1
|
Song J, Li W, Gao L, Yan Q, Zhang X, Liu M, Zhou S. miR-276 and miR-182013-5p modulate insect metamorphosis and reproduction via dually regulating juvenile hormone acid methyltransferase. Commun Biol 2024; 7:1604. [PMID: 39623057 PMCID: PMC11612435 DOI: 10.1038/s42003-024-07285-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024] Open
Abstract
Juvenile hormone (JH) represses insect metamorphosis and stimulates reproduction. JH titers are generally low in juveniles, drop to a nadir during metamorphosis, increase after eclosion and peak in vitellogenic phase. We found that Jhamt, a rate-limiting enzyme in JH biosynthesis, mirrors JH titer patterns in the migratory locust. Knocking down Jhamt reduced JH titers, led to precocious nymphal ecdysis, metamorphosis and impaired vitellogenesis. Jhamt is negatively regulated by miR-276 and positively by miR-182013-5p. miR-276 is abundant in late nymphal but low in adults, while miR-182013-5p shows the opposite pattern. In nymphs, miR-276 binds more to Jhamt, while in adults, miR-182013-5p dominates. Functionally, miR-276 reduced Jhamt and JH levels, shortening nymphal development and inhibiting Vg expression. Conversely, miR-182013-5p increased Jhamt and JH levels, prolonging nymphal development and enhancing Vg expression. Our findings identify miR-276 and miR-182013-5p as dual regulators in JH biosynthesis, acting as "brake" and "accelerator," respectively. This study provides new insights into JH titer fluctuations and miRNA regulation in insect metamorphosis and reproduction.
Collapse
Affiliation(s)
- Jiasheng Song
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Wanwan Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Lulu Gao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiang Yan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Xinyan Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Mingzhi Liu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China
| | - Shutang Zhou
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
2
|
Kim MS, Yang Z, Lee JS. In silico identification and characterization of microRNAs from rotifers, cladocerans, and copepods. MARINE POLLUTION BULLETIN 2024; 209:117098. [PMID: 39442355 DOI: 10.1016/j.marpolbul.2024.117098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
MicroRNAs (miRNAs) are short non-coding RNA molecules that regulate post-transcription and influence various biological processes across species. Despite various studies of miRNAs in vertebrates, plants, and other organisms, miRNA data in aquatic invertebrates are insufficient. In this study, we identified miRNAs from four aquatic invertebrate species that are widely used in aquatic toxicology: the rotifer Brachionus koreanus, the water flea Daphnia magna, the cyclopoid copepod Paracyclopina nana, and the harpacticoid copepod Tigriopus japonicus, using next-generation sequencing and in silico analysis. We identified total 188, 41, 47, and 100 miRNAs from each species, and target genes were predicted based on 3'-untranslated region information. Target prediction and functional annotation results provided the biological processes of these miRNAs in various development-related mechanisms, signaling transduction, and metabolism-related pathways. Moreover, the network between the miRNAs and their targets concerning defense-related and antioxidant genes suggests the suitability of miRNAs as biomarkers in ecotoxicological studies.
Collapse
Affiliation(s)
- Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
3
|
Geens B, Goossens S, Li J, Van de Peer Y, Vanden Broeck J. Untangling the gordian knot: The intertwining interactions between developmental hormone signaling and epigenetic mechanisms in insects. Mol Cell Endocrinol 2024; 585:112178. [PMID: 38342134 DOI: 10.1016/j.mce.2024.112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Hormones control developmental and physiological processes, often by regulating the expression of multiple genes simultaneously or sequentially. Crosstalk between hormones and epigenetics is pivotal to dynamically coordinate this process. Hormonal signals can guide the addition and removal of epigenetic marks, steering gene expression. Conversely, DNA methylation, histone modifications and non-coding RNAs can modulate regional chromatin structure and accessibility and regulate the expression of numerous (hormone-related) genes. Here, we provide a review of the interplay between the classical insect hormones, ecdysteroids and juvenile hormones, and epigenetics. We summarize the mode-of-action and roles of these hormones in post-embryonic development, and provide a general overview of epigenetic mechanisms. We then highlight recent advances on the interactions between these hormonal pathways and epigenetics, and their involvement in development. Furthermore, we give an overview of several 'omics techniques employed in the field. Finally, we discuss which questions remain unanswered and possible avenues for future research.
Collapse
Affiliation(s)
- Bart Geens
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Stijn Goossens
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Jia Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| |
Collapse
|
4
|
Barton LJ, Sanny J, Packard Dawson E, Nouzova M, Noriega FG, Stadtfeld M, Lehmann R. Juvenile hormones direct primordial germ cell migration to the embryonic gonad. Curr Biol 2024; 34:505-518.e6. [PMID: 38215744 PMCID: PMC10872347 DOI: 10.1016/j.cub.2023.12.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/31/2023] [Accepted: 12/12/2023] [Indexed: 01/14/2024]
Abstract
Germ cells are essential to sexual reproduction. Across the animal kingdom, extracellular signaling isoprenoids, such as retinoic acids (RAs) in vertebrates and juvenile hormones (JHs) in invertebrates, facilitate multiple processes in reproduction. Here we investigated the role of these potent signaling molecules in embryonic germ cell development, using JHs in Drosophila melanogaster as a model system. In contrast to their established endocrine roles during larval and adult germline development, we found that JH signaling acts locally during embryonic development. Using an in vivo biosensor, we observed active JH signaling first within and near primordial germ cells (PGCs) as they migrate to the developing gonad. Through in vivo and in vitro assays, we determined that JHs are both necessary and sufficient for PGC migration. Analysis into the mechanisms of this newly uncovered paracrine JH function revealed that PGC migration was compromised when JHs were decreased or increased, suggesting that specific titers or spatiotemporal JH dynamics are required for robust PGC colonization of the gonad. Compromised PGC migration can impair fertility and cause germ cell tumors in many species, including humans. In mammals, retinoids have many roles in development and reproduction. We found that like JHs in Drosophila, RA was sufficient to impact mouse PGC migration in vitro. Together, our study reveals a previously unanticipated role of isoprenoids as local effectors of pre-gonadal PGC development and suggests a broadly shared mechanism in PGC migration.
Collapse
Affiliation(s)
- Lacy J Barton
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, and Howard Hughes Medical Institute, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA; Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| | - Justina Sanny
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, and Howard Hughes Medical Institute, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Emily Packard Dawson
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, and Howard Hughes Medical Institute, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Marcela Nouzova
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, 11200 SW 8(th) Street, Miami, FL 33199, USA; Institute of Parasitology, Biology Centre CAS, 37005 Ceske Budejovice, Czech Republic
| | - Fernando Gabriel Noriega
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, 11200 SW 8(th) Street, Miami, FL 33199, USA; Department of Parasitology, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Matthias Stadtfeld
- Sanford I. Weill Department of Medicine, Weill Cornell Medicine, 413 E 69th Street, New York, NY, USA
| | - Ruth Lehmann
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, and Howard Hughes Medical Institute, NYU Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA; Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
5
|
Qi Z, Etebari K, Nouzova M, Noriega FG, Asgari S. Differential gene expression and microRNA profile in corpora allata-corpora cardiaca of Aedes aegypti mosquitoes with weak juvenile hormone signalling. BMC Genomics 2024; 25:113. [PMID: 38273232 PMCID: PMC10811912 DOI: 10.1186/s12864-024-10007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
The corpora allata-corpora cardiaca (CA-CC) is an endocrine gland complex that regulates mosquito development and reproduction through the synthesis of juvenile hormone (JH). Epoxidase (Epox) is a key enzyme in the production of JH. We recently utilized CRISPR/Cas9 to establish an epoxidase-deficient (epox-/-) Aedes aegypti line. The CA from epox-/- mutants do not synthesize epoxidated JH III but methyl farneosate (MF), a weak agonist of the JH receptor, and therefore have reduced JH signalling. Illumina sequencing was used to examine the differences in gene expression between the CA-CC from wild type (WT) and epox-/- adult female mosquitoes. From 18,034 identified genes, 317 were significantly differentially expressed. These genes are involved in many biological processes, including the regulation of cell proliferation and apoptosis, energy metabolism, and nutritional uptake. In addition, the same CA-CC samples were also used to examine the microRNA (miRNA) profiles of epox-/- and WT mosquitoes. A total of 197 miRNAs were detected, 24 of which were differentially regulated in epox-/- mutants. miRNA binding sites for these particular miRNAs were identified using an in silico approach; they target a total of 101 differentially expressed genes. Our results suggest that a lack of epoxidase, besides affecting JH synthesis, results in the diminishing of JH signalling that have significant effects on Ae. aegypti CA-CC transcriptome profiles, as well as its miRNA repertoire.
Collapse
Affiliation(s)
- Zhi Qi
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Kayvan Etebari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Marcela Nouzova
- Institute of Parasitology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Fernando G Noriega
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
- Department of Parasitology, University of South Bohemia, České Budějovice, Czech Republic
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
6
|
Abbas MN, Kausar S, Gul I, Li J, Yu H, Dong M, Cui H. The Potential Biological Roles of Circular RNAs in the Immune Systems of Insects to Pathogen Invasion. Genes (Basel) 2023; 14:genes14040895. [PMID: 37107653 PMCID: PMC10137924 DOI: 10.3390/genes14040895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Circular RNAs (circRNAs) are a newly discovered class of endogenously expressed non-coding RNAs (ncRNAs). They are highly stable, covalently closed molecules that frequently exhibit tissue-specific expression in eukaryotes. A small number of circRNAs are abundant and have been remarkably conserved throughout evolution. Numerous circRNAs are known to play important biological roles by acting as microRNAs (miRNAs) or protein inhibitors ('sponges'), by regulating the function of proteins, or by being translated themselves. CircRNAs have distinct cellular functions due to structural and production differences from mRNAs. Recent advances highlight the importance of characterizing circRNAs and their targets in a variety of insect species in order to fully understand how they contribute to the immune responses of these insects. Here, we focus on the recent advances in our understanding of the biogenesis of circRNAs, regulation of their abundance, and biological roles, such as serving as templates for translation and in the regulation of signaling pathways. We also discuss the emerging roles of circRNAs in regulating immune responses to various microbial pathogens. Furthermore, we describe the functions of circRNAs encoded by microbial pathogens that play in their hosts.
Collapse
Affiliation(s)
- Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Saima Kausar
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Isma Gul
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Jisheng Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Huijuan Yu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Mengyao Dong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
7
|
Li C, Wu W, Tang J, Feng F, Chen P, Li B. Identification and Characterization of Development-Related microRNAs in the Red Flour Beetle, Tribolium castaneum. Int J Mol Sci 2023; 24:ijms24076685. [PMID: 37047657 PMCID: PMC10094939 DOI: 10.3390/ijms24076685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 04/07/2023] Open
Abstract
MicroRNAs (miRNAs) play important roles in insect growth and development, but they were poorly studied in insects. In this study, a total of 883 miRNAs were detected from the early embryo (EE), late larva (LL), early pupa (EP), late pupa (LP), and early adult (EA) of Tribolium castaneum by microarray assay. Further analysis identified 179 differentially expressed unique miRNAs (DEmiRNAs) during these developmental stages. Of the DEmiRNAs, 102 DEmiRNAs exhibited stage-specific expression patterns during development, including 53 specifically highly expressed miRNAs and 20 lowly expressed miRNAs in EE, 19 highly expressed miRNAs in LL, 5 weakly expressed miRNAs in EP, and 5 abundantly expressed miRNAs in EA. These miRNAs were predicted to target 747, 265, 472, 234, and 121 genes, respectively. GO enrichment analysis indicates that the targets were enriched by protein phosphorylation, calcium ion binding, sequence-specific DNA binding transcription factor activity, and cytoplasm. An RNA interference-mediated knockdown of the DEmiRNAs tca-miR-6-3p, tca-miR-9a-3p, tca-miR-9d-3p, tca-miR-11-3p, and tca-miR-13a-3p led to defects in metamorphosis and wing development of T. castaneum. This study has completed the identification and characterization of development-related miRNAs in T. castaneum, and will enable us to investigate their roles in the growth and development of insect.
Collapse
Affiliation(s)
- Chengjun Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Wei Wu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jing Tang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Fan Feng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Peng Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
8
|
Noncoding RNA Regulation of Hormonal and Metabolic Systems in the Fruit Fly Drosophila. Metabolites 2023; 13:metabo13020152. [PMID: 36837772 PMCID: PMC9967906 DOI: 10.3390/metabo13020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The importance of RNAs is commonly recognised thanks to protein-coding RNAs, whereas non-coding RNAs (ncRNAs) were conventionally regarded as 'junk'. In the last decade, ncRNAs' significance and roles are becoming noticeable in various biological activities, including those in hormonal and metabolic regulation. Among the ncRNAs: microRNA (miRNA) is a small RNA transcript with ~20 nucleotides in length; long non-coding RNA (lncRNA) is an RNA transcript with >200 nucleotides; and circular RNA (circRNA) is derived from back-splicing of pre-mRNA. These ncRNAs can regulate gene expression levels at epigenetic, transcriptional, and post-transcriptional levels through various mechanisms in insects. A better understanding of these crucial regulators is essential to both basic and applied entomology. In this review, we intend to summarise and discuss the current understanding and knowledge of miRNA, lncRNA, and circRNA in the best-studied insect model, the fruit fly Drosophila.
Collapse
|
9
|
Zhou QH, Zhang Q, Yang RL, Yuan GR, Wang JJ, Dou W. RNAi-mediated knockdown of juvenile hormone acid O-methyltransferase disrupts larval development in the oriental fruit fly, Bactrocera dorsalis (Hendel). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105285. [PMID: 36464328 DOI: 10.1016/j.pestbp.2022.105285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
The oriental fruit fly, Bactrocera dorsalis (Hendel), is a notoriously agricultural pest that causes serious economic losses to fruits and vegetables. Widespread insecticide resistance in B. dorsalis is a major obstacle in successful control. Therefore, new pest control strategies, such as those targeting specific genes that can block pest development, are urgently needed. In the current study, the function of JHAMT in B. dorsalis was systematically investigated. A methyltransferase gene in B. dorsalis (BdJHAMT) that is homologous to JHAMT of Drosophila melanogaster was cloned firstly. The subsequently spatiotemporal expression analysis indicated that BdJHAMT mRNA was continuously present in the larval stage, declined sharply immediately before pupation, and then increased in the adult. Subcellular localization showed that BdJHAMT was localized in the adult corpora allata and larval intestinal wall cells. The JH III titer in B. dorsalis was closely related to the transcription level of BdJHAMT in different developmental stages. The dsBdJHAMT feeding-based RNAi resulted in a greatly decreased JH III titer that disrupted fly development. The slow growth caused by BdJHAMT silencing was partially rescued by application of the JH mimic, methoprene. These results demonstrated that BdJHAMT was crucial for JH biosynthesis and thus regulated larval development in B. dorsalis, indicating it may serve as a prospective target for the development of novel control strategies against this pest.
Collapse
Affiliation(s)
- Qi-Hao Zhou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Qiang Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Rui-Lin Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
10
|
Khashaveh A, An X, Shan S, Pang X, Li Y, Fu X, Zhang Y. The microRNAs in the antennae of Apolygus lucorum (Hemiptera: Miridae): Expression properties and targets prediction. Genomics 2022; 114:110447. [PMID: 35963492 DOI: 10.1016/j.ygeno.2022.110447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 11/04/2022]
Abstract
MicroRNAs (miRNAs) regulate gene expression and contribute to numerous physiological processes. However, little is known about the functions of miRNAs in insect chemosensation. In this study, nine small RNA libraries were constructed and sequenced from the antennae of nymphs, adult males, and adult females of Apolygus lucorum. In total, 399 (275 known and 124 novel) miRNAs were identified. miR-7-5p_1 was the most abundant miRNA. Altogether, 69,708 target genes related to biogenesis, membrane, and binding activities were predicted. In particular, 15 miRNAs targeted 16 olfactory genes. Comparing the antennae of nymphs and adult males and females, 94 miRNAs were differentially expressed. Alternatively, a subset of differentially expressed miRNAs was verified by qPCR, supporting the reliability of the sequencing results. This study provides a global miRNA transcriptome for the antennae of A. lucorum and valuable information for further investigations of the functions of miRNAs in the regulation of chemosensation.
Collapse
Affiliation(s)
- Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xingkui An
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoqian Pang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Resource and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiaowei Fu
- School of Resource and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
11
|
Sun Y, Fu D, Liu B, Wang L, Chen H. Functional Characterization of Allatostatin C (PISCF/AST) and Juvenile Hormone Acid O-Methyltransferase in Dendroctonus armandi. Int J Mol Sci 2022; 23:ijms23052749. [PMID: 35269892 PMCID: PMC8910878 DOI: 10.3390/ijms23052749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/27/2022] [Indexed: 11/20/2022] Open
Abstract
Allatostatin C (PISCF/AST) is a neuropeptide gene that affects juvenile hormone (JH) synthesis in the corpora allata. Juvenile hormone acid O-methyltransferase (JHAMT) is a key gene in the JH biosynthetic pathway. In this study, two genes encoding DaAST and DaJHAMT were cloned. Both DaAST and DaJHAMT were expressed in the larvae, pupae and adults of Chinese white pine beetle (Dendroctonus armandi), and highly expressed in the head and the gut. The expression of the two genes was induced by JH analog (JHA) methoprene and the functions of the two genes were then investigated by RNAi. Considering the role of hormones in metamorphosis, JHA significantly induced DaAST and DaJHAMT in the larval stage. DaAST knockdown in larvae, pupae and adults significantly increased the DaJHAMT mRNA levels. Moreover, knockdown of DaAST instead of DaJHAMT increased pupae mortality and the abnormal rate of emergence morphology and reduced emergence rates. However, knockdown of DaJHAMT instead of DaAST significantly reduced frontalin biosynthesis in adult males. The results showed that DaAST acts as an allatostatin and inhibits JH biosynthesis, and that JHAMT is a key regulatory enzyme for JH synthesis in the D. armandi.
Collapse
Affiliation(s)
- Yaya Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China;
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Xianyang 712100, China; (D.F.); (B.L.); (L.W.)
| | - Danyang Fu
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Xianyang 712100, China; (D.F.); (B.L.); (L.W.)
| | - Bin Liu
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Xianyang 712100, China; (D.F.); (B.L.); (L.W.)
| | - Linjun Wang
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling, Xianyang 712100, China; (D.F.); (B.L.); (L.W.)
| | - Hui Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China;
- Correspondence: ; Tel.: +86-02085280256
| |
Collapse
|
12
|
Zhang X, Li S, Liu S. Juvenile Hormone Studies in Drosophila melanogaster. Front Physiol 2022; 12:785320. [PMID: 35222061 PMCID: PMC8867211 DOI: 10.3389/fphys.2021.785320] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 12/02/2022] Open
Abstract
In the field of insect endocrinology, juvenile hormone (JH) is one of the most wondrous entomological terms. As a unique sesquiterpenoid hormone produced and released by the endocrine gland, corpus allatum (CA), JH is a critical regulator in multiple developmental and physiological processes, such as metamorphosis, reproduction, and behavior. Benefited from the precise genetic interventions and simplicity, the fruit fly, Drosophila melanogaster, is an indispensable model in JH studies. This review is aimed to present the regulatory factors on JH biosynthesis and an overview of the regulatory roles of JH in Drosophila. The future directions of JH studies are also discussed, and a few hot spots are highlighted.
Collapse
Affiliation(s)
- Xiaoshuai Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangmeiyuan R&D Center, South China Normal University, Meizhou, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangmeiyuan R&D Center, South China Normal University, Meizhou, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangmeiyuan R&D Center, South China Normal University, Meizhou, China
| |
Collapse
|