1
|
Zhang H, Zhu L, Zhou Z, Wang D, Yang J, Wang S, Lou T. Advancements in the Heterologous Expression of Sucrose Phosphorylase and Its Molecular Modification for the Synthesis of Glycosylated Products. Molecules 2024; 29:4086. [PMID: 39274934 PMCID: PMC11397096 DOI: 10.3390/molecules29174086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Sucrose phosphorylase (SPase), a member of the glycoside hydrolase GH13 family, possesses the ability to catalyze the hydrolysis of sucrose to generate α-glucose-1-phosphate and can also glycosylate diverse substrates, showcasing a wide substrate specificity. This enzyme has found extensive utility in the fields of food, medicine, and cosmetics, and has garnered significant attention as a focal point of research in transglycosylation enzymes. Nevertheless, SPase encounters numerous obstacles in industrial settings, including low enzyme yield, inadequate thermal stability, mixed regioselectivity, and limited transglycosylation activity. In-depth exploration of efficient expression strategies and molecular modifications based on the crystal structure and functional information of SPase is now a critical research priority. This paper systematically reviews the source microorganisms, crystal structure, and catalytic mechanism of SPase, summarizes diverse heterologous expression systems based on expression hosts and vectors, and examines the application and molecular modification progress of SPase in synthesizing typical glycosylated products. Additionally, it anticipates the broad application prospects of SPase in industrial production and related research fields, laying the groundwork for its engineering modification and industrial application.
Collapse
Affiliation(s)
- Hongyu Zhang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (H.Z.)
| | - Leting Zhu
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (H.Z.)
| | - Zixuan Zhou
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (H.Z.)
| | - Danyun Wang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (H.Z.)
| | - Jinshan Yang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (H.Z.)
| | - Suying Wang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (H.Z.)
| | - Tingting Lou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
2
|
Kandil M, Yilmaz-Ersan L. A Novel Approach to the Use of Xanthan Gum: Evaluation of Probiotic Promoter, Postbiotic Formation and Techno-Functional Effect. AN ACAD BRAS CIENC 2024; 96:e20230658. [PMID: 38808815 DOI: 10.1590/0001-3765202420230658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/14/2023] [Indexed: 05/30/2024] Open
Abstract
In the present study, the effect of xanthan gum was evaluated on the metabolic activity and survival of two probiotic strains, namely B. lactis and L. casei using in vitro assay and skim milk model system. In vitro assay was carried out identifying by pH, optical cell density (OD), and formation of postbiotics (lactic, acetic, propionic, and butyric acids) in different basal media including glucose, inulin, and xanthan gum as carbon source. The highest pH values were recorded for control (without carbon source) and media with xanthan gum, whereas the media with glucose and xanthan gum had the highest OD values. In comparison to strains, B. lactis had higher pH and lower OD values than L. casei. It was found that xanthan gum supported the formation of postbiotics as a result of bacterial fermentation. In the skim milk model system, xanthan gum did not negatively affect probiotic viability, and the counts of both strains were above the required level for health benefits (8 log cfu g-1) after 28-day storage. The use of xanthan gum in skim milk matrix positively affected techno-functional properties such as syneresis, color, and textural parameters of samples.
Collapse
Affiliation(s)
- Mervenur Kandil
- Bursa Uludag University, Graduate School of Natural and Applied Sciences, 16059, Bursa, Turkiye
| | - Lutfiye Yilmaz-Ersan
- Bursa Uludag University, Faculty of Agriculture, Department of Food Engineering, 16059, Bursa, Turkiye
| |
Collapse
|
3
|
Isono N, Yagura S, Yamanaka K, Masuda Y, Mukai K, Katsuzaki H. Enzymatic synthesis of β-d-fructofuranosyl α-d-glucopyranosyl-(1→2)-α-d-glucopyranoside using Escherichia coli glycoside phosphorylase YcjT. Biosci Biotechnol Biochem 2023; 87:1249-1253. [PMID: 37475702 DOI: 10.1093/bbb/zbad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
YcjT is a kojibiose phosphorylase found in Escherichia coli. We found that sucrose was a good acceptor of YcjT in reverse phosphorolysis using β-d-glucose 1-phosphate as a donor. The product was identified as β-d-fructofuranosyl α-d-glucopyranosyl-(1→2)-α-d-glucopyranoside. This sugar was also synthesized from sucrose and maltose using YcjT and maltose phosphorylase and promoted the growth of the probiotic Bifidobacterium breve.
Collapse
Affiliation(s)
- Naoto Isono
- Graduate School of Bioresources, Mie University, Tsu, Japan
| | | | | | | | - Kazuki Mukai
- Faculty of Bioresources, Mie University, Tsu, Japan
| | | |
Collapse
|
4
|
Li G, Zhu S, Long J, Mao H, Dong Y, Hou Y. Differences in microbial community structure and metabolic activity among tea plantation soils under different management strategies. Front Microbiol 2023; 14:1219491. [PMID: 37601365 PMCID: PMC10433390 DOI: 10.3389/fmicb.2023.1219491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Microorganisms play an important role in the multifunctionality of soil ecosystems. Soil microbial diversity and functions have a great impact on plant growth and development. The interactions between tea trees and soil microbiota can be linked with planting patterns and management strategies, whose effects on soil microbial community structure and metabolites are still unclear. Methods Here we used amplicon sequencing and metabolomic analysis to investigate the differences in soil microbial composition and metabolites among three tea production systems: organic, non-organic, and intercropping. Results We detected significant differences among the three systems and found that Firmicutes, Proteobacteria, Acidobacteriota, Actinobacteriota and Chloroflexi were the main bacteria in the three soil groups, although they varied in relative abundance. Acidobacteria bacterium increased significantly in the organic and intercropping groups. For fungi, Ascomycota and Basidiomycota were the main differential fungal phyla. Fungi alpha-diversity in the non-organic group was significantly higher than that in the other two groups, and was correlated with multiple soil physical and chemical factors. Moreover, network analysis showed that bacteria and fungi were strongly correlated. The changes in soil microorganisms caused by management and planting patterns may affect soil quality through corresponding changes in metabolites. Metabolomic analysis showed differences in metabolite composition among different groups. It was also found that the arachidonic acid metabolic pathway was affected by changes in soil microorganisms, and may further affect soil quality in an essential manner. Discussion Planting patterns and management strategies may significantly affect soil microorganisms and therefore metabolites. Changes in soil microorganisms, especially in fungi, may alter soil quality by affecting soil physicochemical properties and metabolites. This study will provide new insights into soil quality monitoring from a microbiological perspective.
Collapse
Affiliation(s)
- Guoyou Li
- College of Tea Science, Yunnan Agriculture University, Kunming, China
| | - Shaoxian Zhu
- College of Tea Science, Yunnan Agriculture University, Kunming, China
| | - Jiang Long
- Xishuangbanna Luoboshanren Tea Co., Ltd., Menghai, China
| | - Honglin Mao
- College of Tea Science, Yunnan Agriculture University, Kunming, China
| | - Yonghong Dong
- Yunnan Pulis Biotechnology Co., Ltd., Kunming, China
| | - Yan Hou
- College of Tea Science, Yunnan Agriculture University, Kunming, China
| |
Collapse
|
5
|
Glycosidic linkage of rare and new-to-nature disaccharides reshapes gut microbiota in vitro. Food Chem 2023; 411:135440. [PMID: 36701921 DOI: 10.1016/j.foodchem.2023.135440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
The impact of glycosidic linkage of seven rare and new-to-nature disaccharides on gut bacteria was assessed in vitro. The community shift of the inocula from four donors in response to 1 % (w/v) disaccharide supplementation was captured by sequencing the 16S rRNA gene. A significant loss of bacterial alpha diversity, short lag time, low pH, and high total short-chain fatty acid displayed a faster fermentation of trehalose(Glc-α1,1α-Glc) and fibrulose(fructan, DP2-10). Bacteroides reduced in relative abundance under disaccharide supplementation suggesting a loss in complex carbohydrates metabolizing capacity. Fibrulose and l-arabinose glucoside(Glc-α1,3-l-Ara) significantly stimulated bifidobacteria but was suppressed with trehalose, ribose glucoside(Glc-α1,2-Rib), and 4'-epitrehalose(Glc-α1,1α-Gal) supplementation. Albeit insignificant, bifidobacteria increased with 4'-epikojibiose(Glc-α1,2-Gal), nigerose(Glc-α1,3-Glc), and kojibiose(Glc-α1,2-Glc). Prior conditioning of inoculum in kojibiose medium profoundly induced bifidobacteria by 44 % and 55 % upon reinoculation into kojibiose and fibrulose-supplemented media respectively. This study has demonstrated the importance of the disaccharide structure-function relationship in driving the gut bacterial community.
Collapse
|
6
|
Han D, Zulewska J, Xiong K, Yang Z. Synergy between oligosaccharides and probiotics: From metabolic properties to beneficial effects. Crit Rev Food Sci Nutr 2022; 64:4078-4100. [PMID: 36315042 DOI: 10.1080/10408398.2022.2139218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Synbiotic is defined as the dietary mixture that comprises both probiotic microorganisms and prebiotic substrates. The concept has been steadily gaining attention owing to the rising recognition of probiotic, prebiotics, and gut health. Among prebiotic substances, oligosaccharides demonstrated considerable health beneficial effects in varieties of food products and their combination with probiotics have been subjected to full range of evaluations. This review delineated the landscape of studies using microbial cultures, cell lines, animal model, and human subjects to explore the functional properties and host impacts of these combinations. Overall, the results suggested that these combinations possess respective metabolic properties that could facilitate beneficial activities therefore could be employed as dietary interventions for human health improvement and therapeutic purposes. However, uncertainties, such as applicational practicalities, underutilized analytical tools, contradictory results in studies, unclear mechanisms, and legislation hurdles, still challenges the broad utilization of these combinations. Future studies to address these issues may not only advance current knowledge on probiotic-prebiotic-host interrelationship but also promote respective applications in food and nutrition.
Collapse
Affiliation(s)
- Dong Han
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Justyna Zulewska
- Department of Dairy Science and Quality Management, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Ke Xiong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Zhennai Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
7
|
Prebiotics as a Tool for the Prevention and Treatment of Obesity and Diabetes: Classification and Ability to Modulate the Gut Microbiota. Int J Mol Sci 2022; 23:ijms23116097. [PMID: 35682774 PMCID: PMC9181475 DOI: 10.3390/ijms23116097] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetes and obesity are metabolic diseases that have become alarming conditions in recent decades. Their rate of increase is becoming a growing concern worldwide. Recent studies have established that the composition and dysfunction of the gut microbiota are associated with the development of diabetes. For this reason, strategies such as the use of prebiotics to improve intestinal microbial structure and function have become popular. Consumption of prebiotics for modulating the gut microbiota results in the production of microbial metabolites such as short-chain fatty acids that play essential roles in reducing blood glucose levels, mitigating insulin resistance, reducing inflammation, and promoting the secretion of glucagon-like peptide 1 in the host, and this accounts for the observed remission of metabolic diseases. Prebiotics can be either naturally extracted from non-digestible carbohydrate materials or synthetically produced. In this review, we discussed current findings on how the gut microbiota and microbial metabolites may influence host metabolism to promote health. We provided evidence from various studies that show the ability of prebiotic consumption to alter gut microbial profile, improve gut microbial metabolism and functions, and improve host physiology to alleviate diabetes and obesity. We conclude among other things that the application of systems biology coupled with bioinformatics could be essential in ascertaining the exact mechanisms behind the prebiotic–gut microbe–host interactions required for diabetes and obesity improvement.
Collapse
|
8
|
Effects of Resistant Dextrin from Potato Starch on the Growth Dynamics of Selected Co-Cultured Strains of Gastrointestinal Bacteria and the Activity of Fecal Enzymes. Nutrients 2022; 14:nu14102158. [PMID: 35631299 PMCID: PMC9144799 DOI: 10.3390/nu14102158] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
Preparations of resistant dextrins have become an interesting topic of research due to their properties, which bear resemblance those of prebiotics, e.g., the improvement of metabolic parameters, increased efficiency of the immune system and induction of vitamin production. The aim of this study was to investigate the effects of the resistant dextrin produced from potato starch on the growth dynamics of typical gastrointestinal microbiota and the activity of fecal enzymes in order to assess a possible exhibition of prebiotic properties. In the study, in vitro cultivation of co-cultures of Lactobacillus, Bifidobacterium, E. coli, Enterococcus, Clostridium and Bacteroides spp. was conducted on media enriched with the resistant dextrin. The CFU/mL for each strain was measured in time periods of 24, 48, 72, 96 and 168 h. Furthermore, the activities of α-glucosidase, α-galactosidase, β-glucosidase, β-galactosidase and β-glucuronidase were determined using spectrophotometric methods at a wavelength of 400 nm. The results show that the resistant dextrin can be utilized as a source of carbon for the growth of intestinal bacteria. Moreover, the results revealed that, after 168 h of cultivation, it enhances the viability of probiotic strains of Lactobacillus and Bifidobacterium spp. and decreases the growth of other intestinal strains (Clostridium, Escherichia coli, Enterococcus and Bacteroides), which is demonstrated by a high Prebiotic Index (p < 0.05). Furthermore, there was no significant change in the pH of the cultures; however, the pace of the pH decrease during the cultivation was slower in the case of culture with resistant dextrin. Furthermore, it was revealed that usage of the resistant dextrin as a medium additive noticeably lowered the activities of β-glucosidase and β-glucuronidase compared to the control (p < 0.05), whereas the activities of the other fecal enzymes were affected to a lesser degree. The resistant dextrins derived from potato starch are a suitable prebiotic candidate as they promote the growth of beneficial strains of gut bacteria and improve health markers, such as the activity of fecal enzymes. Nevertheless, additional in vivo research is necessary to further assess the suspected health-promoting properties.
Collapse
|
9
|
İspirli H, Bowman MJ, Skory CD, Dertli E. Synthesis and characterization of cellobiose-derived oligosaccharides with Bifidogenic activity by glucansucrase E81. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Novel and emerging prebiotics: Advances and opportunities. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 95:41-95. [PMID: 33745516 DOI: 10.1016/bs.afnr.2020.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Consumers are conscientiously changing their eating preferences toward healthier options, such as functional foods enriched with pre- and probiotics. Prebiotics are attractive bioactive compounds with multidimensional beneficial action on both human and animal health, namely on the gastrointestinal tract, cardiometabolism, bones or mental health. Conventionally, prebiotics are non-digestible carbohydrates which generally present favorable organoleptic properties, temperature and acidic stability, and are considered interesting food ingredients. However, according to the current definition of prebiotics, application categories other than food are accepted, as well as non-carbohydrate substrates and bioactivity at extra-intestinal sites. Regulatory issues are considered a major concern for prebiotics since a clear understanding and application of these compounds among the consumers, regulators, scientists, suppliers or manufacturers, health-care providers and standards or recommendation-setting organizations are of utmost importance. Prebiotics can be divided in several categories according to their development and regulatory status. Inulin, galactooligosaccharides, fructooligosaccharides and lactulose are generally classified as well established prebiotics. Xylooligosaccharides, isomaltooligosaccharides, chitooligosaccharides and lactosucrose are classified as "emerging" prebiotics, while raffinose, neoagaro-oligosaccharides and epilactose are "under development." Other substances, such as human milk oligosaccharides, polyphenols, polyunsaturated fatty acids, proteins, protein hydrolysates and peptides are considered "new candidates." This chapter will encompass actual information about the non-established prebiotics, mainly their physicochemical properties, market, legislation, biological activity and possible applications. Generally, there is a lack of clear demonstrations about the effective health benefits associated with all the non-established prebiotics. Overcoming this limitation will undoubtedly increase the demand for these compounds and their market size will follow the consumer's trend.
Collapse
|
11
|
İspirli H, Dertli E. Production of lactose derivative hetero-oligosaccharides from whey by glucansucrase E81 and determination of prebiotic functions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
Hurtado-Romero A, Del Toro-Barbosa M, Garcia-Amezquita LE, García-Cayuela T. Innovative technologies for the production of food ingredients with prebiotic potential: Modifications, applications, and validation methods. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
İspirli H, Kaya Y, Dertli E. Bifidogenic effect and in vitro immunomodulatory roles of melibiose-derived oligosaccharides produced by the acceptor reaction of glucansucrase E81. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Metabolism of biosynthetic oligosaccharides by human-derived Bifidobacterium breve UCC2003 and Bifidobacterium longum NCIMB 8809. Int J Food Microbiol 2019; 316:108476. [PMID: 31874325 DOI: 10.1016/j.ijfoodmicro.2019.108476] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 11/06/2019] [Accepted: 12/07/2019] [Indexed: 01/12/2023]
Abstract
This work aimed to investigate the ability of two human-derived bifidobacterial strains, i.e. Bifidobacterium breve UCC2003 and Bifidobacterium longum NCIMB 8809, to utilize various oligosaccharides (i.e., 4-galactosyl-kojibiose, lactulosucrose, lactosyl-oligofructosides, raffinosyl-oligofructosides and lactulose-derived galacto-oligosaccharides) synthesized by means of microbial glycoside hydrolases. With the exception of raffinosyl-oligofructosides, these biosynthetic oligosaccharides were shown to support growth acting as a sole carbon and energy source of at least one of the two studied strains. Production of short-chain fatty acids (SCFAs) as detected by HPLC analysis corroborated the suitability of most of the studied novel oligosaccharides as fermentable growth substrates for the two bifidobacterial strains, showing that acetic acid is the main metabolic end product followed by lactic and formic acids. Transcriptomic and functional genomic approaches carried out for B. breve UCC2003 allowed the identification of key genes encoding glycoside hydrolases and carbohydrate transport systems involved in the metabolism of 4-galactosyl-kojibiose and lactulosucrose. In particular, the role of β-galactosidases in the hydrolysis of these particular trisaccharides was demonstrated, highlighting their importance in oligosaccharide metabolism by human bifidobacterial strains.
Collapse
|
15
|
Nobre C, do Nascimento AKC, Silva SP, Coelho E, Coimbra MA, Cavalcanti MTH, Teixeira JA, Porto ALF. Process development for the production of prebiotic fructo-oligosaccharides by penicillium citreonigrum. BIORESOURCE TECHNOLOGY 2019; 282:464-474. [PMID: 30897484 DOI: 10.1016/j.biortech.2019.03.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 06/09/2023]
Abstract
A new isolated P. citreonigrum URM 4459 was selected to produce fructooligosaccharides (FOS) in an efficient, economical and fast one-step fermentation. Optimal culture conditions were stablished by experimental design. Experiments run in bioreactor resulted in a high yield, content, productivity and purity of FOS (0.65 ± 0.06 gFOS/ginitial Sucrose, 126.3 ± 0.1 g/L, 2.28 ± 0.08 g/L.h and 61 ± 0%). The FOS mixture was purified up to 92% (w/w) with an activated charcoal column. FOS produced were able to promote lactobacilli and bifidobacteria growth. Higher bacteria cell density was obtained for microbial-FOS mixtures than commercial Raftilose® P95. Some strains grew even faster in the FOS mixture produced than in all other carbon sources. FOS were resistant to the simulated gastrointestinal conditions. A high amount of a reducing trisaccharide was identified in the FOS produced mixture, possibly neokestose, which may explain the great prebiotic potential of the FOS.
Collapse
Affiliation(s)
- Clarisse Nobre
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Ana Karoline Caitano do Nascimento
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco-UFRPE, Av. Dom Manoel de Medeiros, s/n, 52171-900 Recife, PE, Brazil
| | - Soraia Pires Silva
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Elisabete Coelho
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Manuel A Coimbra
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Maria Taciana Holanda Cavalcanti
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco-UFRPE, Av. Dom Manoel de Medeiros, s/n, 52171-900 Recife, PE, Brazil
| | - José António Teixeira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Ana Lúcia Figueiredo Porto
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco-UFRPE, Av. Dom Manoel de Medeiros, s/n, 52171-900 Recife, PE, Brazil
| |
Collapse
|
16
|
Synthesis of prebiotic galactooligosaccharides from lactose and lactulose by dairy propionibacteria. Food Microbiol 2019; 77:93-105. [DOI: 10.1016/j.fm.2018.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/28/2018] [Accepted: 08/27/2018] [Indexed: 12/27/2022]
|
17
|
Srivastava A, Mishra S. Enrichment and evaluation of galacto-oligosaccharides produced by whole cell treatment of sugar reaction mixture. Mol Biol Rep 2019; 46:1181-1188. [PMID: 30644031 DOI: 10.1007/s11033-019-04585-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 01/02/2019] [Indexed: 11/29/2022]
Abstract
A process was developed for enrichment of galacto-oligosaccharides (GOS), synthesized from a whole cell driven system, from a sugar reaction mixture (SRM) containing non prebiotic sugars (monosaccharides and disaccharides) as impurities. SRM containing 38% (w/w of total carbohydrates) of GOS was enriched by 7 and 27%, attaining a purity of 45 and 65% respectively using Saccharomyces cerevisiae followed by Kluyveromyces lactis var. lactis treatment. The two cell types could be recycled for consecutive 12 and 10 cycles respectively. The microbial purified GOS (MPG) was characterized by mass spectrometry and quantitated by HPLC. MPG was further evaluated for its prebiotic potential on Lactobacillus acidophilus, Lactobacillus amylovorus, Lactobacillus brevis, Lactobacillus plantarum, Lactobacillus casei Shirota and Saccharomyces boulardii. The growth profile and colony forming units were determined and compared with the profiles obtained on glucose, used as a control. MPG was efficiently utilized by L. acidophilus and L. plantarum which showed antimicrobial activity with zone of lysis (12 and 10 mm) against Escherichia coli and Citrobacter (14 and 9 mm) respectively and performed better than Vivinal (commercial GOS), fructo-oligosaccharides and inulin. The synergistic effect of the MPG with L. acidophilus and L. plantarum was found to be most effective against pathogens as compared to other tested commercial oligosaccharides.
Collapse
Affiliation(s)
- Anita Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi, 110016, India
| | - Saroj Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi, 110016, India.
| |
Collapse
|
18
|
Aragón-Rojas S, Ruiz-Pardo RY, Hernández-Sánchez H, Quintanilla-Carvajal MX. Optimization of the production and stress resistance of the probioticLactobacillus fermentumK73 in a submerged bioreactor using a whey-based culture medium. CYTA - JOURNAL OF FOOD 2018. [DOI: 10.1080/19476337.2018.1527785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Stephanía Aragón-Rojas
- Facultad de Ingeniería, Universidad de La Sabana, Campus del Puente Común, Chía, Colombia
| | - Ruth Y. Ruiz-Pardo
- Facultad de Ingeniería, Universidad de La Sabana, Campus del Puente Común, Chía, Colombia
| | - Humberto Hernández-Sánchez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Zacatenco, Ciudad de México, México
| | | |
Collapse
|
19
|
Structural characterization of glucosylated GOS derivatives synthesized by the Lactobacillus reuteri GtfA and Gtf180 glucansucrase enzymes. Carbohydr Res 2018; 470:57-63. [DOI: 10.1016/j.carres.2018.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 01/23/2023]
|
20
|
Pham HTT, Boger MCL, Dijkhuizen L, van Leeuwen SS. Stimulatory effects of novel glucosylated lactose derivatives GL34 on growth of selected gut bacteria. Appl Microbiol Biotechnol 2018; 103:707-718. [PMID: 30406451 PMCID: PMC6373440 DOI: 10.1007/s00253-018-9473-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022]
Abstract
Previously we structurally characterized five glucosylated lactose derivatives (F1-F5) with a degree of polymerization (DP) of 3-4 (GL34), products of Lactobacillus reuteri glucansucrases, with lactose and sucrose as substrates. Here, we show that these GL34 compounds are largely resistant to the hydrolytic activities of common carbohydrate-degrading enzymes. Also, the ability of single strains of gut bacteria, bifidobacteria, lactobacilli, and commensal bacteria, to ferment the GL34 compounds was studied. Bifidobacteria clearly grew better on the GL34 mixture than lactobacilli and commensal bacteria. Lactobacilli and the commensal bacteria Escherichia coli Nissle and Bacteroides thetaiotaomicron only degraded the F2 compound α-D-Glcp-(1 → 2)-[β-D-Galp-(1 → 4)-]D-Glcp, constituting around 30% w/w of GL34. Bifidobacteria digested more than one compound from the GL34 mixture, varying with the specific strain tested. Bifidobacterium adolescentis was most effective, completely degrading four of the five GL34 compounds, leaving only one minor constituent. GL34 thus represents a novel oligosaccharide mixture with (potential) synbiotic properties towards B. adolescentis, synthesized from cheap and abundantly available lactose and sucrose.
Collapse
Affiliation(s)
- Hien T T Pham
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Markus C L Boger
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands. .,CarbExplore Research B.V, Zernikepark 12, 9747 AN, Groningen, The Netherlands.
| | - Sander S van Leeuwen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.,Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
21
|
Effect of electro-activated sweet whey on growth of Bifidobacterium , Lactobacillus , and Streptococcus strains under model growth conditions. Food Res Int 2018; 103:316-325. [DOI: 10.1016/j.foodres.2017.10.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/26/2017] [Accepted: 10/28/2017] [Indexed: 12/23/2022]
|
22
|
Vieira ADS, Bedani R, Albuquerque MAC, Biscola V, Saad SMI. The impact of fruit and soybean by-products and amaranth on the growth of probiotic and starter microorganisms. Food Res Int 2017; 97:356-363. [PMID: 28578060 DOI: 10.1016/j.foodres.2017.04.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 01/21/2023]
Abstract
The ability of different fruit by-products, okara, and amaranth flour, to support the growth of probiotic and non-probiotic strains was evaluated. The tests were conducted with three commercial starter cultures (Streptococcus thermophilus), ten probiotic strains (seven Lactobacillus spp. and three Bifidobacterium spp. strains), and two harmful bacteria representative of the intestinal microbiota (Escherichia coli and Clostridium perfringens). In vitro fermentability assays were performed using a modified MRS broth supplemented with different fruits (acerola, orange, passion fruit, and mango), and soy (okara) by-products or amaranth flour. Orange and passion-fruit by-products were the substrates that most promoted the growth of bacterial populations, including pathogenic strains. On the other hand, the acerola by-product was the substrate that showed the highest selectivity for beneficial bacteria, since the E. coli and Cl. perfringens populations were lower in the presence of this fruit by-product. Although the passion fruit by-product, okara, and amaranth stimulated the probiotic strains, the growth of the pathogenic strains studied was higher compared to other substrates. Different growth profiles were verified for each substrate when the different strains were compared. Although pure culture models do not reflect bacterial interaction in the host, this study reinforces the fact that the ability to metabolize different substrates is strain-dependent, and acerola, mango, and orange by-products are the substrates with the greatest potential to be used as prebiotic ingredients.
Collapse
Affiliation(s)
- Antonio Diogo Silva Vieira
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Professor Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil
| | - Raquel Bedani
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Professor Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil
| | - M A C Albuquerque
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Professor Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil
| | - Vanessa Biscola
- Food Research Center, Department of Food and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, Av. Professor Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil
| | - Susana Marta Isay Saad
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Professor Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
23
|
|
24
|
Moreno FJ, Corzo N, Montilla A, Villamiel M, Olano A. Current state and latest advances in the concept, production and functionality of prebiotic oligosaccharides. Curr Opin Food Sci 2017. [DOI: 10.1016/j.cofs.2017.02.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Silvério SC, Macedo EA, Teixeira JA, Rodrigues LR. Biocatalytic Approaches Using Lactulose: End Product Compared with Substrate. Compr Rev Food Sci Food Saf 2016; 15:878-896. [DOI: 10.1111/1541-4337.12215] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/09/2016] [Accepted: 05/13/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Sara C. Silvério
- CEB-Centre of Biological Engineering; Univ. do Minho; Campus de Gualtar 4710-057 Braga Portugal
| | - Eugénia A. Macedo
- LSRE-Laboratory of Separation and Reaction Engineering-Associate Laboratory LSRE/LCM, Faculdade de Engenharia; Univ. do Porto; Rua Dr. Roberto Frias 4200-465 Porto Portugal
| | - José A. Teixeira
- CEB-Centre of Biological Engineering; Univ. do Minho; Campus de Gualtar 4710-057 Braga Portugal
| | - Lígia R. Rodrigues
- CEB-Centre of Biological Engineering; Univ. do Minho; Campus de Gualtar 4710-057 Braga Portugal
| |
Collapse
|
26
|
Shi Q, Hou Y, Juvonen M, Tuomainen P, Kajala I, Shukla S, Goyal A, Maaheimo H, Katina K, Tenkanen M. Optimization of Isomaltooligosaccharide Size Distribution by Acceptor Reaction of Weissella confusa Dextransucrase and Characterization of Novel α-(1→2)-Branched Isomaltooligosaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3276-3286. [PMID: 27050481 DOI: 10.1021/acs.jafc.6b01356] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Long-chain isomaltooligosaccharides (IMOs) are promising prebiotics. IMOs were produced by a Weissella confusa dextransucrase via maltose acceptor reaction. The inputs of substrates (i.e., sucrose and maltose, 0.15-1 M) and dextransucrase (1-10 U/g sucrose) were used to control IMO yield and profile. According to response surface modeling, 1 M sucrose and 0.5 M maltose were optimal for the synthesis of longer IMOs, whereas the dextransucrase dosage showed no significant effect. In addition to the principal linear IMOs, a homologous series of minor IMOs were also produced from maltose. As identified by MS(n) and NMR spectroscopy, the minor trisaccharide contained an α-(1→2)-linked glucosyl residue on the reducing residue of maltose and thus was α-d-glucopyranosyl-(1→2)-[α-d-glucopyranosyl-(1→4)]-d-glucopyranose (centose). The higher members of the series were probably formed by the attachment of a single unit branch to linear IMOs. This is the first report of such α-(1→2)-branched IMOs produced from maltose by a dextransucrase.
Collapse
Affiliation(s)
- Qiao Shi
- Department of Food and Environmental Sciences, University of Helsinki , P.O. Box 27, FI-00014 University of Helsinki, Finland
| | - Yaxi Hou
- Department of Food and Environmental Sciences, University of Helsinki , P.O. Box 27, FI-00014 University of Helsinki, Finland
| | - Minna Juvonen
- Department of Food and Environmental Sciences, University of Helsinki , P.O. Box 27, FI-00014 University of Helsinki, Finland
| | - Päivi Tuomainen
- Department of Food and Environmental Sciences, University of Helsinki , P.O. Box 27, FI-00014 University of Helsinki, Finland
| | - Ilkka Kajala
- VTT Technical Research Centre of Finland Ltd. , P.O. Box 1000, FI-02044 VTT, Finland
| | - Shraddha Shukla
- Department of Biotechnology, Indian Institute of Technology Guwahati , Guwahati 781 039, Assam, India
| | - Arun Goyal
- Department of Biotechnology, Indian Institute of Technology Guwahati , Guwahati 781 039, Assam, India
| | - Hannu Maaheimo
- VTT Technical Research Centre of Finland Ltd. , P.O. Box 1000, FI-02044 VTT, Finland
| | - Kati Katina
- Department of Food and Environmental Sciences, University of Helsinki , P.O. Box 27, FI-00014 University of Helsinki, Finland
| | - Maija Tenkanen
- Department of Food and Environmental Sciences, University of Helsinki , P.O. Box 27, FI-00014 University of Helsinki, Finland
| |
Collapse
|
27
|
In vitro faecal fermentation of novel oligosaccharides enzymatically synthesized using microbial transglycosidases acting on sucrose. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.11.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
28
|
Lactose- and cellobiose-derived branched trisaccharides and a sucrose-containing trisaccharide produced by acceptor reactions of Weissella confusa dextransucrase. Food Chem 2016. [DOI: 10.1016/j.foodchem.2015.05.090] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Perspectives on the biotechnological production and potential applications of lactosucrose: A review. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.09.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
30
|
Kojibiose ameliorates arachidic acid-induced metabolic alterations in hyperglycaemic rats. Br J Nutr 2015; 114:1395-402. [DOI: 10.1017/s0007114515003153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractHerein we hypothesise the positive effects of kojibiose (KJ), a prebiotic disaccharide, selected for reducing hepatic expression of inflammatory markers in vivo that could modulate the severity of saturated arachidic acid (ARa)-induced liver dysfunction in hyperglycaemic rats. Animals were fed daily (20 d) with ARa (0·3 mg) together or not with KJ (22 mg approximately 0·5 %, w/w diet). Glucose, total TAG and cholesterol contents and the phospholipid profile were determined in serum samples. Liver sections were collected for the expression (mRNA) of enzymes and innate biomarkers, and intrahepatic macrophage and T-cell populations were analysed by flow cytometry. ARa administration increased the proportion of liver to body weight that was associated with an increased (by 11 %) intrahepatic macrophage population. These effects were ameliorated when feeding with KJ, which also normalised the plasmatic levels of TAG and N-acyl-phosphatidylethenolamine in response to tissue damage. These results indicate that daily supplementation of KJ significantly improves the severity of ARa-induced hepatic alterations.
Collapse
|
31
|
Li W, Wang K, Sun Y, Ye H, Hu B, Zeng X. Lactosucrose and its analogues derived from lactose and sucrose: Influence of structure on human intestinal microbiota in vitro. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
32
|
Influences of structures of galactooligosaccharides and fructooligosaccharides on the fermentation in vitro by human intestinal microbiota. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.12.044] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
33
|
Ray S, Dasgupta AK. Probiotics as cheater cells: parameter space clustering for individualized prescription. J Theor Biol 2014; 361:165-74. [PMID: 25066785 DOI: 10.1016/j.jtbi.2014.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 11/28/2022]
Abstract
Clinicians often perform infection management administering probiotics along with antibiotics. Such probiotics added to an infecting population showing antibiotic resistance can be compared to a dynamical system composed of cheaters and workers. The presence of cheater strains is known to modulate the fitness of the infecting population. We propose a model where probiotics as cheater strain re-establishes the susceptibility of a resistant population towards an antibiotic. Control parameters must assume optimal values in order to attain minimum worker number within a finite time-scale feasible in a clinical set-up. The problem is made non-trivial by the complicated interplay between parameters. The model is an extension of a logistic framework, where a pay-off function has been included to account for the effect of instantaneous worker number on death rates of each species. The outcomes for a randomized set of parameter values and initial conditions are utilized in partitioning the set and desired clusters were identified. For a test case, one can take random combinations of controllable parameters and combine them with fixed parameters and find out the closeness of the points to the desired cluster centroids. This process leads to the identification of optimum antibiotic versus probiotic dosage range leading to elimination or limited existence of the genetically resistant population.
Collapse
Affiliation(s)
- Sanhita Ray
- Department of Biochemistry and Center for Excellence in Systems Biology and Biomedical Engineering, University of Calcutta, Kolkata, India.
| | - Anjan Kr Dasgupta
- Department of Biochemistry and Center for Excellence in Systems Biology and Biomedical Engineering, University of Calcutta, Kolkata, India.
| |
Collapse
|