1
|
Tsave O, Iordanidou C, Hatzidimitriou A, Yavropoulou MP, Kassi EN, Nasiri-Ansari N, Gabriel C, Salifoglou A. Structural Speciation of Ti(IV)-(α-Hydroxycarboxylic Acid) Complexes in Metabolism-Related (Patho)Physiology-In Vitro Approaches to (Pre)Adipocyte Differentiation and Mineralization. Int J Mol Sci 2023; 24:11865. [PMID: 37511624 PMCID: PMC10380816 DOI: 10.3390/ijms241411865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The prospect of developing soluble and bioavailable Ti(IV) complex forms with physiological substrates, capable of influencing (patho)physiological aberrations, emerges as a challenge in the case of metabolism-related pathologies (e.g., diabetes mellitus 1 and 2). To that end, pH-specific synthetic efforts on binary Ti(IV)-(α-hydroxycarboxylic acid) systems, involving natural physiological chelator ligands (α-hydroxy isobutyric acid, D-quinic acid, 2-ethyl-2-hydroxybutyric acid) in aqueous media, led to the successful isolation of binary crystalline Ti(IV)-containing products. The new materials were physicochemically characterized by elemental analysis, FT-IR, TGA, and X-ray crystallography, revealing in all cases the presence of mononuclear Ti(IV) complexes bearing a TiO6 core, with three bound ligands of variable deprotonation state. Solution studies through electrospray ionization mass spectrometry (ESI-MS) revealed the nature of species arising upon dissolution of the title compounds in water, thereby formulating a solid-state-solution correlation profile necessary for further employment in biological experiments. The ensuing cytotoxicity profile (pre-adipocytes and osteoblasts) of the new materials supported their use in cell differentiation experiments, thereby unraveling their structure-specific favorable effect toward adipogenesis and mineralization through an arsenal of in vitro biological assays. Collectively, well-defined atoxic binary Ti(IV)-hydroxycaboxylato complexes, bearing bound physiological substrates, emerge as competent inducers of cell differentiation, intimately associated with cell maturation, thereby (a) associating the adipogenic (insulin mimetic properties) and osteogenic potential (mineralization) of titanium and (b) justifying further investigation into the development of a new class of multipotent titanodrugs.
Collapse
Affiliation(s)
- Olga Tsave
- Laboratory of Inorganic Chemistry and Advanced Materials, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Catherine Iordanidou
- Laboratory of Inorganic Chemistry and Advanced Materials, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Antonios Hatzidimitriou
- Laboratory of Inorganic Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria P Yavropoulou
- Endocrinology Unit, 1st Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eva N Kassi
- Endocrinology Unit, 1st Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Catherine Gabriel
- Laboratory of Inorganic Chemistry and Advanced Materials, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athanasios Salifoglou
- Laboratory of Inorganic Chemistry and Advanced Materials, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
2
|
Can M, Abernathy MJ, Wiley S, Griffith C, James CD, Xiong J, Guo Y, Hoffman BM, Ragsdale SW, Sarangi R. Characterization of Methyl- and Acetyl-Ni Intermediates in Acetyl CoA Synthase Formed during Anaerobic CO 2 and CO Fixation. J Am Chem Soc 2023; 145:13696-13708. [PMID: 37306669 PMCID: PMC10311460 DOI: 10.1021/jacs.3c01772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Indexed: 06/13/2023]
Abstract
The Wood-Ljungdahl Pathway is a unique biological mechanism of carbon dioxide and carbon monoxide fixation proposed to operate through nickel-based organometallic intermediates. The most unusual steps in this metabolic cycle involve a complex of two distinct nickel-iron-sulfur proteins: CO dehydrogenase and acetyl-CoA synthase (CODH/ACS). Here, we describe the nickel-methyl and nickel-acetyl intermediates in ACS completing the characterization of all its proposed organometallic intermediates. A single nickel site (Nip) within the A cluster of ACS undergoes major geometric and redox changes as it transits the planar Nip, tetrahedral Nip-CO and planar Nip-Me and Nip-Ac intermediates. We propose that the Nip intermediates equilibrate among different redox states, driven by an electrochemical-chemical (EC) coupling process, and that geometric changes in the A-cluster linked to large protein conformational changes control entry of CO and the methyl group.
Collapse
Affiliation(s)
- Mehmet Can
- Department
of Biochemistry, Faculty of Pharmacy, Ankara
Medipol University, Ankara 06050, Turkey
| | - Macon J. Abernathy
- Stanford
Synchrotron Radiation Lightsource, SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Seth Wiley
- Biosciences
Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Claire Griffith
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Christopher D. James
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jin Xiong
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yisong Guo
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Brian M. Hoffman
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Stephen W. Ragsdale
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ritimukta Sarangi
- Stanford
Synchrotron Radiation Lightsource, SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
3
|
Exploring Titanium(IV) Complexes as Potential Antimicrobial Compounds. Antibiotics (Basel) 2022; 11:antibiotics11020158. [PMID: 35203761 PMCID: PMC8868518 DOI: 10.3390/antibiotics11020158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 01/27/2023] Open
Abstract
Due to the rapid mutation of pathogenic microorganisms, drug-resistant superbugs have evolved. Antimicrobial-resistant germs may share their resistance genes with other germs, making them untreatable. The search for more combative antibiotic compounds has led researchers to explore metal-based strategies centered on perturbing the bioavailability of essential metals in microbes and examining the therapeutic potential of metal complexes. Given the limited knowledge on the application of titanium(IV), in this work, eight Ti(IV) complexes and some of their corresponding ligands were screened by the Community for Open Antimicrobial Drug Discovery for antimicrobial activity. The compounds were selected for evaluation because of their low cytotoxic/antiproliferative behavior against a human non-cancer cell line. At pH 7.4, these compounds vary in terms of their solution stability and ligand exchange lability; therefore, an assessment of their solution behavior provides some insight regarding the importance of the identity of the metal compound to the antimicrobial therapeutic potential. Only one compound, Ti(deferasirox)2, exhibited promising inhibitory activity against the Gram-positive bacteria methicillin-resistant Staphylococcus aureus and minimal toxicity against human cells. The ability of this compound to undergo transmetalation with labile Fe(III) sources and, as a consequence, inhibit Fe bioavailability and ribonucleotide reductase is evaluated as a possible mechanism for its antibiotic effect.
Collapse
|
4
|
Heinemann J, Klüfers P. [Ti(fpin)
3
]
2−
: a structurally characterized transition metal tris(perfluoropinacolato) complex. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jan Heinemann
- Ludwig-Maximilians-Universität Department Chemie Butenandtstraße 5–13 81377 München Germany
| | - Peter Klüfers
- Ludwig-Maximilians-Universität Department Chemie Butenandtstraße 5–13 81377 München Germany
| |
Collapse
|
5
|
Tsave O, Salifoglou A. Biomimetic activity of soluble, well-defined, aqueous Ti(IV)-citrate species toward adipogenesis. An in vitro study. J Inorg Biochem 2020; 214:111290. [PMID: 33242718 DOI: 10.1016/j.jinorgbio.2020.111290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022]
Abstract
Metal-organic complexes bearing physiological substrates have been the target of several investigations, probing into the potential of well-defined atoxic metalloforms to influence fundamental cellular processes overcoming insulin resistance in Diabetes mellitus 2. Outstanding cases of such metals include zinc and vanadium, both being the target of intense synthetic and biological studies toward insulin mimesis. Owing to the close proximity in the periodic table, an early transition metal, titanium, emerges as another potential candidate of biologically relevant complexation, reflecting species capable of promoting insulin mimetic activity. Driven by the so far explored aqueous synthetic chemistry of Ti(IV)-hydroxycaboxylato systems, a well-defined Ti(IV)-citrate compound was synthesized under physiological conditions, isolated, and characterized, followed by its introduction in biological assays, targeting adipogenic events linked to glucose uptake and catabolism. The mononuclear Ti(IV)-citrate complex was introduced to 3T3-L1 cells, thereby probing into its biological activity (toxicity, morphology, migration, and adipogenic capacity). The results project an atoxic profile for the Ti(IV)-citrate species, thus justifying further incorporation in cellular differentiation processes, leading to mature adipocytes in a time- and concentration-dependent fashion. The experiments suggest that Ti(IV)-citrate is a competent agent promoting fibroblast differentiation, as evidenced by key adipogenic biomarkers, while concurrently exhibiting synergistic/enhancing action with insulin. The collective results show, for the first time, that an appropriately configured soluble-bioavailable complex Ti(IV) form exhibits a distinctly unique bioprofile, thereby lending credence to the notion that titanium metallopharmaceuticals hold merit as competent agents in adipogenesis and insulin mimesis in Diabetes mellitus.
Collapse
Affiliation(s)
- O Tsave
- Laboratory of Inorganic Chemistry and Advanced Materials, School of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; 1st Department of Internal Medicine, AHEPA, University Hospital, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - A Salifoglou
- Laboratory of Inorganic Chemistry and Advanced Materials, School of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
6
|
Engelberg N, Bino A, Tshuva EY. Preparation, structural characterization and cytotoxicity of hydrolytically stable Ti(IV) citrate complexes. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Søborg Pedersen K, Baun C, Michaelsen Nielsen K, Thisgaard H, Ingemann Jensen A, Zhuravlev F. Design, Synthesis, Computational, and Preclinical Evaluation of natTi/ 45Ti-Labeled Urea-Based Glutamate PSMA Ligand. Molecules 2020; 25:molecules25051104. [PMID: 32131399 PMCID: PMC7179113 DOI: 10.3390/molecules25051104] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 11/16/2022] Open
Abstract
Despite promising anti-cancer properties in vitro, all titanium-based pharmaceuticals have failed in vivo. Likewise, no target-specific positron emission tomography (PET) tracer based on the radionuclide 45Ti has been developed, notwithstanding its excellent PET imaging properties. In this contribution, we present liquid–liquid extraction (LLE) in flow-based recovery and the purification of 45Ti, computer-aided design, and the synthesis of a salan-natTi/45Ti-chelidamic acid (CA)-prostate-specific membrane antigen (PSMA) ligand containing the Glu-urea-Lys pharmacophore. The compound showed compromised serum stability, however, no visible PET signal from the PC3+ tumor was seen, while the ex vivo biodistribution measured the tumor accumulation at 1.1% ID/g. The in vivo instability was rationalized in terms of competitive citrate binding followed by Fe(III) transchelation. The strategy to improve the in vivo stability by implementing a unimolecular ligand design is presented.
Collapse
Affiliation(s)
- Kristina Søborg Pedersen
- Department of Health Technology, Technical University of Denmark, Frederiksborgvej 399, Building 202, 4000 Roskilde, Denmark; (K.S.P.); (K.M.N.); (A.I.J.)
| | - Christina Baun
- Department of Clinical Research, University of Southern Denmark, Sønder Boulevard 29, DK-5000 Odense, Denmark; (C.B.); (H.T.)
- Department of Nuclear Medicine, Odense University Hospital, DK-5000 Odense, Denmark
| | - Karin Michaelsen Nielsen
- Department of Health Technology, Technical University of Denmark, Frederiksborgvej 399, Building 202, 4000 Roskilde, Denmark; (K.S.P.); (K.M.N.); (A.I.J.)
| | - Helge Thisgaard
- Department of Clinical Research, University of Southern Denmark, Sønder Boulevard 29, DK-5000 Odense, Denmark; (C.B.); (H.T.)
- Department of Nuclear Medicine, Odense University Hospital, DK-5000 Odense, Denmark
| | - Andreas Ingemann Jensen
- Department of Health Technology, Technical University of Denmark, Frederiksborgvej 399, Building 202, 4000 Roskilde, Denmark; (K.S.P.); (K.M.N.); (A.I.J.)
| | - Fedor Zhuravlev
- Department of Health Technology, Technical University of Denmark, Frederiksborgvej 399, Building 202, 4000 Roskilde, Denmark; (K.S.P.); (K.M.N.); (A.I.J.)
- Correspondence: ; Tel.: +45-4677-5337
| |
Collapse
|
8
|
Manju P, Ajith M, Jaiswal-Nagar D. Synthesis and characterization of BaZrO3 nanoparticles by citrate-nitrate sol-gel auto-combustion technique: Systematic study for the formation of dense BaZrO3 ceramics. Ann Ital Chir 2019. [DOI: 10.1016/j.jeurceramsoc.2019.03.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Sharma S, Sharma RK, Gaur K, Cátala Torres JF, Loza-Rosas SA, Torres A, Saxena M, Julin M, Tinoco AD. Fueling a Hot Debate on the Application of TiO 2 Nanoparticles in Sunscreen. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2317. [PMID: 31330764 PMCID: PMC6678326 DOI: 10.3390/ma12142317] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022]
Abstract
Titanium is one of the most abundant elements in the earth's crust and while there are many examples of its bioactive properties and use by living organisms, there are few studies that have probed its biochemical reactivity in physiological environments. In the cosmetic industry, TiO2 nanoparticles are widely used. They are often incorporated in sunscreens as inorganic physical sun blockers, taking advantage of their semiconducting property, which facilitates absorbing ultraviolet (UV) radiation. Sunscreens are formulated to protect human skin from the redox activity of the TiO2 nanoparticles (NPs) and are mass-marketed as safe for people and the environment. By closely examining the biological use of TiO2 and the influence of biomolecules on its stability and solubility, we reassess the reactivity of the material in the presence and absence of UV energy. We also consider the alarming impact that TiO2 NP seepage into bodies of water can cause to the environment and aquatic life, and the effect that it can have on human skin and health, in general, especially if it penetrates into the human body and the bloodstream.
Collapse
Affiliation(s)
- Shweta Sharma
- Department of Environmental Sciences, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA
| | - Rohit K Sharma
- Department of Chemistry, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA
| | - Kavita Gaur
- Department of Chemistry, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA
| | - José F Cátala Torres
- Department of Chemistry, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA
| | - Sergio A Loza-Rosas
- Department of Chemistry, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA
| | - Anamaris Torres
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00726, USA
| | - Manoj Saxena
- Department of Chemistry, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA
| | - Mara Julin
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Arthur D Tinoco
- Department of Chemistry, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA.
| |
Collapse
|
10
|
Saxena M, Loza-Rosas SA, Gaur K, Sharma S, Pérez Otero SC, Tinoco AD. Exploring titanium(IV) chemical proximity to iron(III) to elucidate a function for Ti(IV) in the human body. Coord Chem Rev 2018; 363:109-125. [PMID: 30270932 PMCID: PMC6159949 DOI: 10.1016/j.ccr.2018.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite its natural abundance and widespread use as food, paint additive, and in bone implants, no specific biological function of titanium is known in the human body. High concentrations of Ti(IV) could result in cellular toxicity, however, the absence of Ti toxicity in the blood of patients with titanium bone implants indicates the presence of one or more biological mechanisms to mitigate toxicity. Similar to Fe(III), Ti(IV) in blood binds to the iron transport protein serum transferrin (sTf), which gives credence to the possibility of its cellular uptake mechanism by transferrin-directed endocytosis. However, once inside the cell, how sTf bound Ti(IV) is released into the cytoplasm, utilized, or stored remain largely unknown. To explain the molecular mechanisms involved in Ti use in cells we have drawn parallels with those for Fe(III). Based on its chemical similarities with Fe(III), we compare the biological coordination chemistry of Fe(III) and Ti(IV) and hypothesize that Ti(IV) can bind to similar intracellular biomolecules. The comparable ligand affinity profiles suggest that at high Ti(IV) concentrations, Ti(IV) could compete with Fe(III) to bind to biomolecules and would inhibit Fe bioavailability. At the typical Ti concentrations in the body, Ti might exist as a labile pool of Ti(IV) in cells, similar to Fe. Ti could exhibit different types of properties that would determine its cellular functions. We predict some of these functions to mimic those of Fe in the cell and others to be specific to Ti. Bone and cellular speciation and localization studies hint toward various intracellular targets of Ti like phosphoproteins, DNA, ribonucleotide reductase, and ferritin. However, to decipher the exact mechanisms of how Ti might mediate these roles, development of innovative and more sensitive methods are required to track this difficult to trace metal in vivo.
Collapse
Affiliation(s)
- Manoj Saxena
- Department of Chemistry, University of Puerto Rico Río Piedras, San Juan, PR 00931
| | - Sergio A. Loza-Rosas
- Department of Chemistry, University of Puerto Rico Río Piedras, San Juan, PR 00931
| | - Kavita Gaur
- Department of Chemistry, University of Puerto Rico Río Piedras, San Juan, PR 00931
| | - Shweta Sharma
- Department of Environmental Sciences, University of Puerto Rico Río Piedras, San Juan, PR 00931
| | - Sofia C. Pérez Otero
- Department of Chemistry, University of Puerto Rico Río Piedras, San Juan, PR 00931
| | - Arthur D. Tinoco
- Department of Chemistry, University of Puerto Rico Río Piedras, San Juan, PR 00931
| |
Collapse
|
11
|
Suslov A, Kobylianska S, Durilin D, Ovchar O, Trachevskii V, Jancar B, Belous A. Modified Pechini Processing of Barium and Lanthanum-Lithium Titanate Nanoparticles and Thin Films. NANOSCALE RESEARCH LETTERS 2017; 12:350. [PMID: 28506025 PMCID: PMC5429286 DOI: 10.1186/s11671-017-2123-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
Barium-strontium titanate (BST) Ba0.6Sr 0.4 TiO3 and lanthanum-lithium titanate (LLT) La0.5Li0.5TiO3 nanopowders and thin films have been obtained via the modified Pechini route. Polyesterification and complexation processes of gel formation have been examined. Hypothetical models of coordinative polymers formed in sol-gel system have been suggested. It has been shown that BST and LLT solid solutions form in one step at relatively low temperature. X-ray diffraction confirms that the final products, which are single phases and have cubic shape, are formed at 600 and 700 °C for BST and LLT respectively. It has been found that use of thermal shock as pretreatment allows to increase the density of BST- and LLT-based thin films.
Collapse
Affiliation(s)
- A Suslov
- V.I. Vernadskii Institute of General and Inorganic Chemistry of N.A.S of Ukraine, 32/34 Palladina Ave., 03680, Kyiv, Ukraine
| | - S Kobylianska
- V.I. Vernadskii Institute of General and Inorganic Chemistry of N.A.S of Ukraine, 32/34 Palladina Ave., 03680, Kyiv, Ukraine.
| | - D Durilin
- V.I. Vernadskii Institute of General and Inorganic Chemistry of N.A.S of Ukraine, 32/34 Palladina Ave., 03680, Kyiv, Ukraine
| | - O Ovchar
- V.I. Vernadskii Institute of General and Inorganic Chemistry of N.A.S of Ukraine, 32/34 Palladina Ave., 03680, Kyiv, Ukraine
| | - V Trachevskii
- G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, Kyiv, Ukraine
| | - B Jancar
- Jozef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - A Belous
- V.I. Vernadskii Institute of General and Inorganic Chemistry of N.A.S of Ukraine, 32/34 Palladina Ave., 03680, Kyiv, Ukraine
| |
Collapse
|
12
|
Ni L, Liang D, Cai Y, Diao G, Zhou Z. A novel hexanuclear titanium(iv)-oxo-iminodiacetate cluster with a Ti6O9 core: single-crystal structure and photocatalytic activities. Dalton Trans 2017; 45:7581-8. [PMID: 26857945 DOI: 10.1039/c6dt00031b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A new family of hexanuclear titanium(iv)-oxo-carboxylate cluster K7H[Ti6O9(ida)6]Cl2·13H2O {Ti6O9} has been synthesized via the H2O2-assisted reaction between TiCl4 and iminodiacetate ligands. This cluster was fully characterized by single-crystal X-ray diffraction and a wide range of analytical methods, including FT-IR, UV/vis spectroscopy as well as electrochemistry and thermogravimetric analysis. As a new type of carboxylate substituted Ti-oxo-cluster, the structural motif of the {Ti6O9} cluster consists of one symmetric {Ti6O6} hexagonal prism with two staggered triangular {Ti3O3} subunits linked by three μ2-O bridges. The {Ti6O9} polyanions are linked by K(+) cations to form a novel 3D architecture. The structural information and stability of the {Ti6O9} polyanion in aqueous solution were thoroughly investigated by solid-state/solution NMR, ESI-MS spectroscopy. Moreover, this Ti-oxo cluster exhibits remarkable potential as a visible-light homogeneous photocatalyst for degradation of rhodamine B (RhB). Finally, a proposed peroxotitanium(iv)-mediated photocatalytic pathway involved is illustrated by spectroscopic data.
Collapse
Affiliation(s)
- Lubin Ni
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, People's Republic of China.
| | - Dashuai Liang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, People's Republic of China.
| | - Yin Cai
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, People's Republic of China.
| | - Guowang Diao
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, People's Republic of China.
| | - Zhaohui Zhou
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China.
| |
Collapse
|
13
|
Zhang RH, Zhou XW, Dong X, Zhou ZH. Solid and solution chemistry of protonated and deprotonated mononuclear molybdenum(VI) citrates. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1246721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Rong-Hua Zhang
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Xin-Wen Zhou
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Xin Dong
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Zhao-Hui Zhou
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
14
|
Auffan M, Masion A, Labille J, Diot MA, Liu W, Olivi L, Proux O, Ziarelli F, Chaurand P, Geantet C, Bottero JY, Rose J. Long-term aging of a CeO(2) based nanocomposite used for wood protection. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 188:1-7. [PMID: 24518963 DOI: 10.1016/j.envpol.2014.01.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/15/2014] [Accepted: 01/20/2014] [Indexed: 06/03/2023]
Abstract
A multi-scale methodology was used to characterize the long-term behavior and chemical stability of a CeO2-based nanocomposite used as UV filter in wood stains. ATR-FTIR and (13)C NMR demonstrated that the citrate coated chelates with Ce(IV) through its central carboxyl- and its α-hydroxyl- groups at the surface of the unaged nanocomposite. After 42 days under artificial daylight, the citrate completely disappeared and small amount of degradation products remained attached to the surface even after 112 days. Moreover, the release/desorption of the citrate layer led to a surface reorganization of the nano-sized CeO2 core observed by XANES (Ce L3-edge). Such a surface and structural transformation of the commercialized nanocomposite could have implications in term of fate, transport, and potential impacts towards the environment.
Collapse
Affiliation(s)
- Melanie Auffan
- CNRS, Aix-Marseille Université, CEREGE UM34, UMR 7330, 13545 Aix en Provence, France; International Consortium for the Environmental Implications of Nanotechnology iCEINT, Aix en Provence, France.
| | - Armand Masion
- CNRS, Aix-Marseille Université, CEREGE UM34, UMR 7330, 13545 Aix en Provence, France; International Consortium for the Environmental Implications of Nanotechnology iCEINT, Aix en Provence, France
| | - Jerome Labille
- CNRS, Aix-Marseille Université, CEREGE UM34, UMR 7330, 13545 Aix en Provence, France; International Consortium for the Environmental Implications of Nanotechnology iCEINT, Aix en Provence, France
| | - Marie-Ange Diot
- CNRS, Aix-Marseille Université, CEREGE UM34, UMR 7330, 13545 Aix en Provence, France; International Consortium for the Environmental Implications of Nanotechnology iCEINT, Aix en Provence, France
| | - Wei Liu
- CNRS, Aix-Marseille Université, CEREGE UM34, UMR 7330, 13545 Aix en Provence, France; International Consortium for the Environmental Implications of Nanotechnology iCEINT, Aix en Provence, France
| | - Luca Olivi
- Elettra-Sincrotrone, 34149 Basovizza, Trieste, Italy
| | - Olivier Proux
- International Consortium for the Environmental Implications of Nanotechnology iCEINT, Aix en Provence, France; OSUG, Observatoire des Sciences de l'Univers de Grenoble, France
| | - Fabio Ziarelli
- Fédération Sciences Chimiques FR-CNRS 1739, Aix-Marseille Univ, 13013 Marseille, France
| | - Perrine Chaurand
- CNRS, Aix-Marseille Université, CEREGE UM34, UMR 7330, 13545 Aix en Provence, France; International Consortium for the Environmental Implications of Nanotechnology iCEINT, Aix en Provence, France
| | | | - Jean-Yves Bottero
- CNRS, Aix-Marseille Université, CEREGE UM34, UMR 7330, 13545 Aix en Provence, France; International Consortium for the Environmental Implications of Nanotechnology iCEINT, Aix en Provence, France
| | - Jerome Rose
- CNRS, Aix-Marseille Université, CEREGE UM34, UMR 7330, 13545 Aix en Provence, France; International Consortium for the Environmental Implications of Nanotechnology iCEINT, Aix en Provence, France
| |
Collapse
|
15
|
Affiliation(s)
- Katherine M. Buettner
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Ann M. Valentine
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
16
|
Gabriel C, Menelaou M, Daskalakis M, Lakatos A, Kiss T, Mateescu C, Raptis RG, Zoumpoulakis P, Salifoglou A. Synthetic, structural, spectroscopic and solution speciation studies of the binary Al(III)–quinic acid system. Relevance of soluble Al(III)–hydroxycarboxylate species to molecular toxicity. Polyhedron 2008. [DOI: 10.1016/j.poly.2008.06.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|