1
|
Decadt H, Vermote L, Díaz-Muñoz C, Weckx S, De Vuyst L. Decarboxylase activity of the non-starter lactic acid bacterium Loigolactobacillus rennini gives crack defects in Gouda cheese through the production of γ-aminobutyric acid. Appl Environ Microbiol 2024; 90:e0165523. [PMID: 38231565 PMCID: PMC10880667 DOI: 10.1128/aem.01655-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/29/2023] [Indexed: 01/18/2024] Open
Abstract
Ten Gouda cheese wheels with an age of 31 weeks from six different batch productions were affected by a crack defect and displayed an unpleasant off-flavor. To unravel the causes of these defects, the concentrations of free amino acids, other organic acids, volatile organic compounds, and biogenic amines were quantified in zones around the cracks and in zones without cracks, and compared with those of similar Gouda cheeses without crack defect. The Gouda cheeses with cracks had a significantly different metabolome. The production of the non-proteinogenic amino acid γ-aminobutyric acid (GABA) could be unraveled as the key mechanism leading to crack formation, although the production of the biogenic amines cadaverine and putrescine contributed as well. High-throughput amplicon sequencing of the full-length 16S rRNA gene based on whole-community DNA revealed the presence of Loigolactobacillus rennini and Tetragenococcus halophilus as most abundant non-starter lactic acid bacteria in the zones with cracks. Shotgun metagenomic sequencing allowed to obtain a metagenome-assembled genome of both Loil. rennini and T. halophilus. However, only Loil. rennini contained genes necessary for the production of GABA, cadaverine, and putrescine. Metagenetics further revealed the brine and the rennet used during cheese manufacturing as the most plausible inoculation sources of both Loil. rennini and T. halophilus.IMPORTANCECrack defects in Gouda cheeses are still poorly understood, although they can lead to major economic losses in cheese companies. In this study, the bacterial cause of a crack defect in Gouda cheeses was identified, and the pathways involved in the crack formation were unraveled. Moreover, possible contamination sources were identified. The brine bath might be a major source of bacteria with the potential to deteriorate cheese quality, which suggests that cheese producers should regularly investigate the quality and microbial composition of their brines. This study illustrated how a multiphasic approach can understand and mitigate problems in a cheese company.
Collapse
Affiliation(s)
- Hannes Decadt
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Louise Vermote
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cristian Díaz-Muñoz
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
2
|
Samelis J, Tsanasidou C, Bosnea L, Ntziadima C, Gatzias I, Kakouri A, Pappas D. Pilot-Scale Production of Traditional Galotyri PDO Cheese from Boiled Ewes’ Milk Fermented with the Aid of Greek Indigenous Lactococcus lactis subsp. cremoris Starter and Lactiplantibacillus plantarum Adjunct Strains. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The performance of a mixed thermophilic and mesophilic starter culture consisting of Streptococcus thermophilus ST1 and the Greek indigenous nisin-A-producing Lactococcus lactis subsp. cremoris M78 was evaluated in the absence (A: ST1+M78) or presence (B: ST1+M78+H25) of Lactiplantibacillus plantarum H25—another indigenous ripening strain—under real cheesemaking conditions. Three pilot-scale trials of fresh (6-day-old) Galotyri PDO cheese were made from boiled milk by an artisanal method using simple equipment, followed by cold ripening of the A1–A3 and B1–B3 cheeses at 4 °C for 30 days. All of the cheeses were analyzed microbiologically and for pH, gross composition, proteolysis, sugar and organic acid contents, and sensorial attributes before and after ripening. The artisanal (PDO) Galotyri manufacturing method did not ensure optimal growth of the ST1+M78 starter as regards the constant ability of the thermophilic strain ST1 to act as the primary milk acidifier under ambient (20–30 °C) fermentation conditions. Consequently, major trial-dependent microbial and biochemical differences between the Acheeses, and generally extended to the Bcheeses, were found. However, high-quality Galotyri was produced when either starter strain predominated in the fresh cheeses; only trial A1 had microbiological and sensory defects due to an outgrowth of post-thermal Gram-negative bacterial contaminants in the acidified curd. The H25 adjunct strain, which grew above 7 to 9 log CFU/g depending on the trial, had minor effects on the cheese’s pH, gross composition, and proteolysis, but it improved the texture, flavor, and the bacteriological quality of the Bcheeses during processing, and it exerted antifungal effects in the ripened cheeses.
Collapse
|
3
|
Decadt H, Weckx S, De Vuyst L. The rotation of primary starter culture mixtures results in batch-to-batch variations during Gouda cheese production. Front Microbiol 2023; 14:1128394. [PMID: 36876114 PMCID: PMC9978159 DOI: 10.3389/fmicb.2023.1128394] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023] Open
Abstract
Industrial production of Gouda cheeses mostly relies on a rotated use of different mixed-strain lactic acid bacteria starter cultures to avoid phage infections. However, it is unknown how the application of these different starter culture mixtures affect the organoleptic properties of the final cheeses. Therefore, the present study assessed the impact of three different starter culture mixtures on the batch-to-batch variations among Gouda cheeses from 23 different batch productions in the same dairy company. Both the cores and rinds of all these cheeses were investigated after 36, 45, 75, and 100 weeks of ripening by metagenetics based on high-throughput full-length 16S rRNA gene sequencing accompanied with an amplicon sequence variant (ASV) approach as well as metabolite target analysis of non-volatile and volatile organic compounds. Up to 75 weeks of ripening, the acidifying Lactococcus cremoris and Lactococcus lactis were the most abundant bacterial species in the cheese cores. The relative abundance of Leuconostoc pseudomesenteroides was significantly different for each starter culture mixture. This impacted the concentrations of some key metabolites, such as acetoin produced from citrate, and the relative abundance of non-starter lactic acid bacteria (NSLAB). Cheeses with the least Leuc. pseudomesenteroides contained more NSLAB, such as Lacticaseibacillus paracasei that was taken over by Tetragenococcus halophilus and Loigolactobacillus rennini upon ripening time. Taken together, the results indicated a minor role of leuconostocs in aroma formation but a major impact on the growth of NSLAB. The relative abundance of T. halophilus (high) and Loil. rennini (low) increased with ripening time from rind to core. Two main ASV clusters of T. halophilus could be distinguished, which were differently correlated with some metabolites, both beneficial (regarding aroma formation) and undesirable ones (biogenic amines). A well-chosen T. halophilus strain could be a candidate adjunct culture for Gouda cheese production.
Collapse
Affiliation(s)
| | | | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
4
|
Stankov S, Fidan H, Dincheva I, Balabanova T, Ibrahim SA. Quality indicators of traditional Bulgarian artisanal sheep’s cheese. BIO WEB OF CONFERENCES 2023. [DOI: 10.1051/bioconf/20235801003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
The aim of the present study is focused on the evaluation of the quality parameters of artisan sheep cheese produced by old Bulgarian technology. The study was carried out in three stages - at the end of the ripening process (45th day), during and at the end of storage (180th and 360th day). An increase of 9.0% in dry matter and a decrease in water content and titratable acidity values were observed over the entire period studied. There was a decrease in oleic fatty acid (C18:1n9c) from 28.16% at day 45 to 26.09% at day 360 of ripening. In the case of palmitic acid (C16:0) the values recorded were similar from 30.24% (45th day) to 30.74% (360th day). Changes in the composition of organic acids were observed, with lactic acid levels decreasing from 27.66% at day 45 to 8.62% at day 360. After microbiological analysis, it was found that the main microflora present in the samples were representatives of lactic acid microorganisms as compared to the non-starter microflora.
Collapse
|
5
|
Kazou M, Gavriil A, Kalagkatsi O, Paschos T, Tsakalidou E. The Impact of Different Inoculation Schemes on the Microbiota, Physicochemical and Sensory Characteristics of Greek Kopanisti Cheese throughout Production and Ripening. Microorganisms 2022; 11:66. [PMID: 36677358 PMCID: PMC9863000 DOI: 10.3390/microorganisms11010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Kopanisti is a Greek PDO cheese, which is traditionally produced by the addition of an amount of over-mature Kopanisti, called Mana Kopanisti, to initiate cheese ripening. The aim of this study was the production of four types of Kopanisti cheese (A-D) using pasteurized cow milk, and a combination of the following starters/adjuncts in order to test their ability to be used in Kopanisti cheese production: A: Lactococcus lactis subsp. lactis and Lacticaseibacillus paracasei, B: L. lactis and Lc. paracasei/Mana Kopanisti, C: L. lactis and Lc. paracasei/Ligilactobacillus acidipiscis and Loigolactobacillus rennini, D: Lig. acidipiscis and Loig. rennini. Throughout production and ripening, classical microbiological, metataxonomics and physicochemical analyses were employed, while the final products (Day 35) were subjected to sensory analysis as well. Most interestingly, beta-diversity analysis of the metataxonomics data revealed the clusters constructed among the Kopanisti types based on the different inoculation schemes. On day 35, Kopanisti A-C types clustered together due to their similar 16S microbiota, while Kopanisti D was highly differentiated. On the contrary, ITS data clustered Kopanisti B and C together, while Kopanisti A and D were grouped seperately. Finally, based on the sensory evaluation, Kopanisti C appeared to have the most suitable bacteria cocktail for the Kopanisti cheese production. Therefore, not only were the conventional starters used, but also the Lig. acidipiscis and Loig. rennini strains could be used in a standardized Kopanisti cheese production that could lead to final products of high quality and safety.
Collapse
Affiliation(s)
- Maria Kazou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | | | | | | | | |
Collapse
|
6
|
Microbiological Characterization of Greek Galotyri Cheese PDO Products Relative to Whether They Are Marketed Fresh or Ripened. FERMENTATION 2022. [DOI: 10.3390/fermentation8100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Galotyri is the most popular traditional Greek PDO soft acid-curd cheese. This study compared the microbial numbers and types and characterized the lactic acid bacteria (LAB) biota of two artisan-type Galotyri PDO cheese varieties, one marketed fresh (Brand-K) and the other ripened (Brand-Z). Two retail batches of each cheese variety were analyzed, and a total of 102 LAB isolates were biochemically identified. LAB (7.2–9.3 log CFU/g) prevailed in all cheeses, followed by yeasts (5.8–6.8 log CFU/g). Typical starter strains of Streptococcus thermophilus and Lactobacillus delbrueckii were the most abundant species in all batches. However, the fresh Brand-K cheeses had 1–3 log units higher thermophilic starter LAB counts than the ripened Brand-Z cheeses, which contained a more diverse viable LAB biota comprising Lacticaseibacillus paracasei, Leuconostocmesenteroides, Lentilactobacillus (L. diolivorans, L. kefiri, L. hilgardii), Pediococcusinopinatus/parvulus, few spontaneous nonstarter thermophilic streptococci and lactobacilli, and Enterococcus faecium and E. faecalis at higher subdominant levels.Conversely, the fresh Brand-K cheeses were enriched in members of the Lactiplantibacillus plantarum group; other LAB species were sporadically isolated, including Lactococcus lactis. All retail cheeses were safe (pH 3.9–4.0). No Salmonella spp. or Listeria monocytogenes were detected in 25-g samples by culture enrichment; however, Listeria innocua and coagulase-positive staphylococci (850 CFU/g) survived in one ripened batch. Gram-negative bacteria were <100 CFU/g in all cheeses. In conclusion, ripening reduced the starter LAB viability but increased the nonstarter LAB species diversity in the present Galotyri PDO market cheeses.
Collapse
|
7
|
Tsigkrimani M, Panagiotarea K, Paramithiotis S, Bosnea L, Pappa E, Drosinos EH, Skandamis PN, Mataragas M. Microbial Ecology of Sheep Milk, Artisanal Feta, and Kefalograviera Cheeses. Part II: Technological, Safety, and Probiotic Attributes of Lactic Acid Bacteria Isolates. Foods 2022; 11:foods11030459. [PMID: 35159609 PMCID: PMC8834287 DOI: 10.3390/foods11030459] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of the present study was to examine 189 LAB strains belonging to the species Enterococcus faecium, E. faecalis, Lactococcus lactis, Pediococcus pentosaceus, Leuconostoc mesenteroides, Lactiplantibacillus pentosus, Latilactobacillus curvatus, Lp. plantarum, Levilactobacillus brevis, and Weissella paramesenteroides isolated form sheep milk, Feta and Kefalograviera cheeses at different ripening stages, for their technological compatibility with dairy products manufacturing, their activities that may compromise safety of the dairy products as well as their capacity to survive in the human gastrointestinal tract. For that purpose, milk acidification and coagulation capacity, caseinolytic, lipolytic, hemolytic, gelatinolytic, and bile salt hydrolase activity, production of exopolysaccharides, antimicrobial compounds, and biogenic amines, as well as acid and bile salt tolerance and antibiotic susceptibility were examined. The faster acidifying strains were Lc. lactis DRD 2658 and P. pentosaceus DRD 2657 that reduced the pH value of skim milk, within 6 h to 5.97 and 5.92, respectively. Strains able to perform weak caseinolysis were detected in all species assessed. On the contrary, lipolytic activity, production of exopolysaccharides, amino acid decarboxylation, hemolytic, gelatinase, and bile salt hydrolase activity were not detected. Variable susceptibility to the antibiotics examined was detected among LAB strains. However, in the majority of the cases, resistance was evident. None of the strains assessed, managed to survive to exposure at pH value 1. On the contrary, 25.9 and 88.9% of the strains survived after exposure at pH values 2 and 3, respectively; the reduction of the population was larger in the first case. The strains survived well after exposure to bile salts. The strain-dependent character of the properties examined was verified. Many strains, belonging to different species, have presented very interesting properties; however, further examination is needed before their potential use as starter or adjunct cultures.
Collapse
Affiliation(s)
- Markella Tsigkrimani
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece; (M.T.); (K.P.); (S.P.); (E.H.D.); (P.N.S.)
| | - Konstantina Panagiotarea
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece; (M.T.); (K.P.); (S.P.); (E.H.D.); (P.N.S.)
| | - Spiros Paramithiotis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece; (M.T.); (K.P.); (S.P.); (E.H.D.); (P.N.S.)
| | - Loulouda Bosnea
- Department of Dairy Research, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “DIMITRA”, 3 Ethnikis Antistaseos St., 45221 Ioannina, Greece; (L.B.); (E.P.)
| | - Eleni Pappa
- Department of Dairy Research, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “DIMITRA”, 3 Ethnikis Antistaseos St., 45221 Ioannina, Greece; (L.B.); (E.P.)
| | - Eleftherios H. Drosinos
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece; (M.T.); (K.P.); (S.P.); (E.H.D.); (P.N.S.)
| | - Panagiotis N. Skandamis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece; (M.T.); (K.P.); (S.P.); (E.H.D.); (P.N.S.)
| | - Marios Mataragas
- Department of Dairy Research, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “DIMITRA”, 3 Ethnikis Antistaseos St., 45221 Ioannina, Greece; (L.B.); (E.P.)
- Correspondence:
| |
Collapse
|
8
|
Rhoades J, Anastasiou I, Michailidou S, Koinidis A, Doulgerakis C, Alexa EA, Alvarez-Ordóñez A, Argiriou A, Likotrafiti E. Microbiological analysis of Greek Protected Designation of Origin cheeses and characterisation of the isolated lactic acid bacteria. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Esen Y, Çetin B. Bacterial and yeast microbial diversity of the ripened traditional middle east surk cheese. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Michailidou S, Pavlou E, Pasentsis K, Rhoades J, Likotrafiti E, Argiriou A. Microbial profiles of Greek PDO cheeses assessed with amplicon metabarcoding. Food Microbiol 2021; 99:103836. [PMID: 34119120 DOI: 10.1016/j.fm.2021.103836] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/14/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
Greece is a country possessing many cheese products granted with a PDO (Protected Designation of Origin) certificate, with high exporting activities. In this study, we analyzed six popular cheese PDO products purchased from different industries to assess their microbial communities using amplicon metabarcoding analysis. To this end, using Next Generation Sequencing technology, we sequenced the 16S rRNA gene and the ITS spacer for prokaryotes and fungi, respectively. Alpha diversity indices revealed higher bacterial species richness for some cheeses (Kopanisti, Batzos) and poor for others (Feta, Galotiri). Kopanisti, together with Kalathaki and Anevato, also presented increased species diversity concerning fungal populations. Results showed that lactic acid bacteria (LAB) prevailed the bacterial populations in all samples (Lactococcus, Lactobacillus, Streptococcus, Leuconostoc), whereas for fungi, members of the Saccharomycetaceae, Dipodascaceae and Debaryomycetaceae families prevailed the fungal populations. Several other genera were identified that make up each product's microbiome leading to the creation of the unique organoleptic attributes of Greek PDO cheeses. However, the identified species could not be directly linked to certain cheese types, assuming that starter and adjunct cultures, combined with the raw material used during production greatly impact the microbial communities in cheeses. Our data, produced for the first time for six Greek PDO cheeses, can be exploited in the process of creating a core microbial signature within each cheese type, supporting the Greek brand name and valorizing cheese products.
Collapse
Affiliation(s)
- Sofia Michailidou
- Center for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, P.O. Box 60361, GR-57001, Greece.
| | - Eleftherios Pavlou
- Center for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, P.O. Box 60361, GR-57001, Greece
| | - Konstantinos Pasentsis
- Center for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, P.O. Box 60361, GR-57001, Greece
| | - Jonathan Rhoades
- Laboratory of Food Microbiology, Department of Food Science and Technology, International Hellenic University, 57400, Thessaloniki, Greece
| | - Eleni Likotrafiti
- Laboratory of Food Microbiology, Department of Food Science and Technology, International Hellenic University, 57400, Thessaloniki, Greece
| | - Anagnostis Argiriou
- Center for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, P.O. Box 60361, GR-57001, Greece; Department of Food Science and Nutrition, University of the Aegean, Myrina, 81400, Lemnos, Greece
| |
Collapse
|
11
|
A rapid screening method to evaluate acidifying activity by lactic acid bacteria. J Microbiol Methods 2021; 185:106227. [PMID: 33887313 DOI: 10.1016/j.mimet.2021.106227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/22/2022]
Abstract
The determination of pH in fermented milk is an important parameter for monitoring the production of acid by lactic acid bacteria (LAB). In this work, a colorimetric method is proposed that allows a fast determination of LAB acidification ability by evaluation of pH drop in whey fermentation. The proposed method uses spectrophotometry to measure the pH change by bacteria and uses bromocresol purple as a pH indicator dye. The absorbance at 430 nm of a buffer solution with bromocresol purple was found to be correlated with pH values. This colorimetric assay was linear within the pH range of 4.6-7.0. Upon regression analysis, linear equation y = -0.1267× + 0.9196 was obtained having r2 value of 0.9927. The assay was validated by the use of LAB fermentation in sweet whey and comparison to the values obtained by glass electrode/pH meter. Estimation of acidification activity of LAB in whey was found to be similar in both methods (r = 0.801, p > 0.05). The proposed procedure presents a viable alternative to the measurement of pH by the standard method and allows the simultaneous and fast screening of LAB acidifying activity.
Collapse
|
12
|
Current Trends of Enterococci in Dairy Products: A Comprehensive Review of Their Multiple Roles. Foods 2021; 10:foods10040821. [PMID: 33920106 PMCID: PMC8070337 DOI: 10.3390/foods10040821] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
As a genus that has evolved for resistance against adverse environmental factors and that readily exchanges genetic elements, enterococci are well adapted to the cheese environment and may reach high numbers in artisanal cheeses. Their metabolites impact cheese flavor, texture, and rheological properties, thus contributing to the development of its typical sensorial properties. Due to their antimicrobial activity, enterococci modulate the cheese microbiota, stimulate autolysis of other lactic acid bacteria (LAB), control pathogens and deterioration microorganisms, and may offer beneficial effects to the health of their hosts. They could in principle be employed as adjunct/protective/probiotic cultures; however, due to their propensity to acquire genetic determinants of virulence and antibiotic resistance, together with the opportunistic character of some of its members, this genus does not possess Qualified Presumption of Safety (QPS) status. It is, however, noteworthy that some putative virulence factors described in foodborne enterococci may simply reflect adaptation to the food environment and to the human host as commensal. Further research is needed to help distinguish friend from foe among enterococci, eventually enabling exploitation of the beneficial aspects of specific cheese-associated strains. This review aims at discussing both beneficial and deleterious roles played by enterococci in artisanal cheeses, while highlighting the need for further research on such a remarkably hardy genus.
Collapse
|
13
|
Terzić-Vidojević A, Veljović K, Tolinački M, Živković M, Lukić J, Lozo J, Fira Đ, Jovčić B, Strahinić I, Begović J, Popović N, Miljković M, Kojić M, Topisirović L, Golić N. Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries - Technological and probiotic properties. Food Res Int 2020; 136:109494. [PMID: 32846575 DOI: 10.1016/j.foodres.2020.109494] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
The aim of this review was to summarize the data regarding diversity of non-starter lactic acid bacteria (NSLAB) isolated from various artisanal dairy products manufactured in Western Balkan Countries. The dairy products examined were manufactured from raw cow's, sheep's or goat's milk or mixed milk, in the traditional way without the addition of commercial starter cultures. Dairy products such as white brined cheese, fresh cheese, hard cheese, yogurt, sour cream and kajmak were sampled in the households of Serbia, Croatia, Slovenia, Bosnia and Herzegovina, Montenegro, and North Macedonia. It has been established that the diversity of lactic acid bacteria (LAB) from raw milk artisanal dairy products is extensive. In the reviewed literature, 28 LAB species and a large number of strains belonging to the Lactobacillus, Lactococcus, Enterococcus, Streptococcus, Pediococcus, Leuconostoc and Weissella genera were isolated from various dairy products. Over 3000 LAB strains were obtained and characterized for their technological and probiotic properties including: acidification and coagulation of milk, production of aromatic compounds, proteolytic activity, bacteriocins production and competitive exclusion of pathogens, production of exopolysaccharides, aggregation ability and immunomodulatory effect. Results show that many of the isolated NSLAB strains had one, two or more of the properties mentioned. The data presented emphasize the importance of artisanal products as a valuable source of NSLAB with unique technological and probiotic features important both as a base for scientific research as well as for designing novel starter cultures for functional dairy food.
Collapse
Affiliation(s)
- Amarela Terzić-Vidojević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia.
| | - Katarina Veljović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Maja Tolinački
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Milica Živković
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Jovanka Lukić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Jelena Lozo
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Đorđe Fira
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Branko Jovčić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Ivana Strahinić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Jelena Begović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Nikola Popović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Marija Miljković
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Milan Kojić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Ljubiša Topisirović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Nataša Golić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| |
Collapse
|
14
|
Câmara SPA, Dapkevicius A, Silva CCG, Malcata FX, L. N. Enes Dapkevicius M. Artisanal Pico cheese as reservoir of Enterococcus species possessing virulence and antibiotic resistance properties: implications for food safety. FOOD BIOTECHNOL 2020. [DOI: 10.1080/08905436.2019.1710844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- S. P. A. Câmara
- Food Technology Group, Institute of Agricultural and Environmental Research and Technology (IITA-A), University of the Azores, Angra do Heroísmo, Portugal
- Faculty of Agricultural and Environmental Sciences, University of the Azores, Angra do Heroísmo, Portugal
| | - A. Dapkevicius
- Food Technology Group, Institute of Agricultural and Environmental Research and Technology (IITA-A), University of the Azores, Angra do Heroísmo, Portugal
- Higher School for Technologies, University of the Azores, Angra do Heroísmo, Portugal
| | - C. C. G. Silva
- Food Technology Group, Institute of Agricultural and Environmental Research and Technology (IITA-A), University of the Azores, Angra do Heroísmo, Portugal
- Faculty of Agricultural and Environmental Sciences, University of the Azores, Angra do Heroísmo, Portugal
| | - F. X. Malcata
- Department of Chemical Engineering, University of Porto, Oporto, Portugal
- LEPABE Laboratory of Process Engineering, Environment, Biotechnology and Energy, College of Engineering, University of Porto, Porto, Portugal
| | - Maria L. N. Enes Dapkevicius
- Food Technology Group, Institute of Agricultural and Environmental Research and Technology (IITA-A), University of the Azores, Angra do Heroísmo, Portugal
- Faculty of Agricultural and Environmental Sciences, University of the Azores, Angra do Heroísmo, Portugal
| |
Collapse
|
15
|
Kazou M, Alexandraki V, Blom J, Pot B, Tsakalidou E, Papadimitriou K. Comparative Genomics of Lactobacillus acidipiscis ACA-DC 1533 Isolated From Traditional Greek Kopanisti Cheese Against Species Within the Lactobacillus salivarius Clade. Front Microbiol 2018; 9:1244. [PMID: 29942291 PMCID: PMC6004923 DOI: 10.3389/fmicb.2018.01244] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/23/2018] [Indexed: 02/05/2023] Open
Abstract
Lactobacillus acidipiscis belongs to the Lactobacillus salivarius clade and it is found in a variety of fermented foods. Strain ACA-DC 1533 was isolated from traditional Greek Kopanisti cheese and among the available L. acidipiscis genomes it is the only one with a fully sequenced chromosome. L. acidipiscis strains exhibited a high degree of conservation at the genome level. Investigation of the distribution of prophages and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) among the three strains suggests the potential existence of lineages within the species. Based on the presence/absence patterns of these genomic traits, strain ACA-DC 1533 seems to be more related to strain JCM 10692T than strain KCTC 13900. Interestingly, strains ACA-DC 1533 and JCM 10692T which lack CRISPRs, carry two similar prophages. In contrast, strain KCTC 13900 seems to have acquired immunity to these prophages according to the sequences of spacers in its CRISPRs. Nonetheless, strain KCTC 13900 has a prophage that is absent from strains ACA-DC 1533 and JCM 10692T. Furthermore, comparative genomic analysis was performed among L. acidipiscis ACA-DC 1533, L. salivarius UCC118 and Lactobacillus ruminis ATCC 27782. The chromosomes of the three species lack long-range synteny. Important differences were also determined in the number of glycobiome related proteins, proteolytic enzymes, transporters, insertion sequences and regulatory proteins. Moreover, no obvious genomic traits supporting a probiotic potential of L. acidipiscis ACA-DC 1533 were detected when compared to the probiotic L. salivarius UCC118. However, the existence of more than one glycine-betaine transporter within the genome of ACA-DC 1533 may explain the ability of L. acidipiscis to grow in fermented foods containing high salt concentrations. Finally, in silico analysis of the L. acidipiscis ACA-DC 1533 genome revealed pathways that could underpin the production of major volatile compounds during the catabolism of amino acids that may contribute to the typical piquant flavors of Kopanisti cheese.
Collapse
Affiliation(s)
- Maria Kazou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Voula Alexandraki
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Bruno Pot
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences (DBIT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Effie Tsakalidou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Konstantinos Papadimitriou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
16
|
Ribeiro SC, Domingos-Lopes MFP, Stanton C, Ross RP, Silva CCG. Production of Υ-aminobutyric acid (GABA) by Lactobacillus otakiensis
and other Lactobacillus
sp. isolated from traditional Pico cheese. INT J DAIRY TECHNOL 2018. [DOI: 10.1111/1471-0307.12527] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Susana C Ribeiro
- IITAA, Instituto de Investigação e Tecnologias Agrárias dos Açores; Universidade dos Açores; Angra do Heroísmo Açores Portugal
| | - Marina F P Domingos-Lopes
- IITAA, Instituto de Investigação e Tecnologias Agrárias dos Açores; Universidade dos Açores; Angra do Heroísmo Açores Portugal
| | - Catherine Stanton
- Teagasc Food Research Centre; Moorepark Fermoy Co. Cork Ireland
- APC Microbiome Institute; University College Cork; Cork Ireland
| | - R Paul Ross
- APC Microbiome Institute; University College Cork; Cork Ireland
- College of Science, Engineering and Food Science; University College Cork; Cork Ireland
| | - Célia CG Silva
- IITAA, Instituto de Investigação e Tecnologias Agrárias dos Açores; Universidade dos Açores; Angra do Heroísmo Açores Portugal
| |
Collapse
|
17
|
Randazzo CL, Todaro A, Pino A, Pitino I, Corona O, Caggia C. Microbiota and metabolome during controlled and spontaneous fermentation of Nocellara Etnea table olives. Food Microbiol 2017; 65:136-148. [DOI: 10.1016/j.fm.2017.01.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/12/2017] [Accepted: 01/28/2017] [Indexed: 01/25/2023]
|
18
|
Perin LM, Savo Sardaro ML, Nero LA, Neviani E, Gatti M. Bacterial ecology of artisanal Minas cheeses assessed by culture-dependent and -independent methods. Food Microbiol 2017; 65:160-169. [PMID: 28399998 DOI: 10.1016/j.fm.2017.02.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 01/10/2017] [Accepted: 02/09/2017] [Indexed: 10/20/2022]
Abstract
Artisanal Minas cheese is produced in Minas Gerais state, Brazil and its varieties are named according to their geographical origin (Serro, Canastra, Serra do Salitre, Araxá and Campo das Vertentes). The cheese is produced with raw cow's milk and the whey from the previous cheese production ("pingo"). The high economic and cultural importance of artisanal cheese in Brazil justifies the efforts to ensure its safety, quality and provenance. This study aimed to characterize the microbial diversity composition, and geographical distribution of artisanal Minas cheese, focusing on the characterization of its autochthonous lactic acid bacteria (LAB) microbiota. Artisanal Minas cheese varieties from Serro, Canastra, Serra do Salitre, Araxá and Campo das Vertentes were analyzed by culture-dependent (culturing and LAB sequencing) and -independent (repetitive extragenic palindromic-PCR (rep-PCR) and length heterogeneity-PCR, LH-PCR) methods to characterize the microbiota. The microbial counts were variable between cheese samples, and some samples presented high number of coagulase positive bacteria and coliforms that may be associated with hygienic issues. In all samples was observed a prevalence of LAB. 16S rRNA sequencing and rep-PCR of the LAB strains identified four genus (Lactobacillus, Lactococcus, Enterococcus and Weissella), ten species and more than one strain per species. Lactobacillus was the most prevalent genera in all the cheeses. LH-PCR revealed a further six genera and ten species that were not identified by culturing, highlighting the importance of combining both culture-dependent and -independent methods to fully characterize microbiota diversity. Principal component analysis of the LH-PCR data and cluster analysis of rep-PCR data revealed that the artisanal Minas cheese microbiota was influenced not only by their geographical origin but also by the cheese farm. The lack of standardization in the milking and cheese manufacturing procedures between artisanal cheese farms could explain the microbial diversity.
Collapse
Affiliation(s)
- Luana Martins Perin
- University of Parma, Department of Food Science, Parco Area delle Scienze 49/A, 43124 Parma, Italy.
| | - Maria Luisa Savo Sardaro
- University of Parma, Department of Food Science, Parco Area delle Scienze 49/A, 43124 Parma, Italy
| | - Luís Augusto Nero
- Universidade Federal de Viçosa, Departamento de Veterinária, Campus Universitário, Centro, 36570-900 Viçosa, MG, Brazil
| | - Erasmo Neviani
- University of Parma, Department of Food Science, Parco Area delle Scienze 49/A, 43124 Parma, Italy
| | - Monica Gatti
- University of Parma, Department of Food Science, Parco Area delle Scienze 49/A, 43124 Parma, Italy.
| |
Collapse
|
19
|
Whole-Genome Sequence of the Cheese Isolate Lactobacillus rennini ACA-DC 565. GENOME ANNOUNCEMENTS 2017; 5:5/5/e01579-16. [PMID: 28153908 PMCID: PMC5289694 DOI: 10.1128/genomea.01579-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, we present the first complete genome sequence of Lactobacillus rennini ACA-DC 565, a strain isolated from a traditional Greek overripened Kopanisti cheese called Mana. Although the species has been associated with cheese spoilage, the strain ACA-DC 565 may contribute to the intense organoleptic characteristics of Mana cheese.
Collapse
|
20
|
Complete Genome Sequence of the Dairy Isolate Lactobacillus acidipiscis ACA-DC 1533. GENOME ANNOUNCEMENTS 2017; 5:5/4/e01533-16. [PMID: 28126948 PMCID: PMC5270707 DOI: 10.1128/genomea.01533-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lactobacillus acidipiscis is a Gram-positive lactic acid bacterium belonging to the Lactobacillus salivarius clade. Here, we present the first complete genome sequence of L. acidipiscis isolated from traditional Greek Kopanisti cheese. Strain ACA-DC 1533 may play a key role in the strong organoleptic characteristics of Kopanisti cheese.
Collapse
|
21
|
Domingos-Lopes MFP, Stanton C, Ross PR, Dapkevicius MLE, Silva CCG. Genetic diversity, safety and technological characterization of lactic acid bacteria isolated from artisanal Pico cheese. Food Microbiol 2016; 63:178-190. [PMID: 28040167 DOI: 10.1016/j.fm.2016.11.014] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 11/18/2016] [Accepted: 11/20/2016] [Indexed: 12/22/2022]
Abstract
A total of 114 lactic acid bacteria were isolated at one and 21 days of ripening from a traditional raw cow's milk cheese without the addition of starter culture, produced by three artisanal cheese-makers in Azores Island (Pico, Portugal). Identification to species and strain level was accomplished by16S rRNA gene and PFGE analysis. Carbohydrate utilization profiles were obtained with the relevant API kits. Isolates were evaluated according to safety and technological criteria. The most frequently observed genus identified by 16S rRNA sequencing analysis was Enterococcus, whereas API system mostly identified Lactobacillus. The highest percentages of antibiotic resistance were to nalidixic acid (95%), and aminoglycosides (64-87%). All isolates were sensitive to several beta-lactam antibiotics and negative for histamine and DNase production. Gelatinase activity was detected in 49.1% of isolates, 43% were able to degrade casein and 93% were α-hemolytic. Most enterococci presented virulence genes, such as gelE, asaI, ace. Diacetyl production was found to be species dependent and one strain (Leu. citreum) produced exopolysaccharides. Selected strains were further studied for technological application and were found to be slow acid producers in milk and experimental cheeses, a desirable trait for adjunct cultures. Two strains were selected on the basis of technological and safety application as adjunct cultures in cheese production and presented the best cheese aroma and flavor in consumer preference tests. This is the first effort to characterize Pico cheese LAB isolates for potential application as adjunct cultures; the results suggest the potential of two strains to improve the quality of this traditional raw milk product.
Collapse
Affiliation(s)
- M F P Domingos-Lopes
- Centro de Investigação e Tecnologia Agrária e do Ambiente dos Açores (CITA-A), Universidade dos Açores, Angra do Heroísmo, Portugal
| | - C Stanton
- Teagasc Moorepark Food Research Centre, Fermoy, Cork, Ireland
| | - P R Ross
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - M L E Dapkevicius
- Centro de Investigação e Tecnologia Agrária e do Ambiente dos Açores (CITA-A), Universidade dos Açores, Angra do Heroísmo, Portugal
| | - C C G Silva
- Centro de Investigação e Tecnologia Agrária e do Ambiente dos Açores (CITA-A), Universidade dos Açores, Angra do Heroísmo, Portugal.
| |
Collapse
|
22
|
Jaouani I, Abbassi M, Ribeiro S, Khemiri M, Mansouri R, Messadi L, Silva C. Safety and technological properties of bacteriocinogenic enterococci isolates from Tunisia. J Appl Microbiol 2015. [DOI: 10.1111/jam.12916] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- I. Jaouani
- Laboratory of Bacteriological Research; Institute of Veterinary Research of Tunisia; Tunis Tunisia
- Faculté des Sciences de Bizerte; Université de Carthage; Bizerte Tunisia
| | - M.S. Abbassi
- Laboratory of Bacteriological Research; Institute of Veterinary Research of Tunisia; Tunis Tunisia
| | - S.C. Ribeiro
- CITA-A, Centro de Investigação e Tecnologias Agrárias dos Açores; Universidade dos Açores; Angra do Heroísmo Portugal
| | - M. Khemiri
- Laboratory of Bacteriological Research; Institute of Veterinary Research of Tunisia; Tunis Tunisia
| | - R. Mansouri
- Laboratory of Bacteriological Research; Institute of Veterinary Research of Tunisia; Tunis Tunisia
| | - L. Messadi
- Department of Microbiology and Immunology; National School of Veterinary Medicine; La Manouba University; SidiThabet Tunisia
| | - C.C.G. Silva
- CITA-A, Centro de Investigação e Tecnologias Agrárias dos Açores; Universidade dos Açores; Angra do Heroísmo Portugal
| |
Collapse
|
23
|
Terzić-Vidojević A, Veljović K, Begović J, Filipić B, Popović D, Tolinački M, Miljković M, Kojić M, Golić N. Diversity and antibiotic susceptibility of autochthonous dairy enterococci isolates: are they safe candidates for autochthonous starter cultures? Front Microbiol 2015; 6:954. [PMID: 26441888 PMCID: PMC4563272 DOI: 10.3389/fmicb.2015.00954] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/28/2015] [Indexed: 01/07/2023] Open
Abstract
Enterococci represent the most controversial group of dairy bacteria. They are found to be the main constituent of many traditional Mediterranean dairy products and contribute to their characteristic taste and flavor. On the other hand, during the last 50 years antibiotic-resistant enterococci have emerged as leading causes of nosocomial infections worldwide. The aim of this study was to determine the diversity, technological properties, antibiotic susceptibility and virulence traits of 636 enterococci previously isolated from 55 artisan dairy products from 12 locations in the Western Balkan countries (WBC) of Serbia, Croatia and Bosnia and Herzegovina. All strains were identified both by microbiological and molecular methods. The predominant species was Enterococcus durans, followed by Enterococcus faecalis and Enterococcus faecium. Over 44% of the isolates were resistant to ciprofloxacin and erythromycin, while 26.2% of the isolates were multi-resistant to three or more antibiotics belonging to different families. 185 isolates (29.1%) were susceptible to all 13 of the antibiotics tested. The antibiotic-susceptible isolates were further tested for possible virulence genes and the production of biogenic amines. Finally, five enterococci isolates were found to be antibiotic susceptible with good technological characteristics and without virulence traits or the ability to produce biogenic amines, making them possible candidates for biotechnological application as starter cultures in the dairy industry.
Collapse
Affiliation(s)
- Amarela Terzić-Vidojević
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade Belgrade, Serbia
| | - Katarina Veljović
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade Belgrade, Serbia
| | - Jelena Begović
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade Belgrade, Serbia
| | - Brankica Filipić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade Belgrade, Serbia ; Faculty of Pharmacy, University of Belgrade Belgrade, Serbia
| | - Dušanka Popović
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade Belgrade, Serbia
| | - Maja Tolinački
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade Belgrade, Serbia
| | - Marija Miljković
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade Belgrade, Serbia
| | - Milan Kojić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade Belgrade, Serbia
| | - Nataša Golić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade Belgrade, Serbia
| |
Collapse
|
24
|
Biodiversity and γ-aminobutyric acid production by lactic acid bacteria isolated from traditional alpine raw cow's milk cheeses. BIOMED RESEARCH INTERNATIONAL 2015; 2015:625740. [PMID: 25802859 PMCID: PMC4352725 DOI: 10.1155/2015/625740] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/04/2014] [Accepted: 10/02/2014] [Indexed: 11/18/2022]
Abstract
“Nostrano-cheeses” are traditional alpine cheeses made from raw cow's milk in Trentino-Alto Adige, Italy. This study identified lactic acid bacteria (LAB) developing during maturation of “Nostrano-cheeses” and evaluated their potential to produce γ-aminobutyric acid (GABA), an immunologically active compound and neurotransmitter. Cheese samples were collected on six cheese-making days, in three dairy factories located in different areas of Trentino and at different stages of cheese ripening (24 h, 15 days, and 1, 2, 3, 6, and 8 months). A total of 1,059 LAB isolates were screened using Random Amplified Polymorphic DNA-PCR (RAPD-PCR) and differentiated into 583 clusters. LAB strains from dominant clusters (n = 97) were genetically identified to species level by partial 16S rRNA gene sequencing. LAB species most frequently isolated were Lactobacillus paracasei, Streptococcus thermophilus, and Leuconostoc mesenteroides. The 97 dominant clusters were also characterized for their ability in producing GABA by high-performance liquid chromatography (HPLC). About 71% of the dominant bacteria clusters evolving during cheeses ripening were able to produce GABA. Most GABA producers were Lactobacillus paracasei but other GABA producing species included Lactococcus lactis, Lactobacillus plantarum, Lactobacillus rhamnosus, Pediococcus pentosaceus, and Streptococcus thermophilus. No Enterococcus faecalis or Sc. macedonicus isolates produced GABA. The isolate producing the highest amount of GABA (80.0±2.7 mg/kg) was a Sc. thermophilus.
Collapse
|
25
|
González L, Cuadrillero AF, Castro JM, Bernardo A, Tornadijo ME. Selection of Lactic Acid Bacteria Isolated from San Simón da Costa Cheese (PDO) in Order to Develop an Autochthonous Starter Culture. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/aim.2015.511079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Ribeiro SC, Coelho MC, Todorov SD, Franco BDGM, Dapkevicius MLE, Silva CCG. Technological properties of bacteriocin-producing lactic acid bacteria isolated from Pico cheese an artisanal cow's milk cheese. J Appl Microbiol 2013; 116:573-85. [PMID: 24206097 DOI: 10.1111/jam.12388] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 10/18/2013] [Accepted: 11/05/2013] [Indexed: 12/19/2022]
Abstract
AIM Evaluate technologically relevant properties from bacteriocin-producing strains to use as starter/adjunct cultures in cheese making. METHODS AND RESULTS Eight isolates obtained from Pico cheese produced in Azores (Portugal) were found to produce bacteriocins against Listeria monocytogenes and three isolates against Clostridium perfringens. They were identified as Lactococcus lactis and Enterococcus faecalis and submitted to technological tests: growth at different conditions of temperature and salt, acid production, proteolysis, lipolysis, coexistence, enzymatic profile and autolytic capacity. Safety evaluation was performed by evaluating haemolytic, gelatinase and DNase activity, resistance to antibiotics and the presence of virulence genes. Some isolates presented good technological features such as high autolytic activity, acid and diacetyl production. Lactococcus lactis was negative for all virulence genes tested and inhibit the growth of all Lactic acid bacteria (LAB) isolates. Enterococci were positive for the presence of some virulence genes, but none of the isolates were classified as resistant to important antibiotics. CONCLUSIONS The bacteriocin-producing Lc. lactis present good potential for application in food as adjunct culture in cheese production. The study also reveals good technological features for some Enterococcus isolates. SIGNIFICANCE AND IMPACT OF THE STUDY Bacteriocin-producing strains presented important technological properties to be exploited as new adjunct culture for the dairy industry, influencing flavour development and improve safety.
Collapse
Affiliation(s)
- S C Ribeiro
- Centro de Investigação e Tecnologias Agrárias dos Açores (CITA-A), Universidade dos Açores, Angra do Heroísmo, Portugal
| | | | | | | | | | | |
Collapse
|
27
|
Li L, Ma Y. Effect of fatty acids on the β-oxidation system and thioesterase of Lactococcus lactis subspecies lactis. J Dairy Sci 2013; 96:2003-2010. [DOI: 10.3168/jds.2012-5996] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/27/2012] [Indexed: 11/19/2022]
|
28
|
Afzal MI, Delaunay S, Paris C, Borges F, Revol-Junelles AM, Cailliez-Grimal C. Identification of metabolic pathways involved in the biosynthesis of flavor compound 3-methylbutanal from leucine catabolism by Carnobacterium maltaromaticum LMA 28. Int J Food Microbiol 2012; 157:332-9. [DOI: 10.1016/j.ijfoodmicro.2012.05.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 04/30/2012] [Accepted: 05/09/2012] [Indexed: 11/29/2022]
|
29
|
Hou J, Hannon JA, McSweeney PL, Beresford TP, Guinee TP. Effect of curd washing on composition, lactose metabolism, pH, and the growth of non-starter lactic acid bacteria in full-fat Cheddar cheese. Int Dairy J 2012. [DOI: 10.1016/j.idairyj.2011.12.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Sacristán N, González L, Castro JM, Fresno JM, Tornadijo ME. Technological characterization of Geotrichum candidum strains isolated from a traditional Spanish goats’ milk cheese. Food Microbiol 2012; 30:260-6. [DOI: 10.1016/j.fm.2011.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/22/2011] [Accepted: 10/05/2011] [Indexed: 11/30/2022]
|
31
|
Floros G, Hatzikamari M, Litopoulou-Tzanetaki E, Tzanetakis N. Probiotic and Technological Properties of Facultatively Heterofermentative Lactobacilli from Greek Traditional Cheeses. FOOD BIOTECHNOL 2012. [DOI: 10.1080/08905436.2011.645941] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
32
|
Asteri IA, Papadimitriou K, Boutou E, Pot B, Vorgias CE, Tsakalidou E. Comparative and evolutionary analysis of plasmid pREN isolated from Lactobacillus rennini, a novel member of the theta-replicating pUCL287 family. FEMS Microbiol Lett 2011; 318:18-26. [DOI: 10.1111/j.1574-6968.2011.02232.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
33
|
Asteri IA, Papadimitriou K, Boutou E, Anastasiou R, Pot B, Vorgias CE, Tsakalidou E. Characterization of pLAC1, a cryptic plasmid isolated from Lactobacillus acidipiscis and comparative analysis with its related plasmids. Int J Food Microbiol 2010; 141:222-8. [DOI: 10.1016/j.ijfoodmicro.2010.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 05/17/2010] [Accepted: 05/18/2010] [Indexed: 10/19/2022]
|
34
|
ASTERI IOANNAARETI, KITTAKI NANCY, TSAKALIDOU EFFIE. The effect of wild lactic acid bacteria on the production of goat’s milk soft cheese. INT J DAIRY TECHNOL 2010. [DOI: 10.1111/j.1471-0307.2010.00564.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|