1
|
Elnar AG, Jang YJ, Eum BG, Kang MH, Hwang GW, Kil DY, Kim GB. Distinct phenotypes of salivaricin-producing Ligilactobacillus salivarius isolated from the gastrointestinal tract of broiler chickens and laying hens. Poult Sci 2024; 104:104537. [PMID: 39571198 PMCID: PMC11617682 DOI: 10.1016/j.psj.2024.104537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 12/08/2024] Open
Abstract
Ligilactobacillus salivarius harbors bacteriocin genes in its repA-type megaplasmid, specifically salivaricin P (salP), a class IIb bacteriocin. This study aimed to differentiate 25 salP-positive Lig. salivarius strains isolated from the gastrointestinal tract (GIT) of broilers and laying hens. Results showed that 12 isolates were classified as Type A, with active bacteriocins, while the rest were Type B, with no active bacteriocins. In vitro and in silico characterization of salP bacteriocins revealed narrow-spectrum antibacterial activity against Listeria monocytogenes and Enterococcus faecalis. SalP bacteriocins were predicted as positively charged, hydrophobic, small molecular weight (α, 4.097 kDa; ß, 4.285 kDa) bacteriocins with characteristic GXXXG motif. Investigation of the salP gene cluster based on genomic data revealed that Type B strains lacked the lanT and hlyD genes that encode export proteins dedicated to the modification and extracellular transport of mature salP peptides. However, two Type B strains (B4311 and B5258) showed inhibitory activity against L. monocytogenes ATCC19114. Multiplex PCR analysis and synteny mapping analysis revealed that B4311 and B5258 strains harbored the lanT gene, highlighting the importance of LanT protein in the cleavage of leader peptide and excretion of mature peptides. Further analysis revealed that the resistance of Type B strains to salP was attributable to the presence of a dedicated immunity protein, blurring the evolutionary significance of producing active bacteriocins for competitive advantage. Additionally, the loss of export proteins occurred in a polyphyletic manner, consistent with the genetic plasticity of the repA-type megaplasmid. This suggests that the loss of lanT and hlyD is likely in the presence of limited nutritional competitors. In conclusion, the observed differences in salivaricin production of Lig. salivarius exist independent of isolation host and that Type A and Type B strains can coexist in the same environment. Finally, the functional characterization of active salP allows for a better understanding of its potential to control specific bacteria in human food and animal production.
Collapse
Affiliation(s)
- A G Elnar
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Y J Jang
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - B G Eum
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - M H Kang
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - G W Hwang
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - D Y Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - G B Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
2
|
Abd-Elhamed EY, El-Bassiony TAER, Elsherif WM, Shaker EM. Enhancing Ras cheese safety: antifungal effects of nisin and its nanoparticles against Aspergillus flavus. BMC Vet Res 2024; 20:493. [PMID: 39472862 PMCID: PMC11520377 DOI: 10.1186/s12917-024-04323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Due to the adverse effects of industrial chemicals and their carcinogenicity and toxicity for humans, the debates have increased on using natural preservatives. This study was conducted to investigate the inhibitory effect of pure nisin and nisin nanoparticles (nisin NPs) against Aspergillus flavus in vivo by inoculation in laboratory-manufactured Ras cheese. A novel, safe, and natural approach of nanoprecipitation using acetic acid was employed to prepare nisin nanoparticles. The prepared NPs were characterized using zeta-sizer, FTIR, and transmission electron microscopy (TEM). Furthermore, the cytotoxicity of nisin NPs on Vero cells was assessed. The minimum inhibitory concentrations (MICs) of nisin and its nanoparticles were determined in vitro against A. flavus isolates using the agar well-diffusion method. The sensory evaluation of manufactured Ras cheese was conducted over a 60-day storage period. RESULTS The obtained results showed a strong antifungal activity of nisin NPs (0.0625 mg/mL) against A. flavus strain in comparison with pure nisin (0.5 mg/mL). Notably, the count decreased gradually by time from 2 × 108 at zero time and could not be detected at the 7th week. The count with pure nisin decreased from 2 × 108 at zero time and could not be detected at the 10th week where it's enough time to produce aflatoxins in cheese. The MICs of nisin and nisin NPs were 0.25 and 0.0313 mg/mL, respectively. Nisin NPs used in our experiment had good biocompatibility and safety for food preservation. Additionally, the sensory parameters of the manufactured Ras cheese inoculated with nisin and nisin NPs were of high overall acceptability (OAA). CONCLUSIONS Overall, the results of this study suggested that adding more concentration (˃0.0625 mg/mL) from nisin nanoparticles during the production of Ras cheese may be a helpful strategy for food preservation against A. flavus in the dairy industry.
Collapse
Affiliation(s)
- Esraa Y Abd-Elhamed
- Department of Food Hygiene, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt.
| | | | - Wallaa M Elsherif
- Nanotechnology Research and Synthesis Unit, Animal Health Research Institute, Agriculture Research Center & Faculty of Health Sciences Technology, Assiut, Egypt
| | - Eman M Shaker
- Department of Food Hygiene, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
3
|
Revutskaya N, Polishchuk E, Kozyrev I, Fedulova L, Krylova V, Pchelkina V, Gustova T, Vasilevskaya E, Karabanov S, Kibitkina A, Kupaeva N, Kotenkova E. Application of Natural Functional Additives for Improving Bioactivity and Structure of Biopolymer-Based Films for Food Packaging: A Review. Polymers (Basel) 2024; 16:1976. [PMID: 39065293 PMCID: PMC11280963 DOI: 10.3390/polym16141976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The global trend towards conscious consumption plays an important role in consumer preferences regarding both the composition and quality of food and packaging materials, including sustainable ones. The development of biodegradable active packaging materials could reduce both the negative impact on the environment due to a decrease in the use of oil-based plastics and the amount of synthetic preservatives. This review discusses relevant functional additives for improving the bioactivity of biopolymer-based films. Addition of plant, microbial, animal and organic nanoparticles into bio-based films is discussed. Changes in mechanical, transparency, water and oxygen barrier properties are reviewed. Since microbial and oxidative deterioration are the main causes of food spoilage, antimicrobial and antioxidant properties of natural additives are discussed, including perspective ones for the development of biodegradable active packaging.
Collapse
Affiliation(s)
- Natalia Revutskaya
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Ekaterina Polishchuk
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Ivan Kozyrev
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Liliya Fedulova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Valentina Krylova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Viktoriya Pchelkina
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Tatyana Gustova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Ekaterina Vasilevskaya
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Sergey Karabanov
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Anastasiya Kibitkina
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Nadezhda Kupaeva
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Elena Kotenkova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| |
Collapse
|
4
|
Hongchao D, Ma L, Xu Z, Soteyome T, Yuan L, Yang Z, Jiao XA. Invited review: Role of Bacillus licheniformis in the dairy industry- friends or foes? J Dairy Sci 2024:S0022-0302(24)00904-4. [PMID: 38851582 DOI: 10.3168/jds.2024-24826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024]
Abstract
Bacillus licheniformis is one of the major spore-forming bacteria with great genotypic diversity in raw milk, dairy ingredients, final dairy products, and is found throughout the dairy processing continuum. Though being widely used as a probiotic strain, this species also serves as a potential risk in the dairy industry based on its roles in foodborne illness and dairy spoilage. Biofilm formation of B. licheniformis in combined with the heat resistance of its spores, make it impossible to prevent the presence of B. licheniformis in final dairy products by traditional cleaning and disinfection procedures. Despite the extensive efforts on the identification of B. licheniformis from various dairy samples, no reviews have been reported on both hazard and benefits of this spore-former. This review discusses the prevalence of B. licheniformis from raw milk to commercial dairy products, biofilm formation and spoilage potential of B. licheniformis, and its potential prevention methods. In addition, the potential benefits of B. licheniformis in the dairy industry were also summarized.
Collapse
Affiliation(s)
- Dai Hongchao
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China; Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009 China
| | - Lili Ma
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China
| | - Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Lei Yuan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China; Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009 China.
| | - Zhenquan Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127 China
| | - Xin-An Jiao
- Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009 China
| |
Collapse
|
5
|
Elsherif WM, Hassanien AA, Zayed GM, Kamal SM. Natural approach of using nisin and its nanoform as food bio-preservatives against methicillin resistant Staphylococcus aureus and E.coli O157:H7 in yoghurt. BMC Vet Res 2024; 20:192. [PMID: 38734600 PMCID: PMC11088153 DOI: 10.1186/s12917-024-03985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/21/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Natural antimicrobial agents such as nisin were used to control the growth of foodborne pathogens in dairy products. The current study aimed to examine the inhibitory effect of pure nisin and nisin nanoparticles (nisin NPs) against methicillin resistant Staphylococcus aureus (MRSA) and E.coli O157:H7 during the manufacturing and storage of yoghurt. Nisin NPs were prepared using new, natural, and safe nano-precipitation method by acetic acid. The prepared NPs were characterized using zeta-sizer and transmission electron microscopy (TEM). In addition, the cytotoxicity of nisin NPs on vero cells was assessed using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The minimum inhibitory concentrations (MICs) of nisin and its nanoparticles were determined using agar well-diffusion method. Further, fresh buffalo's milk was inoculated with MRSA or E.coli O157:H7 (1 × 106 CFU/ml) with the addition of either nisin or nisin NPs, and then the inoculated milk was used for yoghurt making. The organoleptic properties, pH and bacterial load of the obtained yoghurt were evaluated during storage in comparison to control group. RESULTS The obtained results showed a strong antibacterial activity of nisin NPs (0.125 mg/mL) against MRSA and E.coli O157:H7 in comparison with control and pure nisin groups. Notably, complete eradication of MRSA and E.coli O157:H7 was observed in yoghurt formulated with nisin NPs after 24 h and 5th day of storage, respectively. The shelf life of yoghurt inoculated with nisin nanoparticles was extended than those manufactured without addition of such nanoparticles. CONCLUSIONS Overall, the present study indicated that the addition of nisin NPs during processing of yoghurt could be a useful tool for food preservation against MRSA and E.coli O157:H7 in dairy industry.
Collapse
Affiliation(s)
- Walaa M Elsherif
- Certified Food Lab, Nanotechnology Research and Synthesis Unit, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Assiut,, Egypt
- Faculty of Health Sciences Technology, New Assiut Technological University (NATU), Assiut, Egypt
| | - Alshimaa A Hassanien
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Gamal M Zayed
- Faculty of Health Sciences Technology, New Assiut Technological University (NATU), Assiut, Egypt
- Department of Pharmaceutics and Pharmaceutical Technology, Al-Azhar University, Assiut, Egypt
| | - Sahar M Kamal
- Department of Food Hygiene, Safety and Technology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.
| |
Collapse
|
6
|
Sevim B, Güneş Altuntaş E. Molecular Dynamic Study on the Structure and Thermal Stability of Mutant Pediocin PA-1 Peptides Engineered with Cysteine Substitutions. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10225-3. [PMID: 38424320 DOI: 10.1007/s12602-024-10225-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Pediocin and analogous bacteriocins, valued for thermal stability, serve as versatile antimicrobials in the food sector. Improving their resilience at high temperatures and deriving derivatives not only benefit food production but also offer broad-spectrum antimicrobial potential in pharmaceuticals, spanning treatments for peptic ulcers, women's health, and novel anticancer agents. The study aims to create mutant peptides capable of establishing a third disulfide bond or enhanced through cysteine substitutions. This involves introducing additional Cys residues into the inherent structure of pediocin PA-1 to facilitate disulfide bond formation. Five mutants (Mut 1-5) were systematically generated with double Cys substitutions and assessed for thermal stability through MD simulations across temperatures (298-394 K). The most robust mutants (Mut 1, Mut 4-5) underwent extended analysis via MD simulations, comparing their structural stability, secondary structure, and surface accessibility to the reference Pediocin PA-1 molecule. This comprehensive assessment aims to understand how Cys substitutions influence disulfide bonds and the overall thermal stability of the mutant peptides. In silico analysis indicated that Mut 1 and Mut 5, along with the reference structure, lose their helical structure and one natural disulfide bond at high temperatures, and may impacting antimicrobial activity. Conversely, Mut 4 retained its helical structure and exhibited thermal stability similar to Pediocin PA-1. Pending further experimental validation, this study implies Mut 4 may have high stability and exceptional resistance to high temperatures, potentially serving as an effective antimicrobial alternative.
Collapse
Affiliation(s)
- Büşra Sevim
- Ankara University Biotechnology Institute, Ankara, Turkey
| | | |
Collapse
|
7
|
Bodie AR, Wythe LA, Dittoe DK, Rothrock MJ, O’Bryan CA, Ricke SC. Alternative Additives for Organic and Natural Ready-to-Eat Meats to Control Spoilage and Maintain Shelf Life: Current Perspectives in the United States. Foods 2024; 13:464. [PMID: 38338599 PMCID: PMC10855140 DOI: 10.3390/foods13030464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Food additives are employed in the food industry to enhance the color, smell, and taste of foods, increase nutritional value, boost processing efficiency, and extend shelf life. Consumers are beginning to prioritize food ingredients that they perceive as supporting a healthy lifestyle, emphasizing ingredients they deem acceptable as alternative or "clean-label" ingredients. Ready-to-eat (RTE) meat products can be contaminated with pathogens and spoilage microorganisms after the cooking step, contributing to food spoilage losses and increasing the risk to consumers for foodborne illnesses. More recently, consumers have advocated for no artificial additives or preservatives, which has led to a search for antimicrobials that meet these demands but do not lessen the safety or quality of RTE meats. Lactates and diacetates are used almost universally to extend the shelf life of RTE meats by reducing spoilage organisms and preventing the outgrowth of the foodborne pathogen Listeria monocytogenes. These antimicrobials applied to RTE meats tend to be broad-spectrum in their activities, thus affecting overall microbial ecology. It is to the food processing industry's advantage to target spoilage organisms and pathogens specifically.
Collapse
Affiliation(s)
- Aaron R. Bodie
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53705, USA; (A.R.B.); (L.A.W.)
| | - Lindsey A. Wythe
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53705, USA; (A.R.B.); (L.A.W.)
| | - Dana K. Dittoe
- Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA;
| | - Michael J. Rothrock
- Egg Safety and Quality Research Unit, U.S. National Poultry Research Center, United States Department of Agriculture-Agriculture Research Service (USDA-ARS), Athens, GA 30605, USA;
| | - Corliss A. O’Bryan
- Department of Food Science, University of Arkansas-Fayetteville, Fayetteville, AR 72701, USA;
| | - Steven C. Ricke
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53705, USA; (A.R.B.); (L.A.W.)
| |
Collapse
|
8
|
Wee S, Chua SL, Yu D, Koh SP, Lee KM, Wu Y, Chan SH. The detection, characterization, and quantification of dominant degradation products of nisin A and Z in selected dairy products by liquid chromatography-high-resolution mass spectrometry technique. JDS COMMUNICATIONS 2024; 5:7-12. [PMID: 38223384 PMCID: PMC10785234 DOI: 10.3168/jdsc.2023-0392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/14/2023] [Indexed: 01/16/2024]
Abstract
Nisin, a bacteriocin produced through fermentation using bacterium Lactococcus lactis, has several commercial variants such as nisin A and nisin Z. Nisin serves as a natural preservative with antimicrobial properties in various food products, including dairy and beverages, for extending product shelf life. The efficacy and safety of nisin A as a bacteriocin has been well characterized. However, there is limited evidence regarding the efficacy, stability, and safety of nisin Z as a food preservative, as it has not undergone comprehensive regulatory reviews. In this work, we studied the stability of nisin A and Z in a selection of yogurt drinks and found nisin to be unstable, particularly in fruit-flavored yogurt drinks. Both nisin A and Z could experience significant degradation leading to the nisin parent ion peaks dropping below detectable level before the product's expiry date. Compared with nisin A, the formation of oxidized metabolite nisin Z+O appeared to be the predominant reaction for nisin Z. These findings highlight the need for further scientific research to understand the behavior of nisin Z under different application conditions, which is crucial for assessing the efficacy and safety of nisin Z under these conditions. One potential application of this knowledge is to optimize the formulation of yogurt-based drinks to stabilize nisin Z and sustain its biopreservative function throughout the product's shelf life. Additionally, the current study shows that for the testing of the presence of nisin A or nisin Z, it is imperative to cover both the parent and the main degradant(s) of nisin. This is especially true for nisin Z, for which the regulatory approval status may vary in different markets. As such, the confirmative identification of nisin Z and its key metabolites in commercial products would be essential.
Collapse
Affiliation(s)
- Sheena Wee
- National Centre for Food Science, Singapore Food Agency, Singapore 609919
| | - Sew Lay Chua
- National Centre for Food Science, Singapore Food Agency, Singapore 609919
| | - Dingyi Yu
- National Centre for Food Science, Singapore Food Agency, Singapore 609919
| | - Shoo Peng Koh
- National Centre for Food Science, Singapore Food Agency, Singapore 609919
| | - Kah Meng Lee
- National Centre for Food Science, Singapore Food Agency, Singapore 609919
| | - Yuansheng Wu
- National Centre for Food Science, Singapore Food Agency, Singapore 609919
| | - Sheot Harn Chan
- National Centre for Food Science, Singapore Food Agency, Singapore 609919
- Department of Food Science & Technology, National University of Singapore, Singapore 117543
| |
Collapse
|
9
|
Wang Y, Li J, Wu J, Gu S, Hu H, Cai R, Wang M, Zou Y. Effects of a Postbiotic Saccharomyces and Lactobacillus Ferment Complex on the Scalp Microbiome of Chinese Women with Sensitive Scalp Syndrome. Clin Cosmet Investig Dermatol 2023; 16:2623-2635. [PMID: 37767337 PMCID: PMC10520257 DOI: 10.2147/ccid.s415787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/11/2023] [Indexed: 09/29/2023]
Abstract
Introduction Sensitive scalp is one of the most frequent complaints related to sensitive skin syndrome, characterized by unpleasant sensory reactions in the absence of visible signs of inflammation. In this study, the effects of topical application of postbiotic Himalaya-derived Saccharomyces and Lactobacillus ferment complex (SLFC) on the bacterial and fungal scalp microbiome at the taxonomic level and alleviation of sensitive skin syndrome were investigated. Methods Firstly, healthy female participants (aged 30-45) were classified into a healthy scalp group and a sensitive scalp group based on the questionnaire. Thereafter, topical application of SLFC on sensitive scalp as well as scalp microbiome was evaluated, with the difference in the distribution of microbial taxa between healthy and sensitive scalp communities was assessed using 16S rRNA and ITS1 sequencing analysis. In addition, the effect of SLFC on scalp microbiome at the species level for Cutibacterium acnes, Staphylococcus epidermidis, and Malassezia restricta was evaluated by the qPCR assessment. Results After treatment with SLFC for 28 days, the abundance of Staphylococcus, Lawsonella, and Fusarium in the sensitive scalp group was highly significantly increased (p < 0.001), while the abundance of Cutibacterium and Malassezia was highly significantly decreased (p < 0.001). Furthermore, the self-assessment questionnaire indicated a syndrome alleviation effect of 100% after 28 days with a twice-daily application of the SLFC. Discussion The obtained results would help to better understand the microbial community of the sensitive scalp and provide useful information on utilization of SLFC for maintaining a healthy scalp and modulating the scalp microbiome.
Collapse
Affiliation(s)
- Yue Wang
- Institute of Shanghai Oriental Beauty Valley, Shanghai Institute of Technology, Shanghai, People’s Republic of China
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People’s Republic of China
| | - Jun Li
- R&D Center, JALA (Group) Co., Ltd, Shanghai, People’s Republic of China
| | - Jianming Wu
- R&D Center, JALA (Group) Co., Ltd, Shanghai, People’s Republic of China
| | - Shihong Gu
- R&D Center, JALA (Group) Co., Ltd, Shanghai, People’s Republic of China
| | - Huishu Hu
- R&D Center, JALA (Group) Co., Ltd, Shanghai, People’s Republic of China
| | - Rongjuan Cai
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People’s Republic of China
| | - Man Wang
- Department of Nutrition, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus, Shanghai, People’s Republic of China
| | - Yue Zou
- R&D Center, JALA (Group) Co., Ltd, Shanghai, People’s Republic of China
| |
Collapse
|
10
|
Bukvicki D, D’Alessandro M, Rossi S, Siroli L, Gottardi D, Braschi G, Patrignani F, Lanciotti R. Essential Oils and Their Combination with Lactic Acid Bacteria and Bacteriocins to Improve the Safety and Shelf Life of Foods: A Review. Foods 2023; 12:3288. [PMID: 37685221 PMCID: PMC10486891 DOI: 10.3390/foods12173288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The use of plant extracts (e.g., essential oils and their active compounds) represents an interesting alternative to chemical additives and preservatives applied to delay the alteration and oxidation of foods during their storage. Essential oils (EO) are nowadays considered valuable sources of food preservatives as they provide a healthier alternative to synthetic chemicals while serving the same purpose without affecting food quality parameters. The natural antimicrobial molecules found in medicinal plants represent a possible solution against drug-resistant bacteria, which represent a global health problem, especially for foodborne infections. Several solutions related to their application on food have been described, such as incorporation in active packaging or edible film and direct encapsulation. However, the use of bioactive concentrations of plant derivatives may negatively impact the sensorial characteristics of the final product, and to solve this problem, their application has been proposed in combination with other hurdles, including biocontrol agents. Biocontrol agents are microbial cultures capable of producing natural antimicrobials, including bacteriocins, organic acids, volatile organic compounds, and hydrolytic enzymes. The major effect of bacteriocins or bacteriocin-producing LAB (lactic acid bacteria) on food is obtained when their use is combined with other preservation methods. The combined use of EOs and biocontrol agents in fruit and vegetables, meat, and dairy products is becoming more and more important due to growing concerns about potentially dangerous and toxic synthetic additives. The combination of these two hurdles can improve the safety and shelf life (inactivation of spoilage or pathogenic microorganisms) of the final products while maintaining or stabilizing their sensory and nutritional quality. This review critically describes and collects the most updated works regarding the application of EOs in different food sectors and their combination with biocontrol agents and bacteriocins.
Collapse
Affiliation(s)
- Danka Bukvicki
- Faculty of Biology, Institute of Botany and Botanical Garden ‘Jevremovac’, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia;
| | - Margherita D’Alessandro
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
| | - Samantha Rossi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
| | - Lorenzo Siroli
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
| | - Davide Gottardi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
- Interdepartmental Centre for Industrial Agri-Food Research, University of Bologna, 47521 Cesena, Italy
| | - Giacomo Braschi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
- Interdepartmental Centre for Industrial Agri-Food Research, University of Bologna, 47521 Cesena, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
- Interdepartmental Centre for Industrial Agri-Food Research, University of Bologna, 47521 Cesena, Italy
| |
Collapse
|
11
|
Carrozza D, Malavasi G, Ferrari E. Very Large Pores Mesoporous Silica as New Candidate for Delivery of Big Therapeutics Molecules, Such as Pharmaceutical Peptides. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114151. [PMID: 37297286 DOI: 10.3390/ma16114151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
The synthesis of a scaffold that can accommodate big molecules with a pharmaceutical role is important to shield them and maintain their biological activity. In this field, silica particles with large pores (LPMS) are innovative supports. Large pores allow for the loading of bioactive molecules inside the structure and contemporarily their stabilization and protection. These purposes cannot be achieved using classical mesoporous silica (MS, pore size 2-5 nm), because their pores are not big enough and pore blocking occurs. LPMSs with different porous structures are synthesized starting from an acidic water solution of tetraethyl orthosilicate reacting with pore agents (Pluronic® F127 and mesitylene), performing hydrothermal and microwave-assisted reactions. Time and surfactant optimization were performed. Loading tests were conducted using Nisin as a reference molecule (polycyclic antibacterial peptide, with dimensions of 4-6 nm); UV-Vis analyses on loading solutions were performed. For LPMSs, a significantly higher loading efficiency (LE%) was registered. Other analyses (Elemental Analysis, Thermogravimetric Analysis and UV-Vis) confirmed the presence of Nisin in all the structures and its stability when loaded on them. LPMSs showed a lower decrease in specific surface area if compared to MS; in terms of the difference in LE% between samples, it is explained considering the filling of pores for LPMSs, a phenomenon that is not allowed for MSs. Release studies in simulated body fluid highlight, only for LPMSs, a controlled release, considering the longer time scale of release. Scanning Electron Microscopy images acquired before and after release tests shows the LPMSs' maintenance of the structure, demonstrating strength and mechanical resistance of structures. In conclusion, LPMSs were synthesized, performing time and surfactant optimization. LPMSs showed better loading and releasing properties with respect to classical MS. All collected data confirm a pore blocking for MS and an in-pore loading for LPMS.
Collapse
Affiliation(s)
- Debora Carrozza
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Gianluca Malavasi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Erika Ferrari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| |
Collapse
|
12
|
Dell'Olmo E, Pane K, Schibeci M, Cesaro A, De Luca M, Ismail S, Gaglione R, Arciello A. Host defense peptides identified in human apolipoprotein B as natural food bio‐preservatives: Evaluation of their biosafety and digestibility. Pept Sci (Hoboken) 2023. [DOI: 10.1002/pep2.24308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
13
|
The Metabolite Profiling and Microbial Community Dynamics during Pineapple By-Product Fermentation Using Co-Inoculation of Lactic Acid Bacteria and Yeast. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Value-added utilization of pineapple waste is very import for the food industry and environmental protection. In this study, whey protein (2.6%, w/w) was added to pineapple waste in order to make up for the protein deficiency of the raw material and give the final products better flavor characteristics. Autochthonous Lactococcus lactis LA5 and Hanseniaspora opuntiae SA2 were used for the co-inoculation of pineapple by-products; during fermentation, the metabolite profiling and microbial community dynamics were investigated. Results showed that the contents of organic acids, total FAAs, total phenolic compounds and flavonoids significantly increased with fermentation, and 152 kinds of peptides were identified in the final products. Relevant analyses demonstrated that dominant strains including Lactococcus lactis, Hanseniaspora and Saccharomyces not only significantly promoted the accumulation of organic acids, total phenols and other active substances, but also inhibited the growth of pathogenic bacteria and further influenced the fermentation process of pineapple waste.
Collapse
|
14
|
Wu M, Dong Q, Song X, Xu L, Xia X, Aslam MZ, Ma Y, Qin X, Wang X, Liu Y, Xu B, Liu H, Cai H, Hirata T, Li Z. Effective combination of nisin and sesamol against Listeria monocytogenes. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
15
|
Dehnad D, Emadzadeh B, Ghorani B, Rajabzadeh G, Kharazmi MS, Jafari SM. Nano-vesicular carriers for bioactive compounds and their applications in food formulations. Crit Rev Food Sci Nutr 2022; 64:5583-5602. [PMID: 36519525 DOI: 10.1080/10408398.2022.2156474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The most commonly used vesicular systems in the food industry include liposomes, niosomes, phytosomes, or transfersomes. This review focuses on showing how nano-vesicular carriers (NVCs) amend the properties of bioactive compounds (bioactives), making them suitable for food applications, especially functional foods. In this research, we elaborate on the question of whether bioactive-loaded NVCs affect various food aspects such as their antioxidant capacity, or sensory properties. This review also shows how NVCs improve the long-term release profile of bioactives during storage and at different pH values. Besides, the refinement of digestibility and bioaccessibility of diverse bioactives through NVCs in the gastrointestinal tract is elucidated. NVCs allow for stable vesicle formation (e.g. from anthocyanins) which reduces their cytotoxicity and proliferation of cancer cells, prolongs the release bioactives (e.g. d-limonene) with no critical burst, reduces the biofilm formation capacity of both Gram-positive/negative strains and their biofilm gene expression is down-regulated (in the case of tannic acid), low oxidation (e.g. iron) is endured when exposed to simulated gastric fluid, and unpleasant smell and taste are masked (in case of omega-3 fatty acids). After the incorporation of bioactive-loaded NVCs into food products, their antioxidant capacity is enhanced, maintaining high encapsulation efficiency and enduring pasteurization conditions, and they are not distinguished from control samples in sensory evaluation despite the reverse situation about free bioactives.
Collapse
Affiliation(s)
- Danial Dehnad
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Bahareh Emadzadeh
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Behrouz Ghorani
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Ghadir Rajabzadeh
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
16
|
Eghbal N, Viton C, Gharsallaoui A. Nano and microencapsulation of bacteriocins for food applications: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Cui Y, Liu J, Han S, Li P, Luo D, Guo J. Chestnut Lily Beverage (CLB) Processing Using Ultrasound-Assisted Nisin: Microbiota Inactivation and Product Quality. Foods 2022; 11:3344. [PMID: 36359957 PMCID: PMC9654365 DOI: 10.3390/foods11213344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/26/2022] [Accepted: 10/21/2022] [Indexed: 12/04/2022] Open
Abstract
We evaluated the effects of ultrasound (US) and ultrasound combined with nisin (NUS) treatments on the properties of chestnut lily beverages (CLB) using conventional thermal pasteurisation (TP) as a control. After CLB samples were treated with US and NUS for 20, 40, or 60 min, the polyphenol oxidase activity (PPO), microbial inactivation effect, colour, pH value, total phenolic content, and antioxidant capacity of the CLB were observed. It was found that the inactivation rate of PPO in CLB after NUS treatment was higher than that in the US, indicating that NUS treatment aggravated PPO inactivation. Treatment time was important in the inactivation of microorganisms by US and NUS; NUS had a lethal synergistic lethal effect on microorganisms in CLB and when compared with US, NUS reduced changes in the CLB colour value. Notably, the total phenolic content and antioxidant capacity of the US- and NUS-treated CLB significantly increased relative to the TP group. These results that suggest NUS has a potential application value in the development of CLB because it reduces the risk of microorganism contamination and helps improve the quality of CLB. This study provides technical support and a theoretical basis for the improved production of CLB.
Collapse
Affiliation(s)
- Yao Cui
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Jianxue Liu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Henan Food Raw Material Engineering Technology Research Center, Henan University of Science and Technology, Education Department of Henan Province, Luoyang 471023, China
| | - Sihai Han
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Henan Food Raw Material Engineering Technology Research Center, Henan University of Science and Technology, Education Department of Henan Province, Luoyang 471023, China
| | - Peiyan Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Henan Food Raw Material Engineering Technology Research Center, Henan University of Science and Technology, Education Department of Henan Province, Luoyang 471023, China
| | - Denglin Luo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Henan Food Raw Material Engineering Technology Research Center, Henan University of Science and Technology, Education Department of Henan Province, Luoyang 471023, China
| | - Jinying Guo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Henan Food Raw Material Engineering Technology Research Center, Henan University of Science and Technology, Education Department of Henan Province, Luoyang 471023, China
| |
Collapse
|
18
|
Lactic Acid Bacteria in Raw-Milk Cheeses: From Starter Cultures to Probiotic Functions. Foods 2022; 11:foods11152276. [PMID: 35954043 PMCID: PMC9368153 DOI: 10.3390/foods11152276] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
Traditional cheeses produced from raw milk exhibit a complex microbiota, characterized by a sequence of different microorganisms from milk coagulation and throughout maturation. Lactic acid bacteria (LAB) play an essential role in traditional cheese making, either as starter cultures that cause the rapid acidification of milk or as secondary microbiota that play an important role during cheese ripening. The enzymes produced by such dynamic LAB communities in raw milk are crucial, since they support proteolysis and lipolysis as chief drivers of flavor and texture of cheese. Recently, several LAB species have been characterized and used as probiotics that successfully promote human health. This review highlights the latest trends encompassing LAB acting in traditional raw milk cheeses (from cow, sheep, and goat milk), and their potential as probiotics and producers of bioactive compounds with health-promoting effects.
Collapse
|
19
|
García A, Iturmendi N, Maté JI, Fernández-García T. Combined effect of nisin addition and high pressure processing on the stability of liquid micellar casein concentrates. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Bangar SP, Chaudhary V, Singh TP, Özogul F. Retrospecting the concept and industrial significance of LAB bacteriocins. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Development of Active Packaging Based on Agar-Agar Incorporated with Bacteriocin of Lactobacillus sakei. Biomolecules 2021; 11:biom11121869. [PMID: 34944513 PMCID: PMC8699788 DOI: 10.3390/biom11121869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/02/2022] Open
Abstract
In the search for new biodegradable materials and greater microbiological safety and stability of perishable food products, this study aimed to develop a bioplastic antibacterial film incorporating bacteriocin for application in commercial curd cheese and monitoring of microbiological stability. Films with good handling characteristics as well as physical, barrier, and mechanical properties were obtained. Regarding the antibacterial activity, the microbial reduction was demonstrated in a food matrix, obtaining a reduction of 3 logarithmic cycles for the group of coagulase positive staphylococci and from 1100 to <3.00 MPN/g in the analysis of thermotolerant coliforms. Therefore, the film presented food barrier characteristics with the external environment and adequate migration of the antibacterial compound to the product, contributing to the reduction of contamination of a food with high initial microbial load.
Collapse
|
22
|
Dhanam S, Arumugam T, Rajasekar S. Biofilm Effects of the Soil Bacillus cereus Metabolites: Isolation, Characterization and Antimicrobial Activity Against Methicillin-Resistant Staphylococcus aureus. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10258-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Wang B, Yang Y, Bian X, Guan HN, Liu LL, Li XX, Guo QQ, Piekoszewski W, Chen FL, Wu N, Ma ZQ, Shi YG, Zhang N. Proliferation of Bifidobacterium L80 under different proportions of milk protein hydrolysate. Microb Cell Fact 2021; 20:213. [PMID: 34794462 PMCID: PMC8600791 DOI: 10.1186/s12934-021-01702-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 10/19/2021] [Indexed: 11/18/2022] Open
Abstract
The intestinal microecological environment is critical to an infant's growth. For those infants consuming milk power, it is very important to improve the intestinal microecological environment to promote the healthy growth of infants. In this paper, Milk protein hydrolysate (MPH), consisting of different proportions of proteins and small molecule peptides (5:5, 4:6, 3:7, 2:8, 1:9) were added to infant formula powder (IFP). The effects of MFP-enriched IFP addition on proliferation and metabolism of Bifidobacterium L80 were studied. Compared with MPH-free IFP, MFP-enriched IFP with 1:9 of proteins to small molecule peptides significantly enhanced the proliferation of Bifidobacterium L80, resulting in higher cell density, greater viable counts and higher titratable acidity. MFP-enriched IFP increased the content of seven organic acids and H2O2 in the system, and improved the antibacterial activity to E. coli BL21. This study suggested that MPH could be an effective addition to infant formula powder to promote the growth of Bifidobacterium, so to improve the intestinal health of infants.
Collapse
Affiliation(s)
- Bing Wang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, No. 1, Xuehai Street, Songbei District, Harbin, 150028, Heilongjiang, People's Republic of China
| | - Yang Yang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, No. 1, Xuehai Street, Songbei District, Harbin, 150028, Heilongjiang, People's Republic of China
| | - Xin Bian
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, No. 1, Xuehai Street, Songbei District, Harbin, 150028, Heilongjiang, People's Republic of China
| | - Hua-Nan Guan
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, No. 1, Xuehai Street, Songbei District, Harbin, 150028, Heilongjiang, People's Republic of China
| | - Lin-Lin Liu
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, No. 1, Xuehai Street, Songbei District, Harbin, 150028, Heilongjiang, People's Republic of China
| | - Xue-Xia Li
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, No. 1, Xuehai Street, Songbei District, Harbin, 150028, Heilongjiang, People's Republic of China
| | - Qing-Qi Guo
- Forestry School, Northeast Forestry University, No. 26, Hexing Street, Xiangfang District, Harbin, 150040, People's Republic of China
| | - Wojciech Piekoszewski
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Kraków, Poland.,Far Eastern Federal University, School of Biomedicine, FEFU Campus, Russian Island, Vladivostok, Russian Federation
| | - Feng-Lian Chen
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, No. 1, Xuehai Street, Songbei District, Harbin, 150028, Heilongjiang, People's Republic of China
| | - Na Wu
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, No. 1, Xuehai Street, Songbei District, Harbin, 150028, Heilongjiang, People's Republic of China
| | - Zhan-Qian Ma
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, No. 1, Xuehai Street, Songbei District, Harbin, 150028, Heilongjiang, People's Republic of China
| | - Yan-Guo Shi
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, No. 1, Xuehai Street, Songbei District, Harbin, 150028, Heilongjiang, People's Republic of China
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, No. 1, Xuehai Street, Songbei District, Harbin, 150028, Heilongjiang, People's Republic of China.
| |
Collapse
|
24
|
Luna-Reyes I, Pérez-Hernández EG, Delgado-Coello B, Mas-Oliva J. Peptides as Therapeutic Molecules to Neutralize Gram-negative Bacterial Lipopolysaccharides in Sepsis and Septic Shock. Arch Med Res 2021; 52:798-807. [DOI: 10.1016/j.arcmed.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022]
|
25
|
Hossain MI, Mizan MFR, Roy PK, Nahar S, Toushik SH, Ashrafudoulla M, Jahid IK, Lee J, Ha SD. Listeria monocytogenes biofilm inhibition on food contact surfaces by application of postbiotics from Lactobacillus curvatus B.67 and Lactobacillus plantarum M.2. Food Res Int 2021; 148:110595. [PMID: 34507740 DOI: 10.1016/j.foodres.2021.110595] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022]
Abstract
Owing to their preservative and antimicrobial effects, postbiotics (metabolic byproducts of probiotics) are promising natural components for the food industry. Therefore, the present study aimed to investigate the efficacy of postbiotics collected from isolated Lactobacillus curvatus B.67 and Lactobacillus plantarum M.2 against Listeria monocytogenes pathogens in planktonic cells, motility, and biofilm states. The analysis of the metabolite composition of the postbiotics revealed various organic acids, along with a few well-known bacteriocin-encoding genes with potential antimicrobial effects. Postbiotics maintained their residual antimicrobial activity over the pH range 1-6 but lost all activity at neutral pH (pH 7). Full antimicrobial activity (100%) was observed during heat treatment, even under the autoclaving condition.Minimum inhibitory concentration (MICs) of L. curvatus B.67 and L. plantarum M.2 against L. monocytogenes were 80 and 70 mg/mL, respectively. However, four sub-MICs of the postbiotics (1/2, 1/4, 1/8, and 1/16 MIC) were tested for inhibition efficacy against L. monocytogenes during different experiment in this study. Swimming motility, biofilm formation, and expression levels of target genes related to biofilm formation, virulence, and quorum-sensing were significantly inhibited with increasing postbiotics concentration. Postbiotics from L. plantarum M.2 exhibited a higher inhibitory effect than the postbiotics from L. curvatus B.67. Nonetheless, both these postbiotics from Lactobacillus spp. could be used as effective bio-interventions for controlling L. monocytogenes biofilm in the food industry.
Collapse
Affiliation(s)
- Md Iqbal Hossain
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Anseong, Gyunggido 456-756, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Anseong, Gyunggido 456-756, Republic of Korea
| | - Pantu Kumar Roy
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Anseong, Gyunggido 456-756, Republic of Korea
| | - Shamsun Nahar
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Anseong, Gyunggido 456-756, Republic of Korea
| | - Sazzad Hossen Toushik
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Anseong, Gyunggido 456-756, Republic of Korea
| | - Md Ashrafudoulla
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Anseong, Gyunggido 456-756, Republic of Korea
| | - Iqbal Kabir Jahid
- Department of Microbiology, Jashore University of Science and Technology, Bangladesh
| | - Jihyun Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Anseong, Gyunggido 456-756, Republic of Korea.
| |
Collapse
|
26
|
Prithviraj V, Pandiselvam R, Babu AC, Kothakota A, Manikantan M, Ramesh S, Beegum PS, Mathew A, Hebbar K. Emerging non-thermal processing techniques for preservation of tender coconut water. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111850] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Natural Anti-Microbials for Enhanced Microbial Safety and Shelf-Life of Processed Packaged Meat. Foods 2021; 10:foods10071598. [PMID: 34359468 PMCID: PMC8305275 DOI: 10.3390/foods10071598] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
Microbial food contamination is a major concern for consumers and food industries. Consumers desire nutritious, safe and “clean label” products, free of synthetic preservatives and food industries and food scientists try to meet their demands by finding natural effective alternatives for food preservation. One of the alternatives to synthetic preservatives is the use of natural anti-microbial agents in the food products and/or in the packaging materials. Meat and processed meat products are characteristic examples of products that are highly perishable; hence natural anti-microbials can be used for extending their shelf-life and enhancing their safety. Despite several examples of the successful application of natural anti-microbial agents in meat products reported in research studies, their commercial use remains limited. This review objective is to present an extensive overview of recent research in the field of natural anti-microbials, covering essential oils, plant extracts, flavonoids, animal-derived compounds, organic acids, bacteriocins and nanoparticles. The anti-microbial mode of action of the agents, in situ studies involving meat products, regulations and, limitations for usage and future perspectives are described. The review concludes that naturally derived anti-microbials can potentially support the meat industry to provide “clean label”, nutritious and safe meat products for consumers.
Collapse
|
28
|
Genomic and proteomic comparisons of bacteriocins in probiotic species Lactobacillus and Bifidobacterium and inhibitory ability of Escherichia coli MG 1655. ACTA ACUST UNITED AC 2021; 31:e00654. [PMID: 34258243 PMCID: PMC8254086 DOI: 10.1016/j.btre.2021.e00654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/24/2022]
Abstract
The genomes and proteomes of 12 Bifidobacterium and 46 Lactobacillus were reviewed and then compared for bacteriocin identification. NCBI-Genome, UniProt-Proteome, Bactibase, and BAGL4 databases, as well as BLASTP, and Clustal Omega can be used for bacteriocin mining. Lactobacillus species have more diversity and abundance of bacteriocin compared to Bifidobacterium species. Notably, L. sakei, L. plamtarum, L. reuteri, L. fermentum, and L. casei had the highest pathogen inhibition (E. coli MG 1655); respectively. A set of Lactobacillus bacteria including L. sakei, L. reuteri, L. fermentum, and L. casei can be proposed as a biosecure and safe solution to control gastrointestinal pathogens.
Bacteriocins are a large family of bacterial peptides or proteins, ribosomally synthesized with antimicrobial activity against other bacteria. We investigated and compared the genomes and proteomes of 12 Bifidobacterium and 46 Lactobacillus species for bacteriocins using NCBI-Genome, UniProt-Proteome, Bactibase, and BAGL4 databases. Selected Lactobacillus species were examined for bile salt resistance, acid and pH resistance, pepsin and trypsin enzyme resistance, and antibiotic resistance. Also, the antimicrobial activity of selected Lactobacillus species was evaluated against E. coli MG 1655. Results showed that Lactobacillus species have more diversity and abundance of bacteriocin compared to Bifidobacterium species. Notably, L. sakei, L. plamtarum, L. reuteri, L. fermentum, and L. casei had the highest pathogen inhibition; respectively. Therefore, a combination of these Lactobacillus species can be suggested as a biochemical and safe solution to control gastrointestinal pathogens and suitable alternatives to antibiotics and chemicals in food technology.
Collapse
|
29
|
Yeluri Jonnala BR, Feehily C, O'Connor PM, Field D, Hill C, Ross RP, McSweeney PLH, Sheehan JJ, Cotter PD. Assessing the ability of nisin A and derivatives thereof to inhibit gram-negative bacteria from the genus Thermus. J Dairy Sci 2020; 104:2632-2640. [PMID: 33358792 DOI: 10.3168/jds.2020-19350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/09/2020] [Indexed: 02/05/2023]
Abstract
Nisin is a bacteriocin that is globally employed as a biopreservative in food systems to control gram-positive, and some gram-negative, bacteria. Here we tested the bioactivity of nisin A-producing Lactococcus lactis NZ9700 and producers of bioengineered variants thereof against representatives of the gram-negative genus Thermus, which has been associated with the pink discoloration defect in cheese. Starting with a total of 73 nisin variant-producing Lactococcus lactis, bioactivity against Thermus was assessed via agar diffusion assays, and 22 variants were found to have bioactivity greater than or equal to that of the nisin A-producing control. To determine to what extent this enhanced bioactivity was attributable to an increase in specific activity, minimum inhibitory concentrations were determined using the corresponding purified form of these 22 nisin A derivatives. From these experiments, nisin M17Q and M21F were identified as peptides with enhanced antimicrobial activity against the majority of Thermus target strains tested. In addition, several other peptide variants were found to exhibit enhanced specific activity against a subset of strains.
Collapse
Affiliation(s)
- Bhagya R Yeluri Jonnala
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996; School of Food and Nutrition, University College Cork, Cork, Ireland T12 EH31
| | - Conor Feehily
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996; APC Microbiome Ireland, Cork, Ireland T12 YT20
| | - Paula M O'Connor
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996
| | - Des Field
- APC Microbiome Ireland, Cork, Ireland T12 YT20; School of Microbiology, University College Cork, Cork, Ireland T12 YT20
| | - Colin Hill
- APC Microbiome Ireland, Cork, Ireland T12 YT20; School of Microbiology, University College Cork, Cork, Ireland T12 YT20
| | - R Paul Ross
- APC Microbiome Ireland, Cork, Ireland T12 YT20; College of Science, Engineering and Food Science, University College Cork, Cork, Ireland T12 YT20
| | - P L H McSweeney
- School of Food and Nutrition, University College Cork, Cork, Ireland T12 EH31
| | - Jeremiah J Sheehan
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996; APC Microbiome Ireland, Cork, Ireland T12 YT20.
| |
Collapse
|
30
|
S S, S R. Cyclic peptide production from lactic acid bacteria (LAB) and their diverse applications. Crit Rev Food Sci Nutr 2020; 62:2909-2927. [PMID: 33356473 DOI: 10.1080/10408398.2020.1860900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, cyclic peptides gave gained increasing attention owing to their pH tolerance, heat stability and resistance to enzymatic actions. The increasing outbreaks of antibiotic resistant pathogens and food spoilage have prompted researchers to search for new approaches to combat them. The increasing number of reports on novel cyclic peptides from lactic acid bacteria (LAB) is considered as a breakthrough due to their potential applications. Although an extensive investigation is required to understand the mechanism of action and range of applications, LAB cyclic peptides can be considered as potential substitutes for commercially available antibiotics and bio preservatives. This review summarizes the current updates of LAB cyclic peptides with emphasis on their structure, mode of action and applications. Recent trends in cyclic peptide applications are also discussed.
Collapse
Affiliation(s)
- Silpa S
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankalathur, Tamilnadu, India
| | - Rupachandra S
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankalathur, Tamilnadu, India
| |
Collapse
|
31
|
Ma T, Wang J, Wang L, Yang Y, Yang W, Wang H, Lan T, Zhang Q, Sun X. Ultrasound-Combined Sterilization Technology: An Effective Sterilization Technique Ensuring the Microbial Safety of Grape Juice and Significantly Improving Its Quality. Foods 2020; 9:E1512. [PMID: 33096786 PMCID: PMC7590025 DOI: 10.3390/foods9101512] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022] Open
Abstract
: The effects of ultrasound (US), thermosonication (TS), ultrasound combined with nisin (USN), TS combined with nisin (TSN), and conventional thermal sterilization (CTS) treatments on the inactivation of microorganisms in grape juice were evaluated. TS, TSN, and CTS treatments provided the desirable bactericidal and enzyme inactivation, and nisin had a synergistic lethal effect on aerobic bacteria in grape juice while not having any obvious effect on the mold and yeast. Compared with CTS, the sensory characteristics of grape juice treated with TS and TSN are closer to that of fresh juice, its microbial safety is ensured, and the physicochemical properties are basically unchanged. More importantly, the total phenolic content and antioxidant capacity of juice treated with TS and TSN were significantly increased, and the total anthocyanin and flavonoid contents were largely retained. Taken together, these findings suggest that TS and TSN has great potential application value and that it can ensure microbial safety and improve the quality of grape juice.
Collapse
Affiliation(s)
- Tingting Ma
- College of Food Science and Engineering, College of Enology, Northwest A&F University, Yangling 712100, China; (T.M.); (J.W.); (L.W.); (Y.Y.); (W.Y.); (H.W.); (T.L.)
| | - Jiaqi Wang
- College of Food Science and Engineering, College of Enology, Northwest A&F University, Yangling 712100, China; (T.M.); (J.W.); (L.W.); (Y.Y.); (W.Y.); (H.W.); (T.L.)
| | - Lukai Wang
- College of Food Science and Engineering, College of Enology, Northwest A&F University, Yangling 712100, China; (T.M.); (J.W.); (L.W.); (Y.Y.); (W.Y.); (H.W.); (T.L.)
| | - Yanhao Yang
- College of Food Science and Engineering, College of Enology, Northwest A&F University, Yangling 712100, China; (T.M.); (J.W.); (L.W.); (Y.Y.); (W.Y.); (H.W.); (T.L.)
| | - Wanyi Yang
- College of Food Science and Engineering, College of Enology, Northwest A&F University, Yangling 712100, China; (T.M.); (J.W.); (L.W.); (Y.Y.); (W.Y.); (H.W.); (T.L.)
| | - Haoli Wang
- College of Food Science and Engineering, College of Enology, Northwest A&F University, Yangling 712100, China; (T.M.); (J.W.); (L.W.); (Y.Y.); (W.Y.); (H.W.); (T.L.)
| | - Tian Lan
- College of Food Science and Engineering, College of Enology, Northwest A&F University, Yangling 712100, China; (T.M.); (J.W.); (L.W.); (Y.Y.); (W.Y.); (H.W.); (T.L.)
| | - Qianwen Zhang
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS 39762, USA;
| | - Xiangyu Sun
- College of Food Science and Engineering, College of Enology, Northwest A&F University, Yangling 712100, China; (T.M.); (J.W.); (L.W.); (Y.Y.); (W.Y.); (H.W.); (T.L.)
| |
Collapse
|
32
|
Wang N, Yu X, Kong Q, Li Z, Li P, Ren X, Peng B, Deng Z. Nisin-loaded polydopamine/hydroxyapatite composites: Biomimetic synthesis, and in vitro bioactivity and antibacterial activity evaluations. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Nilsen T, Swedek I, Lagenaur LA, Parks TP. Novel Selective Inhibition of Lactobacillus iners by Lactobacillus-Derived Bacteriocins. Appl Environ Microbiol 2020; 86:e01594-20. [PMID: 32801180 PMCID: PMC7531956 DOI: 10.1128/aem.01594-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Lactobacillus iners is often associated with vaginal dysbiosis and bacterial vaginosis (BV), which are risk factors for adverse gynecological and obstetric outcomes. To discover natural inhibitors of L. iners, cell-free culture supernatants (CFSs) from 77 vaginal human Lactobacillus strains and 1 human intestinal strain were screened for inhibitory activity. Three active strains were identified, and Lactobacillus paragasseri K7 (K7), a human intestinal strain, produced the most potent L. iners-inhibitory activity. The active material was purified from the K7 CFS and yielded three active peptides, identified as components of two different class IIb, two-peptide bacteriocins, gassericin K7A (GasK7A) and gassericin K7B (GasK7B). The peptides corresponded to the GasK7A α peptide and the GasK7B α and β peptides. While all three peptides exhibited individual activity against L. iners, GasK7B α was the most potent, with an MIC of 23 ng/ml (4 nM). When combined in equal amounts, the GasK7B α and β peptides showed synergistic inhibition, with an MIC of 2 ng/ml (each peptide at 0.4 nM). Among the four major vaginal Lactobacillus species, the K7 bacteriocins selectively inhibited L. iners All 21 strains of L. iners tested (100%) were inhibited by the K7 bacteriocins, whereas <20% of the vaginal Lactobacillus crispatus, L. jensenii, and L. gasseri strains were inhibited. The combination of the BV treatment metronidazole and K7 bacteriocins completely killed both L. iners and Gardnerella vaginalis in a coculture experiment to mimic BV conditions. In contrast, this treatment did not inhibit L. crispatus cultures.IMPORTANCELactobacillus iners is a prevalent species of the vaginal microbiome, but unlike other major vaginal Lactobacillus species, it is not considered protective against BV and can coexist with BV-associated bacteria. L. iners is generally the first Lactobacillus species to emerge following the treatment of BV with metronidazole, and mounting evidence suggests that it may contribute to the onset and maintenance of vaginal dysbiosis. The discovery of highly potent bacteriocins that selectively kill L. iners while sparing protective vaginal lactobacilli may provide novel pharmacological tools to better understand the roles of this enigmatic bacterium in vaginal ecology and potentially lead to new and improved therapies for dysbiosis-related conditions such as BV.
Collapse
|
34
|
Rahmeh R, Akbar A, Alonaizi T, Kishk M, Shajan A, Akbar B. Characterization and application of antimicrobials produced by Enterococcus faecium S6 isolated from raw camel milk. J Dairy Sci 2020; 103:11106-11115. [PMID: 32981738 DOI: 10.3168/jds.2020-18871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
The emergence of antimicrobial resistance in the food chain and the consumer's demand for safe food without chemical preservatives have generated much interest in natural antimicrobials. Thus, our main goal was to study the mode of action of the crude extract, the enterocins, and the organic acid produced by a bacteriocinogenic Enterococcus faecium strain S6 previously isolated from raw camel milk. Then, we aimed to evaluate their potential application in a food system. These antimicrobials exhibited antimicrobial activity against Listeria monocytogenes, Salmonella enterica, and Escherichia coli. The enterocins were synthesized as primary metabolites beginning at the lag phase, with optimal production at the exponential and stationary phases. The antimicrobials had a direct effect in extending the lag phase of L. monocytogenes, along with a significant inhibitory activity. The organic acid, in particular, inhibited both L. monocytogenes and S. enterica by inducing a total lysis and damage of the cell wall. The enterocins acted on disrupting the cell wall with pore formation, leading to cell death. Moreover, the crude extract revealed a combined inhibitory activity between enterocins and organic acid. Furthermore, the antimicrobials showed promising results through inhibiting L. monocytogenes cells in milk samples up to 1 wk at 4°C.
Collapse
Affiliation(s)
- Rita Rahmeh
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885 Safat, 13109, Kuwait.
| | - Abrar Akbar
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885 Safat, 13109, Kuwait
| | - Thnayan Alonaizi
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885 Safat, 13109, Kuwait
| | - Mohamed Kishk
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885 Safat, 13109, Kuwait
| | - Anisha Shajan
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885 Safat, 13109, Kuwait
| | - Batool Akbar
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885 Safat, 13109, Kuwait
| |
Collapse
|
35
|
Serna-Jiménez JA, Uribe-Bohórquez MA, Rodríguez-Bernal JM, Klotz-Ceberio B, Quintanilla-Carvajal MX. Control of spoilage fungi in yogurt using MicroGARD 200™, Lyofast-FPR2™ and HOLDBAC-YMC™ as bioprotectants. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2020. [DOI: 10.1515/ijfe-2019-0299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe aim of this study was to assess the inhibitory effect of three commercial bioprotectant agents on the growth of yogurt-spoiling fungi. Mucor circinelloides, Mucor racemosus, Penicillium spp., Saccharomyces exiguus, and Candida intermedia, commonly involved in the spoilage of dairy products, were isolated from spoiled yogurt and were fully characterized using molecular and phenotypic methods. HOLDBAC-YMC™, Lyofast-FPR2™ and MicroGARD 200™ were used as antifungal products. An optimized experimental mixture design was applied to determine the proportion of each bioprotectant in terms of growth-inhibition response against the fungal strains in standard laboratory media. The results of the challenge tests showed that the application of bioprotectants inhibited the growth of the moulds in the range of 85–100% and the growth of yeast between 1.23 and 5.40 log cycles. The optimal combination of the bioprotectants was determined, tested in standard laboratory media and found to inhibit fungal growth. The antifungal effect of the optimal combination of the bioprotectants was validated in yogurt against the most resistant fungal species of the study, M. circinelloides and C. intermedia. The bioprotectants elicited antifungal effect in yogurt by completely inhibiting all of the tested fungi compared to controls. To the best of our knowledge, this is the first time a mixture of commercial bioprotectants has been tested on yogurt as a potential alternative for the biopreservation of yogurt in order to reduce spoilage of fermented dairy products and economic losses.
Collapse
Affiliation(s)
- Johanna Andrea Serna-Jiménez
- Facultad de Ingeniería, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá. Chía, Cundinamarca, Colombia
| | - María Angélica Uribe-Bohórquez
- Facultad de Ingeniería, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá. Chía, Cundinamarca, Colombia
| | | | | | - María Ximena Quintanilla-Carvajal
- Facultad de Ingeniería, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá. Chía, Cundinamarca, Colombia
| |
Collapse
|
36
|
Bartle L, Sumby K, Sundstrom J, Jiranek V. The microbial challenge of winemaking: yeast-bacteria compatibility. FEMS Yeast Res 2020; 19:5513997. [PMID: 31187141 DOI: 10.1093/femsyr/foz040] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/10/2019] [Indexed: 12/25/2022] Open
Abstract
The diversity and complexity of wine environments present challenges for predicting success of fermentation. In particular, compatibility between yeast and lactic acid bacteria is affected by chemical and physical parameters that are strain and cultivar specific. This review focuses on the impact of compound production by microbes and physical interactions between microbes that ultimately influence how yeast and bacteria may work together during fermentation. This review also highlights the importance of understanding microbial interactions for yeast-bacteria compatibility in the wine context.
Collapse
Affiliation(s)
- Louise Bartle
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia
| | - Krista Sumby
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia.,Australian Research Council Training Centre for Innovative Wine Production, PMB1, Glen Osmond, SA, 5064, Australia
| | - Joanna Sundstrom
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia.,Australian Research Council Training Centre for Innovative Wine Production, PMB1, Glen Osmond, SA, 5064, Australia
| | - Vladimir Jiranek
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia.,Australian Research Council Training Centre for Innovative Wine Production, PMB1, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
37
|
Acuña L, Corbalán N, Quintela-Baluja M, Barros-Velázquez J, Bellomio A. Expression of the hybrid bacteriocin Ent35-MccV in Lactococcus lactis and its use for controlling Listeria monocytogenes and Escherichia coli in milk. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Siroli L, Patrignani F, D’Alessandro M, Salvetti E, Torriani S, Lanciotti R. Suitability of the Nisin Z-producer Lactococcus lactis subsp. lactis CBM 21 to be Used as an Adjunct Culture for Squacquerone Cheese Production. Animals (Basel) 2020; 10:E782. [PMID: 32365951 PMCID: PMC7277329 DOI: 10.3390/ani10050782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
This research investigated the technological and safety effects of the nisin Z producer Lactococcus lactis subsp. lactis CBM 21, tested as an adjunct culture for the making of Squacquerone cheese in a pilot-scale plant. The biocontrol agent remained at a high level throughout the cheese refrigerated storage, without having a negative influence on the viability of the conventional Streptococcus thermophilus starter. The inclusion of CBM 21 in Squacquerone cheesemaking proved to be more effective compared to the traditional one, to reduce total coliforms and Pseudomonas spp. Moreover, the novel/innovative adjunct culture tested did not negatively modify the proteolytic patterns of Squacquerone cheese, but it gave rise to products with specific volatile and texture profiles. The cheese produced with CBM 21 was more appreciated by the panelists with respect to the traditional one.
Collapse
Affiliation(s)
- Lorenzo Siroli
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (L.S.); (M.D.); (R.L.)
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (L.S.); (M.D.); (R.L.)
- Interdepartmental Center for Industrial Agri-food Research, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Margherita D’Alessandro
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (L.S.); (M.D.); (R.L.)
| | - Elisa Salvetti
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (E.S.); (S.T.)
| | - Sandra Torriani
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (E.S.); (S.T.)
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (L.S.); (M.D.); (R.L.)
- Interdepartmental Center for Industrial Agri-food Research, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| |
Collapse
|
39
|
Antimicrobial activity of protein-containing fractions isolated from Lactobacillus plantarum NRRL B-4496 culture. Braz J Microbiol 2020; 51:1289-1296. [PMID: 32232745 DOI: 10.1007/s42770-020-00266-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/21/2020] [Indexed: 01/17/2023] Open
Abstract
The interest in lactic acid bacteria, including Lactobacillus plantarum NRRL B-4496, has increased in recent years as bio-preservatives, due to the production of secondary metabolites capable of inhibiting pathogenic bacteria. The objectives of this study were to evaluate the antimicrobial activity, cytotoxicity and the anti-inflammatory response of L. plantarum NRRL B-4496 cell-free supernatant (CFS). Furthermore, the CFS was fractionated by size exclusion chromatography using Sephadex G-25, and a minimal inhibitory volume test was determined against a panel of pathogenic bacteria. The cytotoxicity and the inflammatory activities of the fractions were evaluated using the human-derived THP-1 cell line. Results of this study indicates that CFS of L. plantarum NRRL B-4496 possesses antimicrobial protein compounds against the pathogen Listeria monocytogenes and showed no toxicity nor a pro-inflammatory response to human macrophages. The obtained results contribute to the development of novel bio-preservatives, L. plantarum cell-free supernatant or its fractions, with a potential use in the food industry.
Collapse
|
40
|
Ibarra-Sánchez LA, El-Haddad N, Mahmoud D, Miller MJ, Karam L. Invited review: Advances in nisin use for preservation of dairy products. J Dairy Sci 2020; 103:2041-2052. [PMID: 31928749 DOI: 10.3168/jds.2019-17498] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/11/2019] [Indexed: 12/23/2022]
Abstract
Dairy product safety is a global public health issue that demands new approaches and technologies to control foodborne pathogenic microorganisms. Natural antimicrobial agents such as nisin can be added to control the growth of pathogens of concern in dairy foods, namely Listeria monocytogenes and Staphylococcus aureus. However, several factors affect the antimicrobial efficacy of nisin when directly added into the food matrix such as lack of stability at neutral pH, interaction with fat globules, casein, and divalent cations. To overcome these limitations, new and advanced strategies are discussed including nisin encapsulation technology, addition to active packaging, bioengineering, and combination with other antimicrobials. This review highlights advanced technologies with potential to expand and improve the use of nisin as a dairy preservative.
Collapse
Affiliation(s)
- Luis A Ibarra-Sánchez
- Department of Food Science and Human Nutrition, University of Illinois, Urbana 61801
| | - Nancy El-Haddad
- Department of Nursing and Health Sciences, Faculty of Nursing and Health Sciences, Notre Dame University-Louaize, Zouk Mosbeh, Lebanon PO Box: 72, Zouk Mikael, Lebanon
| | - Darine Mahmoud
- Department of Nursing and Health Sciences, Faculty of Nursing and Health Sciences, Notre Dame University-Louaize, Zouk Mosbeh, Lebanon PO Box: 72, Zouk Mikael, Lebanon
| | - Michael J Miller
- Department of Food Science and Human Nutrition, University of Illinois, Urbana 61801
| | - Layal Karam
- Department of Nursing and Health Sciences, Faculty of Nursing and Health Sciences, Notre Dame University-Louaize, Zouk Mosbeh, Lebanon PO Box: 72, Zouk Mikael, Lebanon.
| |
Collapse
|
41
|
Inhibitory effect of Lactobacillus plantarum metabolites against biofilm formation by Bacillus licheniformis isolated from milk powder products. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.106721] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Galván Márquez IJ, McKay B, Wong A, Cheetham JJ, Bean C, Golshani A, Smith ML. Mode of action of nisin on Escherichia coli. Can J Microbiol 2019; 66:161-168. [PMID: 31743042 DOI: 10.1139/cjm-2019-0315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nisin is a class I polycyclic bacteriocin produced by the bacterium Lactococcus lactis, which is used extensively as a food additive to inhibit the growth of foodborne Gram-positive bacteria. Nisin also inhibits growth of Gram-negative bacteria when combined with membrane-disrupting chelators such as citric acid. To gain insight into nisin's mode of action, we analyzed chemical-genetic interactions and identified nisin-sensitive Escherichia coli strains in the Keio library of knockout mutants. The most sensitive mutants fell into two main groups. The first group accords with the previously proposed mode of action based on studies with Gram-positive bacteria, whereby nisin interacts with factors involved in cell wall, membrane, envelope biogenesis. We identified an additional, novel mode of action for nisin based on the second group of sensitive mutants that involves cell cycle and DNA replication, recombination, and repair. Further analyses supported these two distinct modes of action.
Collapse
Affiliation(s)
- Imelda J Galván Márquez
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.,Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Bruce McKay
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.,Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Alex Wong
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.,Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - James J Cheetham
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.,Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Cody Bean
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.,Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Ashkan Golshani
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.,Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Myron L Smith
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.,Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
43
|
Wei W, Zhang X, Zhang S, Wei G, Su Z. Biomedical and bioactive engineered nanomaterials for targeted tumor photothermal therapy: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109891. [DOI: 10.1016/j.msec.2019.109891] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/04/2019] [Accepted: 06/12/2019] [Indexed: 12/24/2022]
|
44
|
Moradi M, Mardani K, Tajik H. Characterization and application of postbiotics of Lactobacillus spp. on Listeria monocytogenes in vitro and in food models. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.072] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
45
|
Verdi MC, Melian C, Castellano P, Vignolo G, Blanco Massani M. Synergistic antimicrobial effect of lactocin
AL
705 and nisin combined with organic acid salts against
Listeria innocua
7 in broth and a hard cheese. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- María Clara Verdi
- Instituto Nacional de Tecnología Industrial (INTI) Av. Gral. Paz 5445 1650 San Martin Argentina
| | - Constanza Melian
- Centro de Referencia para Lactobacilos (CERELA) CONICET Chacabuco 145 4000 Tucumán Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Av. Rivadavia 1917 C1033AAJ Buenos Aires Argentina
| | - Patricia Castellano
- Centro de Referencia para Lactobacilos (CERELA) CONICET Chacabuco 145 4000 Tucumán Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Av. Rivadavia 1917 C1033AAJ Buenos Aires Argentina
| | - Graciela Vignolo
- Centro de Referencia para Lactobacilos (CERELA) CONICET Chacabuco 145 4000 Tucumán Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Av. Rivadavia 1917 C1033AAJ Buenos Aires Argentina
| | - Mariana Blanco Massani
- Instituto Nacional de Tecnología Industrial (INTI) Av. Gral. Paz 5445 1650 San Martin Argentina
| |
Collapse
|
46
|
Todorov S, de Melo Franco B, Tagg J. Bacteriocins of Gram-positive bacteria having activity spectra extending beyond closely-related species. Benef Microbes 2019; 10:315-328. [DOI: 10.3920/bm2018.0126] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacteriocins are bacterially-produced antimicrobial peptides that have killing activity principally against other relatively closely-related bacteria. Some bacteriocins of the lactic acid bacteria (LAB) have for many years been extensively applied in food biopreservation. However, especially during the last decade, a number of reports have appeared about unanticipated extensions to the generally rather narrow anti-bacterial activity spectrum of some of the LAB bacteriocins and novel applications have been proposed for bacteriocins ranging from controlling the growth of an increasingly-heterogeneous variety of pathogens, including Gram-negative multidrug resistant bacteria, viruses, yeasts, and in particular, difficult to control Mycobacterium spp., to their potential application as anticancer agents. How best can we assess this now rapidly-accumulating stream of reports on potential future applications of bacteriocins? Where is the line between realistic, science-based proposals and highly-speculative fiction and what are the ‘critical points’ that might help us to draw this line? In this review, we have attempted to analyse a selection of the presently-available data concerning relatively ‘unorthodox’ (i.e. beyond food preservation) applications of bacteriocins, and, by utilising our set of ‘critical points’, we endeavour to identify essential or/and missing information that appear crucial for success of the proposed applications.
Collapse
Affiliation(s)
- S.D. Todorov
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmaceuticals, Universidade de São Paulo, Av. prof. Lineu Prestes, 580, 13B, São Paulo 05508-000 SP, Brazil
| | - B.D.G. de Melo Franco
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmaceuticals, Universidade de São Paulo, Av. prof. Lineu Prestes, 580, 13B, São Paulo 05508-000 SP, Brazil
| | - J.R. Tagg
- BLIS Technologies Ltd, 81 Glasgow Street, South Dunedin 9012, New Zealand
| |
Collapse
|
47
|
Ali ZI, Saudi AM, Albrecht R, Talaat AM. The inhibitory effect of nisin on Mycobacterium avium ssp. paratuberculosis and its effect on mycobacterial cell wall. J Dairy Sci 2019; 102:4935-4944. [PMID: 30981481 DOI: 10.3168/jds.2018-16106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/08/2019] [Indexed: 11/19/2022]
Abstract
Infection with Mycobacterium avium ssp. paratuberculosis (M. paratuberculosis) is a widespread problem in the United States and worldwide, and it constitutes a significant health problem for dairy animals with a potential effect on human health. Mycobacterium paratuberculosis is easily transmitted through consumption of contaminated milk; therefore, finding safe methods to reduce the mycobacterial load in milk and other dairy products is important to the dairy industry. The main objective of the current study was to investigate the effect of natural products, such as bacteriocins designated as "generally regarded as safe" (GRAS), on the survival of M. paratuberculosis in milk. Commercially synthesized bacteriocin (nisin) was used to examine its effect on the survival of laboratory and field isolates of M. paratuberculosis and in contaminated milk. Surprisingly, nisin had a higher minimum inhibitory concentration (MIC) against the laboratory strain (M. paratuberculosis K10), at 500 U/mL, than against field isolates (e.g., M. paratuberculosis 4B and JTC 1281), at 15 U/mL. In milk, growth of M. paratuberculosis was inhibited after treatment with levels of nisin that are permissible in human food at 4°C and 37°C. Using both fluorescent and scanning electron microscopy, we were able to identify defects in the bacterial cell walls of treated cultures. Our analysis indicated that nisin reduced membrane integrity by forming pores in the mycobacterial cell wall, thereby decreasing survival of M. paratuberculosis. Thus, nisin treatment of milk could be implemented as a control measure to reduce M. paratuberculosis secreted in milk from infected herds. Nisin could also be used to reduce M. paratuberculosis in colostrum given to calves from infected animals, improving biosecurity control in dairy herds affected by Johne's disease.
Collapse
Affiliation(s)
- Zeinab I Ali
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, 11221, Egypt
| | - Adel M Saudi
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, 11221, Egypt
| | - Ralph Albrecht
- Department of Animal Science, University of Wisconsin, Madison 53706
| | - Adel M Talaat
- Department of Pathobiological Sciences, University of Wisconsin, Madison 53706.
| |
Collapse
|
48
|
Öncül N, Yıldırım Z. Inhibitory effect of bacteriocins againstEscherichia coliO157:H7. FOOD SCI TECHNOL INT 2019; 25:504-514. [DOI: 10.1177/1082013219840462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The purpose of this study was to explore the activity of bacteriocin enterocin KP and lactococcin BZ against Escherichia coli O157:H7, a Gram-negative foodborne pathogen, in ultra-high temperature (UHT) milks with different fat ratios. Enterocin KP and lactococcin BZ were produced from two bacteriocinogenic strains, isolated in previous studies from White cheese and Boza. Full fat (3.0%), half fat (1.5%), and low fat (<0.1% fat) UHT milks inoculated with 102, 104, and 106CFU/ml of E. coli O157:H7 were treated with different concentrations (400, 800, 1600, and 2500 AU/ml) of lactococcin BZ, enterocin KP, or a combination of both and stored at 4 or 20 ℃ for 20 days. The survival of E. coli O157:H7 was determined at both storage temperatures during the storage period of 20 days. Lactococcin BZ and enterocin KP had a bactericidal impact on E. coli O157:H7 in all UHT milk samples either separately or in combination. However, antibacterial activity of the bacteriocins decreased with increasing fat content of milk and inoculum levels of bacterium. The results of this study indicate that lactococcin BZ and enterocin KP may be useful candidates either separately or in combination as biopreservatives for use in the dairy industry to control the growth of pathogenic microorganisms.
Collapse
Affiliation(s)
- Nilgün Öncül
- Department of Nutrition and Dietetics, Fethiye Faculty of Health Sciences, Muğla Sıtkı Koçman University, Karaçulha, Turkey
| | - Zeliha Yıldırım
- Department of Food Engineering, Faculty of Engineering, Ömer Halisdemir University, Niğde, Turkey
| |
Collapse
|
49
|
Rubin AE, Usta OB, Schloss R, Yarmush M, Golberg A. Selective Inactivation of Pseudomonas aeruginosa and Staphylococcus epidermidis with Pulsed Electric Fields and Antibiotics. Adv Wound Care (New Rochelle) 2019; 8:136-148. [PMID: 31737412 DOI: 10.1089/wound.2018.0819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 10/15/2018] [Indexed: 01/17/2023] Open
Abstract
Objective: Increasing numbers of multidrug-resistant bacteria make many antibiotics ineffective; therefore, new approaches to combat microbial infections are needed. In addition, antibiotics are not selective-they kill pathogenic organisms as well as organisms that could positively contribute to wound healing (bio flora). Approach: Here we report on selective inactivation of Pseudomonas aeruginosa and Staphylococcus epidermidis, potential pathogens involved in wound infections with pulsed electric fields (PEFs) and antibiotics (mix of penicillin, streptomycin, and nystatin). Results: Using a Taguchi experimental design in vitro, we found that, under similar electric field strengths, the pulse duration is the most important parameter for P. aeruginosa inactivation, followed by the number of pulses and pulse frequency. P. aeruginosa, a potential severe pathogen, is more sensitive than the less pathogenic S. epidermidis to PEF (alone or in combination with antibiotics). Applying 200 pulses with a duration of 60 μs at 2.8 Hz, the minimum electric fields of 308.8 ± 28.3 and 378.4 ± 12.9 V/mm were required to inactive P. aeruginosa and S. epidermidis, respectively. Addition of antibiotics reduced the threshold for minimum electric fields required to inactivate the bacteria. Innovation: This study provides essential information, such as critical electric field parameters for bacteria inactivation, required for developing in vivo treatment and clinical protocols for using PEF for wound healing. Conclusion: A combination of PEFs with antibiotics reduces the electric field threshold required for bacteria disinfection. Such an approach simplifies devices required to disinfect large areas of infected wounds.
Collapse
Affiliation(s)
- Andrey Ethan Rubin
- Porter School of Environment and Earth Sciences, Tel Aviv University Ramat Aviv, Tel Aviv, Israel
| | - Osman Berk Usta
- Center for Engineering in Medicine, Massachusetts General Hospital Shriners Burn Hospital for Children and Harvard Medical School, Boston, Massachusetts
| | - Rene Schloss
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Martin Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital Shriners Burn Hospital for Children and Harvard Medical School, Boston, Massachusetts
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Alexander Golberg
- Porter School of Environment and Earth Sciences, Tel Aviv University Ramat Aviv, Tel Aviv, Israel
| |
Collapse
|
50
|
Preservation of Meat Products with Bacteriocins Produced by Lactic Acid Bacteria Isolated from Meat. J FOOD QUALITY 2019. [DOI: 10.1155/2019/4726510] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bacteriocins are ribosomal-synthesized antimicrobial peptides that inhibit the growing of pathogenic and/or deteriorating bacteria. The most studied bacteriocin-producing microorganisms are lactic acid bacteria (LAB), as they have great potential application in food biopreservation, since the majority have GRAS (Generally Recognized as Safe) status. The LAB-producing bacteriocins and/or bacteriocins produced by these bacteria have been widely studied, with the emphasis on those derived from milk and dairy products. On the other hand, isolates from meat and meat products are less studied. The objective of this review is to address the main characteristics, classification, and mechanism of action of bacteriocins and their use in food, to highlight studies on the isolation of LAB with bacteriocinogenic potential from meat and meat products and also to characterize, purify, and apply these bacteriocins in meat products. In summary, most of the microorganisms studied areLactococcus,Enterococcus,Pediococcus, andLactobacillus, which produce bacteriocins such as nisin, enterocin, pediocin, pentocin, and sakacin, many with the potential for use in food biopreservation.
Collapse
|