1
|
Paolillo M, Ferraro G, Sahu G, Pattanayak PD, Garribba E, Halder S, Ghosh R, Mondal B, Chatterjee PB, Dinda R, Merlino A. Interaction of V VO 2-hydrazonates with lysozyme. J Inorg Biochem 2025; 264:112787. [PMID: 39642703 DOI: 10.1016/j.jinorgbio.2024.112787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
Vanadium compounds (VCs) exhibit a broad range of pharmacological properties, with their most significant medical applications being in the treatment of cancer and diabetes. The therapeutic effects and mode of action of VCs may be associated with their ability to bind proteins and, consequently, understanding the VC-protein interaction is of paramount importance. Among the promising VCs, the VVO2 complex with the aroylhydrazone furan-2-carboxylic acid ((3-ethoxy-2-hydroxybenzylidene)hydrazide, hereafter denoted as VC1), deserves attention, since it exhibits cytotoxicity against various cancer cell lines, including HeLa. The interaction between VC1 and its analogue, denoted as VC2 (the dioxidovanadium(V) complex with (E)-N'-(1-(2-hydroxy-5-methoxyphenyl)ethylidene)furan-2-carbohydrazide), and hen egg white lysozyme (HEWL) was examined by UV-vis spectroscopy, fluorescence, circular dichroism, and X-ray crystallography. The interaction of VC1 and VC2 with HEWL does not alter the protein secondary and tertiary structure. Crystallographic studies indicate that the two metal complexes or V-containing fragments originating from VC1 and VC2 bind the protein via non-covalent interactions. Furthermore, when bound to HEWL, two VC1 molecules and two VC2 molecules form a supramolecular association stabilized by stacking interactions. This type of interaction could favour the binding of similar compounds to proteins and affect their biological activity.
Collapse
Affiliation(s)
- Maddalena Paolillo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126 Napoli, Italy
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126 Napoli, Italy
| | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | | | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
| | - Sourangshu Halder
- Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, India
| | - Riya Ghosh
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, India
| | - Bipul Mondal
- Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, India
| | - Pabitra B Chatterjee
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, India
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126 Napoli, Italy.
| |
Collapse
|
2
|
Dinda R, Garribba E, Sanna D, Crans DC, Costa Pessoa J. Hydrolysis, Ligand Exchange, and Redox Properties of Vanadium Compounds: Implications of Solution Transformation on Biological, Therapeutic, and Environmental Applications. Chem Rev 2025. [PMID: 39818783 DOI: 10.1021/acs.chemrev.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Vanadium is a transition metal with important industrial, technological, biological, and biomedical applications widespread in the environment and in living beings. The different reactions that vanadium compounds (VCs) undergo in the presence of proteins, nucleic acids, lipids and metabolites under mild physiological conditions are reviewed. In the environment vanadium is present naturally or through anthropogenic sources, the latter having an environmental impact caused by the dispersion of VCs in the atmosphere and aquifers. Vanadium has a versatile chemistry with interconvertible oxidation states, variable coordination number and geometry, and ability to form polyoxidovanadates with various nuclearity and structures. If a VC is added to a water-containing environment it can undergo hydrolysis, ligand-exchange, redox, and other types of changes, determined by the conditions and speciation chemistry of vanadium. Importantly, the solution is likely to differ from the VC introduced into the system and varies with concentration. Here, vanadium redox, hydrolytic and ligand-exchange chemical reactions, the influence of pH, concentration, salt, specific solutes, biomolecules, and VCs on the speciation are described. One of our goals with this work is highlight the need for assessment of the VC speciation, so that beneficial or toxic species might be identified and mechanisms of action be elucidated.
Collapse
Affiliation(s)
- Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
| | - Daniele Sanna
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Debbie C Crans
- Department Chemistry and Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - João Costa Pessoa
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
3
|
Paolillo M, Ferraro G, Pisanu F, Maréchal JD, Sciortino G, Garribba E, Merlino A. Protein-Protein Stabilization in V IVO/8-Hydroxyquinoline-Lysozyme Adducts. Chemistry 2024; 30:e202401712. [PMID: 38923243 DOI: 10.1002/chem.202401712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
The binding of the potential drug [VIVO(8-HQ)2], where 8-HQ is 8-hydroxyquinolinato, with hen egg white lysozyme (HEWL) was evaluated through spectroscopic (electron paramagnetic resonance, EPR, and UV-visible), spectrometric (electrospray ionization-mass spectrometry, ESI-MS), crystallographic (X-ray diffraction, XRD), and computational (DFT and docking) studies. ESI-MS indicates the interaction of [VIVO(8-HQ)(H2O)]+ and [VIVO(8-HQ)2(H2O)] species with HEWL. Room temperature EPR spectra suggest both covalent and non-covalent binding of the two different V-containing fragments. XRD analyses confirm these findings, showing that [VIVO(8-HQ)(H2O)]+ interacts covalently with the solvent exposed Asp119, while cis-[VIVO(8-HQ)2(H2O)] non-covalently with Arg128 and Lys96 from a symmetry mate. The covalent binding of [VIVO(8-HQ)(H2O)]+ to Asp119 is favored by a π-π contact with Trp62 and a H-bond with Asn103 of a symmetry-related molecule. Additionally, the covalent binding of VVO2 + to Asp48 and non-covalent binding of other V-containing fragments to Arg5, Cys6, and Glu7 are revealed. Molecular docking indicates that, in the absence of the interactions occurring at the protein-protein interface close to Asp119, the covalent binding to Glu35 or Asp52 should be preferred. Such a protein-protein stabilization could be more common than what believed up today, at least in the solid state, and should be considered in the characterization of metal-protein adducts.
Collapse
Affiliation(s)
- Maddalena Paolillo
- Department of Chemical Sciences, University of Naples 'Federico II', Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples 'Federico II', Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy
| | - Federico Pisanu
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100, Sassari, Italy
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallés, Barcelona, Spain
| | - Giuseppe Sciortino
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallés, Barcelona, Spain
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100, Sassari, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples 'Federico II', Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy
| |
Collapse
|
4
|
Amaral LMPF, Moniz T, Silva AMN, Rangel M. Vanadium Compounds with Antidiabetic Potential. Int J Mol Sci 2023; 24:15675. [PMID: 37958659 PMCID: PMC10650557 DOI: 10.3390/ijms242115675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Over the last four decades, vanadium compounds have been extensively studied as potential antidiabetic drugs. With the present review, we aim at presenting a general overview of the most promising compounds and the main results obtained with in vivo studies, reported from 1899-2023. The chemistry of vanadium is explored, discussing the importance of the structure and biochemistry of vanadate and the impact of its similarity with phosphate on the antidiabetic effect. The spectroscopic characterization of vanadium compounds is discussed, particularly magnetic resonance methodologies, emphasizing its relevance for understanding species activity, speciation, and interaction with biological membranes. Finally, the most relevant studies regarding the use of vanadium compounds to treat diabetes are summarized, considering both animal models and human clinical trials. An overview of the main hypotheses explaining the biological activity of these compounds is presented, particularly the most accepted pathway involving vanadium interaction with phosphatase and kinase enzymes involved in the insulin signaling cascade. From our point of view, the major discoveries regarding the pharmacological action of this family of compounds are not yet fully understood. Thus, we still believe that vanadium presents the potential to help in metabolic control and the clinical management of diabetes, either as an insulin-like drug or as an insulin adjuvant. We look forward to the next forty years of research in this field, aiming to discover a vanadium compound with the desired therapeutic properties.
Collapse
Affiliation(s)
- Luísa M. P. F. Amaral
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 40169-007 Porto, Portugal; (L.M.P.F.A.); (T.M.)
| | - Tânia Moniz
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 40169-007 Porto, Portugal; (L.M.P.F.A.); (T.M.)
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - André M. N. Silva
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 40169-007 Porto, Portugal; (L.M.P.F.A.); (T.M.)
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria Rangel
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
5
|
Santos MFA, Pessoa JC. Interaction of Vanadium Complexes with Proteins: Revisiting the Reported Structures in the Protein Data Bank (PDB) since 2015. Molecules 2023; 28:6538. [PMID: 37764313 PMCID: PMC10536487 DOI: 10.3390/molecules28186538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The structural determination and characterization of molecules, namely proteins and enzymes, is crucial to gaining a better understanding of their role in different chemical and biological processes. The continuous technical developments in the experimental and computational resources of X-ray diffraction (XRD) and, more recently, cryogenic Electron Microscopy (cryo-EM) led to an enormous growth in the number of structures deposited in the Protein Data Bank (PDB). Bioinorganic chemistry arose as a relevant discipline in biology and therapeutics, with a massive number of studies reporting the effects of metal complexes on biological systems, with vanadium complexes being one of the relevant systems addressed. In this review, we focus on the interactions of vanadium compounds (VCs) with proteins. Several types of binding are established between VCs and proteins/enzymes. Considering that the V-species that bind may differ from those initially added, the mentioned structural techniques are pivotal to clarifying the nature and variety of interactions of VCs with proteins and to proposing the mechanisms involved either in enzymatic inhibition or catalysis. As such, we provide an account of the available structural information of VCs bound to proteins obtained by both XRD and/or cryo-EM, mainly exploring the more recent structures, particularly those containing organic-based vanadium complexes.
Collapse
Affiliation(s)
- Marino F. A. Santos
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Centro de Química Estrutural, Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João Costa Pessoa
- Centro de Química Estrutural, Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
6
|
Ferraro G, Paolillo M, Sciortino G, Garribba E, Merlino A. Multiple and Variable Binding of Pharmacologically Active Bis(maltolato)oxidovanadium(IV) to Lysozyme. Inorg Chem 2022; 61:16458-16467. [PMID: 36205235 PMCID: PMC9579999 DOI: 10.1021/acs.inorgchem.2c02690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The interaction with
proteins of metal-based drugs plays a crucial
role in their transport, mechanism, and activity. For an active MLn complex, where L is the organic carrier,
various binding modes (covalent and non-covalent, single or multiple)
may occur and several metal moieties (M, ML, ML2, etc.)
may interact with proteins. In this study, we have evaluated the interaction
of [VIVO(malt)2] (bis(maltolato)oxidovanadium(IV)
or BMOV, where malt = maltolato, i.e., the common name for 3-hydroxy-2-methyl-4H-pyran-4-onato) with the model protein hen egg white lysozyme
(HEWL) by electrospray ionization mass spectrometry, electron paramagnetic
resonance, and X-ray crystallography. The multiple binding of different
V-containing isomers and enantiomers to different sites of HEWL is
observed. The data indicate both non-covalent binding of cis-[VO(malt)2(H2O)] and [VO(malt)(H2O)3]+ and covalent binding of [VO(H2O)3–4]2+ and cis-[VO(malt)2] and other V-containing fragments to the side chains of Glu35,
Asp48, Asn65, Asp87, and Asp119 and to the C-terminal carboxylate.
Our results suggest that the multiple and variable interactions of
potential VIVOL2 drugs with proteins can help
to better understand their solution chemistry and contribute to define
the molecular basis of the mechanism of action of these intriguing
molecules. The interaction of [VIVO(malt)2] (BMOV,
malt = maltolato) with hen egg white lysozyme (HEWL) reveals the multiple
binding of different V-containing isomers and enantiomers to different
sites and non-covalent and covalent binding of cis-[VO(malt)2(H2O)], [VO(malt)(H2O)3]+, [VO(H2O)3−4]2+, and cis-[VO(malt)2] to Glu,
Asp, and Asn residues.
Collapse
Affiliation(s)
- Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126 Napoli, Italy
| | - Maddalena Paolillo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126 Napoli, Italy
| | - Giuseppe Sciortino
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126 Napoli, Italy
| |
Collapse
|
7
|
Santos MFA, Sciortino G, Correia I, Fernandes ACP, Santos-Silva T, Pisanu F, Garribba E, Costa Pessoa J. Binding of V IV O 2+ , V IV OL, V IV OL 2 and V V O 2 L Moieties to Proteins: X-ray/Theoretical Characterization and Biological Implications. Chemistry 2022; 28:e202200105. [PMID: 35486702 DOI: 10.1002/chem.202200105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 12/16/2022]
Abstract
Vanadium compounds have frequently been proposed as therapeutics, but their application has been hampered by the lack of information on the different V-containing species that may form and how these interact with blood and cell proteins, and with enzymes. Herein, we report several resolved crystal structures of lysozyme with bound VIV O2+ and VIV OL2+ , where L=2,2'-bipyridine or 1,10-phenanthroline (phen), and of trypsin with VIV O(picolinato)2 and VV O2 (phen)+ moieties. Computational studies complete the refinement and shed light on the relevant role of hydrophobic interactions, hydrogen bonds, and microsolvation in stabilizating the structure. Noteworthy is that the trypsin-VV O2 (phen) and trypsin-VIV O(OH)(phen) adducts correspond to similar energies, thus suggesting a possible interconversion under physiological/biological conditions. The obtained data support the relevance of hydrolysis of VIV and VV complexes in the several types of binding established with proteins and the formation of different adducts that might contribute to their pharmacological action, and significantly widen our knowledge of vanadium-protein interactions.
Collapse
Affiliation(s)
- Marino F A Santos
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Giuseppe Sciortino
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007, Tarragona, Spain
| | - Isabel Correia
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Andreia C P Fernandes
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Teresa Santos-Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Federico Pisanu
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, I-07100, Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, I-07100, Sassari, Italy
| | - João Costa Pessoa
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| |
Collapse
|
8
|
Ugone V, Pisanu F, Garribba E. Interaction of pharmacologically active pyrone and pyridinone vanadium(IV,V) complexes with cytochrome c. J Inorg Biochem 2022; 234:111876. [DOI: 10.1016/j.jinorgbio.2022.111876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/05/2022] [Accepted: 05/21/2022] [Indexed: 01/11/2023]
|
9
|
Levina A, Wang B, Lay PA. Urea Gel Electrophoresis in Studies of Conformational Changes of Transferrin on Binding and Transport of Non-Ferric Metal Ions. Gels 2021; 8:19. [PMID: 35049554 PMCID: PMC8774473 DOI: 10.3390/gels8010019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
Transferrin (Tf) is a crucial transporter protein for Fe(III), but its biological role in binding other metal ions and their delivery into cells remain highly controversial. The first systematic exploration of the effect of non-Fe(III) metal ion binding on Tf conformation has been performed by urea-polyacrylamide gel electrophoresis (urea-PAGE), which is commonly used for nucleic acids but rarely for proteins. Closed Tf conformation, similar to that caused by Fe(III)-Tf binding, was formed for In(III), V(III) or Cr(III) binding to Tf. In all these cases, metal distribution between Tf lobes and/or the rate of metal release under acidic conditions differed from that of Fe(III)-Tf. By contrast, Ga(III) and V(IV) did not form closed Tf conformation under urea-PAGE conditions. Apart from Fe(III), only In(III) was able to increase the proportion of closed Tf conformation in whole serum. These results suggest that Tf is unlikely to act as a natural carrier of any metal ion, except Fe(III), into cells but can reduce toxicity of exogenous metal ions by binding them in serum and preventing their entry into cells.
Collapse
Affiliation(s)
- Aviva Levina
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia;
| | - Boer Wang
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia;
| | - Peter A. Lay
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia;
- Sydney Analytical, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
10
|
Ferraro G, Demitri N, Vitale L, Sciortino G, Sanna D, Ugone V, Garribba E, Merlino A. Spectroscopic/Computational Characterization and the X-ray Structure of the Adduct of the V IVO-Picolinato Complex with RNase A. Inorg Chem 2021; 60:19098-19109. [PMID: 34847328 PMCID: PMC8693189 DOI: 10.1021/acs.inorgchem.1c02912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 12/12/2022]
Abstract
The structure, stability, and enzymatic activity of the adduct formed upon the reaction of the V-picolinato (pic) complex [VIVO(pic)2(H2O)], with an octahedral geometry and the water ligand in cis to the V═O group, with the bovine pancreatic ribonuclease (RNase A) were studied. While electrospray ionization-mass spectrometry, circular dichroism, and ultraviolet-visible absorption spectroscopy substantiate the interaction between the metal moiety and RNase A, electron paramagnetic resonance (EPR) allows us to determine that a carboxylate group, stemming from Asp or Glu residues, and imidazole nitrogen from His residues are involved in the V binding at acidic and physiological pH, respectively. Crystallographic data demonstrate that the VIVO(pic)2 moiety coordinates the side chain of Glu111 of RNase A, by substituting the equatorial water molecule at acidic pH. Computational methods confirm that Glu111 is the most affine residue and interacts favorably with the OC-6-23-Δ enantiomer establishing an extended network of hydrogen bonds and van der Waals stabilizations. By increasing the pH around neutrality, with the deprotonation of histidine side chains, the binding of the V complex to His105 and His119 could occur, with that to His105 which should be preferred when compared to that to the catalytically important His119. The binding of the V compound affects the enzymatic activity of RNase A, but it does not alter its overall structure and stability.
Collapse
Affiliation(s)
- Giarita Ferraro
- Department
of Chemical Sciences, University of Naples
Federico II, I-80126 Napoli, Italy
| | - Nicola Demitri
- Elettra−Sincrotrone
Trieste, S.S. 14 km 163.5
in Area Science Park, 34149 Trieste, Italy
| | - Luigi Vitale
- Department
of Chemical Sciences, University of Naples
Federico II, I-80126 Napoli, Italy
| | - Giuseppe Sciortino
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, 43007 Tarragona, Spain
| | - Daniele Sanna
- Istituto
di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07100 Sassari, Italy
| | - Valeria Ugone
- Istituto
di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07100 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento
di Scienze Mediche, Chirurgiche e Sperimentali, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
| | - Antonello Merlino
- Department
of Chemical Sciences, University of Naples
Federico II, I-80126 Napoli, Italy
| |
Collapse
|
11
|
Silva AM, Moniz T, de Castro B, Rangel M. Human transferrin: An inorganic biochemistry perspective. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Pessoa JC, Santos MF, Correia I, Sanna D, Sciortino G, Garribba E. Binding of vanadium ions and complexes to proteins and enzymes in aqueous solution. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214192] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Misinterpretations in Evaluating Interactions of Vanadium Complexes with Proteins and Other Biological Targets. INORGANICS 2021. [DOI: 10.3390/inorganics9020017] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In aqueous media, VIV- and VV-ions and compounds undergo chemical changes such as hydrolysis, ligand exchange and redox reactions that depend on pH and concentration of the vanadium species, and on the nature of the several components present. In particular, the behaviour of vanadium compounds in biological fluids depends on their environment and on concentration of the many potential ligands present. However, when reporting the biological action of a particular complex, often the possibility of chemical changes occurring has been neglected, and the modifications of the complex added are not taken into account. In this work, we highlight that as soon as most vanadium(IV) and vanadium(V) compounds are dissolved in a biological media, they undergo several types of chemical transformations, and these changes are particularly extensive at the low concentrations normally used in biological experiments. We also emphasize that in case of a biochemical interaction or effect, to determine binding constants or the active species and/or propose mechanisms of action, it is essential to evaluate its speciation in the media where it is acting. This is because the vanadium complex no longer exists in its initial form.
Collapse
|
14
|
Therapeutic potential of vanadium complexes with 1,10-phenanthroline ligands, quo vadis? Fate of complexes in cell media and cancer cells. J Inorg Biochem 2021; 217:111350. [PMID: 33477088 DOI: 10.1016/j.jinorgbio.2020.111350] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
VIVO-complexes formulated as [VIVO(OSO3)(phen)2] (1) (phen = 1,10-phenanthroline), [VIVO(OSO3)(Me2phen)2] (2) (Me2phen = 4,7-dimethyl-1,10-phenanthroline) and [VIVO(OSO3)(amphen)2] (3) (amphen = 5-amino-1,10-phenanthroline) were prepared and stability in cell incubation media evaluated. Their cytotoxicity was determined against the A2780 (ovarian), MCF7 (breast) and PC3 (prostate) human cancer cells at different incubation times. While at 3 and 24 h the cytotoxicity differs for complexes and corresponding free ligands, at 72 h incubation all compounds are equally active presenting low IC50 values. Upon incubation of A2780 cells with 1-3, cellular distribution of vanadium in cytosol, membranes, nucleus and cytoskeleton, indicate that the uptake of V is low, particularly for 1, and that the uptake pattern depends on the ligand. Nuclear microscopic techniques are used for imaging and elemental quantification in whole PC3 cells incubated with 1. Once complexes are added to cell culture media, they decompose, and with time most VIV oxidizes to VV-species. Modeling of speciation when [VIVO(OSO3)(phen)2] (1) is added to cell media is presented. At lower concentrations of 1, VIVO- and phen-containing species are mainly bound to bovine serum albumin, while at higher concentrations [VIVO(phen)n]2+-complexes become relevant, being predicted that the species taken up and mechanisms of action operating depend on the total concentration of complex. This study emphasizes that for these VIVO-systems, and probably for many others involving oxidovanadium or other labile metal complexes, it is not possible to identify active species or propose mechanisms of cytotoxic action without evaluating speciation occurring in cell media.
Collapse
|
15
|
Ugone V, Sanna D, Ruggiu S, Sciortino G, Garribba E. Covalent and non-covalent binding in vanadium–protein adducts. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01308k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An integrated method, generalizable to any metals and proteins, based on ESI-MS, EPR and molecular modelling was applied to study the covalent and non-covalent binding of the potential drug [VIVO(nalidixato)2(H2O)] to lysozyme and cytochrome c.
Collapse
Affiliation(s)
- Valeria Ugone
- Istituto CNR di Chimica Biomolecolare
- I-07100 Sassari
- Italy
| | - Daniele Sanna
- Istituto CNR di Chimica Biomolecolare
- I-07100 Sassari
- Italy
| | - Simone Ruggiu
- Dipartimento di Chimica e Farmacia
- Università di Sassari
- I-07100 Sassari
- Italy
| | - Giuseppe Sciortino
- Dipartimento di Chimica e Farmacia
- Università di Sassari
- I-07100 Sassari
- Italy
- Institute of Chemical Research of Catalonia (ICIQ)
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia
- Università di Sassari
- I-07100 Sassari
- Italy
| |
Collapse
|
16
|
Banerjee A, Dash SP, Mohanty M, Sahu G, Sciortino G, Garribba E, Carvalho MFNN, Marques F, Costa Pessoa J, Kaminsky W, Brzezinski K, Dinda R. New V IV, V IVO, V VO, and V VO 2 Systems: Exploring their Interconversion in Solution, Protein Interactions, and Cytotoxicity. Inorg Chem 2020; 59:14042-14057. [PMID: 32914971 DOI: 10.1021/acs.inorgchem.0c01837] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The synthesis and characterization of one oxidoethoxidovanadium(V) [VVO(L1)(OEt)] (1) and two nonoxidovanadium(IV) complexes, [VIV(L2-3)2] (2 and 3), with aroylhydrazone ligands incorporating naphthalene moieties, are reported. The synthesized oxido and nonoxido vanadium complexes are characterized by various physicochemical techniques, and their molecular structures are solved by single crystal X-ray diffraction (SC-XRD). This revealed that in 1 the geometry around the vanadium atom corresponds to a distorted square pyramid, with a O4N coordination sphere, whereas that of the two nonoxido VIV complexes 2 and 3 corresponds to a distorted trigonal prismatic arrangement with a O4N2 coordination sphere around each "bare" vanadium center. In aqueous solution, the VVO moiety of 1 undergoes a change to VVO2 species, yielding [VVO2(L1)]- (1'), while the nonoxido VIV-compounds 2 and 3 are partly converted into their corresponding VIVO complexes, [VIVO(L2-3)(H2O)] (2' and 3'). Interaction of these VVO2, VIVO, and VIV systems with two model proteins, ubiquitin (Ub) and lysozyme (Lyz), is investigated through docking approaches, which suggest the potential binding sites: the interaction is covalent for species 2' and 3', with the binding to Glu16, Glu18, and Asp21 for Ub, and His15 for Lyz, and it is noncovalent for species 1', 2, and 3, with the surface residues of the proteins. The ligand precursors and complexes are also evaluated for their in vitro antiproliferative activity against ovarian (A2780) and prostate (PC3) human cancer cells and in normal fibroblasts (V79) to check the selectivity of the compounds for cancer cells.
Collapse
Affiliation(s)
- Atanu Banerjee
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Subhashree P Dash
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Monalisa Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Giuseppe Sciortino
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy.,Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - M Fernanda N N Carvalho
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - João Costa Pessoa
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Krzysztof Brzezinski
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| |
Collapse
|
17
|
Benjamín-Rivera JA, Cardona-Rivera AE, Vázquez-Maldonado ÁL, Dones-Lassalle CY, Pabón-Colon HL, Rodríguez-Rivera HM, Rodríguez I, González-Espiet JC, Pazol J, Pérez-Ríos JD, Catala-Torres JF, Carrasquillo Rivera M, De Jesus-Soto MG, Cordero-Virella NA, Cruz-Maldonado PM, González-Pagan P, Hernández-Ríos R, Gaur K, Loza-Rosas SA, Tinoco AD. Exploring Serum Transferrin Regulation of Nonferric Metal Therapeutic Function and Toxicity. INORGANICS 2020; 8:48. [PMID: 36844373 PMCID: PMC9957567 DOI: 10.3390/inorganics8090048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Serum transferrin (sTf) plays a pivotal role in regulating iron biodistribution and homeostasis within the body. The molecular details of sTf Fe(III) binding blood transport, and cellular delivery through transferrin receptor-mediated endocytosis are generally well-understood. Emerging interest exists in exploring sTf complexation of nonferric metals as it facilitates the therapeutic potential and toxicity of several of them. This review explores recent X-ray structural and physiologically relevant metal speciation studies to understand how sTf partakes in the bioactivity of key non-redox active hard Lewis acidic metals. It challenges preconceived notions of sTf structure function correlations that were based exclusively on the Fe(III) model by revealing distinct coordination modalities that nonferric metal ions can adopt and different modes of binding to metal-free and Fe(III)-bound sTf that can directly influence how they enter into cells and, ultimately, how they may impact human health. This knowledge informs on biomedical strategies to engineer sTf as a delivery vehicle for metal-based diagnostic and therapeutic agents in the cancer field. It is the intention of this work to open new avenues for characterizing the functionality and medical utility of nonferric-bound sTf and to expand the significance of this protein in the context of bioinorganic chemistry.
Collapse
Affiliation(s)
- Josué A. Benjamín-Rivera
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Andrés E. Cardona-Rivera
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | | | | | - Héctor L. Pabón-Colon
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | | | - Israel Rodríguez
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Jean C. González-Espiet
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Jessika Pazol
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Jobaniel D. Pérez-Ríos
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - José F. Catala-Torres
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | | | - Michael G. De Jesus-Soto
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | | | - Paola M. Cruz-Maldonado
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Patricia González-Pagan
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Raul Hernández-Ríos
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Kavita Gaur
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Sergio A. Loza-Rosas
- Departamento de Química y Bioquímica, Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja 150003, Colombia
| | - Arthur D. Tinoco
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
- Correspondence: ; Tel.: +1-939-319-9701
| |
Collapse
|
18
|
Ścibior A, Pietrzyk Ł, Plewa Z, Skiba A. Vanadium: Risks and possible benefits in the light of a comprehensive overview of its pharmacotoxicological mechanisms and multi-applications with a summary of further research trends. J Trace Elem Med Biol 2020; 61:126508. [PMID: 32305626 PMCID: PMC7152879 DOI: 10.1016/j.jtemb.2020.126508] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/25/2020] [Accepted: 03/19/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Vanadium (V) is an element with a wide range of effects on the mammalian organism. The ability of this metal to form organometallic compounds has contributed to the increase in the number of studies on the multidirectional biological activity of its various organic complexes in view of their application in medicine. OBJECTIVE This review aims at summarizing the current state of knowledge of the pharmacological potential of V and the mechanisms underlying its anti-viral, anti-bacterial, anti-parasitic, anti-fungal, anti-cancer, anti-diabetic, anti-hypercholesterolemic, cardioprotective, and neuroprotective activity as well as the mechanisms of appetite regulation related to the possibility of using this element in the treatment of obesity. The toxicological potential of V and the mechanisms of its toxic action, which have not been sufficiently recognized yet, as well as key information about the essentiality of this metal, its physiological role, and metabolism with certain aspects on the timeline is collected as well. The report also aims to review the use of V in the implantology and industrial sectors emphasizing the human health hazard as well as collect data on the directions of further research on V and its interactions with Mg along with their character. RESULTS AND CONCLUSIONS Multidirectional studies on V have shown that further analyses are still required for this element to be used as a metallodrug in the fight against certain life-threatening diseases. Studies on interactions of V with Mg, which showed that both elements are able to modulate the response in an interactive manner are needed as well, as the results of such investigations may help not only in recognizing new markers of V toxicity and clarify the underlying interactive mechanism between them, thus improving the medical application of the metals against modern-age diseases, but also they may help in development of principles of effective protection of humans against environmental/occupational V exposure.
Collapse
Key Words
- 3-HMG-CoA, 3-hydroxy-3-methyl-glutaryl-CoA
- AIDS, acquired immune deficiency syndrome
- ALB, albumin
- ALP, alkaline phosphatase
- AS, antioxidant status
- Akt, protein kinase B (PKB)
- AmD, Assoc American Dietetic Association
- Anti-B, anti-bacterial
- Anti-C, anti-cancer
- Anti-D, anti-diabetic
- Anti-F, anti-fungal
- Anti-O, anti-obesity
- Anti-P, anti-parasitic
- Anti-V, anti-viral
- Anti−HC, anti-hypercholesterolemic
- ApoA-I, apolipoprotein A
- ApoB, apolipoprotein B
- B, bone
- BCOV, bis(curcumino)oxavanadyl
- BEOV, bis(ethylmaltolato)oxovanadium
- BMOV, bis(maltolato)oxavanadium(IV)
- Bim, Blc-2 interacting mediator of cell death
- Biological role
- BrOP, bromoperoxidase
- C, cholesterol
- C/EBPα, CCAAT-enhancer-binding protein α
- CD4, CD4 receptor
- CH, cerebral hemisphere
- CHO-K1, Chinese hamster ovary cells
- CXCR-4, CXCR-4 chemokine co-receptor
- Cardio-P, cardioprotective
- Citrate-T, citrate transporter
- CoA, coenzyme A
- Cyt c, cytochrome c
- DM, diabetes mellitus
- ELI, extra low interstitial
- ERK, extracellular regulated kinase
- FHR, fructose hypertensive rats
- FKHR/FKHR1/AFX, class O members of the forkhead transcription factor family
- FLIP, FLICE-inhibitory protein
- FOXOs, forkhead box class O family member proteins
- FPP, farnesyl-pyrophosphate
- FasL, Fas ligand, FER: ferritin
- GI, gastrointestinal
- GLU, glucose
- GLUT-4, glucose transporter type 4
- GPP, geranyl-pyrophosphate
- GPT, glutamate-pyruvate transaminase
- GR, glutathione reductase
- GSH, reduced glutathione
- GSSG, disulfide glutathione
- HDL, high-density lipoproteins
- HDL-C, HDL cholesterol
- HIV, human immunodeficiency virus
- HMMF, high molecular mass fraction
- HOMA-IR, insulin resistance index
- Hb, hemoglobin
- HbF, hemoglobin fraction
- Hyper-LEP, hyperleptynemia
- IDDM, insulin-dependent diabetes mellitus
- IGF-IR, insulin-like growth factor receptor
- IL, interleukin
- INS, insulin
- INS-R, insulin resistance
- INS-S, insulin sensitivity
- IPP, isopentenyl-5-pyrophosphate
- IRS, insulin receptor tyrosine kinase substrate
- IgG, immunoglobulin G
- Industrial importance
- Interactions
- JAK2, Janus kinase 2
- K, kidney
- L, liver
- L-AA, L-ascorbic acid
- LDL, low-density lipoproteins
- LDL-C, LDL cholesterol
- LEP, leptin
- LEP-R, leptin resistance
- LEP-S, leptin sensitivity
- LEPS, the concentration of leptin in the serum
- LMMF, low molecular mass fraction
- LPL, lipoprotein lipase
- LPO, lipid peroxidation
- Lactate-T, lactate transporter
- M, mitochondrion
- MEK, ERK kinase activator
- MRC, mitochondrial respiratory chain
- NAC, N-acetylcysteine
- NEP, neutral endopeptidase
- NIDDM, noninsulin-dependent diabetes mellitus
- NO, nitric oxide
- NPY, neuropeptide Y
- NaVO3, sodium metavanadate
- Neuro-P, neuroprotective
- OXPHOS, oxidative phosphorylation
- Organic-AT, organic anion transporter
- Over-W, over-weight
- P, plasma
- PANC-1, pancreatic ductal adenocarcinoma cells
- PARP, poly (ADP-ribose) polymerase
- PLGA, (Poly)Lactide-co-Glycolide copolymer
- PO43−, phosphate ion
- PPARγ, peroxisome-activated receptor γ
- PTK, tyrosine protein kinase
- PTP, protein tyrosine phosphatase
- PTP-1B, protein tyrosine phosphatase 1B
- Pharmacological activity
- Pi3K, phosphoinositide 3-kinase (phosphatidylinositol 3-kinase)
- RBC, erythrocytes
- ROS, reactive oxygen species
- RT, reverse transcriptase
- SARS, severe acute respiratory syndrome
- SAcP, acid phosphatase secreted by Leshmania
- SC-Ti-6Al-4V, surface-coated Ti-6Al-4V
- SHR, spontaneously hypertensive rats
- SOD, superoxide dismutase
- STAT3, signal transducer/activator of transcription 3
- Sa, mean roughness
- Sq, root mean square roughness
- Sz, ten-point height
- TC, total cholesterol
- TG, triglycerides
- TS, transferrin saturation
- Tf, transferrin
- TfF, transferrin fraction
- TiO2, nHA:Ag-Ti-6Al-4V: titanium oxide-based coating containing hydroxyapatite nanoparticle and silver particles
- Top-IB, IB type topoisomerase
- Toxicological potential
- V, vanadium
- V-BrPO, vanadium bromoperoxidase
- V-DLC, diamond-like layer with vanadium
- V5+/V4+, pentavalent/tetravalent vanadium
- VO2+, vanadyl cation
- VO2+-FER, vanadyl-ferritin complex
- VO4-/VO3-, vanadate anion
- VO43-, vanadate ion
- VS, vanadyl sulfate
- Vanadium
- WB, whole blood
- ZDF rats, Zucker diabetic fatty rats
- ZF rats, Zucker fatty rats
- breakD, breakdown
- eNOS, endothelial nitric oxide synthase
- mo, months
- n-HA, nano-hydroxyapatite
- pRb, retinoblastoma protein
- wk, weeks
Collapse
Affiliation(s)
- Agnieszka Ścibior
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, The John Paull II Catholic University of Lublin, Poland
| | - Łukasz Pietrzyk
- Laboratory of Oxidative Stress, Centre for Interdisciplinary Research, The John Paull II Catholic University of Lublin, Poland
- Department of Didactics and Medical Simulation, Chair of Anatomy, Medical University of Lublin, Poland
| | - Zbigniew Plewa
- Department of General, Oncological, and Minimally Invasive Surgery, 1 Military Clinical Hospital with the Outpatient Clinic in Lublin, Poland
| | - Andrzej Skiba
- Military Clinical Hospital with the Outpatient Clinic in Lublin, Poland
| |
Collapse
|
19
|
Levina A, Pires Vieira A, Wijetunga A, Kaur R, Koehn JT, Crans DC, Lay PA. A Short-Lived but Highly Cytotoxic Vanadium(V) Complex as a Potential Drug Lead for Brain Cancer Treatment by Intratumoral Injections. Angew Chem Int Ed Engl 2020; 59:15834-15838. [PMID: 32598089 DOI: 10.1002/anie.202005458] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 12/12/2022]
Abstract
The chemistry and short lifetimes of metal-based anti-cancer drugs can be turned into an advantage for direct injections into tumors, which then allow the use of highly cytotoxic drugs. The release of their less toxic decomposition products into the blood will lead to decreased toxicity and can even have beneficial effects. We present a ternary VV complex, 1 ([VOL1 L2 ], where L1 is N-(salicylideneaminato)-N'-(2-hydroxyethyl)ethane-1,2-diamine and L2 is 3,5-di-tert-butylcatechol), which enters cells intact to induce high cytotoxicity in a range of human cancer cells, including T98g (glioma multiforme), while its decomposition products in cell culture medium were ≈8-fold less toxic. 1 was 12-fold more toxic than cisplatin in T98g cells and 6-fold more toxic in T98g cells than in a non-cancer human cell line, HFF-1. Its high toxicity in T98g cells was retained in the presence of physiological concentrations of the two main metal-binding serum proteins, albumin and transferrin. These properties favor further development of 1 for brain cancer treatment by intratumoral injections.
Collapse
Affiliation(s)
- Aviva Levina
- School of Chemistry and Sydney Analytical, University of Sydney, Sydney, NSW, 2006, Australia
| | - Adriana Pires Vieira
- School of Chemistry and Sydney Analytical, University of Sydney, Sydney, NSW, 2006, Australia
| | - Asanka Wijetunga
- School of Chemistry and Sydney Analytical, University of Sydney, Sydney, NSW, 2006, Australia
| | - Ravinder Kaur
- School of Chemistry and Sydney Analytical, University of Sydney, Sydney, NSW, 2006, Australia
| | - Jordan T Koehn
- Department of Chemistry and the Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, 80523, USA
| | - Debbie C Crans
- Department of Chemistry and the Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, 80523, USA
| | - Peter A Lay
- School of Chemistry and Sydney Analytical, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
20
|
Levina A, Pires Vieira A, Wijetunga A, Kaur R, Koehn JT, Crans DC, Lay PA. A Short‐Lived but Highly Cytotoxic Vanadium(V) Complex as a Potential Drug Lead for Brain Cancer Treatment by Intratumoral Injections. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Aviva Levina
- School of Chemistry and Sydney Analytical University of Sydney Sydney NSW 2006 Australia
| | - Adriana Pires Vieira
- School of Chemistry and Sydney Analytical University of Sydney Sydney NSW 2006 Australia
| | - Asanka Wijetunga
- School of Chemistry and Sydney Analytical University of Sydney Sydney NSW 2006 Australia
| | - Ravinder Kaur
- School of Chemistry and Sydney Analytical University of Sydney Sydney NSW 2006 Australia
| | - Jordan T. Koehn
- Department of Chemistry and the Cell and Molecular Biology Program Colorado State University Fort Collins CO 80523 USA
| | - Debbie C. Crans
- Department of Chemistry and the Cell and Molecular Biology Program Colorado State University Fort Collins CO 80523 USA
| | - Peter A. Lay
- School of Chemistry and Sydney Analytical University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
21
|
Ugone V, Sanna D, Sciortino G, Crans DC, Garribba E. ESI-MS Study of the Interaction of Potential Oxidovanadium(IV) Drugs and Amavadin with Model Proteins. Inorg Chem 2020; 59:9739-9755. [PMID: 32585093 PMCID: PMC8008395 DOI: 10.1021/acs.inorgchem.0c00969] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Indexed: 01/13/2023]
Abstract
In this study, the binding to lysozyme (Lyz) of four important VIV compounds with antidiabetic and/or anticancer activity, [VIVO(pic)2(H2O)], [VIVO(ma)2], [VIVO(dhp)2], and [VIVO(acac)2], where pic-, ma-, dhp-, and acac- are picolinate, maltolate, 1,2-dimethyl-3-hydroxy-4(1H)-pyridinonate, and acetylacetonate anions, and of the vanadium-containing natural product amavadin ([VIV(hidpa)2]2-, with hidpa3- N-hydroxyimino-2,2'-diisopropionate) was investigated by ElectroSpray Ionization-Mass Spectrometry (ESI-MS). Moreover, the interaction of [VIVO(pic)2(H2O)], chosen as a representative VIVO2+ complex, was examined with two additional proteins, myoglobin (Mb) and ubiquitin (Ub), to compare the data. The examined vanadium concentration was in the range 15-150 μM, i.e., very close to that found under physiological conditions. With pic-, dhp-, and hidpa3-, the formation of adducts n[VIVOL2]-Lyz or n[VIVL2]-Lyz is favored, while with ma- and acac- the species n[VIVOL]-Lyz are detected, with n dependent on the experimental VIV/protein ratio. The behavior of the systems with [VIVO(pic)2(H2O)] and Mb or Ub is very similar to that of Lyz. The results suggested that under physiological conditions, the moiety cis-VIVOL2 (L = pic-, dhp-) is bound by only one accessible side-chain protein residue that can be Asp, Glu, or His, while VIVOL+ (L = ma-, acac-) can interact with the two equatorial and axial sites. If the VIV complex is thermodynamically stable and does not have available coordination positions, such as amavadin, the protein cannot interact with it through the formation of coordination bonds and, in such cases, noncovalent interactions are predicted. The formation of the adducts is dependent on the thermodynamic stability and geometry in aqueous solution of the VIVO2+ complex and affects the transport, uptake, and mechanism of action of potential V drugs.
Collapse
Affiliation(s)
- Valeria Ugone
- Dipartimento
di Chimica e Farmacia, Università
di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Daniele Sanna
- Istituto
CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Giuseppe Sciortino
- Dipartimento
di Chimica e Farmacia, Università
di Sassari, Via Vienna 2, I-07100 Sassari, Italy
- Departament
de Química, Universitat Autònoma
de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Debbie C. Crans
- Department
of Chemistry, Colorado State University, 1301 Center Avenue, Fort Collins, Colorado, United States
| | - Eugenio Garribba
- Dipartimento
di Chimica e Farmacia, Università
di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| |
Collapse
|
22
|
Levina A, Lay PA. Vanadium(V/IV)–Transferrin Binding Disrupts the Transferrin Cycle and Reduces Vanadium Uptake and Antiproliferative Activity in Human Lung Cancer Cells. Inorg Chem 2020; 59:16143-16153. [DOI: 10.1021/acs.inorgchem.0c00926] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Frank P, Carlson RMK, Carlson EJ, Hedman B, Hodgson KO. Biological sulfur in the blood cells of Ascidia ceratodes: XAS spectroscopy and a cellular-enzymatic hypothesis for vanadium reduction in the ascidians. J Inorg Biochem 2020; 205:110991. [PMID: 31945647 PMCID: PMC7033024 DOI: 10.1016/j.jinorgbio.2019.110991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/12/2019] [Accepted: 12/31/2019] [Indexed: 10/25/2022]
Abstract
Two samples of living blood cells and of cleared blood plasma from the Phlebobranch tunicate Ascidia ceratodes from Bodega Bay, California, and one of fresh Henze solution from A. ceratodes of Monterey Bay, California, have been examined using sulfur K-edge x-ray absorption spectroscopy (XAS). Biological sulfur included sulfate esters, sulfate and bisulfate ions, benzothiazole, thianthrene, epi-sulfide, thiol and disulfide. Glutathione dominated reduced sulfur, from which an average intracellular Voltage of -0.21 V was calculated. Sulfate-bisulfate ratios yielded blood cell pH values of 2.0 and 2.8. Total blood cell [sulfur] was 373±9 mM or 296±73 mM from BaSO4 gravimetry. Two plasma samples (pH 6.9 or 7.0; [S] = 33±6 mM or 26±4 mM) were dominated by sulfate and disulfide. Fresh Henze solution evidenced a sulfur inventory similar to blood cells, with calculated pH = 2.7. A V(III)-sulfonate fraction varied systematically with intracellular pH across six independent blood cell samples, implying a vanadium mobilization pathway. Bodega Bay and Monterey Bay A. ceratodes appear to maintain alternative suites of low-valent sulfur. The significance of the vanabins to vanadium metabolism is critically examined in terms of known protein - V(IV) biochemistry. Finally, a detailed hypothesis for the reduction of [VO4]3- to V(III) in ascidians is introduced. A vanadium oxido-reductase is proposed to span the signet ring membrane and to release V(III) into the inner acidic vacuole. The V(V) to V(III) reduction is predicted require an inner-sphere mechanism, a thiol reductant, 7-coordinate V(III), a biologically accessible Voltage, and proton-facilitated release of V(III).
Collapse
Affiliation(s)
- Patrick Frank
- Stanford Synchrotron Radiation laboratory, SLAC, Stanford University, Menlo Park, CA 94025, United States of America; Department of Chemistry, Stanford University, Stanford, CA 94305, United States of America.
| | - Robert M K Carlson
- Institute for Materials and Energy Sciences, SLAC, Stanford University, Menlo Park, CA 94025, United States of America
| | - Elaine J Carlson
- University of California, San Francisco, CA 94143, United States of America
| | - Britt Hedman
- Stanford Synchrotron Radiation laboratory, SLAC, Stanford University, Menlo Park, CA 94025, United States of America
| | - Keith O Hodgson
- Stanford Synchrotron Radiation laboratory, SLAC, Stanford University, Menlo Park, CA 94025, United States of America; Department of Chemistry, Stanford University, Stanford, CA 94305, United States of America
| |
Collapse
|
24
|
Rasouli Z, Ghavami R. Simultaneous optical detection of human serum albumin and transferrin in body fluids. Mikrochim Acta 2020; 187:208. [DOI: 10.1007/s00604-020-4178-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
|
25
|
Priya B, Kumar A, Sharma N. Synthesis, characterization, and biological properties of oxidovanadium(IV) complexes of acetylsalicylhydroxamic acid ( N-acetyloxy-2-hydroxybenzamide) as potential antimicrobials. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820907563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
New oxidovanadium(IV) complexes of composition [VO(AcSHA)2] 1 and [VO(acac)(AcSHA)] 2 are synthesized by reactions of VOSO4.5H2O and [VO(acac)2] with acetylsalicylhydroxamic acid AcSH2A (C6H4(OH)(CONHOCOCH3)) in a 1:2 molar ratio in absolute ethanol. The compounds are characterized by the Fourier-transform infrared spectroscopy, ultraviolet–visible spectroscopy, electron spin resonance, and mass spectrometry along with elemental analyses, molar conductivity, and magnetic moment measurements. The infrared spectra of the complexes suggest bonding through carbonyl and phenolic oxygen atoms (O,O coordination). The magnetic moment, electron spin resonance, and mass spectra of the complexes indicate that both exist as monomers, and a distorted square pyramidal geometry around vanadium is proposed. The thermal behavior of the complexes is studied by thermogravimetry and differential thermal analysis techniques under an N2 atmosphere, yielding VO2 as the decomposition product. The in vitro antimicrobial assays against pathogenic Gram-positive bacteria, Gram-negative bacteria, and fungi (minimum inhibitory concentration method) show the appreciable antimicrobial potential relative to the respective standard drugs, tetracycline hydrochloride, and fluconazole.
Collapse
Affiliation(s)
- Bhanu Priya
- Department of Chemistry, Himachal Pradesh University, Shimla, India
| | - Abhishek Kumar
- Department of Chemistry, Himachal Pradesh University, Shimla, India
| | - Neeraj Sharma
- Department of Chemistry, Himachal Pradesh University, Shimla, India
| |
Collapse
|
26
|
Biswas N, Bera S, Sepay N, Pal A, Halder T, Ray S, Acharyya S, Biswas AK, Drew MGB, Ghosh T. Simultaneous formation of non-oxidovanadium(iv) and oxidovanadium(v) complexes incorporating phenol-based hydrazone ligands in aerobic conditions. NEW J CHEM 2020. [DOI: 10.1039/c9nj06114b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A family of non-oxidovanadium(iv) complexes incorporating multidentate hydrazone ligands were synthesized through a thermodynamically unfavourable process along with oxidovanadium(v) species.
Collapse
Affiliation(s)
- Nirmalendu Biswas
- Post Graduate Department of Chemistry
- Ramakrishna Mission Vivekananda Centenary College
- Kolkata-700118
- India
| | - Sachinath Bera
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Nayim Sepay
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Amrita Pal
- Department of Mechanical Engineering
- National University of Singapore
- Singapore
| | - Tanmoy Halder
- Department of Botany
- University of Calcutta
- Kolkata-700019
- India
| | - Sudipta Ray
- Department of Botany
- University of Calcutta
- Kolkata-700019
- India
| | - Swarnali Acharyya
- Department of Pathology and Cell Biology
- Columbia University
- New York
- USA
| | - Anup Kumar Biswas
- Herbert Irving Comprehensive Cancer Centre
- Columbia University
- New York
- USA
| | | | - Tapas Ghosh
- Post Graduate Department of Chemistry
- Ramakrishna Mission Vivekananda Centenary College
- Kolkata-700118
- India
| |
Collapse
|
27
|
Griffin E, Levina A, Lay PA. Vanadium(V) tris-3,5-di-tert-butylcatecholato complex: Links between speciation and anti-proliferative activity in human pancreatic cancer cells. J Inorg Biochem 2019; 201:110815. [DOI: 10.1016/j.jinorgbio.2019.110815] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/26/2019] [Accepted: 08/31/2019] [Indexed: 12/21/2022]
|
28
|
In vitro tyrosinase, acetylcholinesterase, and HSA evaluation of dioxidovanadium (V) complexes: An experimental and theoretical approach. J Inorg Biochem 2019; 200:110800. [DOI: 10.1016/j.jinorgbio.2019.110800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/07/2019] [Accepted: 08/11/2019] [Indexed: 12/16/2022]
|
29
|
Ugone V, Sanna D, Sciortino G, Maréchal JD, Garribba E. Interaction of Vanadium(IV) Species with Ubiquitin: A Combined Instrumental and Computational Approach. Inorg Chem 2019; 58:8064-8078. [PMID: 31140794 DOI: 10.1021/acs.inorgchem.9b00807] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The interaction of VIVO2+ ion and five VIVOL2 compounds with potential pharmacological application, where L indicates maltolate (ma), kojate (koj), acetylacetonate (acac), 1,2-dimethyl-3-hydroxy-4(1 H)-pyridinonate (dhp), and l-mimosinate (mim), with ubiquitin (Ub) was studied by EPR, ESI-MS, and computational (docking and DFT) methods. The free metal ion VIVO2+ interacts with Glu, Asp, His, Thr, and Leu residues, but the most stable sites (named 1 and 2) involve the coordination of (Glu16, Glu18) and (Glu24, Asp52). In the system with VIVOL2 compounds, the type of binding depends on the vanadium concentration. When the concentration is in the mM range, the binding occurs with cis-VOL2(H2O), L = ma, koj, dhp, and mim, or with VO(acac)2: in the first case, the equatorial coordination of His68, Glu16, Glu18, or Asp21 residues yields species with formula n[VOL2]-Ub where n = 2-3, while with VO(acac)2 only noncovalent surface interactions are revealed. When the concentration of V is on the order of micromolar, the mono-chelated species VOL(H2O)2+ with L = ma, koj, acac, dhp, and mim, favored by the hydrolysis, interact with Ub, and adducts with composition n[VOL]-Ub ( n = 1-2) are observed with the contemporaneous coordination of (Glu18, Asp21) or (Glu16, Glu18), and (Glu24, Asp52) or (Glu51, Asp52) donors. The results of this work suggest that the combined application of spectroscopic, spectrometric, and computational techniques allow the complete characterization of the ternary systems formed by a V compound and a model protein such as ubiquitin. The same approach can be applied, eventually changing the spectroscopic/spectrometric techniques, to study the interaction of other metal species with other proteins.
Collapse
Affiliation(s)
- Valeria Ugone
- Dipartimento di Chimica e Farmacia , Università di Sassari , Via Vienna 2 , I-07100 Sassari , Italy
| | - Daniele Sanna
- Istituto di Chimica Biomolecolare , Consiglio Nazionale delle Ricerche , Trav. La Crucca 3 , I-07040 Sassari , Italy
| | - Giuseppe Sciortino
- Dipartimento di Chimica e Farmacia , Università di Sassari , Via Vienna 2 , I-07100 Sassari , Italy.,Departament de Química , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallés , Barcelona , Spain
| | - Jean-Didier Maréchal
- Departament de Química , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallés , Barcelona , Spain
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia , Università di Sassari , Via Vienna 2 , I-07100 Sassari , Italy
| |
Collapse
|
30
|
Treviño S, Díaz A, Sánchez-Lara E, Sanchez-Gaytan BL, Perez-Aguilar JM, González-Vergara E. Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biol Trace Elem Res 2019; 188:68-98. [PMID: 30350272 PMCID: PMC6373340 DOI: 10.1007/s12011-018-1540-6] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Vanadium compounds have been primarily investigated as potential therapeutic agents for the treatment of various major health issues, including cancer, atherosclerosis, and diabetes. The translation of vanadium-based compounds into clinical trials and ultimately into disease treatments remains hampered by the absence of a basic pharmacological and metabolic comprehension of such compounds. In this review, we examine the development of vanadium-containing compounds in biological systems regarding the role of the physiological environment, dosage, intracellular interactions, metabolic transformations, modulation of signaling pathways, toxicology, and transport and tissue distribution as well as therapeutic implications. From our point of view, the toxicological and pharmacological aspects in animal models and humans are not understood completely, and thus, we introduced them in a physiological environment and dosage context. Different transport proteins in blood plasma and mechanistic transport determinants are discussed. Furthermore, an overview of different vanadium species and the role of physiological factors (i.e., pH, redox conditions, concentration, and so on) are considered. Mechanistic specifications about different signaling pathways are discussed, particularly the phosphatases and kinases that are modulated dynamically by vanadium compounds because until now, the focus only has been on protein tyrosine phosphatase 1B as a vanadium target. Particular emphasis is laid on the therapeutic ability of vanadium-based compounds and their role for the treatment of diabetes mellitus, specifically on that of vanadate- and polioxovanadate-containing compounds. We aim at shedding light on the prevailing gaps between primary scientific data and information from animal models and human studies.
Collapse
Affiliation(s)
- Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Eduardo Sánchez-Lara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Brenda L. Sanchez-Gaytan
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Jose Manuel Perez-Aguilar
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Enrique González-Vergara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| |
Collapse
|
31
|
Ramos J, Muthukumaran J, Freire F, Paquete-Ferreira J, Otrelo-Cardoso AR, Svergun D, Panjkovich A, Santos-Silva T. Shedding Light on the Interaction of Human Anti-Apoptotic Bcl-2 Protein with Ligands through Biophysical and in Silico Studies. Int J Mol Sci 2019; 20:E860. [PMID: 30781512 PMCID: PMC6413030 DOI: 10.3390/ijms20040860] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 12/19/2022] Open
Abstract
Bcl-2 protein is involved in cell apoptosis and is considered an interesting target for anti-cancer therapy. The present study aims to understand the stability and conformational changes of Bcl-2 upon interaction with the inhibitor venetoclax, and to explore other drug-target regions. We combined biophysical and in silico approaches to understand the mechanism of ligand binding to Bcl-2. Thermal shift assay (TSA) and urea electrophoresis showed a significant increase in protein stability upon venetoclax incubation, which is corroborated by molecular docking and molecular dynamics simulations. An 18 °C shift in Bcl-2 melting temperature was observed in the TSA, corresponding to a binding affinity multiple times higher than that of any other reported Bcl-2 inhibitor. This protein-ligand interaction does not implicate alternations in protein conformation, as suggested by SAXS. Additionally, bioinformatics approaches were used to identify deleterious non-synonymous single nucleotide polymorphisms (nsSNPs) of Bcl-2 and their impact on venetoclax binding, suggesting that venetoclax interaction is generally favored against these deleterious nsSNPs. Apart from the BH3 binding groove of Bcl-2, the flexible loop domain (FLD) also plays an important role in regulating the apoptotic process. High-throughput virtual screening (HTVS) identified 5 putative FLD inhibitors from the Zinc database, showing nanomolar affinity toward the FLD of Bcl-2.
Collapse
Affiliation(s)
- Joao Ramos
- UCIBIO-NOVA, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Jayaraman Muthukumaran
- UCIBIO-NOVA, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Filipe Freire
- UCIBIO-NOVA, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - João Paquete-Ferreira
- UCIBIO-NOVA, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Ana Rita Otrelo-Cardoso
- UCIBIO-NOVA, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Dmitri Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o DESY, 22067 Hamburg, Germany.
| | - Alejandro Panjkovich
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o DESY, 22067 Hamburg, Germany.
| | - Teresa Santos-Silva
- UCIBIO-NOVA, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
32
|
Sciortino G, Sanna D, Ugone V, Maréchal JD, Garribba E. Integrated ESI-MS/EPR/computational characterization of the binding of metal species to proteins: vanadium drug–myoglobin application. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00179d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An integrated strategy based on ESI-MS spectrometry, EPR spectroscopy and docking/QM computational methods is applied to the systems formed by VIVO2+ ions and four potential VIVOL2 drugs and myoglobin. This approach is generizable to other metals and proteins.
Collapse
Affiliation(s)
- Giuseppe Sciortino
- Dipartimento di Chimica e Farmacia
- Università di Sassari
- I-07100 Sassari
- Italy
- Departament de Química
| | - Daniele Sanna
- Istituto CNR di Chimica Biomolecolare
- I-07040 Sassari
- Italy
| | - Valeria Ugone
- Dipartimento di Chimica e Farmacia
- Università di Sassari
- I-07100 Sassari
- Italy
| | | | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia
- Università di Sassari
- I-07100 Sassari
- Italy
| |
Collapse
|
33
|
Sciortino G, Sanna D, Ugone V, Maréchal JD, Alemany-Chavarria M, Garribba E. Effect of secondary interactions, steric hindrance and electric charge on the interaction of VIVO species with proteins. NEW J CHEM 2019. [DOI: 10.1039/c9nj01956a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The effect of secondary interactions (hydrogen bonds and van der Waals contacts), steric hindrance and electric charge, on the binding of VIV complexes formed by pipemidic and 8-hydroxyquinoline-5-sulphonic acids with ubiquitin and lysozyme is studied.
Collapse
Affiliation(s)
- Giuseppe Sciortino
- Departament de Química
- Universitat Autònoma de Barcelona
- Barcelona
- Spain
- Dipartimento di Chimica e Farmacia
| | - Daniele Sanna
- Istituto CNR di Chimica Biomolecolare
- I-07040 Sassari
- Italy
| | - Valeria Ugone
- Dipartimento di Chimica e Farmacia
- Università di Sassari
- I-07100 Sassari
- Italy
| | | | | | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia
- Università di Sassari
- I-07100 Sassari
- Italy
| |
Collapse
|
34
|
Azam A, Raza MA, Sumrra SH. Therapeutic Application of Zinc and Vanadium Complexes against Diabetes Mellitus a Coronary Disease: A review. OPEN CHEM 2018. [DOI: 10.1515/chem-2018-0118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AbstractDuring the last two decades, number of peoples suffering from diabetes has increased from 30-230 million globally. Today, seven out of the ten top countries are suffering from diabetes, are emergent countries. Due to alarming situations of diabetes, chemists and pharmacist are continuously searching and synthesizing new potent therapeutics to treat this disease. Now a days, considerable attention is being paid to the chemistry of the metal-drug interactions. Metals and their organic based complexes are being used clinically for various ailments. In this review, a comprehensive discussion about synthesis and diabetic evaluation of zinc and vanadium complex is summarized.
Collapse
Affiliation(s)
- Aisha Azam
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat, Pakistan
| | - Muhammad Asam Raza
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat, Pakistan
| | | |
Collapse
|
35
|
Sanna D, Ugone V, Micera G, Buglyó P, Bíró L, Garribba E. Speciation in human blood of Metvan, a vanadium based potential anti-tumor drug. Dalton Trans 2018. [PMID: 28640312 DOI: 10.1039/c7dt00943g] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The first report on the anti-cancer activity of the compound Metvan, [VIVO(Me2phen)2(SO4)], where Me2phen is 4,7-dimethyl-1,10-phenanthroline, dates back to 2001. Although it was immediately identified as one of the most promising multitargeted anti-cancer V compounds, no development on the medical experimentation was carried out. One of the possible reasons is the lack of information on its speciation in aqueous solution and its thermodynamic stability, factors which influence the transport in the blood and the final form which reaches the target organs. To fill this gap, in this work the speciation of Metvan in aqueous solution and human blood was studied by instrumental (EPR, electronic absorption spectroscopy, ESI-MS and ESI-MS/MS), analytical (pH-potentiometry) and computational (DFT) methods. The results suggested that Metvan transforms at physiological pH into the hydrolytic species cis-[VO(Me2phen)2(OH)]+ and that both citrate and proteins (transferrin and albumin in the blood serum, and hemoglobin in the erythrocytes) form mixed complexes, denoted [VO(Me2phen)(citrH-1)]2- and VO-Me2phen-Protein with the probable binding of His-N donors. The measurements with erythrocytes suggest that Metvan is able to cross their membrane forming mixed species VO-Me2phen-Hb. The redox stability in cell culture medium was also examined, showing that ca. 60% is oxidized to VV after 5 h. Overall, the speciation of Metvan in the blood mainly depends on the V concentration: when it is larger than 50 μM, [VO(Me2phen)(citrH-1)]2- and VO-Me2phen-Protein are the major species, while for concentrations lower than 10 μM, (VO)(hTf) is formed and Me2phen is lost. Therefore, it is plausible that the pharmacological activity of Metvan could be due to the synergic action of free Me2phen, and VIVO and VVO/VVO2 species.
Collapse
Affiliation(s)
- Daniele Sanna
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Squadrone S, Brizio P, Mancini C, Abete MC, Brusco A. Altered homeostasis of trace elements in the blood of SCA2 patients. J Trace Elem Med Biol 2018; 47:111-114. [PMID: 29544796 DOI: 10.1016/j.jtemb.2018.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 01/03/2023]
Abstract
Spinocerebellar ataxia type 2 (SCA2) is a neurological disorder characterized by cerebellar dysfunction. The possible association between metals and neurodegenerative diseases is under constant investigation, with particular focus on their involvement in oxidative stress and their potential role as biomarkers of these pathologies. Whole blood samples of SCA2 patients and of healthy individuals were subjected to multi-elemental analysis by inductively coupled plasma-mass spectrometry (ICP-MS). Reduced levels of manganese and copper were found in SCA2 patients, while zinc and vanadium concentrations were significantly higher in patients compared to controls. Copper, manganese and zinc are cofactors of many enzymes (such as superoxide dismutase, SOD) involved in the cellular antioxidant response, whereas vanadium is a transition metal able to produce reactive radicals. A marked decrease of the antioxidant response has been previously reported in SCA2 patients. We suggest that an unbalance of transitional elements in the blood may reflect altered antioxidant homeostasis in SCA2 patients and could constitute a future peripheral biomarker for this disease. In addition, we suggest a possible role of vanadium in the altered lipid metabolism of SCA2 patients.
Collapse
Affiliation(s)
- Stefania Squadrone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, via Bologna 148, 10154 Torino, Italy.
| | - Paola Brizio
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, via Bologna 148, 10154 Torino, Italy
| | - Cecilia Mancini
- University of Torino, Department of Medical Sciences, 10126 Torino, Italy
| | - Maria Cesarina Abete
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, via Bologna 148, 10154 Torino, Italy
| | - Alfredo Brusco
- University of Torino, Department of Medical Sciences, 10126 Torino, Italy; Città della Salute e della Scienza University Hospital, Medical Genetics Unit, 10126 Torino, Italy
| |
Collapse
|
37
|
Sciortino G, Sanna D, Ugone V, Lledós A, Maréchal JD, Garribba E. Decoding Surface Interaction of VIVO Metallodrug Candidates with Lysozyme. Inorg Chem 2018; 57:4456-4469. [DOI: 10.1021/acs.inorgchem.8b00134] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Giuseppe Sciortino
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Daniele Sanna
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Valeria Ugone
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Agustí Lledós
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| |
Collapse
|
38
|
Sanna D, Ugone V, Buglyó P, Nagy S, Kacsir I, Garribba E. Speciation in aqueous solution and interaction with low and high molecular mass blood bioligands of [V IV O(oda)(H 2 O) 2 ], a V compound with in vitro anticancer activity. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.07.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Azevedo CG, Correia I, Dos Santos MMC, Santos MFA, Santos-Silva T, Doutch J, Fernandes L, Santos HM, Capelo JL, Pessoa JC. Binding of vanadium to human serum transferrin - voltammetric and spectrometric studies. J Inorg Biochem 2017; 180:211-221. [PMID: 29355752 DOI: 10.1016/j.jinorgbio.2017.12.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/20/2017] [Accepted: 12/19/2017] [Indexed: 11/25/2022]
Abstract
Previous studies generally agree that in the blood serum vanadium is transported mainly by human serum transferrin (hTF). In this work through the combined use of electrochemical techniques, matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry and small-angle X-ray scattering (SAXS) data it is confirmed that both VIV and VV bind to apo-hTF and holo-hTF. The electrochemical behavior of solutions containing vanadate(V) solutions at pH=7.0, analyzed by using two different voltammetric techniques, with different time windows, at a mercury electrode, Differential Pulse Polarography (DPP) and Cyclic Voltammetry (CV), is consistent with a stepwise reduction of VV→VIV and VIV→VII. Globally the voltammetric data are consistent with the formation of 2:1 complexes in the case of the system VV-apo-hTF and both 1:1 and 2:1 complexes in the case of VV-holo-hTF; the corresponding conditional formation constants were estimated. MALDI-TOF mass spectrometric data carried out with samples of VIVOSO4 and apo-hTF and of NH4VVO3 with both apo-hTF and holo-hTF with V:hTF ratios of 3:1 are consistent with the binding of vanadium to the proteins. Additionally the SAXS data suggest that both VIVOSO4 and NaVVO3 can effectively interact with human apo-transferrin, but for holo-hTF no clear evidence was obtained supporting the existence or the absence of protein-ligand interactions. This latter data suggest that the conformation of holo-hTF does not change in the presence of either VIVOSO4 or NH4VVO3. Therefore, it is anticipated that VIV or VV bound to holo-hTF may be efficiently up-taken by the cells through receptor-mediated endocytosis of hTF.
Collapse
Affiliation(s)
- Cristina G Azevedo
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Isabel Correia
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Margarida M C Dos Santos
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Marino F A Santos
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Teresa Santos-Silva
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - James Doutch
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
| | - Luz Fernandes
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152 Caparica, Portugal
| | - Hugo M Santos
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152 Caparica, Portugal
| | - José L Capelo
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152 Caparica, Portugal
| | - João Costa Pessoa
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
40
|
Levina A, Crans DC, Lay PA. Speciation of metal drugs, supplements and toxins in media and bodily fluids controls in vitro activities. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.01.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
41
|
Thakur S, Roy S, Bauzá A, Frontera A, Chattopadhyay S. Estimation of non-covalent C H⋯π, π⋯π (chelate ring) and hydrogen bonding interactions in vanadium(V) Schiff base complexes: Methylene spacer regulated variation in self-assembly. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.07.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Correia I, Chorna I, Cavaco I, Roy S, Kuznetsov ML, Ribeiro N, Justino G, Marques F, Santos-Silva T, Santos MFA, Santos HM, Capelo JL, Doutch J, Pessoa JC. Interaction of [V IV O(acac) 2 ] with Human Serum Transferrin and Albumin. Chem Asian J 2017. [PMID: 28651041 DOI: 10.1002/asia.201700469] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
[VO(acac)2 ] is a remarkable vanadium compound and has potential as a therapeutic drug. It is important to clarify how it is transported in blood, but the reports addressing its binding to serum proteins have been contradictory. We use several spectroscopic and mass spectrometric techniques (ESI and MALDI-TOF), small-angle X-ray scattering and size exclusion chromatography (SEC) to characterize solutions containing [VO(acac)2 ] and either human serum apotransferrin (apoHTF) or albumin (HSA). DFT and modeling protein calculations are carried out to disclose the type of binding to apoHTF. The measured circular dichroism spectra, SEC and MALDI-TOF data clearly prove that at least two VO-acac moieties may bind to apoHTF, most probably forming [VIV O(acac)(apoHTF)] complexes with residues of the HTF binding sites. No indication of binding of [VO(acac)2 ] to HSA is obtained. We conclude that VIV O-acac species may be transported in blood by transferrin. At very low complex concentrations speciation calculations suggest that [(VO)(apoHTF)] species form.
Collapse
Affiliation(s)
- Isabel Correia
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Ielyzaveta Chorna
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Isabel Cavaco
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.,Departamento de Química e Farmácia, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Somnath Roy
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.,Department of Chemistry, Ananda Chandra College, Jalpaiguri, West Bengal, India
| | - Maxim L Kuznetsov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Nádia Ribeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Gonçalo Justino
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Fernanda Marques
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.,Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066, Bobadela LRS, Portugal
| | - Teresa Santos-Silva
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Marino F A Santos
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Hugo M Santos
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.,PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152, Caparica, Portugal
| | - José L Capelo
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.,PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152, Caparica, Portugal
| | - James Doutch
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
| | - João Costa Pessoa
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| |
Collapse
|
43
|
Levina A, Lay PA. Stabilities and Biological Activities of Vanadium Drugs: What is the Nature of the Active Species? Chem Asian J 2017; 12:1692-1699. [PMID: 28401668 DOI: 10.1002/asia.201700463] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Indexed: 12/12/2022]
Abstract
Diverse biological activities of vanadium(V) drugs mainly arise from their abilities to inhibit phosphatase enzymes and to alter cell signaling. Initial interest focused on anti-diabetic activities but has shifted to anti-cancer and anti-parasitic drugs. V-based anti-diabetics are pro-drugs that release active components (e.g., H2 VO4- ) in biological media. By contrast, V anti-cancer drugs are generally assumed to enter cells intact; however, speciation studies indicate that nearly all drugs are likely to react in cell culture media during in vitro assays and the same would apply in vivo. The biological activities are due to VV and/or VIV reaction products with cell culture media, or the release of ligands (e.g., aromatic diimines, 8-hydroxyquinolines or thiosemicarbazones) that bind to essential metal ions in the media. Careful consideration of the stability and speciation of V complexes in cell culture media and in biological fluids is essential to design targeted V-based anti-cancer therapies.
Collapse
Affiliation(s)
- Aviva Levina
- School of Chemistry, University of Sydney, Sydney, 2006 NSW, Australia
| | - Peter A Lay
- School of Chemistry, University of Sydney, Sydney, 2006 NSW, Australia
| |
Collapse
|
44
|
Abstract
Vanadium is omnipresent in trace amounts in the environment, in food and also in the human body, where it might serve as a regulator for phosphate-dependent proteins. Potential vanadium-based formulations--inorganic and coordination compounds with organic ligands--commonly underlie speciation in the body, that is, they are converted to vanadate(V), oxidovanadium(IV) and to complexes with the body's own ligand systems. Vanadium compounds have been shown to be potentially effective against diabetes Type 2, malign tumors including cancer, endemic tropical diseases (such as trypanosomiasis, leishmaniasis and amoebiasis), bacterial infections (tuberculosis and pneumonia) and HIV infections. Furthermore, vanadium drugs can be operative in cardio- and neuro-protection. So far, vanadium compounds have not yet been approved as pharmaceuticals for clinical use.
Collapse
|
45
|
Pessoa JC, Etcheverry S, Gambino D. Vanadium compounds in medicine. Coord Chem Rev 2015; 301:24-48. [PMID: 32226091 PMCID: PMC7094629 DOI: 10.1016/j.ccr.2014.12.002] [Citation(s) in RCA: 340] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/18/2014] [Accepted: 12/02/2014] [Indexed: 12/02/2022]
Abstract
Vanadium is a transition metal that, being ubiquitously distributed in soil, crude oil, water and air, also found roles in biological systems and is an essential element in most living beings. There are also several groups of organisms which accumulate vanadium, employing it in their biological processes. Vanadium being a biological relevant element, it is not surprising that many vanadium based therapeutic drugs have been proposed for the treatment of several types of diseases. Namely, vanadium compounds, in particular organic derivatives, have been proposed for the treatment of diabetes, of cancer and of diseases caused by parasites. In this work we review the medicinal applications proposed for vanadium compounds with particular emphasis on the more recent publications. In cells, partly due to the similarity of vanadate and phosphate, vanadium compounds activate numerous signaling pathways and transcription factors; this by itself potentiates application of vanadium-based therapeutics. Nevertheless, this non-specific bio-activity may also introduce several deleterious side effects as in addition, due to Fenton's type reactions or of the reaction with atmospheric O2, VCs may also generate reactive oxygen species, thereby introducing oxidative stress with consequences presently not well evaluated, particularly for long-term administration of vanadium to humans. Notwithstanding, the potential of vanadium compounds to treat type 2 diabetes is still an open question and therapies using vanadium compounds for e.g. antitumor and anti-parasitic related diseases remain promising.
Collapse
Affiliation(s)
- Joao Costa Pessoa
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Susana Etcheverry
- Cátedra de Bioquímica Patológica and CEQUINOR, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 1900 La Plata, Argentina
| | - Dinorah Gambino
- Cátedra de Química Inorgánica, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800 Montevideo, Uruguay
| |
Collapse
|
46
|
Costa Pessoa J, Garribba E, Santos MF, Santos-Silva T. Vanadium and proteins: Uptake, transport, structure, activity and function. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.03.016] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Levina A, McLeod AI, Gasparini SJ, Nguyen A, De Silva WGM, Aitken JB, Harris HH, Glover C, Johannessen B, Lay PA. Reactivity and Speciation of Anti-Diabetic Vanadium Complexes in Whole Blood and Its Components: The Important Role of Red Blood Cells. Inorg Chem 2015; 54:7753-66. [PMID: 26230577 DOI: 10.1021/acs.inorgchem.5b00665] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reactions with blood components are crucial for controlling the antidiabetic, anticancer, and other biological activities of V(V) and V(IV) complexes. Despite extensive studies of V(V) and V(IV) reactions with the major blood proteins (albumin and transferrin), reactions with whole blood and red blood cells (RBC) have been studied rarely. A detailed speciation study of Na3[V(V)O4] (A), K4[V(IV)2O2(citr)2]·6H2O (B; citr = citrato(4-)); [V(IV)O(ma)2] (C; ma = maltolato(-)), and (NH4)[V(V)(O)2(dipic)] (D; dipic = pyridine-2,6-dicarboxylato(2-)) in whole rat blood, freshly isolated rat plasma, and commercial bovine serum using X-ray absorption near-edge structure (XANES) spectroscopy is reported. The latter two compounds are potential oral antidiabetic drugs, and the former two are likely to represent their typical decomposition products in gastrointestinal media. XANES spectral speciation was performed by principal component analysis and multiple linear regression techniques, and the distribution of V between RBC and plasma fractions was measured by electrothermal atomic absorption spectroscopy. Reactions of A, C, or D with whole blood (1.0 mM V, 1-6 h at 310 K) led to accumulation of ∼50% of total V in the RBC fraction (∼10% in the case of B), which indicated that RBC act as V carriers to peripheral organs. The spectra of V products in RBC were independent of the initial V complex, and were best fitted by a combination of V(IV)-carbohydrate (2-hydroxyacid moieties) and/or citrate (65-85%) and V(V)-protein (15-35%) models. The presence of RBC created a more reducing environment in the plasma fraction of whole blood compared with those in isolated plasma or serum, as shown by the differences in distribution of V(IV) and V(V) species in the reaction products of A-D in these media. At physiologically relevant V concentrations (<50 μM), this role of RBC may promote the formation of V(III)-transferrin as a major V carrier in the blood plasma. The results reported herein have broad implications for the roles of RBC in the transport and speciation of metal pro-drugs that have broad applications across medicine.
Collapse
Affiliation(s)
- Aviva Levina
- †School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | - Andrew I McLeod
- †School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | - Sylvia J Gasparini
- †School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | - Annie Nguyen
- †School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | | | - Jade B Aitken
- †School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia.,‡Australian Synchrotron, 800 Blackburn Rd., Clayton VIC 3168, Australia
| | - Hugh H Harris
- †School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | - Chris Glover
- ‡Australian Synchrotron, 800 Blackburn Rd., Clayton VIC 3168, Australia
| | - Bernt Johannessen
- ‡Australian Synchrotron, 800 Blackburn Rd., Clayton VIC 3168, Australia
| | - Peter A Lay
- †School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| |
Collapse
|
48
|
|
49
|
Levina A, McLeod AI, Pulte A, Aitken JB, Lay PA. Biotransformations of Antidiabetic Vanadium Prodrugs in Mammalian Cells and Cell Culture Media: A XANES Spectroscopic Study. Inorg Chem 2015; 54:6707-18. [PMID: 25906315 PMCID: PMC4511291 DOI: 10.1021/ic5028948] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
The antidiabetic activities of vanadium(V)
and -(IV) prodrugs are determined by their ability to release active
species upon interactions with components of biological media. The
first X-ray absorption spectroscopic study of the reactivity of typical
vanadium (V) antidiabetics, vanadate ([VVO4]3–, A) and a vanadium(IV) bis(maltolato)
complex (B), with mammalian cell cultures has been performed
using HepG2 (human hepatoma), A549 (human lung carcinoma), and 3T3-L1
(mouse adipocytes and preadipocytes) cell lines, as well as the corresponding
cell culture media. X-ray absorption near-edge structure data were
analyzed using empirical correlations with a library of model vanadium(V),
-(IV), and -(III) complexes. Both A and B ([V] = 1.0 mM) gradually converged into similar mixtures of predominantly
five- and six-coordinate VV species (∼75% total
V) in a cell culture medium within 24 h at 310 K. Speciation of V
in intact HepG2 cells also changed with the incubation time (from
∼20% to ∼70% VIV of total V), but it was
largely independent of the prodrug used (A or B) or of the predominant V oxidation state in the medium. Subcellular
fractionation of A549 cells suggested that VV reduction
to VIV occurred predominantly in the cytoplasm, while accumulation
of VV in the nucleus was likely to have been facilitated
by noncovalent bonding to histone proteins. The nuclear VV is likely to modulate the transcription process and to be ultimately
related to cell death at high concentrations of V, which may be important
in anticancer activities. Mature 3T3-L1 adipocytes (unlike for preadipocytes)
showed a higher propensity to form VIV species, despite
the prevalence of VV in the medium. The distinct V biochemistry
in these cells is consistent with their crucial role in insulin-dependent
glucose and fat metabolism and may also point to an endogenous role
of V in adipocytes. The first detailed
speciation study of typical antidiabetic vanadium(V/IV) complexes
in mammalian cell culture systems showed that the complexes decomposed
rapidly in cell culture media and were further metabolized by the
cells, which included interconversions of VV and VIV species.
Collapse
Affiliation(s)
- Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Andrew I McLeod
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Anna Pulte
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jade B Aitken
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Peter A Lay
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
50
|
Thirty years through vanadium chemistry. J Inorg Biochem 2015; 147:4-24. [PMID: 25843361 DOI: 10.1016/j.jinorgbio.2015.03.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 11/23/2022]
Abstract
The relevance of vanadium in biological systems is known for many years and vanadium-based catalysts have important industrial applications, however, till the beginning of the 80s research on vanadium chemistry and biochemistry did not receive much attention from the scientific community. The understanding of the broad bioinorganic implications resulting from the similarities between phosphate and vanadate(V) and the discovery of vanadium dependent enzymes gave rise to an enormous increase in interest in the chemistry and biological relevance of vanadium. Thereupon the last 30years corresponded to a period of enormous research effort in these fields, as well as in medicinal applications of vanadium and in the development of catalysts for use in fine-chemical synthesis, some of these inspired by enzymatic active sites. Since the 80s my group in collaboration with others made contributions, described throughout this text, namely in the understanding of the speciation of vanadium compounds in aqueous solution and in biological fluids, and to the transport of vanadium compounds in blood plasma and their uptake by cells. Several new types of vanadium compounds were also synthesized and characterized, with applications either as prospective therapeutic drugs or as homogeneous or heterogenized catalysts for the production of fine chemicals. The developments made are described also considering the international context of the evolution of the knowledge in the chemistry and bioinorganic chemistry of vanadium compounds during the last 30years. This article was compiled based on the Vanadis Award presentation at the 9th International Vanadium Symposium.
Collapse
|