1
|
Luo LL, Gui SH, Guo ZP, Feng JW, Smagghe G, Liu TX, Liu M, Yi TC. Efficient CRISPR/Cas9-mediated ebony gene editing in the greater wax moth Galleria mellonella. INSECT SCIENCE 2024. [PMID: 39121464 DOI: 10.1111/1744-7917.13427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 08/11/2024]
Abstract
The greater wax moth, Galleria mellonella (Lepidoptera, Pyralidae), is a major bee pest that inflicts considerable harm on beehives, leading to economic losses. It also serves as a valuable resource insect and a model organism. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system plays a crucial role in improving economic insect breeding and developing efficient agricultural pest management systems in Lepidoptera. However, the CRISPR/Cas9 protocols have not been developed for G. mellonella. Here, the Gmebony knockout (KO) strain was established using the CRISPR/Cas9 genome editing system. We obtained Gmebony KO strain in the G4 generation, which took approximately 10 months. When compared with wild-type, the head, notum, and the terminal abdominal surface of 1st to 4th instar larvae in the KO strain changed from yellow to brown, and these regions of the KO strain gradually transformed into a black color from the 5th instar larvae, and the body color of the adult moth in the KO strain changed to black. The developmental period of the early larval and the following larval instars extended. The embryonic hatchability of the Gmebony KO strain was significantly decreased. The pupal body weight of the Gmebony KO strain was not affected. The feasibility of the CRISPR/Cas9 methodology was validated by single-target editing of Gmebony. Our findings provide the first evidence that the ebony gene can serve as a pigmentation reference gene for genetic modifications of G. mellonella. Meanwhile, it can be utilized in the development of genome editing control strategies and for gene function analyses in G. mellonella.
Collapse
Affiliation(s)
- Li-Lin Luo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang, China
| | - Shun-Hua Gui
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| | - Zhen-Ping Guo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Jia-Wei Feng
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Guy Smagghe
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Tong-Xian Liu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| | - Man Liu
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang, China
| | - Tian-Ci Yi
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| |
Collapse
|
2
|
Chen F, Guo H, Lan W, Zhou M, Geng W, Shen G, Lin P, Xia Q, Zhao P, Li Z. Targeted DNA N 6-methyladenine editing by dCas9 fused to METTL4 in the lepidopteran model insect Bombyx mori. INSECT SCIENCE 2024; 31:646-650. [PMID: 37461250 DOI: 10.1111/1744-7917.13222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 04/12/2024]
Abstract
We have established a novel CRISPR-dCas9-METTL4 epigenome editing tool that can methylate target regions to achieve site-specific DNA 6mA methylation in both hypermethylated and hypomethylated genes. Targeted methylation on genes by dCas9-METTL4 results in misexpression, allowing for the functional investigation of target genes of interest in silkworm.
Collapse
Affiliation(s)
- Feng Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Hao Guo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Weiqun Lan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Mingyi Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Wenjing Geng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Guanwang Shen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Ping Lin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Zhiqing Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Bogan SN, Yi SV. Potential Role of DNA Methylation as a Driver of Plastic Responses to the Environment Across Cells, Organisms, and Populations. Genome Biol Evol 2024; 16:evae022. [PMID: 38324384 PMCID: PMC10899001 DOI: 10.1093/gbe/evae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
There is great interest in exploring epigenetic modifications as drivers of adaptive organismal responses to environmental change. Extending this hypothesis to populations, epigenetically driven plasticity could influence phenotypic changes across environments. The canonical model posits that epigenetic modifications alter gene regulation and subsequently impact phenotypes. We first discuss origins of epigenetic variation in nature, which may arise from genetic variation, spontaneous epimutations, epigenetic drift, or variation in epigenetic capacitors. We then review and synthesize literature addressing three facets of the aforementioned model: (i) causal effects of epigenetic modifications on phenotypic plasticity at the organismal level, (ii) divergence of epigenetic patterns in natural populations distributed across environmental gradients, and (iii) the relationship between environmentally induced epigenetic changes and gene expression at the molecular level. We focus on DNA methylation, the most extensively studied epigenetic modification. We find support for environmentally associated epigenetic structure in populations and selection on stable epigenetic variants, and that inhibition of epigenetic enzymes frequently bears causal effects on plasticity. However, there are pervasive confounding issues in the literature. Effects of chromatin-modifying enzymes on phenotype may be independent of epigenetic marks, alternatively resulting from functions and protein interactions extrinsic of epigenetics. Associations between environmentally induced changes in DNA methylation and expression are strong in plants and mammals but notably absent in invertebrates and nonmammalian vertebrates. Given these challenges, we describe emerging approaches to better investigate how epigenetic modifications affect gene regulation, phenotypic plasticity, and divergence among populations.
Collapse
Affiliation(s)
- Samuel N Bogan
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Soojin V Yi
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| |
Collapse
|
4
|
Li K, Dong Z, Pan M. Common strategies in silkworm disease resistance breeding research. PEST MANAGEMENT SCIENCE 2023; 79:2287-2298. [PMID: 36935349 DOI: 10.1002/ps.7454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/09/2023] [Accepted: 03/20/2023] [Indexed: 06/02/2023]
Abstract
The silkworm, which is considered a model invertebrate organism, was the first insect used for silk production in human history and has been utilized extensively throughout its domestication. However, sericulture has been plagued by various pathogens that have caused significant economic losses. To enhance the resistance of a host to its pathogens,numerous strategies have been developed. For instance, gene-editing techniques have been applied to a wide range of organisms, effectively solving a variety of experimental problems. This review focuses on several common silkworm pests and their pathogenic mechanisms, with a particular emphasis on breeding for disease resistance to control multiple types of silkworm diseases. The review also compares the advantages and disadvantages of transgenic technology and gene-editing systems. Finally, the paper provides a brief summary of current strategies used in breeding silkworm disease resistance, along with a discussion of the establishment of existing technologies and their future application prospects. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kejie Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- The First Affiliated Hospital of Chongqing Medical and pharmaceutical College, Chongqing, China
| | - Zhanqi Dong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Minhui Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Boman J, Zhu Y, Höök L, Vila R, Talavera G, Backström N. Environmental stress during larval development induces DNA methylation shifts in the migratory painted lady butterfly (Vanessa cardui). Mol Ecol 2023. [PMID: 37088782 DOI: 10.1111/mec.16957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/22/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
Seasonal environmental fluctuations provide formidable challenges for living organisms, especially small ectotherms such as butterflies. A common strategy to cope with harsh environments is to enter diapause, but some species avoid unsuitable conditions by migrating. Despite a growing understanding of migration in the life cycles of some butterfly species, it remains unknown how individuals register and store environmental cues to determine whether and where to migrate. Here, we explored how competition and host plant availability during larval development affect patterns of DNA methylation in the migratory painted lady (Vanessa cardui) butterfly. We identify a set of potentially functional methylome shifts associated with differences in the environment, indicating that DNA methylation is involved in the response to different conditions during larval development. By analysing the transcriptome for the same samples used for methylation profiling, we also uncovered a non-monotonic relationship between gene body methylation and gene expression. Our results provide a starting point for understanding the interplay between DNA methylation and gene expression in butterflies in general and how differences in environmental conditions during development can trigger unique epigenetic marks that might be important for behavioural decisions in the adult stage.
Collapse
Affiliation(s)
- Jesper Boman
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden
| | - Yishu Zhu
- Animal Ecology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden
| | - Lars Höök
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), Barcelona, Spain
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB), CSIC-Ajuntament de Barcelona, Barcelona, Spain
| | - Niclas Backström
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
de Carvalho CF. Epigenetic effects of climate change on insects. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101029. [PMID: 37028647 DOI: 10.1016/j.cois.2023.101029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 05/10/2023]
Abstract
Climate change has been causing severe modifications to the environment that are predicted to aggravate in the future, which create critical challenges for insects to cope. Populations can respond to the changes depending on the standing genetic variation. Additionally, they could potentially rely on epigenetic mechanisms as a source of phenotypic variation. These mechanisms can influence gene regulation and can respond to the external environment, being implicated in phenotypic plasticity. Thus, epigenetic variation could be advantageous in changing, unpredictable environments. However, little is known about causal relationships between epigenetic marks and insects' phenotypes, and whether the effects are truly beneficial to the fitness. Empirical studies are now urgent to better understand whether epigenetic variation can help or hinder insect populations facing climate change.
Collapse
Affiliation(s)
- Clarissa F de Carvalho
- Dep. de Ecologia e Biologia Evolutiva, Federal University of São Paulo, Diadema 09972-270, Brazil.
| |
Collapse
|
7
|
Aagaard A, Liu S, Tregenza T, Braad Lund M, Schramm A, Verhoeven KJF, Bechsgaard J, Bilde T. Adapting to climate with limited genetic diversity: Nucleotide, DNA methylation and microbiome variation among populations of the social spider Stegodyphus dumicola. Mol Ecol 2022; 31:5765-5783. [PMID: 36112081 PMCID: PMC9827990 DOI: 10.1111/mec.16696] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 02/06/2023]
Abstract
Understanding the role of genetic and nongenetic variants in modulating phenotypes is central to our knowledge of adaptive responses to local conditions and environmental change, particularly in species with such low population genetic diversity that it is likely to limit their evolutionary potential. A first step towards uncovering the molecular mechanisms underlying population-specific responses to the environment is to carry out environmental association studies. We associated climatic variation with genetic, epigenetic and microbiome variation in populations of a social spider with extremely low standing genetic diversity. We identified genetic variants that are associated strongly with environmental variation, particularly with average temperature, a pattern consistent with local adaptation. Variation in DNA methylation in many genes was strongly correlated with a wide set of climate parameters, thereby revealing a different pattern of associations than that of genetic variants, which show strong correlations to a more restricted range of climate parameters. DNA methylation levels were largely independent of cis-genetic variation and of overall genetic population structure, suggesting that DNA methylation can work as an independent mechanism. Microbiome composition also correlated with environmental variation, but most strong associations were with precipitation-related climatic factors. Our results suggest a role for both genetic and nongenetic mechanisms in shaping phenotypic responses to local environments.
Collapse
Affiliation(s)
- Anne Aagaard
- Section for Genetics, Ecology & Evolution, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Shenglin Liu
- Section for Genetics, Ecology & Evolution, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Tom Tregenza
- Centre for Ecology & Conservation, School of BiosciencesUniversity of ExeterPenryn CampusUK
| | - Marie Braad Lund
- Section for Microbiology, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Andreas Schramm
- Section for Microbiology, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Koen J. F. Verhoeven
- Terrestrial Ecology DepartmentNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Jesper Bechsgaard
- Section for Genetics, Ecology & Evolution, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Trine Bilde
- Section for Genetics, Ecology & Evolution, Department of BiologyAarhus UniversityAarhus CDenmark
| |
Collapse
|
8
|
Luviano N, Duval D, Ittiprasert W, Allienne JF, Tavernier G, Chaparro C, Cosseau C, Grunau C. Hit-and-Run Epigenetic Editing for Vectors of Snail-Borne Parasitic Diseases. Front Cell Dev Biol 2022; 10:794650. [PMID: 35295851 PMCID: PMC8920497 DOI: 10.3389/fcell.2022.794650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/03/2022] [Indexed: 11/25/2022] Open
Abstract
Snail-borne parasitic diseases represent an important challenge to human and animal health. Control strategies that target the intermediate snail host has proved very effective. Epigenetic mechanisms are involved in developmental processes and therefore play a fundamental role in developmental variation. DNA methylation is an important epigenetic information carrier in eukaryotes that plays a major role in the control of chromatin structure. Epigenome editing tools have been instrumental to demonstrate functional importance of this mark for gene expression in vertebrates. In invertebrates, such tools are missing, and the role of DNA methylation remains unknown. Here we demonstrate that methylome engineering can be used to modify in vivo the CpG methylation level of a target gene in the freshwater snail Biomphalaria glabrata, intermediate host of the human parasite Schistosoma mansoni. We used a dCas9-SunTag-DNMT3A complex and synthetic sgRNA to transfect B. glabrata embryos and observed an increase of CpG methylation at the target site in 50% of the hatching snails.
Collapse
Affiliation(s)
- Nelia Luviano
- IHPE, Univ Perpignan Via Domitia, CNRS, Ifremer, Univ Montpellier, Perpignan, France
| | - David Duval
- IHPE, Univ Perpignan Via Domitia, CNRS, Ifremer, Univ Montpellier, Perpignan, France
| | - Wannaporn Ittiprasert
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
- Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| | | | - Geneviève Tavernier
- Transgenesis Core Facility of UMS006/Inserm/Paul Sabatier University/National Medical Veterinary School, Toulouse, France
- Inserm UMR 1048, Paul Sabatier University, Toulouse, France
| | - Cristian Chaparro
- IHPE, Univ Perpignan Via Domitia, CNRS, Ifremer, Univ Montpellier, Perpignan, France
| | - Celine Cosseau
- IHPE, Univ Perpignan Via Domitia, CNRS, Ifremer, Univ Montpellier, Perpignan, France
| | - Christoph Grunau
- IHPE, Univ Perpignan Via Domitia, CNRS, Ifremer, Univ Montpellier, Perpignan, France
| |
Collapse
|
9
|
Baci GM, Cucu AA, Giurgiu AI, Muscă AS, Bagameri L, Moise AR, Bobiș O, Rațiu AC, Dezmirean DS. Advances in Editing Silkworms ( Bombyx mori) Genome by Using the CRISPR-Cas System. INSECTS 2021; 13:28. [PMID: 35055871 PMCID: PMC8777690 DOI: 10.3390/insects13010028] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) represents a powerful genome editing technology that revolutionized in a short period of time numerous natural sciences branches. Therefore, extraordinary progress was made in various fields, such as entomology or biotechnology. Bombyx mori is one of the most important insects, not only for the sericulture industry, but for numerous scientific areas. The silkworms play a key role as a model organism, but also as a bioreactor for the recombinant protein production. Nowadays, the CRISPR-Cas genome editing system is frequently used in order to perform gene analyses, to increase the resistance against certain pathogens or as an imaging tool in B. mori. Here, we provide an overview of various studies that made use of CRISPR-Cas for B. mori genome editing, with a focus on emphasizing the high applicability of this system in entomology and biological sciences.
Collapse
Affiliation(s)
- Gabriela-Maria Baci
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Alexandra-Antonia Cucu
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Alexandru-Ioan Giurgiu
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Adriana-Sebastiana Muscă
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Lilla Bagameri
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Adela Ramona Moise
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Otilia Bobiș
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | | | - Daniel Severus Dezmirean
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| |
Collapse
|
10
|
Liu Y, Yang C, Sun L, Wang A, Lan X, Xu W, Liang Y, Ma S, Xia Q. In-depth transcriptome unveils the cadmium toxicology and a novel metallothionein in silkworm. CHEMOSPHERE 2021; 273:128522. [PMID: 33066968 DOI: 10.1016/j.chemosphere.2020.128522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Heavy metal pollution has gradually become a major global issue. It is so far reaching in part because heavy metals are absorbed by soil and affect almost all species via ecological cycles. Silkworms (Bombyx mori) are poisoned by heavy metals through a soil-mulberry-silkworm system, which inhibits larval growth and development and leads to a decrease in silk production. In the present study, we performed transcriptome sequencing of larval midgut with cadmium exposure to explore the toxicological mechanism of heavy metal, and found that the following potential pathways may be involved in cadmium infiltration: endocytosis, oxidative phosphorylation, and MAPK signaling. Moreover, we identified a novel metallothionein in silkworm, which is inhibited by cadmium exposure and able to improve heavy metal tolerance in B. mori cell lines and Escherichia coli. We also generated a transgenic silkworm strain overexpressing metallothionein and the result showed that metallothionein observably enhanced larval viability under cadmium exposure. This study used RNA sequencing to reveal a mechanism for cadmium toxicology, and identified and functionally verified BmMT, offering a new potential heavy metal-tolerant silkworm variety.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, 400716, China
| | - Chengfei Yang
- Department of Urology, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Le Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, 400716, China
| | - Aoming Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, 400716, China
| | - Xinhui Lan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, 400716, China
| | - Wei Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, 400716, China
| | - Yan Liang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, 400716, China
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, 400716, China.
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
11
|
Liu Y, Chang J, Yang C, Zhang T, Chen X, Shi R, Liang Y, Xia Q, Ma S. Genome-wide CRISPR-Cas9 screening in Bombyx mori reveals the toxicological mechanisms of environmental pollutants, fluoride and cadmium. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124666. [PMID: 33279320 DOI: 10.1016/j.jhazmat.2020.124666] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/27/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Fluoride and cadmium, two typical environmental pollutants, have been extensively existed in the ecosystem and severely injured various organisms including humans. To explore the toxicological properties and the toxicological mechanism of fluoride and cadmium in silkworm, we perform a CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) -based functional genomic screen, which can directly measure the genetic requirement of genes in response to the pollutants. Our screen identifies 751 NaF-resistance genes, 753 NaF-sensitive genes, 757 CdCl2-resistance genes, and 725 CdCl2-sensitive genes. The top-ranked resistant genes are experimentally verified and the results show that their loss conferred resistance to fluoride or cadmium. Functional analysis of the resistant- and sensitive-genes demonstrates enrichment of multiple signaling pathways, among which the MAPK signaling pathway and DNA damage and repair are both required for fluoride- or cadmium-induced cell death, whereas the Toll and Imd signaling pathway and Autophagy are fluoride- or cadmium-specific. Moreover, we confirm that these pathways are truly involved in the toxicological mechanism in both cultured cells and individual tissues. Our results supply potential targets for rescuing the biohazards of fluoride and cadmium in silkworm, and reveal the feasible toxicological mechanism, which highlights the role of functional genomic screens in elucidating the toxicity mechanisms of environmental pollutants.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Jiasong Chang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Chengfei Yang
- Department of Urology, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Tong Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Xiaoxu Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Run Shi
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Yan Liang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.
| |
Collapse
|
12
|
Li X, Huang L, Pan L, Wang B, Pan L. CRISPR/dCas9-mediated epigenetic modification reveals differential regulation of histone acetylation on Aspergillus niger secondary metabolite. Microbiol Res 2021; 245:126694. [PMID: 33482403 DOI: 10.1016/j.micres.2020.126694] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 12/05/2020] [Accepted: 12/30/2020] [Indexed: 11/25/2022]
Abstract
Epigenetic studies on secondary metabolites (SMs) mainly relied so far on non-selective epigenetic factors deletion or feeding epigenetic inhibitors in Aspergillus niger. Although technologies developed for epigenome editing at specific loci now enable the direct study of the functional relevance of precise gene regulation and epigenetic modification, relevant assays are limited in filamentous fungi. Herein, we show that CRISPR/dCas9-mediated histone epigenetic modification systems efficiently reprogramed the expression of target genes in A. niger. First, we constructed a p300-dCas9 system and demonstrated the activation of a EGFP fluorescent reporter. Second, by precisely locating histone acetylase p300 on ATG adjacent region of secondary metabolic gene breF, the transcription of breF was activated. Third, p300-dCas9 was guided to the native polyketide synthase (PKS) gene fuml, which increased production of the compound fumonisin B2 detected by HPLC and LC-MS. Then, endogenous histone acetylase GcnE-dCas9 and histone deacetylases HosA-dCas9 and RpdA-dCas9 repressed the transcription of breF. Finally, by targeting HosA-dCa9 fusion to pigment gene fwnA, we confirmed that histone deacetylase HosA activated the expression of fwnA, accelerated the synthesis of melanin. Targeted epigenome editing is a promising technology and this study is the first time to apply the epigenetic CRISPR/dCas9 system on regulating the expression of the secondary metabolic genes in A. niger.
Collapse
Affiliation(s)
- Xuejie Li
- School of Biology and Biological Engineering, South China University of Technology, No. 382 Waihuan East Rd, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Lianggang Huang
- School of Biology and Biological Engineering, South China University of Technology, No. 382 Waihuan East Rd, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Lijie Pan
- School of Biology and Biological Engineering, South China University of Technology, No. 382 Waihuan East Rd, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Bin Wang
- School of Biology and Biological Engineering, South China University of Technology, No. 382 Waihuan East Rd, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Li Pan
- School of Biology and Biological Engineering, South China University of Technology, No. 382 Waihuan East Rd, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| |
Collapse
|
13
|
Chang J, Chen X, Zhang T, Wang R, Wang A, Lan X, Zhou Y, Ma S, Xia Q. The novel insight into the outcomes of CRISPR/Cas9 editing intra- and inter-species. Int J Biol Macromol 2020; 163:711-717. [PMID: 32652159 DOI: 10.1016/j.ijbiomac.2020.07.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
Abstract
The CRISPR/Cas (clustered regularly interspaced short palindromic repeat technology/CRISPR-associated protein) is a widely used and powerful research tool in biosciences and a promising therapeutic agent for treating genetic diseases. Mutations induced by Cas9 are generally considered stochastic and unpredictable, thus hindering its applications where precise genetic alternations are required. Here, through deep sequencing and analysis of genome editing outcomes of multiple sites in four distinct species, we found that Cas9-induced mutations are coincident in mutation types but are significantly different in indel patterns among species. In human and mouse cells, indels were almost evenly distributed at both ends of the cleavage sites. However, the indels mainly appeared at the upstream of cleavage sites in Bombyx mori, while they predominantly occurred downstream of the cleavage sites in the zebrafish Danio rerio. We also found that within a species, indel patterns are sequence dependent, wherein deletions between two adjacent micro-homology sequences were the most frequently observed mutations in the repair spectrum. These results suggested the species differences in DNA repair processes during Cas9-induced gene editing, and the important role of sequence structure at the target site in predicting the gene editing outcome.
Collapse
Affiliation(s)
- Jiasong Chang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Xiaoxu Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Tong Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Ruolin Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Aoming Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Xinhui Lan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Yuyu Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.
| |
Collapse
|
14
|
Maroufi F, Maali A, Abdollahpour-Alitappeh M, Ahmadi MH, Azad M. CRISPR-mediated modification of DNA methylation pattern in the new era of cancer therapy. Epigenomics 2020; 12:1845-1859. [PMID: 33185489 DOI: 10.2217/epi-2020-0110] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the last 2 decades, a wide variety of studies have been conducted on epigenetics and its role in various cancers. A major mechanism of epigenetic regulation is DNA methylation, including aberrant DNA methylation variations such as hypermethylation and hypomethylation in the promoters of critical genes, which are commonly detected in tumors and mark the early stages of cancer development. Therefore, epigenetic therapy has been of special importance in the last decade for cancer treatment. In epigenetic therapy, all efforts are made to modulate gene expression to the normal status. Importantly, recent studies have shown that epigenetic therapy is focusing on the new gene editing technology, CRISPR-Cas9. This tool was found to be able to effectively modulate gene expression and alter almost any sequence in the genome of cells, resulting in events such as a change in acetylation, methylation, or histone modifications. Of note, the CRISPR-Cas9 system can be used for the treatment of cancers caused by epigenetic alterations. The CRISPR-Cas9 system has greater advantages than other available methods, including potent activity, easy design and high velocity as well as the ability to target any DNA or RNA site. In this review, we described epigenetic modulators, which can be used in the CRISPR-Cas9 system, as well as their functions in gene expression alterations that lead to cancer initiation and progression. In addition, we surveyed various species of CRISPR-dead Cas9 (dCas9) systems, a mutant version of Cas9 with no endonuclease activity. Such systems are applicable in epigenetic therapy for gene expression modulation through chemical group editing on nucleosomes and chromatin remodeling, which finally return the cell to the normal status and prevent cancer progression.
Collapse
Affiliation(s)
- Faezeh Maroufi
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amirhosein Maali
- Student Research Committee, Pasteur institute of Iran, Tehran, Iran.,Department of Medical Biotechnology, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Mohammad Hossein Ahmadi
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehdi Azad
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
15
|
Liu Y, Li Y, Liang Y, Wang T, Yang C, Ma S, Xia Q. Comparative analysis of genome editing systems, Cas9 and BE3, in silkworms. Int J Biol Macromol 2020; 158:486-492. [PMID: 32344085 DOI: 10.1016/j.ijbiomac.2020.04.170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/26/2022]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) system and the Cas9-derived proteins have been applied to genome editing in various organisms. Traditional Cas9 is typically used to knockout genes or specific DNA fragments based on the generation of double-stranded breaks, whereas nCas9 and dCas9 are fused with effectors to perform base pair transitions or epigenetic modification and regulation. However, this system has off-target effects and can cause genomic structure variations. Here, we comparatively analyzed Cas9 and BE3, an initial base editor based on the nCas9 fusion protein, in silkworms. Our results showed that base editing was superior to Cas9 in silkworm cultured cells. BE3 introduced accurate termination codons, whereas Cas9 did not. Moreover, Cas9 induced chromosome translocation, chromosome fragment repetition, and chromosome fragment deletion, with the deletion frequency reaching up to 4.29%. BE3 was not able to induce these changes in our study. Furthermore, Cas9-derived proteins blocked ribosome advance and mRNA transcription for 9 days, with a 9.40% repression effect by combining with double-stranded DNA when single guide RNAs were targeted in the coding region in silkworms. Overall, our findings established a strategy for choosing suitable editing tools for various applications in different organisms.
Collapse
Affiliation(s)
- Yue Liu
- Biological Science Research Center, Southwest University, Chongqing 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Yufeng Li
- Biological Science Research Center, Southwest University, Chongqing 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Yan Liang
- Biological Science Research Center, Southwest University, Chongqing 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Ting Wang
- Biological Science Research Center, Southwest University, Chongqing 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Chengfei Yang
- Department of Urology, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Sanyuan Ma
- Biological Science Research Center, Southwest University, Chongqing 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.
| |
Collapse
|