide resistance. Therefore, these cellular intricacies may decrease insecticide sensitivity, altering the concentrations or activities of proteins involved in insecticide interactions or detoxification. The cellular episodes at the transcriptional and post-transcriptional levels pertinent to insecticide resistance responses in insects are extensively covered in this review. An overview of molecular mechanisms underlying these biological rhythms allows for developing alternative pest control methods to focus on insect vulnerabilities, employing reverse genetics approaches like RNA interference (RNAi) technology to silence particular resistance-related genes for sustained insect management.
Collapse
Affiliation(s)
| | - Marimuthu Murugan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India
| | | | - Kathirvel Naveena
- Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
4
|
Mann CWG, Sawyer A, Gardiner DM, Mitter N, Carroll BJ, Eamens AL. RNA-Based Control of Fungal Pathogens in Plants. Int J Mol Sci 2023; 24:12391. [PMID: 37569766 PMCID: PMC10418863 DOI: 10.3390/ijms241512391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Our duty to conserve global natural ecosystems is increasingly in conflict with our need to feed an expanding population. The use of conventional pesticides not only damages the environment and vulnerable biodiversity but can also still fail to prevent crop losses of 20-40% due to pests and pathogens. There is a growing call for more ecologically sustainable pathogen control measures. RNA-based biopesticides offer an eco-friendly alternative to the use of conventional fungicides for crop protection. The genetic modification (GM) of crops remains controversial in many countries, though expression of transgenes inducing pathogen-specific RNA interference (RNAi) has been proven effective against many agronomically important fungal pathogens. The topical application of pathogen-specific RNAi-inducing sprays is a more responsive, GM-free approach to conventional RNAi transgene-based crop protection. The specific targeting of essential pathogen genes, the development of RNAi-nanoparticle carrier spray formulations, and the possible structural modifications to the RNA molecules themselves are crucial to the success of this novel technology. Here, we outline the current understanding of gene silencing pathways in plants and fungi and summarize the pioneering and recent work exploring RNA-based biopesticides for crop protection against fungal pathogens, with a focus on spray-induced gene silencing (SIGS). Further, we discuss factors that could affect the success of RNA-based control strategies, including RNA uptake, stability, amplification, and movement within and between the plant host and pathogen, as well as the cost and design of RNA pesticides.
Collapse
Affiliation(s)
- Christopher W. G. Mann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.W.G.M.); (A.S.); (B.J.C.)
| | - Anne Sawyer
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.W.G.M.); (A.S.); (B.J.C.)
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.M.G.); (N.M.)
| | - Donald M. Gardiner
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.M.G.); (N.M.)
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.M.G.); (N.M.)
| | - Bernard J. Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.W.G.M.); (A.S.); (B.J.C.)
| | - Andrew L. Eamens
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| |
Collapse
|
5
|
Zhang C, Wan B, Jin MR, Wang X, Wei YJ, Zhong L, Xia B. Inhibition of ecdysone receptor (DcEcR) and ultraspiracle (DcUSP) expression in Diaphorina citri increased susceptibility to pesticides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105518. [PMID: 37532332 DOI: 10.1016/j.pestbp.2023.105518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/15/2023] [Accepted: 07/04/2023] [Indexed: 08/04/2023]
Abstract
Diaphorina citri Kuwayama is of great concern because of its ability to transmit devastating citrus greening illness (Huanglongbing). One strategy for controlling HLB may involve limiting the spread of D. citri. Insecticides using dsRNA target genes may be a useful option to control D. citri. The ecdysone receptor (EcR) and ultraspiracle (USP) are crucial for the growth and reproduction of insects. This study identified the genes for D. citri ecdysone receptor (DcEcR) and ultraspiracle (DcUSP). According to the qPCR data, DcUSP peaked at the 5th-instar nymph stage, while DcEcR peaked at the adult stage. Females expressed DcEcR and DcUSP at much higher levels than males. RNAi was used to examine DcEcR and DcUSP function. The findings demonstrated that inhibition of DcEcR and DcUSP delayed nymph development and decreased survival and eclosion rates. dsEcR caused adults to develop deformed wings, and dsUSP caused nymphs to wither and die. Female adult ovaries developed slowly, and the females laid fewer eggs. Additionally, DcEcR and DcUSP were inhibited, increasing D. citri susceptibility to pesticides. These findings suggest that DcEcR and DcUSP are critical for D. citri development, growth, and reproduction and may serve as potential targets for D. citri management.
Collapse
Affiliation(s)
- Cong Zhang
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Bin Wan
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Meng-Ru Jin
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xi Wang
- Development & Service Center for Agriculture and Rural Industry of Jiangxi Province, China
| | - Yu-Jing Wei
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Ling Zhong
- Development & Service Center for Agriculture and Rural Industry of Jiangxi Province, China
| | - Bin Xia
- School of Life Sciences, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
6
|
You C, Zhang L, Song J, Zhang L, Zhen C, Gao X. The variation of a cytochrome P450 gene, CYP6G4, drives the evolution of Musca domestica L. (Diptera: Muscidae) resistance to insecticides in China. Int J Biol Macromol 2023; 236:123399. [PMID: 36775219 DOI: 10.1016/j.ijbiomac.2023.123399] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 02/12/2023]
Abstract
Long term and excessive insecticide use has resulted in some environmental problems and especially, insecticide resistance evolution in insect pests. The variation of cytochrome P450 monooxygenases (P450s), associated with the metabolic detoxification of toxic xenobiotics, is often involved in insecticide resistance. Here, we found that the variation in a P450 gene, CYP6G4, is the most important driver of carbamates resistance in the house fly (Musca domestica). Deciphering the detailed molecular mechanisms of the insecticide resistance is critical for performing suitable insecticide resistance management strategies. Our research results revealed that the combination of amino acid mutations (110C-330E-360N/S, 110C-330E-360S) of CYP6G4 could improve the resistance to propoxur. The nucleotide variations in the promoter region of CYP6G4 significantly increased the luciferase activity by the reporter gene assays. Additionally, miR-281-1-5p was confirmed to post-transcriptionally down-regulate the expression of CYP6G4. These findings suggest that three independent mechanisms; amino acid mutations of the P450 protein, mutations in the promoter region and low expression of post-trans-regulatory factors, as the powerful strategies for the insect resistance to toxic compounds, play a crucial role in the evolutionary processes of insecticide resistance.
Collapse
Affiliation(s)
- Chunmei You
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Lulu Zhang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Jiajia Song
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Lei Zhang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Congai Zhen
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Zhang R, Zhang S, Li T, Li H, Zhang H, Zheng W. RNA sequencing identifies an ovary-enriched microRNA, miR-311-3p, involved in ovarian development and fecundity by targeting Endophilin B1 in Bactrocera dorsalis. PEST MANAGEMENT SCIENCE 2023; 79:688-700. [PMID: 36239581 DOI: 10.1002/ps.7236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The oriental fruit fly, Bactrocera dorsalis, is a highly invasive pest in East Asia and the Pacific. With the development of pesticides resistance, environment-friendly pesticides are urgently needed. MicroRNAs (miRNAs) are critical regulators of numerous biological processes, including reproduction. Thus, it is significant to identify reproductive-related miRNAs in this notorious pest to facilitate its control, such as RNAi-based biopesticides targeting essential miRNAs. RESULTS A high-throughput sequencing was carried out to identify miRNAs involved in reproduction from the ovary and fat body at four developmental stages [1 day (d), 5, 9, and 13 days post-eclosion] in female B. dorsalis. Results showed that 98 and 74 miRNAs were differentially expressed in ovary and fat body, respectively, during sexual maturation. Gene ontology analysis showed that target genes involved in oogenesis and lipid particle accounted for 33% and 15% of the total targets, respectively. Among these differentially expressed miRNAs, we found by qPCR that miR-311-3p was enriched in the ovary and down-regulated during sexual maturation. Injection of agomir-miR-311-3p resulted in arrested ovarian development, reduced egg deposition and progeny viability. Endophilin B1 was confirmed to be the target of miR-311-3p, via dual-luciferase assay and expression profiling. Knockdown of Endophilin B1 resulted in reproductive defects similar to those caused by injection of miR-311-3p agomir. Thus, miR-311-3p might play a critical role in female reproduction by targeting Endophilin B1. CONCLUSION Our data not only provides knowledge on the abundance of reproductive-related miRNAs and target genes, but also promotes new control strategies for this pest. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shengfeng Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tianran Li
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Haozhe Li
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weiwei Zheng
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Sun R, Liu J, Xu Y, Jiang L, Li Y, Zhong G, Yi X. Genome-Wide Identification and Stage-Specific Expression Profile Analysis Reveal the Function of Ribosomal Proteins for Oogenesis of Spodoptera litura. Front Physiol 2022; 13:943205. [PMID: 35812325 PMCID: PMC9259932 DOI: 10.3389/fphys.2022.943205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Ribosomal proteins (Rps) are indispensable in ribosome biogenesis and protein synthesis, which tightly correlate with cell growth and proliferation in different physiological processes across species. Up to now, genes coding for Rps have been identified and studied in many species, however, their information still remains elusive in many insect species, especially in Spodoptera litura. In this study, 81 Rp genes were identified from S. litura genome and were mapped to their positions on the chromosomes. In addition, their physical and chemical properties, gene structure, phylogenetic relationships, targeted microRNAs were also analyzed. Gene ontology analysis disclosed that Rp genes were closely associated with processes related to ribosome biosynthesis, proteins translation processing, molecular binding activities. The quantitative real-time PCR (qRT-PCR) revealed expression profiles of Rp genes varied in different stages of oogenesis, and found that most Rp genes accumulated in previtellogenesis stage. This study described the comprehensive genome-wide analysis of Rp gene family in agricultural pests, which provided foundation for further characterizing the roles of Rps in oogenesis of insects, and some Rp genes may further serve as targets for innovative pest control.
Collapse
Affiliation(s)
- Ranran Sun
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Jin Liu
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Yuanhao Xu
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Liwei Jiang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Yun Li
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
- *Correspondence: Guohua Zhong, ; Xin Yi,
| | - Xin Yi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
- *Correspondence: Guohua Zhong, ; Xin Yi,
| |
Collapse
|
9
|
Cheng Y, Lu T, Guo J, Lin Z, Jin Q, Zhang X, Zou Z. Helicoverpa armigera miR-2055 regulates lipid metabolism via fatty acid synthase expression. Open Biol 2022; 12:210307. [PMID: 35232249 PMCID: PMC8889172 DOI: 10.1098/rsob.210307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Insect hormones and microRNAs regulate lipid metabolism, but the mechanisms are not fully elucidated. Here, we found that cotton bollworm larvae feeding on Arabidopsis thaliana (AT) leaves had a lower triacylglycerol (TAG) level and more delayed development than individuals feeding on artificial diet (AD). Association analysis of small RNA and mRNA revealed that the level of miR-2055, a microRNA related to lipid metabolism, was significantly higher in larvae feeding on AT. Dual-luciferase reporter assays demonstrated miR-2055 binding to 3' UTR of fatty acid synthase (FAS) mRNA to suppress its expression. Elevating the level of miR-2055 in larvae by agomir injection decreased FAS mRNA and protein levels, which resulted in reduction of free fatty acid (FFA) and TAG in fat body. Interestingly, in vitro assays illustrated that juvenile hormone (JH) increased miR-2055 accumulation in a dosage-dependent manner, whereas knockdown of Methoprene tolerant (Met) or Kruppel homologue 1 (Kr-h1) decreased the miR-2055 level. This implied that JH induces the expression of miR-2055 via a Met-Kr-h1 signal. These findings demonstrate that JH and miRNA cooperate to modulate lipid synthesis, which provides new insights into the regulatory mechanisms of metabolism in insects.
Collapse
Affiliation(s)
- Yang Cheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China,College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, People's Republic of China
| | - Tengfei Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Junliang Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China,Institute of Physical Science and Information Technology, Anhui University, Hefei, People's Republic of China
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qiao Jin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
10
|
Liu H, Shen E, Wu H, Ma W, Chen H, Lin Y. Trans-kingdom expression of an insect endogenous microRNA in rice enhances resistance to striped stem borer Chilo suppressalis. PEST MANAGEMENT SCIENCE 2022; 78:770-777. [PMID: 34704657 DOI: 10.1002/ps.6690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The striped stem borer (SSB), Chilo suppressalis Walker, is a major pest of rice worldwide. Breeding of transgenic rice expressing Bacillus thuringiensis (Bt) toxins is a powerful strategy to control SSB. However, pests may evolve certain resistance to Bt toxins in transgenic plants. Hence, new controlling strategies must be continuously developed. RESULTS We successfully generated SSB-resistant rice (csu-53) expressing the artificial microRNA (amiRNA) of SSB endogenous miRNA (csu-novel-miR53) through the RNAi-based technology. Feeding assays demonstrated that csu-53 rice inhibited larval growth, delayed pupation time, and reduced pupal weight and eclosion rate of SSB larva. In a 10-day feeding experiment, the miRNA mimic of csu-novel-miR53 also suppressed larval growth and more importantly increased larval mortality. Transcriptome analysis identified 28 differentially expressed unigenes (DEGs) in the midgut between SSB larvae fed on csu-53 rice and the wild type. One DEG (DN90065_c0_g12) validated by qRT-PCR had a predicted target site of csu-novel-miR53. In addition, in vitro double-stranded RNA synthesis and further feeding assay proved that DN90065_c0_g12 is most likely the target of csu-novel-miR53. CONCLUSION amiRNA-mediated strategy can be applied to the development of insect-resistant crops, and the novel amiRNA csu-novel-miR53 of SSB has important application potential in developing SSB resistant rice. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haoju Liu
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Enlong Shen
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao Wu
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Weihua Ma
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Kumar N, Bharadwaj C, Sahu S, Shiv A, Shrivastava AK, Reddy SPP, Soren KR, Patil BS, Pal M, Soni A, Roorkiwal M, Varshney RK. Genome-wide identification and functional prediction of salt- stress related long non-coding RNAs (lncRNAs) in chickpea ( Cicer arietinum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2605-2619. [PMID: 34916736 PMCID: PMC8639897 DOI: 10.1007/s12298-021-01093-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 05/14/2023]
Abstract
LncRNAs (long noncoding RNAs) are 200 bp length crucial RNA molecules, lacking coding potential and having important roles in regulating gene expression, particularly in response to abiotic stresses. In this study, we identified salt stress-induced lncRNAs in chickpea roots and predicted their intricate regulatory roles. A total of 3452 novel lncRNAs were identified to be distributed across all 08 chickpea chromosomes. On comparing salt-tolerant (ICCV 10, JG 11) and salt-sensitive cultivars (DCP 92-3, Pusa 256), 4446 differentially expressed lncRNAs were detected under various salt treatments. We predicted 3373 lncRNAs to be regulating their target genes in cis regulating manner and 80 unique lncRNAs were observed as interacting with 136 different miRNAs, as eTMs (endogenous target mimic) targets of miRNAs and implicated them in the regulatory network of salt stress response. Functional analysis of these lncRNA revealed their association in targeting salt stress response-related genes like potassium transporter, transporter family genes, serine/threonine-protein kinase, aquaporins like TIP1-2, PIP2-5 and transcription factors like, AP2, NAC, bZIP, ERF, MYB and WRKY. Furthermore, about 614 lncRNA-SSRs (simple sequence repeats) were identified as a new generation of molecular markers with higher efficiency and specificity in chickpea. Overall, these findings will pave the understanding of comprehensive functional role of potential lncRNAs, which can help in providing insight into the molecular mechanism of salt tolerance in chickpea. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01093-0.
Collapse
Affiliation(s)
- Neeraj Kumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012 India
| | - Chellapilla Bharadwaj
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012 India
| | - Sarika Sahu
- ICAR-Indian Agricultural Statistics Research Institute, Pusa, New Delhi 110012 India
| | - Aalok Shiv
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012 India
- Present Address: ICAR-Indian Institute of Sugarcane Research, Lucknow, 226002 India
| | | | | | - Khela Ram Soren
- ICAR-Indian Institute of Pulses Research, Kanpur, 282 004 India
| | | | - Madan Pal
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012 India
| | - Anjali Soni
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012 India
| | - Manish Roorkiwal
- Centre of Excellence in Genomics, ICRISAT, Hyderabad, 502324 India
| | | |
Collapse
|
12
|
Choudhury A, Verma S, Muthamilarasan M, Rajam MV. Identification of suitable reference genes for expression profiling studies using qRT-PCR in an important insect pest, Maruca vitrata. Mol Biol Rep 2021; 48:7477-7485. [PMID: 34637095 DOI: 10.1007/s11033-021-06766-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Maruca vitrata is one of the potential insect pests that cause devastating losses to legume cultivation worldwide. Gene functional studies facilitate dissecting the molecular mechanisms underlying the infection process and enable devising appropriate molecular strategies to control this insect pest. Expression profiling using quantitative real-time PCR (qRT-PCR) provides insights into the functional characterization of target genes; however, ideal reference genes should be deployed in such studies to nullify the background variation and improve the accuracy of target gene expression. An ideal reference gene should have a stable expression across developmental stages, biological conditions, tissues, or experimental conditions. METHODS AND RESULTS Given this, the stability of eight candidate reference genes was evaluated in M. vitrata at different developmental stages, diets, and sexes by qRT-PCR method, and the data was analyzed using four independent algorithms, namely GeNorm, NormFinder, BestKeeper, and ΔCt, and one comprehensive algorithm, RefFinder. CONCLUSION The analysis showed that RP49 and RPL13 were the best suitable reference genes for studying target gene expression at different developmental stages. Further, the study identified RP49 and RPL24, and GAPDH and RPL24 as the ideal reference genes in M. vitrata fed with different diets and sexes, respectively. The reference genes reported in the present study will ensure the accuracy of target gene expression, and thus, will serve as an important resource for gene functional studies in M. vitrata.
Collapse
Affiliation(s)
- Aparajita Choudhury
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Shubham Verma
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Telangana, 500046, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Telangana, 500046, India
| | - Manchikatla Venkat Rajam
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
13
|
Kaur R, Choudhury A, Chauhan S, Ghosh A, Tiwari R, Rajam MV. RNA interference and crop protection against biotic stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2357-2377. [PMID: 34744371 PMCID: PMC8526635 DOI: 10.1007/s12298-021-01064-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/14/2021] [Accepted: 09/07/2021] [Indexed: 05/26/2023]
Abstract
RNA interference (RNAi) is a universal phenomenon of RNA silencing or gene silencing with broader implications in important physiological and developmental processes of most eukaryotes, including plants. Small RNA (sRNA) are the critical drivers of the RNAi machinery that ensures down-regulation of the target genes in a homology-dependent manner and includes small-interfering RNAs (siRNAs) and micro RNAs (miRNAs). Plant researchers across the globe have exploited the powerful technique of RNAi to execute targeted suppression of desired genes in important crop plants, with an intent to improve crop protection against pathogens and pests for sustainable crop production. Biotic stresses cause severe losses to the agricultural productivity leading to food insecurity for future generations. RNAi has majorly contributed towards the development of designer crops that are resilient towards the various biotic stresses such as viruses, bacteria, fungi, insect pests, and nematodes. This review summarizes the recent progress made in the RNAi-mediated strategies against these biotic stresses, along with new insights on the future directions in research involving RNAi for crop protection.
Collapse
Affiliation(s)
- Ranjeet Kaur
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Aparajita Choudhury
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Sambhavana Chauhan
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Arundhati Ghosh
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Ruby Tiwari
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Manchikatla Venkat Rajam
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| |
Collapse
|
14
|
Wen N, Chen J, Chen G, Du L, Chen H, Li Y, Peng Y, Yang X, Han L. The overexpression of insect endogenous microRNA in transgenic rice inhibits the pupation of Chilo suppressalis and Cnaphalocrocis medinalis. PEST MANAGEMENT SCIENCE 2021; 77:3990-3999. [PMID: 33890699 DOI: 10.1002/ps.6422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/11/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Chilo suppressalis and Cnaphalocrocis medinalis are destructive rice pests co-occurring in major rice-growing areas in China. RNA interference (RNAi)-based insect-resistant genetically engineered (IRGE) crops provide a promising approach for pest management by suppressing gene expression or translation. A microRNA (miRNA)-mediated IRGE rice line expressing endogenous Chilo suppressalis miRNA Csu-novel-260, showing significant resistance against Chilo suppressalis, provides an attractive control strategy for Chilo suppressalis by suppressing the expression of the disembodied (dib) gene expression. However, whether this transgenic line also shows the resistance against Cnaphalocrocis medinalis remains unknown. RESULTS A spatiotemporal expression analysis of Csu-novel-260 in the transgenic rice line was performed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) to determine the paddy field pest exposure dose. In diet feeding assays, a chemically synthesized Csu-novel-260 agomir at 200 fmol g-1 significantly inhibited Chilo suppressalis pupation. However, larval development, survival and pupal weight were not significantly affected. Additionally, the transgenic line significantly affected Cnaphalocrocis medinalis pupation but not larval survival. The qRT-PCR showed that Csdib and Cmdib expression levels were significantly suppressed when the two pests fed on the transgenic line. Additionally, the transgenic line significantly decreased Cry1C-resistant and Cry1C-susceptible Chilo suppressalis larval survival in detached rice tissue feeding assays, indicating that Cry1C-resistant Chilo suppressalis was not cross-resistant to Csu-novel-260 expressed in miRNA-mediated IRGE rice. CONCLUSION Our study demonstrated that miRNA-mediated IRGE rice significantly inhibited Chilo suppressalis and Cnaphalocrocis medinalis pupation. The results provide a new viewpoint for the application of RNAi-based plants and the inspiration for environmental risk assessment.
Collapse
Affiliation(s)
- Ning Wen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junjie Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Geng Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixiao Du
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hao Chen
- Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yunhe Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yufa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaowei Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lanzhi Han
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Zhang Z, Ma Y, Ma X, Hu H, Wang D, Song X, Ren X, Ma Y. Combined Transcriptomic Analysis and RNA Interference Reveal the Effects of Methoxyfenozide on Ecdysone Signaling Pathway of Spodoptera exigua. Int J Mol Sci 2021; 22:ijms22169080. [PMID: 34445782 PMCID: PMC8396458 DOI: 10.3390/ijms22169080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/05/2022] Open
Abstract
Spodoptera exigua is a worldwide pest afflicting edible vegetables and has developed varying levels of resistance to insecticides. Methoxyfenozide (MET), an ecdysteroid agonist, is effective against lepidopteran pests such as S. exigua. However, the mechanism of MET to S. exigua remains unclear. In this study, we analyzed the expression patterns of genes related to the ecdysone signaling pathway in transcriptome data treated with sublethal doses of MET and analyzed how expression levels of key genes affect the toxicity of MET on S. exigua. Our results demonstrated that 2639 genes were up-regulated and 2512 genes were down-regulated in S. exigua treated with LC30 of MET. Of these, 15 genes were involved in the ecdysone signaling pathway. qPCR results demonstrated that ecdysone receptor A (EcRA) expression levels significantly increased in S. exigua when treated with different doses of MET, and that the RNAi-mediated silencing of EcRA significantly increased mortality to 55.43% at 72 h when L3 S. exigua larvae were exposed to MET at the LC30 dose. Additionally, knocking down EcRA suppressed the most genes expressed in the ecdysone signaling pathway. The combination of MET and dsEcRA affected the expression of E74 and enhanced the expression of TREA. These results demonstrate that the adverse effects of sublethal MET disturb the ecdysone signaling pathway in S. exigua, and EcRA is closely related to MET toxic effect. This study increases our collective understanding of the mechanisms of MET in insect pests.
Collapse
Affiliation(s)
- Zhixian Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (Z.Z.); (X.M.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Y.M.); (H.H.); (D.W.); (X.S.)
| | - Yajie Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Y.M.); (H.H.); (D.W.); (X.S.)
| | - Xiaoyan Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (Z.Z.); (X.M.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Y.M.); (H.H.); (D.W.); (X.S.)
| | - Hongyan Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Y.M.); (H.H.); (D.W.); (X.S.)
| | - Dan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Y.M.); (H.H.); (D.W.); (X.S.)
| | - Xianpeng Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Y.M.); (H.H.); (D.W.); (X.S.)
| | - Xiangliang Ren
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (Z.Z.); (X.M.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Y.M.); (H.H.); (D.W.); (X.S.)
- Correspondence: (X.R.); or (Y.M.)
| | - Yan Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (Z.Z.); (X.M.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Y.M.); (H.H.); (D.W.); (X.S.)
- Correspondence: (X.R.); or (Y.M.)
| |
Collapse
|
16
|
Zhang Q, Dou W, Taning CNT, Smagghe G, Wang JJ. Regulatory roles of microRNAs in insect pests: prospective targets for insect pest control. Curr Opin Biotechnol 2021; 70:158-166. [PMID: 34090114 DOI: 10.1016/j.copbio.2021.05.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/28/2021] [Accepted: 05/06/2021] [Indexed: 01/23/2023]
Abstract
At the post-transcriptional level, microRNAs (miRNAs) play an important role in the regulation of gene expression, thereby influencing the outcome of many biological processes in insects, such as development, reproduction, metamorphosis, immunity, and insecticide resistance. The alteration of miRNA expression by mimic/agomir or inhibitor/antagomir via injection/feeding can lead to pest developmental abnormalities, death, or reduced pesticide resistance, indicating that miRNAs are potential targets for pest control. This review provides an overview of recent advances in understanding the regulatory roles of miRNA in agricultural and public health insect pest, and further highlights the potential of miRNAs as prospective targets in pest control.
Collapse
Affiliation(s)
- Qiang Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China; International China-Belgium Joint Laboratory on Sustainable Crop Pest Control between Southwest University in China and Ghent University in Belgium, Chongqing 400715, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China; International China-Belgium Joint Laboratory on Sustainable Crop Pest Control between Southwest University in China and Ghent University in Belgium, Chongqing 400715, China
| | | | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China; International China-Belgium Joint Laboratory on Sustainable Crop Pest Control between Southwest University in China and Ghent University in Belgium, Chongqing 400715, China; Department of Plants and Crops, Ghent University, Ghent 9000, Belgium.
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China; International China-Belgium Joint Laboratory on Sustainable Crop Pest Control between Southwest University in China and Ghent University in Belgium, Chongqing 400715, China.
| |
Collapse
|
17
|
Arraes FBM, Martins-de-Sa D, Noriega Vasquez DD, Melo BP, Faheem M, de Macedo LLP, Morgante CV, Barbosa JARG, Togawa RC, Moreira VJV, Danchin EGJ, Grossi-de-Sa MF. Dissecting protein domain variability in the core RNA interference machinery of five insect orders. RNA Biol 2020; 18:1653-1681. [PMID: 33302789 DOI: 10.1080/15476286.2020.1861816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
RNA interference (RNAi)-mediated gene silencing can be used to control specific insect pest populations. Unfortunately, the variable efficiency in the knockdown levels of target genes has narrowed the applicability of this technology to a few species. Here, we examine the current state of knowledge regarding the miRNA (micro RNA) and siRNA (small interfering RNA) pathways in insects and investigate the structural variability at key protein domains of the RNAi machinery. Our goal was to correlate domain variability with mechanisms affecting the gene silencing efficiency. To this end, the protein domains of 168 insect species, encompassing the orders Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera, were analysed using our pipeline, which takes advantage of meticulous structure-based sequence alignments. We used phylogenetic inference and the evolutionary rate coefficient (K) to outline the variability across domain regions and surfaces. Our results show that four domains, namely dsrm, Helicase, PAZ and Ribonuclease III, are the main contributors of protein variability in the RNAi machinery across different insect orders. We discuss the potential roles of these domains in regulating RNAi-mediated gene silencing and the role of loop regions in fine-tuning RNAi efficiency. Additionally, we identified several order-specific singularities which indicate that lepidopterans have evolved differently from other insect orders, possibly due to constant coevolution with plants and viruses. In conclusion, our results highlight several variability hotspots that deserve further investigation in order to improve the application of RNAi technology in the control of insect pests.
Collapse
Affiliation(s)
| | - Diogo Martins-de-Sa
- Departamento De Biologia Celular, Universidade De Brasília, Brasília-DF, Brazil
| | - Daniel D Noriega Vasquez
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Catholic University of Brasília, Brasília-DF, Brazil
| | - Bruno Paes Melo
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Viçosa University, UFV, Viçosa-MG, Brazil
| | - Muhammad Faheem
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Department of Biological Sciences, National University of Medical Sciences, Punjab, Pakistan
| | | | - Carolina Vianna Morgante
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Embrapa Semiarid, Petrolina-PE, Brazil.,National Institute of Science and Technology, Jakarta Embrapa-Brazil
| | | | - Roberto Coiti Togawa
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil
| | - Valdeir Junio Vaz Moreira
- Biotechnology Center, Brazil.,Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Departamento De Biologia Celular, Universidade De Brasília, Brasília-DF, Brazil
| | - Etienne G J Danchin
- National Institute of Science and Technology, Jakarta Embrapa-Brazil.,INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, Sophia-Antipolis, France
| | - Maria Fatima Grossi-de-Sa
- Plant-Pest Molecular Interaction Laboratory (LIMPP), Brasilia, Brasília-DF, Brazil.,Catholic University of Brasília, Brasília-DF, Brazil.,National Institute of Science and Technology, Jakarta Embrapa-Brazil
| |
Collapse
|
18
|
Yogindran S, Rajam MV. Host-derived artificial miRNA-mediated silencing of ecdysone receptor gene provides enhanced resistance to Helicoverpa armigera in tomato. Genomics 2020; 113:736-747. [PMID: 33058987 DOI: 10.1016/j.ygeno.2020.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/12/2020] [Accepted: 10/08/2020] [Indexed: 01/18/2023]
Abstract
Helicoverpa armigera causes huge crop losses due to its polyphagous nature. The present study demonstrates the use of artificial microRNA (amiRNA) mediated gene silencing approach to generate insect resistant tomato plants. Ecdysone receptor (HaEcR) gene of the target pest, H. armigera, which is involved in the regulation of all developmental stages of the insect life cycle, was silenced by sequence-specific amiRNA (amiRNA-HaEcR). Continuous feeding on detached tomato leaves expressing the amiRNA-319a-HaEcR resulted in reduced target gene transcripts and affected the overall growth and survival of H. armigera. Not only the target gene was down-regulated but, the feeding also affected the expression of down-stream genes involved in the ecdysone signaling pathway. The resistant trait was also observed in T1 generation of tomato transgenic lines. These results further established the role of EcR as a master regulator in insect development and effectiveness of amiRNA technology for efficient control of H. armigera.
Collapse
Affiliation(s)
- Sneha Yogindran
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India
| | - Manchikatla Venkat Rajam
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India.
| |
Collapse
|
19
|
|
20
|
Su Y, Guo Q, Gong J, Cheng Y, Wu X. Functional expression patterns of four ecdysteroid receptor isoforms indicate their different functions during vitellogenesis of Chinese mitten crab, Eriocheir sinensis. Comp Biochem Physiol A Mol Integr Physiol 2020; 248:110754. [PMID: 32649982 DOI: 10.1016/j.cbpa.2020.110754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/04/2020] [Accepted: 06/30/2020] [Indexed: 11/30/2022]
Abstract
In arthropods, alternative splicing of ecdysteroid receptor gene (EcR) leads to multiple functions of different EcR isoforms during metamorphosis, growth and ovarian development via ecdysteroid signaling pathway. This study was conducted to investigate the expression patterns of four EcRs of Eriocheir sinensis (EsEcRs) and the changes of haemolymph ecdysteroid titer during the ovarian development. The results showed that four EsEcR isoforms had the tissue-specific expression among 12 examined tissues, and the highest transcript levels of the four EsEcR isoforms were detected in Y-organ or sinus gland. During the ovarian development, EsEcR1 showed the highest transcript abundance of the four EsEcR isoforms. The expression profiles of all the EsEcR isoforms were similar in the hepatopancreas during the ovarian maturation cycle of E. sinensis with a trend of "high-low-high-low". In ovary, the highest expression levels of EsEcR1 and EsEcR4 were both found at stage V ovary, while the peaks of EsEcR2 and EsEcR3 were found on stage III ovary and stage IV ovary, respectively. Meanwhile, the ecdysteroid titer in haemolymph decreased gradually during ovarian maturation cycle. Further regression analysis revealed significant negative correlations were found between the ovarian EsEcR3/ EsEcR4 expression levels and haemolymph ecdysteroid titer during part or whole ovarian development cycle. These results together indicated that four EsEcR isoforms may have different functions during ovary maturation of E. sinensis. All EcR isoforms and ecdysteroid seemed to have important roles in the hepatopancreas during early ovarian development stages, while EsEcR3 and EsEcR4 were closely related to the mid-late vitellogenesis stages.
Collapse
Affiliation(s)
- Yu Su
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Qing Guo
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Jie Gong
- School of Life Sciences (School of Ocean Science), Nantong University, Nantong 226000, China.
| | - Yongxu Cheng
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Xugan Wu
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
21
|
De-Souza EA, Camara H, Salgueiro WG, Moro RP, Knittel TL, Tonon G, Pinto S, Pinca APF, Antebi A, Pasquinelli AE, Massirer KB, Mori MA. RNA interference may result in unexpected phenotypes in Caenorhabditis elegans. Nucleic Acids Res 2019; 47:3957-3969. [PMID: 30838421 PMCID: PMC6486631 DOI: 10.1093/nar/gkz154] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 12/19/2022] Open
Abstract
RNA interference (RNAi) is a valuable technique to determine gene function. In Caenorhabditis elegans, RNAi can be achieved by feeding worms bacteria carrying a plasmid expressing double-stranded RNA (dsRNA) targeting a gene of interest. The most commonly used plasmid vector for this purpose is L4440. However, it has been noticed that sequences within L4440 may elicit unspecific effects. Here, we provide a comprehensive characterization of these effects and their mechanisms and describe new unexpected phenotypes uncovered by the administration of unspecific exogenous dsRNA. An example involves dsRNA produced by the multiple cloning site (MCS) of L4440, which shares complementary sequences with some widely used reporter vectors and induces partial transgene silencing via the canonical and antiviral RNAi pathway. Going beyond transgene silencing, we found that the reduced embryonic viability of mir-35-41(gk262) mutants is partially reversed by exogenous dsRNA via a mechanism that involves canonical RNAi. These results indicate cross-regulation between different small RNA pathways in C. elegans to regulate embryonic viability. Recognition of the possible unspecific effects elicited by RNAi vectors is important for rigorous interpretation of results from RNAi-based experiments.
Collapse
Affiliation(s)
- Evandro A De-Souza
- Program in Molecular Biology, Federal University of São Paulo, São Paulo 04044-020, Brazil.,Program in Molecular Biology and Biotechnology, Instituto de Bioquímica Médica Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Henrique Camara
- Program in Molecular Biology, Federal University of São Paulo, São Paulo 04044-020, Brazil.,Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, São Paulo 13083-862, Brazil.,Program in Genetics and Molecular Biology, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Willian G Salgueiro
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, São Paulo 13083-862, Brazil.,Program in Genetics and Molecular Biology, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Raíssa P Moro
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, São Paulo 13083-862, Brazil.,Program in Genetics and Molecular Biology, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Thiago L Knittel
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, São Paulo 13083-862, Brazil.,Program in Genetics and Molecular Biology, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Guilherme Tonon
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, São Paulo 13083-862, Brazil.,Program in Genetics and Molecular Biology, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Silas Pinto
- Program in Molecular Biology, Federal University of São Paulo, São Paulo 04044-020, Brazil.,Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, São Paulo 13083-862, Brazil.,Program in Genetics and Molecular Biology, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Ana Paula F Pinca
- Program in Molecular Biology, Federal University of São Paulo, São Paulo 04044-020, Brazil
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Amy E Pasquinelli
- Division of Biology, University of California, San Diego, La Jolla, California 92093-0349, USA
| | - Katlin B Massirer
- Program in Genetics and Molecular Biology, University of Campinas, Campinas, São Paulo 13083-970, Brazil.,Center for Molecular Biology and Genetic Engineering, University of Campinas, CBMEG-UNICAMP, Campinas, São Paulo 13083-875, Brazil.,The Structural Genomics Consortium - UNICAMP, University of Campinas, Campinas, São Paulo 13083-875, Brazil
| | - Marcelo A Mori
- Program in Molecular Biology, Federal University of São Paulo, São Paulo 04044-020, Brazil.,Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, São Paulo 13083-862, Brazil.,Program in Genetics and Molecular Biology, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| |
Collapse
|
22
|
Ražná K, Cagáň Ľ. The Role of MicroRNAs in Genome Response to Plant-Lepidoptera Interaction. PLANTS (BASEL, SWITZERLAND) 2019; 8:E529. [PMID: 31757090 PMCID: PMC6963388 DOI: 10.3390/plants8120529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 02/06/2023]
Abstract
RNA interference is a known phenomenon of plant immune responses, involving the regulation of gene expression. The key components triggering the silencing of targeted sequences are double-stranded RNA molecules. The regulation of host-pathogen interactions is controlled by miRNA molecules, which regulate the expression of host resistance genes or the genes of the pathogen. The review focused on basic principles of RNA interference as a gene-silencing-based defense mechanism and the role of miRNA molecules in insect genomes. RNA interference as a tool for plant protection management is discussed. The review summarizes current miRNA-based biotechnology approaches for plant protection management.
Collapse
Affiliation(s)
- Katarína Ražná
- Department of Genetics and Plant Breeding, Slovak University of Agriculture, 94976 Nitra, Slovakia
| | - Ľudovít Cagáň
- Department of Plant Protection; Slovak University of Agriculture, 94976 Nitra, Slovakia;
| |
Collapse
|
23
|
He K, Xiao H, Sun Y, Ding S, Situ G, Li F. Transgenic microRNA-14 rice shows high resistance to rice stem borer. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:461-471. [PMID: 30044049 PMCID: PMC6335064 DOI: 10.1111/pbi.12990] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/10/2018] [Accepted: 07/19/2018] [Indexed: 05/21/2023]
Abstract
Rice stem borer (RSB, Chilo suppressalis) is an insect pest that causes huge economic losses every year. Control efforts rely heavily on chemical insecticides, which leads to serious problems such as insecticide resistance, environment pollution, and food safety issues. Therefore, developing alternative pest control methods is an important task. Here, we identified an insect-specific microRNA, miR-14, in RSB, which was predicted to target Spook (Spo) and Ecdysone receptor (EcR) in the ecdysone signalling network. In-vitro dual luciferase assays using HEK293T cells confirmed the interactions of Csu-miR-14 with CsSpo and with CsEcR. Csu-miR-14 exhibited high levels of expression at the end of each larval instar stage, and its expression was negatively correlated with the expression of its two target genes. Overexpression of Csu-miR-14 at the third day of the fifth instar stage led to high mortality and developmental defects in RSB individuals. We produced 35 rice transformants to express miR-14 and found that three lines had a single copy with highly abundant miR-14 mature transcripts. Feeding bioassays using both T0 and T1 generations of transgenic miR-14 rice indicated that at least one line (C#24) showed high resistance to RSB. These results indicated that the approach of miRNAs as targets has potential for improving pest control methods. Moreover, using insect-specific miRNAs rather than protein-encoding genes for pest control may prove benign to non-insect species, and thus is worthy of further exploration.
Collapse
Affiliation(s)
- Kang He
- Institute of Insect Sciences/Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect PestsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Huamei Xiao
- College of Life Sciences and Resource EnvironmentYichun UniversityYichunChina
- Department of EntomologyCollege of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Yang Sun
- Department of EntomologyCollege of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Institute of Plant ProtectionJiangxi Academy of Agricultural SciencesNanchangChina
| | - Simin Ding
- Institute of Insect Sciences/Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect PestsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Gongming Situ
- Department of EntomologyCollege of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Fei Li
- Institute of Insect Sciences/Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect PestsCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| |
Collapse
|
24
|
Saini RP, Raman V, Dhandapani G, Malhotra EV, Sreevathsa R, Kumar PA, Sharma TR, Pattanayak D. Silencing of HaAce1 gene by host-delivered artificial microRNA disrupts growth and development of Helicoverpa armigera. PLoS One 2018; 13:e0194150. [PMID: 29547640 PMCID: PMC5856398 DOI: 10.1371/journal.pone.0194150] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/26/2018] [Indexed: 01/19/2023] Open
Abstract
The polyphagous insect-pest, Helicoverpa armigera, is a serious threat to a number of economically important crops. Chemical application and/or cultivation of Bt transgenic crops are the two strategies available now for insect-pest management. However, environmental pollution and long-term sustainability are major concerns against these two options. RNAi is now considered as a promising technology to complement Bt to tackle insect-pests menace. In this study, we report host-delivered silencing of HaAce1 gene, encoding the predominant isoform of H. armigera acetylcholinesterase, by an artificial microRNA, HaAce1-amiR1. Arabidopsis pre-miRNA164b was modified by replacing miR164b/miR164b* sequences with HaAce1-amiR1/HaAce1-amiR1* sequences. The recombinant HaAce1-preamiRNA1 was put under the control of CaMV 35S promoter and NOS terminator of plant binary vector pBI121, and the resultant vector cassette was used for tobacco transformation. Two transgenic tobacco lines expressing HaAce1-amiR1 was used for detached leaf insect feeding bioassays. Larval mortality of 25% and adult deformity of 20% were observed in transgenic treated insect group over that control tobacco treated insect group. The reduction in the steady-state level of HaAce1 mRNA was 70-80% in the defective adults compared to control. Our results demonstrate promise for host-delivered amiRNA-mediated silencing of HaAce1 gene for H. armigera management.
Collapse
Affiliation(s)
- Ravi Prakash Saini
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Venkat Raman
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Gurusamy Dhandapani
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Era Vaidya Malhotra
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Rohini Sreevathsa
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | | | - Tilak R. Sharma
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Debasis Pattanayak
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| |
Collapse
|
25
|
|