1
|
Hangan AC, Oprean LS, Dican L, Procopciuc LM, Sevastre B, Lucaciu RL. Metal-Based Drug-DNA Interactions and Analytical Determination Methods. Molecules 2024; 29:4361. [PMID: 39339356 PMCID: PMC11434005 DOI: 10.3390/molecules29184361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
DNA structure has many potential places where endogenous compounds and xenobiotics can bind. Therefore, xenobiotics bind along the sites of the nucleic acid with the aim of changing its structure, its genetic message, and, implicitly, its functions. Currently, there are several mechanisms known to be involved in DNA binding. These mechanisms are covalent and non-covalent interactions. The covalent interaction or metal base coordination is an irreversible binding and it is represented by an intra-/interstrand cross-link. The non-covalent interaction is generally a reversible binding and it is represented by intercalation between DNA base pairs, insertion, major and/or minor groove binding, and electrostatic interactions with the sugar phosphate DNA backbone. In the present review, we focus on the types of DNA-metal complex interactions (including some representative examples) and on presenting the methods currently used to study them.
Collapse
Affiliation(s)
- Adriana Corina Hangan
- Department of Inorganic Chemistry, Faculty of Pharmacy, "Iuliu-Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Luminița Simona Oprean
- Department of Inorganic Chemistry, Faculty of Pharmacy, "Iuliu-Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Lucia Dican
- Department of Medical Biochemistry, Faculty of Medicine, "Iuliu-Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Lucia Maria Procopciuc
- Department of Medical Biochemistry, Faculty of Medicine, "Iuliu-Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Bogdan Sevastre
- Clinic Department, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Roxana Liana Lucaciu
- Department of Pharmaceutical Biochemistry and Clinical Laboratory, Faculty of Pharmacy, "Iuliu-Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Zornić S, Simović Marković B, Franich AA, Janjić GV, Jadranin MB, Avdalović J, Rajković S, Živković MD, Arsenijević NN, Radosavljević GD, Pantić J. Characterization, modes of interactions with DNA/BSA biomolecules and anti-tumor activity of newly synthesized dinuclear platinum(II) complexes with pyridazine bridging ligand. J Biol Inorg Chem 2024; 29:51-73. [PMID: 38099936 DOI: 10.1007/s00775-023-02030-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/10/2023] [Indexed: 04/10/2024]
Abstract
Platinum-based drugs are widely recognized efficient anti-tumor agents, but faced with multiple undesirable effects. Here, four dinuclear platinum(II) complexes, [{Pt(1,2-pn)Cl}2(μ-pydz)]Cl2 (C1), [{Pt(ibn)Cl}2(μ-pydz)]Cl2 (C2), [{Pt(1,3-pn)Cl}2(μ-pydz)]Cl2 (C3) and [{Pt(1,3-pnd)Cl}2(μ-pydz)]Cl2 (C4), were designed (pydz is pyridazine, 1,2-pn is ( ±)-1,2-propylenediamine, ibn is 1,2-diamino-2-methylpropane, 1,3-pn is 1,3-propylenediamine, and 1,3-pnd is 1,3-pentanediamine). Interactions and binding ability of C1-C4 complexes with calf thymus DNA (CT-DNA) has been monitored by viscosity measurements, UV-Vis, fluorescence emission spectroscopy and molecular docking. Binding affinities of C1-C4 complexes to the bovine serum albumin (BSA) has been monitored by fluorescence emission spectroscopy. The tested complexes exhibit variable cytotoxicity toward different mouse and human tumor cell lines. C2 shows the most potent cytotoxicity, especially against mouse (4T1) and human (MDA-MD468) breast cancer cells in the dose- and time-dependent manner. C2 induces 4T1 and MDA-MD468 cells apoptosis, further documented by the accumulation of cells at sub-G1 phase of cell cycle and increase of executive caspase 3 and caspase 9 levels in 4T1 cells. C2 exhibits anti-proliferative effect through the reduction of cyclin D3 and cyclin E expression and elevation of inhibitor p27 level. Also, C2 downregulates c-Myc and phosphorylated AKT, oncogenes involved in the control of tumor cell proliferation and death. In order to measure the amount of platinum(II) complexes taken up by the cells, the cellular platinum content were quantified. However, C2 failed to inhibit mouse breast cancer growth in vivo. Chemical modifications of tested platinum(II) complexes might be a valuable approach for the improvement of their anti-tumor activity, especially effects in vivo.
Collapse
Affiliation(s)
- Sanja Zornić
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia
- Department of Microbiology, University Clinical Center Kragujevac, Zmaj Jovina 30, 34000, Kragujevac, Serbia
| | - Bojana Simović Marković
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia
| | - Andjela A Franich
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Goran V Janjić
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia
| | - Milka B Jadranin
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia
| | - Jelena Avdalović
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia
| | - Snežana Rajković
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Marija D Živković
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia
| | - Nebojša N Arsenijević
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia
| | - Gordana D Radosavljević
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia.
| | - Jelena Pantić
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia.
| |
Collapse
|
3
|
Franich AA, Đorđević IS, Živković MD, Rajković S, Janjić GV, Djuran MI. Dinuclear platinum(II) complexes as the pattern for phosphate backbone binding: a new perspective for recognition of binding modes to DNA. J Biol Inorg Chem 2021; 27:65-79. [PMID: 34714401 DOI: 10.1007/s00775-021-01911-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/07/2021] [Indexed: 11/25/2022]
Abstract
The mechanism of action of most approved drugs in use today is based on their binding to specific proteins or DNA. One of the achievements of this research is a new perspective for recognition of binding modes to DNA by monitoring of changes in measured and stoichiometric values of absorbance at 260 nm. UV-Vis and IR spectroscopy, gel electrophoresis and docking study were used for investigation of binding properties of three dinuclear platinum(II) complexes containing different pyridine-based bridging ligands, [{Pt(en)Cl}2(μ-4,4'-bipy)]Cl2·2H2O (Pt1), [{Pt(en)Cl}2(μ-bpa)]Cl2·4H2O (Pt2) and [{Pt(en)Cl}2(μ-bpe)]Cl2·4H2O (Pt3) to DNA (4,4'-bipy, bpa and bpe are 4,4'-bipyridine, 1,2-bis(4-pyridyl)ethane and 1,2-bis(4-pyridyl)ethene, respectively). In contrast to the system with well-known intercalated ligand (EtBr), covalently bound ligand (cis-Pt) and with minor groove binder (Hoechst 33258), which do not have significant differences in measured and stoichiometric values, the most pronounced deviations are recorded for two dinuclear platinum(II) complexes (Pt1 and Pt2), as a consequence of complex binding to the phosphate backbone and bending of DNA helix. The hydrolysis of complexes and changes in DNA conformation were also analysed as phenomena that may have an impact on the changes in absorbance.
Collapse
Affiliation(s)
- Andjela A Franich
- Department of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000, Kragujevac, Serbia
| | - Ivana S Đorđević
- Institute of Chemistry Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia
| | - Marija D Živković
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, S. Markovića 69, 34000, Kragujevac, Serbia
| | - Snežana Rajković
- Department of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000, Kragujevac, Serbia
| | - Goran V Janjić
- Institute of Chemistry Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia.
| | - Miloš I Djuran
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000, Belgrade, Serbia.
| |
Collapse
|
4
|
Andrezálová L, Országhová Z. Covalent and noncovalent interactions of coordination compounds with DNA: An overview. J Inorg Biochem 2021; 225:111624. [PMID: 34653826 DOI: 10.1016/j.jinorgbio.2021.111624] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/30/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022]
Abstract
Deoxyribonucleic acid plays a central role in crucial cellular processes, and many drugs exert their effects through binding to DNA. Since the discovery of cisplatin and its derivatives considerable attention of researchers has been focused on the development of novel anticancer metal-based drugs. Transition metal complexes, due to their great diversity in size and structure, have a big potential to modify DNA through diverse types of interactions, making them the prominent class of compounds for DNA targeted therapy. In this review we describe various binding modes of metal complexes to duplex DNA based on covalent and noncovalent interactions or combination of both. Specific examples of each binding mode as well as possible cytotoxic effects of metal complexes in tumor cells are presented.
Collapse
Affiliation(s)
- Lucia Andrezálová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia; Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia.
| | - Zuzana Országhová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia
| |
Collapse
|
5
|
Paiva REF, Peterson EJ, Malina J, Zoepfl M, Hampton JD, Johnson WE, Graminha A, Ourahmane A, McVoy MA, Brabec V, Berners‐Price SJ, Farrell NP. On the Biology of Werner's Complex. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Raphael E. F. Paiva
- Institute for Glycomics Griffith University Gold Coast Campus Southport Qld. 4222 Australia
| | - Erica J. Peterson
- Department of Chemistry Virginia Commonwealth University Richmond VA 23284-2006 USA
- Massey Cancer Center Virginia Commonwealth University Richmond VA 23298-0037 USA
| | - Jaroslav Malina
- Institute of Biophysics Czech Academy of Sciences Kralovopolska 135 61265 Brno Czech Republic
| | - Mary Zoepfl
- Department of Chemistry Virginia Commonwealth University Richmond VA 23284-2006 USA
| | - J. David Hampton
- Massey Cancer Center Virginia Commonwealth University Richmond VA 23298-0037 USA
- Department of Biochemistry and Molecular Biology Virginia Commonwealth University Richmond Virginia 23298-0033 USA
| | - Wyatt E. Johnson
- Department of Chemistry Virginia Commonwealth University Richmond VA 23284-2006 USA
| | - Angelica Graminha
- Department of Chemistry Virginia Commonwealth University Richmond VA 23284-2006 USA
| | - Amine Ourahmane
- Department of Pediatrics Virginia Commonwealth University Richmond VA 23298-0163 USA
| | - Michael A. McVoy
- Department of Pediatrics Virginia Commonwealth University Richmond VA 23298-0163 USA
| | - Viktor Brabec
- Institute of Biophysics Czech Academy of Sciences Kralovopolska 135 61265 Brno Czech Republic
| | - Susan J. Berners‐Price
- Institute for Glycomics Griffith University Gold Coast Campus Southport Qld. 4222 Australia
| | - Nicholas P. Farrell
- Institute for Glycomics Griffith University Gold Coast Campus Southport Qld. 4222 Australia
- Department of Chemistry Virginia Commonwealth University Richmond VA 23284-2006 USA
- Massey Cancer Center Virginia Commonwealth University Richmond VA 23298-0037 USA
| |
Collapse
|
6
|
de Paiva REF, Peterson EJ, Malina J, Zoepfl M, Hampton JD, Johnson WE, Graminha A, Ourahmane A, McVoy MA, Brabec V, Berners-Price SJ, Farrell NP. On the Biology of Werner's Complex. Angew Chem Int Ed Engl 2021; 60:17123-17130. [PMID: 34105220 PMCID: PMC8464317 DOI: 10.1002/anie.202105019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/30/2021] [Indexed: 11/05/2022]
Abstract
Werner's Complex, as a cationic coordination complex (CCC), has hitherto unappreciated biological properties derived from its binding affinity to highly anionic biomolecules such as glycosaminoglycans (GAGs) and nucleic acids. Competitive inhibitor and spectroscopic assays confirm the high affinity to GAGs heparin, heparan sulfate (HS), and its pentasaccharide mimetic Fondaparinux (FPX). Functional consequences of this affinity include inhibition of FPX cleavage by bacterial heparinase and mammalian heparanase enzymes with inhibition of cellular invasion and migration. Werner's Complex is a very efficient condensing agent for DNA and tRNA. In proof-of-principle for translational implications, it is demonstrated to display antiviral activity against human cytomegalovirus (HCMV) at micromolar concentrations with promising selectivity. Exploitation of non-covalent hydrogen-bonding and electrostatic interactions has motivated the unprecedented discovery of these properties, opening new avenues of research for this iconic compound.
Collapse
Affiliation(s)
- Raphael E F de Paiva
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Qld., 4222, Australia
| | - Erica J Peterson
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, 23284-2006, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298-0037, USA
| | - Jaroslav Malina
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Mary Zoepfl
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, 23284-2006, USA
| | - J David Hampton
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298-0037, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, 23298-0033, USA
| | - Wyatt E Johnson
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, 23284-2006, USA
| | - Angelica Graminha
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, 23284-2006, USA
| | - Amine Ourahmane
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA, 23298-0163, USA
| | - Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA, 23298-0163, USA
| | - Viktor Brabec
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Susan J Berners-Price
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Qld., 4222, Australia
| | - Nicholas P Farrell
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Qld., 4222, Australia
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, 23284-2006, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298-0037, USA
| |
Collapse
|
7
|
Gorle AK, Haselhorst T, Katner SJ, Everest-Dass AV, Hampton JD, Peterson EJ, Koblinski JE, Katsuta E, Takabe K, von Itzstein M, Berners-Price SJ, Farrell NP. Conformational Modulation of Iduronic Acid-Containing Sulfated Glycosaminoglycans by a Polynuclear Platinum Compound and Implications for Development of Antimetastatic Platinum Drugs. Angew Chem Int Ed Engl 2021; 60:3283-3289. [PMID: 33174390 PMCID: PMC7902481 DOI: 10.1002/anie.202013749] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Indexed: 12/19/2022]
Abstract
1 H NMR spectroscopic studies on the 1:1 adduct of the pentasaccharide Fondaparinux (FPX) and the substitution-inert polynuclear platinum complex TriplatinNC show significant modulation of geometry around the glycosidic linkages of the FPX constituent monosaccharides. FPX is a valid model for the highly sulfated cell signalling molecule heparan sulfate (HS). The conformational ratio of the 1 C4 :2 S0 forms of the FPX residue IdoA(2S) is altered from ca. 35:65 (free FPX) to ca. 75:25 in the adduct; the first demonstration of a small molecule affecting conformational changes on a HS oligosaccharide. Functional consequences of such binding are suggested to be inhibition of HS cleavage in MDA-MB-231 triple-negative breast cancer (TNBC) cells. We further describe inhibition of metastasis by TriplatinNC in the TNBC 4T1 syngeneic tumour model. Our work provides insight into a novel approach for design of platinum drugs (and coordination compounds in general) with intrinsic anti-metastatic potential.
Collapse
Affiliation(s)
- Anil K. Gorle
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, 4222, Australia
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, 4222, Australia
| | - Samantha J. Katner
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA
- Department of Biochemistry, Chemistry and Geology, Minnesota State University, Mankato, Mankato, Minnesota 56001, USA
| | - Arun V. Everest-Dass
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, 4222, Australia
| | - James D. Hampton
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA
| | - Erica J. Peterson
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA
| | - Jennifer E. Koblinski
- Department of Pathology, Division of Cellular and Molecular Pathogenesis, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA
| | - Eriko Katsuta
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, University at Buffalo, Buffalo, New York, 14203, USA
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, University at Buffalo, Buffalo, New York, 14203, USA
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, 4222, Australia
| | - Susan J. Berners-Price
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, 4222, Australia
| | - Nicholas P. Farrell
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, 4222, Australia
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA
| |
Collapse
|
8
|
Malina J, Kostrhunova H, Farrell NP, Brabec V. Antitumor substitution-inert polynuclear platinum complexes stabilize G-quadruplex DNA and suppress G-quadruplex-mediated gene expression. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00488c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Anticancer substitution-inert polynuclear platinum(ii) complexes (SI-PPCs) effectively stabilize DNA G-quadruplexes (G4) and terminate DNA polymerization on templates containing G4-forming sequences.
Collapse
Affiliation(s)
- Jaroslav Malina
- Czech Academy of Sciences
- Institute of Biophysics
- CZ-61265 Brno
- Czech Republic
| | - Hana Kostrhunova
- Czech Academy of Sciences
- Institute of Biophysics
- CZ-61265 Brno
- Czech Republic
| | | | - Viktor Brabec
- Czech Academy of Sciences
- Institute of Biophysics
- CZ-61265 Brno
- Czech Republic
| |
Collapse
|
9
|
Gorle AK, Haselhorst T, Katner SJ, Everest‐Dass AV, Hampton JD, Peterson EJ, Koblinski JE, Katsuta E, Takabe K, Itzstein M, Berners‐Price SJ, Farrell NP. Conformational Modulation of Iduronic Acid‐Containing Sulfated Glycosaminoglycans by a Polynuclear Platinum Compound and Implications for Development of Antimetastatic Platinum Drugs. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anil K. Gorle
- Institute for Glycomics Griffith University Gold Coast Campus Southport Queensland 4222 Australia
| | - Thomas Haselhorst
- Institute for Glycomics Griffith University Gold Coast Campus Southport Queensland 4222 Australia
| | - Samantha J. Katner
- Department of Chemistry Virginia Commonwealth University Richmond VA 23284-2006 USA
- Department of Biochemistry, Chemistry and Geology Minnesota State University Mankato, Mankato MN 56001 USA
| | - Arun V. Everest‐Dass
- Institute for Glycomics Griffith University Gold Coast Campus Southport Queensland 4222 Australia
| | - James D. Hampton
- Department of Chemistry Virginia Commonwealth University Richmond VA 23284-2006 USA
- Massey Cancer Center Virginia Commonwealth University Richmond VA 23298-0037 USA
| | - Erica J. Peterson
- Department of Chemistry Virginia Commonwealth University Richmond VA 23284-2006 USA
- Massey Cancer Center Virginia Commonwealth University Richmond VA 23298-0037 USA
| | - Jennifer E. Koblinski
- Massey Cancer Center Virginia Commonwealth University Richmond VA 23298-0037 USA
- Department of Pathology Division of Cellular and Molecular Pathogenesis Virginia Commonwealth University Richmond VA 23284-2006 USA
| | - Eriko Katsuta
- Department of Surgical Oncology Roswell Park Comprehensive Cancer Center University at Buffalo Buffalo NY 14203 USA
| | - Kazuaki Takabe
- Department of Surgical Oncology Roswell Park Comprehensive Cancer Center University at Buffalo Buffalo NY 14203 USA
| | - Mark Itzstein
- Institute for Glycomics Griffith University Gold Coast Campus Southport Queensland 4222 Australia
| | - Susan J. Berners‐Price
- Institute for Glycomics Griffith University Gold Coast Campus Southport Queensland 4222 Australia
| | - Nicholas P. Farrell
- Institute for Glycomics Griffith University Gold Coast Campus Southport Queensland 4222 Australia
- Department of Chemistry Virginia Commonwealth University Richmond VA 23284-2006 USA
- Massey Cancer Center Virginia Commonwealth University Richmond VA 23298-0037 USA
| |
Collapse
|
10
|
Substitution-inert polynuclear platinum compounds inhibit human cytomegalovirus attachment and entry. Antiviral Res 2020; 184:104957. [DOI: 10.1016/j.antiviral.2020.104957] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/25/2022]
|
11
|
Malina J, Farrell NP, Brabec V. Substitution-Inert Polynuclear Platinum Complexes Inhibit Reverse Transcription Preferentially in RNA Triplex-Forming Templates. Inorg Chem 2020; 59:15135-15143. [PMID: 32988198 DOI: 10.1021/acs.inorgchem.0c02070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNA triplexes are significant tertiary structure motifs that are found in many functional RNAs. Hence, small molecules capable of recognition, binding, and stabilization of the triple-helical RNA structures are emerging as attractive potential molecular biology tools and therapeutic agents. Here, we utilize methods of molecular biology and biophysics to study the interactions of a series of antitumor substitution-inert polynuclear platinum complexes (SI-PPCs) with triple-helical RNA structures. We show that SI-PPCs recognize and stabilize RNA triplexes and inhibit reverse transcription preferentially in the RNA template prone to the triplex formation. These so far unexplored properties of SI-PPCs suggest that the targeting of triple-stranded regions in RNA might contribute to the biological effects of SI-PPCs.
Collapse
Affiliation(s)
- Jaroslav Malina
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno CZ-61265, Czech Republic
| | - Nicholas P Farrell
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno CZ-61265, Czech Republic
| |
Collapse
|
12
|
Rosa NMP, Arvellos JAF, Costa LAS. Molecular dynamics simulation of non-covalent interactions between polynuclear platinum(II) complexes and DNA. J Biol Inorg Chem 2020; 25:963-978. [PMID: 32914401 DOI: 10.1007/s00775-020-01817-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/30/2020] [Indexed: 10/23/2022]
Abstract
Several studies with substitution-inert polynuclear platinum(II) complexes (SI-PPC) have been carried out in recent years due to the form of DNA binding presented by these compounds. This form of bonding is achieved by molecular recognition through the formation of non-covalent structures, commonly called phosphate clamps and forks, which generate small extensions of the major and minor grooves. In this work, we use molecular dynamics simulations (MD) to study the formation of these cyclical structures between six different SI-PPCs and a double DNA dodecamer, here called 24_bp_DNA. The results showed the influence of the complex expressed on the number of phosphate clamps and forks formed. Based on the conformational characterization of the DNA fragment, we show that the studied SI-PPCs interact preferentially in the minor groove, causing groove spanning, except for two of them, Monoplatin and AH44. The phosphates of C-G pairs are the main sites for such non-covalent interactions. The Gibbs interaction energy of solvated species points out to AH78P, AH78H, and TriplatinNC as the most probable ones when coupled with DNA. As far as we know, this work is the very first one related to SI-PPCs which brings MD simulations and a complete analysis of the non-covalent interactions with a double DNA dodecamer.
Collapse
Affiliation(s)
- Nathália M P Rosa
- NEQC-Núcleo de Estudos em Química Computacional, Departamento de Química, ICE, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Júlio A F Arvellos
- NEQC-Núcleo de Estudos em Química Computacional, Departamento de Química, ICE, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Luiz Antônio S Costa
- NEQC-Núcleo de Estudos em Química Computacional, Departamento de Química, ICE, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil.
| |
Collapse
|
13
|
New minor groove covering DNA binding mode of dinuclear Pt(II) complexes with various pyridine-linked bridging ligands and dual anticancer-antiangiogenic activities. J Biol Inorg Chem 2020; 25:395-409. [PMID: 32162071 DOI: 10.1007/s00775-020-01770-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Abstract
New anticancer platinum(II) compounds simultaneously targeting tumor cells and tumor-derived neoangiogenesis, with new DNA interacting mode and large therapeutic window are appealing alternative to improve efficacy of clinical platinum chemotherapeutics. Herein, we describe three novel dinuclear [{Pt(en)Cl}2(μ-L)]2+ complexes with different pyridine-like bridging ligands (L), 4,4'-bipyridine (Pt1), 1,2-bis(4-pyridyl)ethane (Pt2) and 1,2-bis(4-pyridyl)ethene (Pt3), which highly, positively charged aqua derivatives, [{Pt(en)(H2O)}2(μ-L)]4+, interact with the phosphate backbone forming DNA-Pt adducts with an unique and previously undescribed binding mode, called a minor groove covering. The results of this study suggested that the new binding mode of the aqua-Pt(II) complexes with DNA could be attributed to the higher anticancer activities of their chloride analogues. All three compounds, particularly complex [{Pt(en)Cl}2(μ-4,4'-bipy)]Cl2·2H2O (4,4'-bipy is 4,4'-bipyridine) (Pt1), overcame cisplatin resistance in vivo in the zebrafish-mouse melanoma xenograft model, showed much higher therapeutic potential than antiangiogenic drug sunitinib malate, while effectively blocking tumor neovascularization and melanoma cell metastasis. Overall therapeutic profile showed new dinuclear Pt(II) complexes could be novel, effective and safe anticancer agents. Finally, the correlation with the structural characteristics of these complexes can serve as a useful tool for developing new and more effective anticancer drugs.
Collapse
|
14
|
|
15
|
van Rixel VHS, Busemann A, Wissingh MF, Hopkins SL, Siewert B, van de Griend C, Siegler MA, Marzo T, Papi F, Ferraroni M, Gratteri P, Bazzicalupi C, Messori L, Bonnet S. Induction of a Four-Way Junction Structure in the DNA Palindromic Hexanucleotide 5'-d(CGTACG)-3' by a Mononuclear Platinum Complex. Angew Chem Int Ed Engl 2019; 58:9378-9382. [PMID: 31046177 PMCID: PMC6618160 DOI: 10.1002/anie.201814532] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 12/22/2022]
Abstract
Four-way junctions (4WJs) are supramolecular DNA assemblies comprising four interacting DNA strands that in biology are involved in DNA-damage repair. In this study, a new mononuclear platinum(II) complex 1 was prepared that is capable of driving the crystallization of the DNA oligomer 5'-d(CGTACG)-3' specifically into a 4WJ-like motif. In the crystal structure of the 1-CGTACG adduct, the distorted-square-planar platinum complex binds to the core of the 4WJ-like motif through π-π stacking and hydrogen bonding, without forming any platinum-nitrogen coordination bonds. Our observations suggest that the specific molecular properties of the metal complex are crucially responsible for triggering the selective assembly of this peculiar DNA superstructure.
Collapse
Affiliation(s)
- Vincent H. S. van Rixel
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, PO Box 95022333CCLeidenThe Netherlands
| | - Anja Busemann
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, PO Box 95022333CCLeidenThe Netherlands
| | - Mathijs F. Wissingh
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, PO Box 95022333CCLeidenThe Netherlands
| | - Samantha L. Hopkins
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, PO Box 95022333CCLeidenThe Netherlands
| | - Bianka Siewert
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, PO Box 95022333CCLeidenThe Netherlands
| | - Corjan van de Griend
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, PO Box 95022333CCLeidenThe Netherlands
| | | | - Tiziano Marzo
- Department of PharmacyUniversity of PisaVia Bonanno Pisano 656126PisaItaly
| | - Francesco Papi
- Department of ChemistryUniversity of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI)Italy
| | - Marta Ferraroni
- Department of ChemistryUniversity of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI)Italy
| | - Paola Gratteri
- Department NEUROFARBA—Pharmaceutical and Nutraceutical sectionLaboratory of Molecular Modeling Cheminformatics and QSARUniversity of FlorenceVia Ugo Schiff 650019Sesto Fiorentino (FI)Italy
| | - Carla Bazzicalupi
- Department of ChemistryUniversity of FlorenceVia della Lastruccia 350019Sesto Fiorentino (FI)Italy
| | - Luigi Messori
- Department of Chemistry “Ugo Schiff”University of FlorenceItaly
| | - Sylvestre Bonnet
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 55, PO Box 95022333CCLeidenThe Netherlands
| |
Collapse
|
16
|
van Rixel VHS, Busemann A, Wissingh MF, Hopkins SL, Siewert B, van de Griend C, Siegler MA, Marzo T, Papi F, Ferraroni M, Gratteri P, Bazzicalupi C, Messori L, Bonnet S. Induction of a Four‐Way Junction Structure in the DNA Palindromic Hexanucleotide 5′‐d(CGTACG)‐3′ by a Mononuclear Platinum Complex. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Vincent H. S. van Rixel
- Leiden Institute of ChemistryLeiden University Einsteinweg 55, PO Box 9502 2333CC Leiden The Netherlands
| | - Anja Busemann
- Leiden Institute of ChemistryLeiden University Einsteinweg 55, PO Box 9502 2333CC Leiden The Netherlands
| | - Mathijs F. Wissingh
- Leiden Institute of ChemistryLeiden University Einsteinweg 55, PO Box 9502 2333CC Leiden The Netherlands
| | - Samantha L. Hopkins
- Leiden Institute of ChemistryLeiden University Einsteinweg 55, PO Box 9502 2333CC Leiden The Netherlands
| | - Bianka Siewert
- Leiden Institute of ChemistryLeiden University Einsteinweg 55, PO Box 9502 2333CC Leiden The Netherlands
| | - Corjan van de Griend
- Leiden Institute of ChemistryLeiden University Einsteinweg 55, PO Box 9502 2333CC Leiden The Netherlands
| | | | - Tiziano Marzo
- Department of PharmacyUniversity of Pisa Via Bonanno Pisano 6 56126 Pisa Italy
| | - Francesco Papi
- Department of ChemistryUniversity of Florence Via della Lastruccia 3 50019 Sesto Fiorentino (FI) Italy
| | - Marta Ferraroni
- Department of ChemistryUniversity of Florence Via della Lastruccia 3 50019 Sesto Fiorentino (FI) Italy
| | - Paola Gratteri
- Department NEUROFARBA—Pharmaceutical and Nutraceutical sectionLaboratory of Molecular Modeling Cheminformatics and QSARUniversity of Florence Via Ugo Schiff 6 50019 Sesto Fiorentino (FI) Italy
| | - Carla Bazzicalupi
- Department of ChemistryUniversity of Florence Via della Lastruccia 3 50019 Sesto Fiorentino (FI) Italy
| | - Luigi Messori
- Department of Chemistry “Ugo Schiff”University of Florence Italy
| | - Sylvestre Bonnet
- Leiden Institute of ChemistryLeiden University Einsteinweg 55, PO Box 9502 2333CC Leiden The Netherlands
| |
Collapse
|
17
|
Malina J, Čechová K, Farrell NP, Brabec V. Substitution-Inert Polynuclear Platinum Complexes with Dangling Amines: Condensation/Aggregation of Nucleic Acids and Inhibition of DNA-Related Enzymatic Activities. Inorg Chem 2019; 58:6804-6810. [PMID: 31046253 DOI: 10.1021/acs.inorgchem.9b00254] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The substitution-inert polynuclear platinum complexes (SI-PPCs) are now recognized as a distinct subclass of platinum anticancer drugs with high DNA binding affinity. Here, we investigate the effects of SI-PPCs containing dangling amine groups in place of NH3 as ligands to increase the length of the molecule and therefore overall charge and its distribution. The results obtained with the aid of biophysical techniques, such as total intensity light scattering, gel electrophoresis, and atomic force microscopy, show that addition of dangling amine groups considerably augments the ability of SI-PPCs to condense/aggregate nucleic acids. Moreover, this enhanced capability of SI-PPCs correlates with their heightened efficiency to inhibit DNA-related enzymatic activities, such as those connected with DNA transcription, catalysis of DNA relaxation by DNA topoisomerase I, and DNA synthesis catalyzed by Taq DNA polymerase. Thus, the addition of the dangling amine groups resulting in structures of SI-PPCs, which differ so markedly from the derivatives of cisplatin used in the clinic, appears to contribute to the overall biological activity of these molecules.
Collapse
Affiliation(s)
- Jaroslav Malina
- Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Klára Čechová
- Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Nicholas P Farrell
- Department of Chemistry , Virginia Commonwealth University , Richmond , Virginia 23284-2006 , United States
| | - Viktor Brabec
- Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| |
Collapse
|
18
|
Kellett A, Molphy Z, Slator C, McKee V, Farrell NP. Molecular methods for assessment of non-covalent metallodrug-DNA interactions. Chem Soc Rev 2019; 48:971-988. [PMID: 30714595 PMCID: PMC6657641 DOI: 10.1039/c8cs00157j] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Indexed: 12/31/2022]
Abstract
The binding of small molecule metallodrugs to discrete regions of nucleic acids is an important branch of medicinal chemistry and the nature of these interactions, allied with sequence selectivity, forms part of the backbone of modern medicinal inorganic chemistry research. In this tutorial review we describe a range of molecular methods currently employed within our laboratories to explore novel metallodrug-DNA interactions. At the outset, an introduction to DNA from a structural perspective is provided along with descriptions of non-covalent DNA recognition focusing on intercalation, insertion, and phosphate binding. Molecular methods, described from a non-expert perspective, to identify non-covalent and pre-associative nucleic acid recognition are then demonstrated using a variety of techniques including direct (non-optical) and indirect (optical) methods. Direct methods include: X-ray crystallography; NMR spectroscopy; mass spectrometry; and viscosity while indirect approaches detail: competitive inhibition experiments; fluorescence and absorbance spectroscopy; circular dichroism; and electrophoresis-based techniques. For each method described we provide an overview of the technique, a detailed examination of results obtained and relevant follow-on of advanced biophysical/analytical techniques. To achieve this, a selection of relevant copper(ii) and platinum(ii) complexes developed within our laboratories are discussed and are compared, where possible, to classical DNA binding agents. Applying these molecular methods enables us to determine structure-activity factors important to rational metallodrug design. In many cases, combinations of molecular methods are required to comprehensively elucidate new metallodrug-DNA interactions and, from a drug discovery perspective, coupling this data with cellular responses helps to inform understanding of how metallodrug-DNA binding interactions manifest cytotoxic action.
Collapse
Affiliation(s)
- Andrew Kellett
- School of Chemical Sciences and the National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Zara Molphy
- School of Chemical Sciences and the National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Creina Slator
- School of Chemical Sciences and the National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Vickie McKee
- School of Chemical Sciences and the National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland. and Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Nicholas P Farrell
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284-2006, USA.
| |
Collapse
|
19
|
Malina J, Farrell NP, Brabec V. Substitution-Inert Polynuclear Platinum Complexes Act as Potent Inducers of Condensation/Aggregation of Short Single- and Double-Stranded DNA and RNA Oligonucleotides. Chemistry 2019; 25:2995-2999. [PMID: 30565774 DOI: 10.1002/chem.201806276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Indexed: 01/18/2023]
Abstract
Compounds condensing DNA and RNA molecules can essentially affect important biological processes including DNA replication and transcription. Here, this work shows with the aid of total intensity light scattering, gel electrophoresis, and atomic force microscopy (AFM) that the substitution-inert polynuclear platinum complexes (SI-PPCs), particularly [{trans-Pt(NH3 )2 (NH2 (CH2 )6 - NH3 + )}2 -μ-{trans-Pt(NH3 )2 (NH2 (CH2 )6 NH2 )2 }]8+ (Triplatin NC), exhibit an unprecedented high potency to condense/aggregate fragments of DNA and RNA as short as 20 base pairs. SI-PPCs condensates are distinctive from those generated by the naturally occurring polyamines (commonly used DNA compacting/condensing agents). Collectively, the results further confirm that SI-PPCs are very efficient inducers of condensation of DNA and RNA, including their short fragments that might have potential in gene therapy, biotechnology, and bionanotechnology. Moreover, the data confirm the structural advantages of the phosphate clamp, with a well-defined rigid DNA recognition motif in initiating condensation and aggregation phenomena on oligonucleotides.
Collapse
Affiliation(s)
- Jaroslav Malina
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Nicholas P Farrell
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, 23284-2006, USA
| | - Viktor Brabec
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| |
Collapse
|
20
|
Konovalov B, Živković MD, Milovanović JZ, Djordjević DB, Arsenijević AN, Vasić IR, Janjić GV, Franich A, Manojlović D, Skrivanj S, Milovanović MZ, Djuran MI, Rajković S. Synthesis, cytotoxic activity and DNA interaction studies of new dinuclear platinum(ii) complexes with an aromatic 1,5-naphthyridine bridging ligand: DNA binding mode of polynuclear platinum(ii) complexes in relation to the complex structure. Dalton Trans 2019; 47:15091-15102. [PMID: 30303498 DOI: 10.1039/c8dt01946k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis, spectroscopic characterization, cytotoxic activity and DNA binding evaluation of seven new dinuclear platinum(ii) complexes Pt1-Pt7, with the general formula [{Pt(L)Cl}2(μ-1,5-nphe)](ClO4)2 (1,5-nphe is 1,5-naphthyridine; while L is two ammines (Pt1) or one bidentate coordinated diamine: ethylenediamine (Pt2), (±)-1,2-propylenediamine (Pt3), trans-(±)-1,2-diaminocyclohexane (Pt4), 1,3-propylenediamine (Pt5), 2,2-dimethyl-1,3-propylenediamine (Pt6), and 1,3-pentanediamine (Pt7)), were reported. In vitro cytotoxic activity of these complexes was evaluated against three tumor cell lines, murine colon carcinoma (CT26), murine mammary carcinoma (4T1) and murine lung cancer (LLC1) and two normal cell lines, murine mesenchymal stem cells (MSC) and human fibroblast (MRC-5) cells. The results of the MTT assay indicate that all investigated complexes have almost no cytotoxic effects on 4T1 and very low cytotoxicity toward LLC1 cell lines. In contrast to the effects on LLC1 and 4T1 cells, complexes Pt1 and Pt2 had significant cytotoxic activity toward CT26 cells. Complex Pt1 had a much lower IC50 value for activity on CT26 cells compared with cisplatin. In comparison with cisplatin, all dinuclear Pt1-Pt7 complexes showed lower cytotoxicity toward normal MSC and MRC-5 cells. In order to measure the amount of platinum(ii) complexes taken up by the cells, we quantified the cellular platinum content using inductively coupled plasma mass spectrometry (ICP-QMS). Molecular docking studies performed to evaluate the potential binding mode of dinuclear platinum(ii) complexes Pt1-Pt7 and their aqua derivatives W1-W7, respectively, at the double stranded DNA showed that groove spanning and backbone tracking are the most stable binding modes.
Collapse
Affiliation(s)
- Bata Konovalov
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
New mono- and dinuclear complexes of 7-azaindole-3-carboxaldehyde with palladium(II): crystal structure, IR and Raman spectra, DFT calculations and in vitro antiproliferative activity. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.06.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Malina J, Farrell NP, Brabec V. Substitution-Inert Polynuclear Platinum Complexes That Inhibit the Activity of DNA Polymerase in Triplex-Forming Templates. Angew Chem Int Ed Engl 2018; 57:8535-8539. [PMID: 29766623 DOI: 10.1002/anie.201803448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/24/2018] [Indexed: 11/07/2022]
Abstract
The formation of triple-helical DNA is implicated in the regulation of gene expression. The triplexes are, however, unstable under physiological conditions so that effective stabilizers for the triplex formation are needed. Herein, we describe a new strategy for the stabilization of such triplexes that is based on antitumor substitution-inert polynuclear platinum complexes (SI-PPCs). These compounds were previously shown to bind to DNA through the phosphate clamp-a discrete mode of DNA-ligand recognition distinct from the canonical intercalation and minor-groove binding. We have found that SI-PPCs efficiently inhibit DNA synthesis by DNA polymerase in sequences prone to the formation of pyrimidine- and purine-motif triplex DNAs. Moreover, the results suggest that SI-PPCs are able to induce the formation of triple-helical DNA between duplexes and strands that are not completely complementary to each other. Collectively, these data provide evidence that SI-PPCs are very efficient stabilizers of triple-stranded DNA that might exert their action by stabilizing higher-order structures such as triple-helical DNA.
Collapse
Affiliation(s)
- Jaroslav Malina
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, CZ-61265, Brno, Czech Republic
| | - Nicholas P Farrell
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, 23284-2006, USA
| | - Viktor Brabec
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, CZ-61265, Brno, Czech Republic
| |
Collapse
|
23
|
Malina J, Farrell NP, Brabec V. Substitution‐Inert Polynuclear Platinum Complexes That Inhibit the Activity of DNA Polymerase in Triplex‐Forming Templates. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jaroslav Malina
- Institute of Biophysics Czech Academy of Sciences Kralovopolska 135 CZ-61265 Brno Czech Republic
| | - Nicholas P. Farrell
- Department of Chemistry Virginia Commonwealth University Richmond VA 23284-2006 USA
| | - Viktor Brabec
- Institute of Biophysics Czech Academy of Sciences Kralovopolska 135 CZ-61265 Brno Czech Republic
| |
Collapse
|
24
|
Mass spectrometry as a powerful tool to study therapeutic metallodrugs speciation mechanisms: Current frontiers and perspectives. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.02.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Brabec V, Hrabina O, Kasparkova J. Cytotoxic platinum coordination compounds. DNA binding agents. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.04.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Bernardes VHF, Qu Y, Du Z, Beaton J, Vargas MD, Farrell NP. Interaction of the HIV NCp7 Protein with Platinum(II) and Gold(III) Complexes Containing Tridentate Ligands. Inorg Chem 2016; 55:11396-11407. [PMID: 27934299 DOI: 10.1021/acs.inorgchem.6b01925] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human immunodeficiency virus (HIV) nucleocapsid protein (NCp7) plays significant roles in the virus life cycle and has been targeted by compounds that could lead to its denaturation or block its interaction with viral RNA. Herein, we describe the interactions of platinum(II) and gold(III) complexes with NCp7 and how the reactivity/affinity of potential inhibitors can be modulated by judicious choice of ligands. The interactions of [MCl(N3)]n+ (M = Pt2+ (n = 1) and Au3+ (n = 2); N3 = tridentate chelate ligands: bis(2-pyridylmethyl)methylamine (Mebpma, L1) and bis(2-pyridylmethyl)amine (bpma, L2) with the C-terminal zinc finger of NCp7 (ZF2) were investigated by electrospray ionization-mass spectroscopy (ESI-MS). Mass spectra from the incubation of [MCl(Mebpma)]n+ complexes (PtL1 and AuL1) with ZF2 indicated that they were more reactive than the previously studied diethylenetriamine-containing analogues [MCl(dien)]n+. The initial product of reaction of PtL1 with ZF2 results in loss of all ligands and release of zinc to give the platinated apopeptide {PtF} (F = apopeptide). This is in contrast to the incubation with [PtCl(dien)]+, in which {Pt(dien)}-peptide adducts are observed. Incubation of the Au3+ complex AuL1 with ZF2 gave AuxFn+ species (x = 1, 2, 4, F = apopeptide) again with loss of all ligands. Furthermore, the formally substitution-inert analogues [Pt(N3)L]2+ (L = 4-methylpyridine (4-pic), 4-dimethylaminopyridine (dmap), and 9-ethylguanine (9-EtGua)) were prepared to examine stacking interactions with N-acetyltryptophan (N-AcTrp), the Trp-containing ZF2, and the "full" two-finger NCp7 itself using fluorescence quenching titration. Use of bpma and Mebpma gave slightly higher affinity than analogous [Pt(dien)L)]2+ complexes. The dmap-containing complexes (PtL1a and PtL2a) had the greatest association constants (Ka) for N-AcTrp and ZF2 peptide. The complex PtL1a had the highest Ka when compared with other known Pt2+ analogues: [Pt(dien)(9-EtGua)]2+ < [Pt(bpma)(9-EtGua)]2+ < [Pt(dien)(dmap)]2+< PtL2a < PtL1a. A Ka value of ca. 40.6 ± 1.0 × 103 M-1 was obtained for the full NCp7 peptide with PtL1a. In addition, the mass spectrum of the interaction between ZF2 and PtL1a confirms formation of a 1:1 PtL1a/ZF2 adduct. The reactivity of selected complexes with sulfur-containing amino acid N-acetylcysteine (N-AcCys) was also investigated by 195Pt and 1H NMR spectroscopy and ESI-MS. The precursor compounds [PtCl(N3)]+ PtL1 and PtL2 reacted readily, whereas their [Pt(N3)L]2+ analogues PtL1a and PtL2a were inert to substitution.
Collapse
Affiliation(s)
- Victor H F Bernardes
- Chemistry Institute, Fluminense Federal University , Campus Valonguinho, CEP 24020-141, Niterói-RJ, Brazil.,Department of Chemistry, Virginia Commonwealth University , 1001 W. Main St., Richmond, Virginia 23284-2006, United States
| | - Yun Qu
- Department of Chemistry, Virginia Commonwealth University , 1001 W. Main St., Richmond, Virginia 23284-2006, United States
| | - Zhifeng Du
- Department of Chemistry, Virginia Commonwealth University , 1001 W. Main St., Richmond, Virginia 23284-2006, United States
| | - James Beaton
- Department of Chemistry, Virginia Commonwealth University , 1001 W. Main St., Richmond, Virginia 23284-2006, United States
| | - Maria D Vargas
- Chemistry Institute, Fluminense Federal University , Campus Valonguinho, CEP 24020-141, Niterói-RJ, Brazil
| | - Nicholas P Farrell
- Department of Chemistry, Virginia Commonwealth University , 1001 W. Main St., Richmond, Virginia 23284-2006, United States
| |
Collapse
|