1
|
Liu Y, Yuan Y, Wang Y, Ngo HH, Wang J. Research and application of active species based on high-valent iron for the degradation of pollutants: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171430. [PMID: 38458457 DOI: 10.1016/j.scitotenv.2024.171430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Fe(VI), as a new green treatment agent, has two indispensable processes in water treatment: coagulation and oxidation. Fe(VI) has a strong oxidation ability. The intermediate iron species (Fe(V) and Fe(IV)) and reactive radical species (H2O2, •OH, and O2•-) produced by decomposition and reduction reaction have strong oxidation ability, in addition, the hydrolyzed product formed in situ with core (γ-Fe2O3)-shell (γ-FeOOH) structure also has good coagulation effect. Because Fe(VI) is easy to decompose and challenging to preserve, it limits the application and sometimes significantly reduces the subsequent processing effect. How to make Fe(VI) more efficient use is a hot spot in current research. This article summarizes the distribution of active substances during the hydrolysis of Fe(VI), distinguish the differences mechanisms in the similar regulation methods, reviews the current preparation methods of Fe(VI), and finally reviews the applications of Fe(VI) in the field of environmental remediation.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yang Yuan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yue Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia.
| | - Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
2
|
Chachkov DV, Mikhailov OV. Heteroligand Iron(V) Complexes Containing Porphyrazine, trans-Di[benzo]porphyrazine or Tetra[benzo]porphyrazine, Oxo and Fluoro Ligands: DFT Quantum-Chemical Study. Int J Mol Sci 2023; 24:ijms24076442. [PMID: 37047415 PMCID: PMC10094394 DOI: 10.3390/ijms24076442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
By using quantum chemical calculation data obtained by the DFT method with the B3PW91/TZVP and OPBE/TZVP levels, the possibility of the existence of three Fe(V) complexes, each of which contains in the inner coordination sphere porphyrazine/trans-di[benzo]porphyrazine/tetra[benzo]porphyrazine (phthalocyanine), oxygen (O2-) and fluorine (F-) ions, was shown. Key geometric parameters of the molecular structure of these heteroligand complexes are given; it is noted that FeN4 chelate nodes, and all metal-chelate and non-chelate cycles in each of these compounds, are practically planar with the deviation from coplanarity, as a rule, by no more than 0.5°. Furthermore, the bond angles between two nitrogen atoms and an Fe atom are equal to 90°, or less than this by no more than 0.1°, while the bond angles between donor atoms N, Fe, and O or F, in most cases, albeit insignificantly, differ from this value. Nevertheless, the bond angles formed by Fe, O and F atoms are exactly 180°. It is shown that good agreement occurs between the structural data obtained using the above two versions of the DFT method. NBO analysis data for these complexes are presented; it is noted that, according to both DFT methods used, the ground state of the each of three complexes under consideration may be a spin quartet or spin doublet. Additionally, standard thermodynamic parameters of formation (standard enthalpy ∆fH0, entropy S0 and Gibbs's energy ∆fG0) for the macrocyclic compounds under consideration are calculated.
Collapse
Affiliation(s)
- Denis V Chachkov
- Kazan Department of Joint Supercomputer Center of Russian Academy of Sciences-Branch of Federal Scientific Center "Scientific Research Institute for System Analysis of the RAS", Lobachevskii Street 2/31, 420111 Kazan, Russia
| | - Oleg V Mikhailov
- Department of Analytical Chemistry, Certification and Quality Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
3
|
Sharma VK, Feng M, Dionysiou DD, Zhou HC, Jinadatha C, Manoli K, Smith MF, Luque R, Ma X, Huang CH. Reactive High-Valent Iron Intermediates in Enhancing Treatment of Water by Ferrate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:30-47. [PMID: 34918915 DOI: 10.1021/acs.est.1c04616] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Efforts are being made to tune the reactivity of the tetraoxy anion of iron in the +6 oxidation state (FeVIO42-), commonly called ferrate, to further enhance its applications in various environmental fields. This review critically examines the strategies to generate highly reactive high-valent iron intermediates, FeVO43- (FeV) and FeIVO44- or FeIVO32- (FeIV) species, from FeVIO42-, for the treatment of polluted water with greater efficiency. Approaches to produce FeV and FeIV species from FeVIO42- include additions of acid (e.g., HCl), metal ions (e.g., Fe(III)), and reductants (R). Details on applying various inorganic reductants (R) to generate FeV and FeIV from FeVIO42- via initial single electron-transfer (SET) and oxygen-atom transfer (OAT) to oxidize recalcitrant pollutants are presented. The common constituents of urine (e.g., carbonate, ammonia, and creatinine) and different solids (e.g., silica and hydrochar) were found to accelerate the oxidation of pharmaceuticals by FeVIO42-, with potential mechanisms provided. The challenges of providing direct evidence of the formation of FeV/FeIV species are discussed. Kinetic modeling and density functional theory (DFT) calculations provide opportunities to distinguish between the two intermediates (i.e., FeIV and FeV) in order to enhance oxidation reactions utilizing FeVIO42-. Further mechanistic elucidation of activated ferrate systems is vital to achieve high efficiency in oxidizing emerging pollutants in various aqueous streams.
Collapse
Affiliation(s)
- Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas 77843, United States
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (DChEE), 705 Engineering Research Center, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Chetan Jinadatha
- Central Texas Veterans Health Care System, Temple, Texas 76504-7451, United States
- College of Medicine, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Kyriakos Manoli
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas 77843, United States
| | - Mallory F Smith
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Rafael Luque
- Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Cordoba, Campus de Rabanales, Edificio Marie Curie (C_3), Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198 Moscow, Russian Federation
| | - Xingmao Ma
- Zachery Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
4
|
Tiwari D. Ferrate(VI) a Greener Solution: Synthesis, Characterization, and Multifunctional Use in Treating Metal-Complexed Species in Aqueous Solution. ACS SYMPOSIUM SERIES 2016. [DOI: 10.1021/bk-2016-1238.ch007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Diwakar Tiwari
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl-796004, India
| |
Collapse
|
5
|
Ryabov AD. Green Challenges of Catalysis via Iron(IV)oxo and Iron(V)oxo Species. ADVANCES IN INORGANIC CHEMISTRY 2013. [DOI: 10.1016/b978-0-12-404582-8.00004-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
6
|
Sharma VK. Ferrate(VI) and ferrate(V) oxidation of organic compounds: Kinetics and mechanism. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.04.014] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Sharma VK. Oxidation of inorganic contaminants by ferrates (VI, V, and IV)--kinetics and mechanisms: a review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2011; 92:1051-73. [PMID: 21193263 DOI: 10.1016/j.jenvman.2010.11.026] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 10/31/2010] [Accepted: 11/29/2010] [Indexed: 05/21/2023]
Abstract
Inorganic contaminants are found in water, wastewaters, and industrial effluents and their oxidation using iron based oxidants is of great interest because such oxidants possess multi-functional properties and are environmentally benign. This review makes a critical assessment of the kinetics and mechanisms of oxidation reactions by ferrates (Fe(VI)O(4)(2-), Fe(V)O(4)(3-), and Fe(IV)). The rate constants (k, M(-1) s(-1)) for a series of inorganic compounds by ferrates are correlated with thermodynamic oxidation potentials. Correlations agree with the mechanisms of oxidation involving both one-electron and two-electron transfer processes to yield intermediates and products of the reactions. Case studies are presented which demonstrate that inorganic contaminants can be degraded in seconds to minutes by ferrate(VI) with the formation of non-toxic products.
Collapse
Affiliation(s)
- Virender K Sharma
- Chemistry Department and Center of Ferrate Excellence, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901, USA.
| |
Collapse
|
8
|
Yang J, Tiwari D, Yu M, Pachuau L, Kim W, Lee S. Application of Fe(VI) in the treatment of Zn(II)-NTA complexes in aqueous solutions. ENVIRONMENTAL TECHNOLOGY 2010; 31:791-798. [PMID: 20586241 DOI: 10.1080/09593331003664854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The higher oxidation state of iron, i.e. Fe(VI), was exploited to treat the synthetic wastewater containing Zn(II)-NTA. The decomposition of Zn(II)-NTA by Fe(VI) was investigated with the help of analytical data obtained for the change in Fe(VI) concentration, dissolved organic carbon (DOC) and total soluble Zn(II) concentration as a function of time at various concentrations of Zn(II)-NTA and at constant Fe(VI) concentration. The UV-Visible data was used to explain the reaction kinetics for redox reactions between Fe(VI) and Zn(II)-NTA. The pseudo-first-order rate constant was calculated keeping the Zn(II)-NTA concentration in excess and hence the overall second-order-rate constant was obtained. Fe(VI) reduction was almost unaffected with the 1000 times increase in ionic strength (NaNO3), as well as in the presence of completely oxidized background electrolytes. However, Fe(VI) reduction was greatly affected in the presence of both SO3(2-) and NO2(-) especially at higher concentrations, indicating a competitive reduction took place between Zn(II)-NTA and Na2SO3 or NaNO2 in the Fe(VI) treatment. These results were again supported by the dissolved organic carbon observations since relatively very low removal of the dissolved organic carbon occurred in the presence of Na2SO3 and NaNO2.
Collapse
Affiliation(s)
- J Yang
- Division of General Education, Kwangwoon University, Seoul 139-701, Korea
| | | | | | | | | | | |
Collapse
|
9
|
Sharma VK, Graham NJD, Li XZ, Yuan BL. Ferrate(VI) enhanced photocatalytic oxidation of pollutants in aqueous TiO2 suspensions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2010; 17:453-461. [PMID: 19495821 DOI: 10.1007/s11356-009-0170-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Accepted: 04/17/2009] [Indexed: 05/27/2023]
Abstract
BACKGROUND, AIM AND SCOPE Photocatalytic oxidation using UV irradiation of TiO(2) has been studied extensively and has many potential industrial applications, including the degradation of recalcitrant contaminants in water and wastewater treatment. A limiting factor in the oxidation process is the recombination of conduction band electrons (e(-)(cb)) with electron holes (h(vb)(+)) on the irradiated TiO(2) surface; thus, in aqueous conditions, the presence of an effective electron scavenger will be beneficial to the efficiency of the oxidation process. Ferrate (FeO(4)(2-)) has received much recent attention as a water treatment chemical since it behaves simultaneously as an oxidant and coagulant. The combination of ferrate [Fe(VI)] with UV/TiO(2) photocatalysis offers an oxidation synergism arising from the Fe(VI) scavenging of e(-)(cb) and the corresponding beneficial formation of Fe(V) from the Fe(VI) reduction. This paper reviews recent studies concerning the photocatalytic oxidation of problematic pollutants with and without ferrate. MATERIALS AND METHODS The paper reviews the published results of laboratory experiments designed to follow the photocatalytic degradation of selected contaminants of environmental significance and the influence of the experimental conditions (e.g. pH, reactant concentrations and dissolved oxygen). The specific compounds are as follows: ammonia, cyanate, formic acid, bisphenol-A, dibutyl- and dimethyl-phthalate and microcystin-LR. The principal focus in these studies has been on the rates of reaction rather than on reaction pathways and products. RESULTS The presence of UV/TiO(2) accelerates the chemical reduction of ferrate, and the reduction rate decreases with pH owing to deprotonation of ferrate ion. For all the selected contaminant substances, the photocatalytic oxidation rate was greater in the presence of ferrate, and this was believed to be synergistic rather than additive. The presence of dissolved oxygen in solution reduced the degradation rate of dimethyl phthalate in the ferrate/photocatalysis system. In the study of microcystin-LR, it was evident that an optimal ferrate concentration exists, whereby higher Fe(VI) concentrations above the optimum leads to a reduction in microcystin-LR degradation. In addition, the rate of microcystin-LR degradation was found to be strongly dependent on pH and was greatest at pH 6. DISCUSSION The initial rate of photocatalytic reduction under different conditions was analysed using a Langmuirian form. Decrease in rates in the presence of dissolved oxygen may be due to competition between oxygen and ferrate as electron scavengers and to non-productive radical species interactions. The reaction between ferrate(VI) and microcystins-LR in the pH range of 6.0-10.0 is most likely controlled by the protonated Fe(VI) species, HFeO(4)(-). CONCLUSIONS The photocatalytic oxidation of selected, recalcitrant contaminants was found to be significantly greater in the presence of ferrate, arising from the role of ferrate in inhibiting the h(vb)(+)-e(-)(cb) pair recombination on TiO(2) surfaces and the corresponding generation of highly oxidative Fe(V) species. The performance of the ferrate/photocatalysis system is strongly influenced by the reaction conditions, particularly the pH and dissolved oxygen concentration, arising from the complex nature of the interactions between the catalyst and the solution. Overall, the treatment performance of the Fe(VI)-TiO(2)-UV system is generally superior to alternative chemical oxidation methods. RECOMMENDATIONS AND PERSPECTIVES The formation of intermediate Fe(V) species in the photocatalytic reduction of ferrate(VI) requires confirmation, and a method involving electron paramagnetic resonance spectroscopy could be applied for this. The reactivity of Fe(V) with the selected contaminants is required in order to better understand the role of ferrate in the Fe(VI)-TiO(2)-UV oxidation system. To increase the practical utility of the system, it is recommended that future studies involving the photocatalytic oxidation of pollutants in the presence of ferrate(VI) should focus on developing modified TiO(2) surfaces that are photocatalytic under visible light conditions.
Collapse
Affiliation(s)
- Virender K Sharma
- Chemistry Department, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901, USA.
| | | | | | | |
Collapse
|
10
|
Sharma VK. Oxidation of nitrogen-containing pollutants by novel ferrate(VI) technology: a review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2010; 45:645-667. [PMID: 20390913 DOI: 10.1080/10934521003648784] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Nitrogen-containing pollutants have been found in surface waters and industrial wastewaters due to their presence in pesticides, dyes, proteins, and humic substances. Treatment of these compounds by conventional oxidants produces disinfection by-products (DBP). Ferrate(VI) (Fe(VI)O(4)(2-), Fe(VI)) is a strong oxidizing agent and produces a non-toxic by-product Fe(III), which acts as a coagulant. Ferrate(VI) is also an efficient disinfectant and can inactivate chlorine resistant microorganisms. A novel ferrate(VI) technology can thus treat a wide range of pollutants and microorganisms in water and wastewater. The aim of this paper is to review the kinetics and products of the oxidation of nitrogen-containing inorganic (ammonia, hydroxylamine, hydrazine, and azide) and organic (amines, amino acids, anilines, sulfonamides, macrolides, and dyes) compounds by ferrate(VI) in order to demonstrate the feasibility of ferrate(VI) treatment of polluted waters of various origins. Several of the compounds can degraded in seconds to minutes by ferrate(VI) with the formation of non-hazardous products. The mechanism of oxidation involves either one-electron or two-electrons processes to yield oxidation products. Future research directions critical for the implementation of the ferrate(VI)-based technology for wastewater and industrial effluents treatment are recommended.
Collapse
Affiliation(s)
- Virender K Sharma
- Chemistry Department, Florida Institute of Technology, Melbourne, Florida 32901, USA.
| |
Collapse
|