1
|
Rusnac R, Garbuz O, Kravtsov V, Melnic E, Istrati D, Tsapkov V, Poirier D, Gulea A. Novel Copper(II) Coordination Compounds Containing Pyridine Derivatives of N4-Methoxyphenyl-Thiosemicarbazones with Selective Anticancer Activity. Molecules 2024; 29:6002. [PMID: 39770091 PMCID: PMC11676775 DOI: 10.3390/molecules29246002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Ten coordination compounds, [Cu(L1)Cl] (C1), [Cu(L1)NO3] (C2), [Cu(L2)Cl] (C3), [Cu(L2)NO3] (C4), [Cu(L3)Cl] (C5), [Cu(L3)NO3] (C6), [Cu(L4)NO3] (C7), [Cu(L4)Cl] (C8), [Cu(L5)Cl] (C9), and [Cu(L5)NO3] (C10), containing pyridine derivatives of N4-methoxyphenyl-thiosemicarbazones were synthesized and characterized. The molecular structure of four compounds was investigated using single crystal X-ray diffraction. Spectral analysis techniques such as FT-IR, 1H NMR, 13C NMR, elemental analysis, and molar conductivity were used for all the synthesized compounds. The tested synthesized compounds were evaluated for their anticancer activity and selectivity against a variety of cancer cell lines, including HL-60, LNCaP, MCF-7, HepG-2, K-562, HeLa, BxPC-3, RD, and MDCK normal cell line. Most compounds demonstrated selective anticancer activity superior to doxorubicin. Notably, all ligands showed high antiproliferative activity against HL-60 cells, with IC50 values between 0.01 and 0.06 µM and a selectivity index as high as 5000. Coordination of copper(II) with ligands HL1 and HL3 notably enhanced antiproliferative activity, lowering the IC50 to 0.03 µM. Additionally, the antioxidant activity of these compounds was assessed, revealing that all tested ligands and most coordination compounds exhibited greater antioxidant activity compared to Trolox, with some ligands showing activity up to 12.3 times higher. Toxicity studies on Daphnia magna indicated low toxicity for the ligands, generally less than doxorubicin, with LC50 values ranging from 13 to 90 µM, suggesting moderate toxicity. Conversely, the coordination complexes were more toxic, with LC50 values between 0.5 and 13 µM.
Collapse
Affiliation(s)
- Roman Rusnac
- Laboratory of Advanced Materials in Biopharmaceutics and Technics, Institute of Chemistry, Moldova State University, MD-2009 Chisinau, Moldova
| | - Olga Garbuz
- Laboratory of Systematics and Molecular Phylogenetics, Institute of Zoology, Moldova State University, MD-2028 Chisinau, Moldova
| | - Victor Kravtsov
- Laboratory of Physical Methods of Solid State Investigation “Tadeusz Malinowski”, Institute of Applied Physics, Moldova State University, MD-2028 Chisinau, Moldova
| | - Elena Melnic
- Laboratory of Physical Methods of Solid State Investigation “Tadeusz Malinowski”, Institute of Applied Physics, Moldova State University, MD-2028 Chisinau, Moldova
| | - Dorin Istrati
- Department of Dentistry, University of Medicine and Pharmacy “Nicolae Testemitanu”, MD-2004 Chisinau, Moldova
| | - Victor Tsapkov
- Laboratory of Advanced Materials in Biopharmaceutics and Technics, Institute of Chemistry, Moldova State University, MD-2009 Chisinau, Moldova
| | - Donald Poirier
- Laboratory of Medicinal Chemistry, CHU de Québec Research Center, Université Laval, Québec, QC G1V 4G2, Canada;
| | - Aurelian Gulea
- Laboratory of Advanced Materials in Biopharmaceutics and Technics, Institute of Chemistry, Moldova State University, MD-2009 Chisinau, Moldova
| |
Collapse
|
2
|
Solution Equilibrium Studies on Salicylidene Aminoguanidine Schiff Base Metal Complexes: Impact of the Hybridization with L-Proline on Stability, Redox Activity and Cytotoxicity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072044. [PMID: 35408443 PMCID: PMC9000575 DOI: 10.3390/molecules27072044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 11/16/2022]
Abstract
The proton dissociation processes of two tridentate salicylidene aminoguanidine Schiff bases (SISC, Pro-SISC-Me), the solution stability and electrochemical properties of their Cu(II), Fe(II) and Fe(III) complexes were characterized using pH-potentiometry, cyclic voltammetry and UV-visible, 1H NMR and electron paramagnetic resonance spectroscopic methods. The structure of the proline derivative (Pro-SISC-Me) was determined by X-ray crystallography. The conjugation of L-proline to the simplest salicylidene aminoguanidine Schiff base (SISC) increased the water solubility due to its zwitterionic structure in a wide pH range. The formation of mono complexes with both ligands was found in the case of Cu(II) and Fe(II), while bis complexes were also formed with Fe(III). In the complexes these tridentate ligands coordinate via the phenolato O, azomethine N and the amidine N, except the complex [Fe(III)L2]+ of Pro-SISC-Me in which the (O,N) donor atoms of the proline moiety are coordinated beside the phenolato O, confirmed by single crystal X-ray crystallographic analysis. This binding mode yielded a stronger Fe(III) preference for Pro-SISC-Me over Fe(II) in comparison to SISC. This finding is also reflected in the lower redox potential value of the iron-Pro-SISC-Me complexes. The ligands alone were not cytotoxic against human colon cancer cell lines, while complexation of SISC with Cu(II) resulted in moderate activity, unlike the case of its more hydrophilic counterpart.
Collapse
|
3
|
Masaryk L, Zoufalý P, Słoczyńska K, Zahradniková E, Milde D, Koczurkiewicz-Adamczyk P, Štarha P. New Pt(II) diiodido complexes containing bidentate 1,3,4-thiadiazole-based ligands: synthesis, characterization, cytotoxicity. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
4
|
Fei W, Zhang Y, Ye Y, Li C, Yao Y, Zhang M, Li F, Zheng C. Bioactive metal-containing nanomaterials for ferroptotic cancer therapy. J Mater Chem B 2021; 8:10461-10473. [PMID: 33231601 DOI: 10.1039/d0tb02138e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The clinical performance of the current cancer therapies is still far from satisfactory. The emerging ferroptosis-driven therapy strategies reignite the hope of chemotherapy in tumor treatment due to their incredible tumor suppression. Among ferroptosis-based cancer therapies, metal elements have attracted remarkable attention due to their inherent physicochemical properties in inducing ferroptosis of tumor cells quickly and strongly without complex cellular signal transduction. Although the discovery and applications of ferroptosis for tumor treatment have been discussed in many reviews, the unique advantages of metal-containing nanomaterials interfering ferroptotic cancer therapies (MIFCT) have seldom been mentioned. Here, we outline the latest advances of MIFCT comprehensively. Firstly, the functions of different kinds of metal elements or their ions are introduced to illustrate their advantages in MIFCT. Secondly, the emerging metal-containing nanomaterials that are designed to achieve ferroptosis-driven therapy are overviewed, including their ability to boost the Fenton or Fenton-like reaction for reactive oxygen species generation, act as hydrogen peroxide self-providers, damage the reducing system, and disturb cellular communication. Moreover, metal-containing nanomaterials with external energy conversion features for MIFCT are discussed. Finally, the future expectations and challenges of MIFCT for clinical cancer therapy are spotlighted.
Collapse
Affiliation(s)
- Weidong Fei
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Yue Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China.
| | - Yiqing Ye
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Chaoqun Li
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China.
| | - Yao Yao
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Meng Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Fanzhu Li
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China.
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
5
|
Heffeter P, Pape VFS, Enyedy ÉA, Keppler BK, Szakacs G, Kowol CR. Anticancer Thiosemicarbazones: Chemical Properties, Interaction with Iron Metabolism, and Resistance Development. Antioxid Redox Signal 2019; 30:1062-1082. [PMID: 29334758 DOI: 10.1089/ars.2017.7487] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE During the past decades, thiosemicarbazones were clinically developed for a variety of diseases, including tuberculosis, viral infections, malaria, and cancer. With regard to malignant diseases, the class of α-N-heterocyclic thiosemicarbazones, and here especially 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (Triapine), was intensively developed in multiple clinical phase I/II trials. Recent Advances: Very recently, two new derivatives, namely COTI-2 and di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) have entered phase I evaluation. Based on the strong metal-chelating/metal-interacting properties of thiosemicarbazones, interference with the cellular iron (and copper) homeostasis is assumed to play an important role in their biological activity. CRITICAL ISSUES In this review, we summarize and analyze the data on the interaction of (α-N-heterocyclic) thiosemicarbazones with iron, with the special aim of bridging the current knowledge on their mode of action from chemistry to (cell) biology. In addition, we highlight the difference to classical iron(III) chelators such as desferrioxamine (DFO), which are used for the treatment of iron overload. FUTURE DIRECTIONS We want to emphasize that thiosemicarbazones are not solely removing iron from the cells/organism. In contrast, they should be considered as iron-interacting drugs influencing diverse biological pathways in a complex and multi-faceted mode of action. Consequently, in addition to the discussion of physicochemical properties (e.g., complex stability, redox activity), this review contains an overview on the diversity of cellular thiosemicarbazone targets and drug resistance mechanisms.
Collapse
Affiliation(s)
- Petra Heffeter
- 1 Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center of the Medical University, Medical University of Vienna , Vienna, Austria .,2 Research Cluster "Translational Cancer Therapy Research," Vienna, Austria
| | - Veronika F S Pape
- 3 Institute of Enzymology , Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary .,4 Department of Physiology, Faculty of Medicine, Semmelweis University , Budapest, Hungary
| | - Éva A Enyedy
- 5 Department of Inorganic and Analytical Chemistry, University of Szeged , Szeged, Hungary
| | - Bernhard K Keppler
- 2 Research Cluster "Translational Cancer Therapy Research," Vienna, Austria .,6 Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna , Vienna, Austria
| | - Gergely Szakacs
- 1 Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center of the Medical University, Medical University of Vienna , Vienna, Austria .,3 Institute of Enzymology , Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Christian R Kowol
- 2 Research Cluster "Translational Cancer Therapy Research," Vienna, Austria .,6 Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna , Vienna, Austria
| |
Collapse
|
6
|
Qi J, Yao Q, Qian K, Tian L, Cheng Z, Yang D, Wang Y. Synthesis, antiproliferative activity and mechanism of gallium(III)-thiosemicarbazone complexes as potential anti-breast cancer agents. Eur J Med Chem 2018; 154:91-100. [DOI: 10.1016/j.ejmech.2018.05.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 11/17/2022]
|
7
|
Hricovíni M, Mazúr M, Sîrbu A, Palamarciuc O, Arion VB, Brezová V. Copper(II) Thiosemicarbazone Complexes and Their Proligands upon UVA Irradiation: An EPR and Spectrophotometric Steady-State Study. Molecules 2018; 23:molecules23040721. [PMID: 29561827 PMCID: PMC6017935 DOI: 10.3390/molecules23040721] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 12/31/2022] Open
Abstract
X- and Q-band electron paramagnetic resonance (EPR) spectroscopy was used to characterize polycrystalline Cu(II) complexes that contained sodium 5-sulfonate salicylaldehyde thiosemicarbazones possessing a hydrogen, methyl, ethyl, or phenyl substituent at the terminal nitrogen. The ability of thiosemicarbazone proligands to generate superoxide radical anions and hydroxyl radicals upon their exposure to UVA irradiation in aerated aqueous solutions was evidenced by the EPR spin trapping technique. The UVA irradiation of proligands in neutral or alkaline solutions and dimethylsulfoxide (DMSO) caused a significant decrease in the absorption bands of aldimine and phenolic chromophores. Mixing of proligand solutions with the equimolar amount of copper(II) ions resulted in the formation of 1:1 Cu(II)-to-ligand complex, with the EPR and UV-Vis spectra fully compatible with those obtained for the dissolved Cu(II) thiosemicarbazone complexes. The formation of the complexes fully inhibited the photoinduced generation of reactive oxygen species, and only subtle changes were found in the electronic absorption spectra of the complexes in aqueous and DMSO solutions upon UVA steady-state irradiation. The dark redox activity of copper(II) complexes and proligand/Cu(II) aqueous solutions towards hydrogen peroxide which resulted in the generation of hydroxyl radicals, was confirmed by spin trapping experiments.
Collapse
Affiliation(s)
- Michal Hricovíni
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia.
| | - Milan Mazúr
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia.
| | - Angela Sîrbu
- Department of Chemistry, Moldova State University, A. Mateevici Street 60, MD-2009 Chisinau, Moldova.
| | - Oleg Palamarciuc
- Department of Chemistry, Moldova State University, A. Mateevici Street 60, MD-2009 Chisinau, Moldova.
| | - Vladimir B Arion
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria.
| | - Vlasta Brezová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia.
| |
Collapse
|