1
|
Moselhy SN, Al-Nashwi AA, Raya-Álvarez E, Abu Zaid FO, Shalaby HST, El-Khadragy MF, Shahein MR, Hafiz AA, Aljehani AA, Agil A, Elmahallawy EK. Physicochemical, microbiological, and sensory properties of healthy juices containing aloe vera gel and probiotics and their antidiabetic effects on albino rats. Front Nutr 2024; 11:1328548. [PMID: 39081678 PMCID: PMC11288179 DOI: 10.3389/fnut.2024.1328548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/10/2024] [Indexed: 08/02/2024] Open
Abstract
The consumption of fruit and vegetable juices is widely recognized as a healthy choice across all age groups. Orange, carrot, and aloe vera are renowned for their functional properties and health benefits. In this study, we investigated the potential incorporation of aloe vera gel into blended orange and carrot juices. We also evaluated the resulting mixed probiotic juices (chemical, microbiological, and sensory aspects) during a 14-day storage period at refrigerator temperature. The chemical composition and phytochemical structure of aloe vera gel were examined, followed by an assessment of the biological effects of these healthy juices on diabetic albino rats. The results indicated improvements in total soluble solids, reducing sugars, and total sugars with increasing storage duration. Furthermore, the study demonstrated that incorporating aloe vera into the natural mixed juices enhanced their phytochemical quality. The treatment supplemented with aloe vera gel gave the highest total content of phenolic and flavonoid substances, which were 310 mg of GAE/100 g and 175 mg of quercetin/100 g, respectively. Probiotic strains (Bifidobacterium animalis subsp lactis Bb12, Lactiplantibacillus plantarum 299V, and Lactobacillus acidophilus L10) exhibited good viable cell counts in orange and mixed orange and carrot probiotics juices with viable counts of 7.42-8.07 log CFU/mL. Regarding sensory attributes, the study found that increasing the ratio of orange juice improved the taste while increasing the ratio of carrot juice enhanced the color in juice mixtures. Incorporation of aloe vera into mixed natural juices also enhanced the reduction of blood glucose, triglyceride, cholesterol, LDL, creatinine, ALT, AST, and urea levels while increasing total protein and HDL levels in diabetic rats. Based on these findings, oranges, carrots, and aloe vera offer the potential to produce new, flavorful, nutritious, and appealing juices. Moreover, this study determined that a functional juice with favorable sensory properties can be created by blending 75% orange juice, 20% carrot juice, and 5% aloe vera gel. Additionally, aloe vera demonstrated greater efficacy as an antidiabetic agent in rats. Further research is suggested to explore the potential advantages of aloe vera gel and probiotic juices in mitigating diabetes and other metabolic syndromes.
Collapse
Affiliation(s)
- Sara Naiim Moselhy
- Food Science Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | | | - Fouad Omar Abu Zaid
- Agri- Industrialization Unit, Plant Production Department, Desert Research Center, Cairo, Egypt
| | | | - Manal F. El-Khadragy
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Magdy Ramadan Shahein
- Department of Food Science and Technology, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Amin A. Hafiz
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abeer A. Aljehani
- Department of Food and Nutrition, Faculty of Human Sciences and Design, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Agil
- Department of Pharmacology, Biohealth Institute Granada (IBs Granada) and Neuroscience Institute, School of Medicine, University of Granada, Granada, Spain
| | - Ehab Kotb Elmahallawy
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
2
|
Xu H, Feng L, Ba W, Miao Y, Wang X, Wang F. The effect of adding pomace on the bioactive composition and flavor volatiles in fermented orange juice with Lactobacillus. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2130-2141. [PMID: 37922378 DOI: 10.1002/jsfa.13097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/05/2023]
Abstract
BACKGROUND The consumption of oranges generates huge amounts of pomaces, which are the potential raw materials to increase the nutritional value of the products. RESULTS In this study, the bioactive composition and flavor volatiles in Lactobacillus fermented orange juice with added pomaces were researched. Results showed that the orange juices blended with pomaces were favorable substrates for Lactobacillus growth and the colony counts reached above 9.0 log CFU mL-1 , total phenolics, total flavonoids, and the antioxidant activity in orange juices were increased significantly after adding pomaces. Some amino acids, such as threonine (P < 0.0001), isoleucine (P < 0.01), and glycine (P < 0.01) were markedly higher in fermented orange juices with pomaces. The flavonoid diversity was more abundant by adding pomace fermentation and most flavonoids showed higher levels in fermented juices with the pomace, Lactobacillus fermentum 252 may transform some flavonoids through deglycosylation and reduction reaction. Furthermore, orange pomace mainly improved the flavor volatiles by increasing terpenoids and alcohol, such as d-limonene and benzyl alcohol, and decreasing volatile acids. CONCLUSION This study presented a novelty in elevating the nutritional value of juice by the utilization of pomaces, its findings can provide a new way to mine the bioactive ingredient from Citrus by Lactobacillus, and can be used as a guide for the development of new Citrus processing technologies and functional foods. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haiyan Xu
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Lingxing Feng
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Wenjia Ba
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Yuzhi Miao
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Xiaoyan Wang
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Fang Wang
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| |
Collapse
|
3
|
Naseem Z, Mir SA, Wani SM, Rouf MA, Bashir I, Zehra A. Probiotic-fortified fruit juices: Health benefits, challenges, and future perspective. Nutrition 2023; 115:112154. [PMID: 37536023 DOI: 10.1016/j.nut.2023.112154] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023]
Abstract
Consumers' growing interest in using foods that improve health has motivated researchers and the food industry to develop new functional products, such as foods containing probiotics or live microbes. Probiotics have functional attributes that could satisfy most basic nutritional and therapeutic supplementation requirements. These microbes positively respond to clinical therapies against diseases and illnesses such as rotavirus-associated diarrhea, irritable bowel syndrome, and food allergies. Moreover, the role of probiotics in the prevention and treatment of obesity, diabetes, cancer, and diseases related to pathogenic microbes is an exciting and rapidly advancing research arena. Probiotic supplementation usually involves dairy products. However, because of the growing number of individuals affected by lactose intolerance and/or vegans, other food matrices like fruits, vegetables, cereals, and so on, have been studied as potential carriers for these microorganisms, presenting an alternative and better source in the process of assessing novel probiotic strains. The present review discusses the various factors affecting the survival of probiotics during storage in fruit juices, the possible effect of probiotics on sensory attributes and the overall acceptance of the products, and future technologies to improve the viability of probiotics.
Collapse
Affiliation(s)
- Zahida Naseem
- Division of Food Science and Technology, SKUAST-K, Shalimar, Srinagar, India
| | - Sajad Ahmad Mir
- Department of Food Science and Technology, University of Kashmir, Hazratbal Srinagar, India
| | - Sajad Mohd Wani
- Division of Food Science and Technology, SKUAST-K, Shalimar, Srinagar, India.
| | - Molvi Abdul Rouf
- Division of Food Science and Technology, SKUAST-K, Shalimar, Srinagar, India
| | - Iqra Bashir
- Division of Food Science and Technology, SKUAST-K, Shalimar, Srinagar, India
| | - Aiman Zehra
- Division of Food Science and Technology, SKUAST-K, Shalimar, Srinagar, India
| |
Collapse
|
4
|
Latif AS, Saparbekova AA, Akhmedova ZR, Kaldybekova G, Daugaliyeva ST. Probiotic yeast Saccharomyces cerevisiae Az-12 isolated from pomegranate juice presented inhibitory effects against pathogenic bacteria. BRAZ J BIOL 2023; 83:e271997. [PMID: 37585928 DOI: 10.1590/1519-6984.271997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/04/2023] [Indexed: 08/18/2023] Open
Abstract
The potential probiotic yeast was isolated from the Kyzyl Anor pomegranate variety growing in the Turkestan region (Kazakhstan). The yeast strain was identified as Saccharomyces cerevisiae Az-12. Molecular genetic identification was carried out using the Sanger sequencing method. The degree of homology of the S. cerevisiae Az-12 strain with the strain MH608341.1 Saccharomyces cerevisiae isolate extr03 was 99.65%. Antagonistic effect of the yeast against pathogenic bacteria was confirmed according inhibition zones for Staphylococcus aureus 13.5 ± 0.05 mm; the inhibition zones for Escherichia coli 12.8 ± 0.05 mm; and 10.7 ± 0.05 mm for Pseudomonas aeruginosa. Scanning microscopy of S. cerevisiae Az-12 and S. aureus confirmed the adhesive ability of the yeast cell surface to S. aureus. S. cerevisiae Az-12 were chosen as the most promising, as they are able to quickly ferment juices. Functional drinks containing pomegranate juice and yeast with a probiotic effect can be considered as a useful synbiotic product formulation.
Collapse
Affiliation(s)
- A S Latif
- M. Auezov South Kazakhstan University, Department of Biotechnology, Shymkent, Kazakhstan
| | - A A Saparbekova
- M. Auezov South Kazakhstan University, Department of Biotechnology, Shymkent, Kazakhstan
| | - Z R Akhmedova
- Institute of Microbiology of the Academy of Sciences of the Republic of Uzbekistan, Department of Environmental Biotechnology, Tashkent, Uzbekistan
| | - G Kaldybekova
- M. Auezov South Kazakhstan University, Department of Biotechnology, Shymkent, Kazakhstan
| | - S T Daugaliyeva
- Institute of Microbiology and Virology, Laboratory of Molecular Genetics, Almaty, Kazakhstan
| |
Collapse
|
5
|
Maftei NM, Iancu AV, Elisei AM, Gurau TV, Ramos-Villarroel AY, Lisa EL. Functional Characterization of Fermented Beverages Based on Soy Milk and Sea Buckthorn Powder. Microorganisms 2023; 11:1493. [PMID: 37374995 DOI: 10.3390/microorganisms11061493] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Limitations of dairy products, such as lactose intolerance, problems related to a high cholesterol intake in diet, malabsorption, and the requirement for cold storage facilities, as well as an increasing demand for new foods and tastes, have initiated a trend in the development of non-dairy probiotic products. The possibility of producing beverages based on soy milk, sea buckthorn powder, and fermented by Bifidobacterium bifidus (Bb-12®, Bb) strain at different temperatures (30 °C and 37 °C) was examined. Strain viability, pH, and titratable acidity were measured during the fermentation period while the viability, pH, titratable acidity, and water holding capacity were determined during the storage time at 4 °C ± 1 °C within 14 days. Additionally, the survival and stability of Bb-12®, inoculated into a functional beverage when exposed to simulated gastrointestinal tract conditions, were assessed. The results obtained in this study revealed that the content of potent bioactive compounds in fermented soy milk and sea buckthorn powder depends on the processing conditions, the bacteria used in the fermentation step, and storage time.
Collapse
Affiliation(s)
- Nicoleta-Maricica Maftei
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy University "Dunărea de Jos", 800008 Galati, Romania
- Medical Laboratory Department, Clinical Hospital of Children Hospital "Sf. Ioan", 800487 Galati, Romania
| | - Alina-Viorica Iancu
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy University "Dunărea de Jos", 800008 Galati, Romania
- Medical Laboratory Department, Clinical Hospital of Infectious Diseases "Sf. Cuvioasa Parascheva", 800179 Galati, Romania
| | - Alina Mihaela Elisei
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy University "Dunărea de Jos", 800008 Galati, Romania
| | - Tudor Vladimir Gurau
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy University "Dunărea de Jos", 800008 Galati, Romania
| | - Ana Yndira Ramos-Villarroel
- School of Science of Agro and Environment, Campus the Guaritos, University of Oriente, Av. University, Maturín 6201, Venezuela
| | - Elena Lacramioara Lisa
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy University "Dunărea de Jos", 800008 Galati, Romania
| |
Collapse
|
6
|
Moussavi M, Barouei J, Evans C, Adams MC, Baines S. Viability and In Vitro Gastrointestinal Transit Tolerance of Multispecies Probiotic Combinations Incorporated into Orange Juice and Drinking Water. Foods 2023; 12:foods12112249. [PMID: 37297495 DOI: 10.3390/foods12112249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Little is known about how combining probiotics affects the storage survival and functional performance of individual probiotics when incorporated into non-dairy drinks. Viability of Lacticaseibacillus rhamnosus GG (LG), Limosilactobacillus reuteri ATCC 55730 (LR), Bifidobacterium animalis subsp. lactis BB-12 (Bb), and Propionibacterium jensenii 702 (PJ), either alone or in multi-species combinations included in orange juice (OJ), were assessed during storage in refrigerated conditions and compared with bottled water (BW). The tolerance of probiotics included in refrigerated OJ to simulated gastrointestinal conditions was also examined. LG and LR viabilities were significantly higher in OJ than in BW (p ≤ 0.001), while the reverse was evident for PJ. Bb maintained high viability in both drinks. LG-PJ in both drinks and Bb-PJ in BW resulted in greater viabilities among the paired combinations compared to their respective monocultures when incorporated separately (p ≤ 0.001). The viability of LG in the LG-Bb-PJ combination improved significantly in BW compared with LG alone (p ≤ 0.001). OJ did not alter bacterial tolerance to simulated gastric juice but diminished tolerance to simulated intestinal juice (SIJ). In all combinations, tolerance of LG and LR to SIJ was improved, whereas tolerance of PJ declined significantly compared with respective monocultures (p ≤ 0.001). In conclusion, probiotic storage stability and gastrointestinal transit tolerance were species-dependent and affected by carrier type and combinations. These effects should be considered when formulating probiotic products.
Collapse
Affiliation(s)
- Mahta Moussavi
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Javad Barouei
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA
- Integrated Food Security Research Center, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Craig Evans
- School of Environmental and Life Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Michelle C Adams
- School of Environmental and Life Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Surinder Baines
- School of Health Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
7
|
Rapoo SM, Budeli P, Thaoge ML. Recovery of Potential Starter Cultures and Probiotics from Fermented Sorghum (Ting) Slurries. Microorganisms 2023; 11:microorganisms11030715. [PMID: 36985287 PMCID: PMC10054160 DOI: 10.3390/microorganisms11030715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Fermented foods are thought to provide a source of probiotics that promote gut health. Consequently, isolation and characterization of fermented food strains and their applications in a controlled fermentation process or as probiotics present a new facet in this area of research. Therefore, the current study sought to identify dominant strains in sorghum-fermented foods (ting) and characterize their probiotic potential in vitro. Recovered isolates were identified as Lactobacillus helveticus, Lactobacillus amylolyticus, Lacticaseibacillus paracasei, Lacticaseibacillus paracasei subsp paracasei, Lactiplantibacillus plantarum, Levilactobacillus brevis, Loigolactobacillus coryniformis and Loigolactobacillus coryniformis subsp torquens based on the their 16S rRNA sequences. Increased biomass was noted in seven out of nine under a low pH of 3 and a high bile concentration of 2% in vitro. Bactericidal activities of isolated LABs presented varying degrees of resistance against selected pathogenic bacteria ranging between (1.57 to 41 mm), (10 to 41 mm), and (11.26 to 42 mm) for Salmonella typhimurium ATTC 14028, Staphylococcus aureus ATTC 6538 and Escherichia coli ATTC8739, respectively. Ampicillin, erythromycin, mupirocin, tetracycline and chloramphenicol were able to inhibit growth of all selected LABs. Thus, isolates recovered from ting partially satisfy the potential candidacy for probiotics by virtue of being more tolerant to acid and bile, antibacterial activity and antibiotic resistance.
Collapse
|
8
|
Pérez MB, Argañaraz Martinez E, Babot JD, Pérez Chaia A, Saguir FM. Growth studies of dominant lactic acid bacteria in orange juice and selection of strains to ferment citric fruit juices with probiotic potential. Braz J Microbiol 2022; 53:2145-2156. [PMID: 36151453 PMCID: PMC9679108 DOI: 10.1007/s42770-022-00830-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/13/2022] [Indexed: 01/13/2023] Open
Abstract
The study aimed to evaluate the ability of dominant lactic acid bacteria (LAB) in orange juice to growth on N-depleted MRS medium supplemented or not with cysteine (mMRS), then to select the most nutritionally promising strains for growth assays in the food matrix and evaluation of beneficial attributes for fruit juice fermentation. Levilactobacillus brevis and Lactiplantibacillus plantarum were dominant species among the total of 103 LAB isolates as confirmed by multiplex PCR and/or 16 s rDNA sequence analysis. Based on growing lower than 20% and higher than 70% in mMRS (1.0 g/l meat extract, without peptone and yeast extract) with and without cysteine requirement, one L. brevis (JNB23) and two L. plantarum (JNB21 and JNB25) were selected. These bacteria and the L. plantarum strains N4 and N8 (previously isolated from oranges peel) when inoculated in orange juice grew up to 1.0 log cfu/ml for 24 h incubation at 30 °C and mainly produced lactic acid, with strains JNB25 and JNB23 reaching the highest and lowest cell densities in agreement with their nutritional exigency. In addition, all L. plantarum strains exhibited antagonistic activity against the majority of tested bacterial pathogens (in opposition to L. brevis), ability to grow or survive to pH 3.0 for 3 h, to grow with 0.5% sodium taurocholate, and a decrease after simulated gastrointestinal digestion assay which did not exceed 1.0 or 2.0 log units, depending on the strain. Thus, autochthonous L. plantarum strains with ability for overcoming nutritional limitations and beneficial attributes are promising candidates for further investigations as novel probiotic and/or preservative starters to ferment citric fruit juices.
Collapse
Affiliation(s)
- María B Pérez
- Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia (FBQF), Universidad Nacional de Tucumán (UNT), Ayacucho 471, (T4000ILC), San Miguel de Tucumán, Argentina
| | - Eloy Argañaraz Martinez
- Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia (FBQF), Universidad Nacional de Tucumán (UNT), Ayacucho 471, (T4000ILC), San Miguel de Tucumán, Argentina
| | - Jaime D Babot
- Centro de Referencia Para Lactobacilos (CERELA)-CCT NOA Sur-CONICET, Chacabuco 145, T4000ILC, San Miguel de Tucumán, Argentina
| | - Adriana Pérez Chaia
- Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia (FBQF), Universidad Nacional de Tucumán (UNT), Ayacucho 471, (T4000ILC), San Miguel de Tucumán, Argentina
- Centro de Referencia Para Lactobacilos (CERELA)-CCT NOA Sur-CONICET, Chacabuco 145, T4000ILC, San Miguel de Tucumán, Argentina
| | - Fabiana M Saguir
- Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia (FBQF), Universidad Nacional de Tucumán (UNT), Ayacucho 471, (T4000ILC), San Miguel de Tucumán, Argentina.
| |
Collapse
|
9
|
Almohammadi AR, Abdel-Shafi S, Tartour E, Enan G. Inhibitory action of three lactic acid bacteria cultures on some food-borne pathogens during pickling of green olive fruits. Heliyon 2022; 8:e11693. [DOI: 10.1016/j.heliyon.2022.e11693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/18/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
|
10
|
Marnpae M, Chusak C, Balmori V, Kamonsuwan K, Dahlan W, Nhujak T, Hamid N, Adisakwattana S. Probiotic Gac fruit beverage fermented with Lactobacillus paracasei: Physiochemical properties, phytochemicals, antioxidant activities, functional properties, and volatile flavor compounds. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Singh S, Gupta R, Chawla S, Gauba P, Singh M, Tiwari RK, Upadhyay S, Sharma S, Chanda S, Gaur S. Natural sources and encapsulating materials for probiotics delivery systems: Recent applications and challenges in functional food development. Front Nutr 2022; 9:971784. [PMID: 36211518 PMCID: PMC9534265 DOI: 10.3389/fnut.2022.971784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Probiotics are known as the live microorganisms which upon adequate administration elicit a health beneficial response inside the host by decreasing the luminal pH, eliminating the pathogenic bacteria in the gut as well as producing short chain fatty acids (SCFA). With advancements in research; probiotics have been explored as potential ingredients in foods. However, their use and applications in food industry have been limited due to restrictions of maintaining the viability of probiotic cells and targeting the successful delivery to gut. Encapsulation techniques have significant influence on increasing the viability rates of probiotic cells with the successful delivery of cells to the target site. Moreover, encapsulating techniques also prevent the live cells from harsh physiological conditions of gut. This review discusses several encapsulating techniques as well as materials derived from natural sources and nutraceutical compounds. In addition to this, this paper also comprehensively discusses the factors affecting the probiotics viability and evaluation of successful release and survival of probiotics under simulated gastric, intestinal conditions as well as bile, acid tolerant conditions. Lastly applications and challenges of using encapsulated bacteria in food industry for the development of novel functional foods have also been discussed in detail too. Future studies must include investigating the use of encapsulated bacterial formulations in in-vivo models for effective health beneficial properties as well as exploring the mechanisms behind the successful release of these formulations in gut, hence helping us to understand the encapsulation of probiotic cells in a meticulous manner.
Collapse
Affiliation(s)
- Shubhi Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Rishibha Gupta
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Sonam Chawla
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Pammi Gauba
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Raj Kumar Tiwari
- School of Health Sciences, Pharmaceutical Sciences, The University of Petroleum & Energy Studies (UPES), Dehradun, India
| | - Shuchi Upadhyay
- Department of Allied Health Sciences, School of Health Sciences and Technology, The University of Petroleum & Energy Studies (UPES), Dehradun, India
| | | | - Silpi Chanda
- Department of Pharmacognosy, Parmarth College of Pharmacy, Hapur, India
| | - Smriti Gaur
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| |
Collapse
|
12
|
Dahiya D, Nigam PS. Nutrition and Health through the Use of Probiotic Strains in Fermentation to Produce Non-Dairy Functional Beverage Products Supporting Gut Microbiota. Foods 2022; 11:2760. [PMID: 36140888 PMCID: PMC9497984 DOI: 10.3390/foods11182760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Pure viable strains of microorganisms identified and characterised as probiotic cultures are used in the fermentation process to prepare functional beverages. The fermented probiotic products can be consumed as a source of nutrition and also for the maintenance of healthy gut microbiota. The functional beverages contain the substrates used for the preparation of product with a specific culture or a mixture of known strains used to perform the fermentation, hence these drinks can be considered as a healthy formulation of synbiotic products. If a beverage is prepared using agriculturally sourced materials, the fermented substrates with their oligosaccharides and fiber content act as prebiotics. Both the components (probiotic strain/s and prebiotic substrate) exist in a synergistic relationship in the product and contribute to several benefits for nutrition and gut health. The preparation of such probiotic beverages has been studied using non-dairy-based materials, including fruits, vegetables, nuts, grains, and cassava, a staple diet source in many regions. The consumption of beverages prepared with the use of probiotics, which contain active microbial cells and their metabolites, contributes to the functional properties of beverages. In addition, the non-dairy probiotic products can be used by consumers of all groups and food cultures, including vegans and vegetarians, and particularly consumers with allergies to dairy-based products. The aim of this article is to present a review of published research highlighting specific probiotic strains, which have the potential to enhance sustainability of healthy GIT microbiota, used in the fermentation process for the preparation of non-dairy beverages.
Collapse
Affiliation(s)
| | - Poonam Singh Nigam
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
13
|
Jeong CH, Hwang H, Lee HJ, Kim TW, Ko HI, Jang DE, Sim JG, Park BG, Hong SW. Enhancement of the functional properties of vegetable sponge beverage fermented with Lactobacillus plantarum isolated from Korean dongchimi. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Palencia-Argel M, Rodríguez-Villamil H, Bernal-Castro C, Díaz-Moreno C, Fuenmayor CA. Probiotics in anthocyanin-rich fruit beverages: research and development for novel synbiotic products. Crit Rev Food Sci Nutr 2022; 64:110-126. [PMID: 35880471 DOI: 10.1080/10408398.2022.2104806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanin-rich fruit beverages are of special interest as functional products due to their antioxidant activity, antimicrobial properties against pathogens, and, more recently, evidence of prebiotic potential. The stability and bioactivity of anthocyanins, probiotics, prebiotics, and synbiotics have been extensively documented in beverage models and reviewed separately. This review summarizes the most recent works and methodologies used for the development of probiotic and synbiotic beverages based on anthocyanin-rich fruits with a synergistic perspective. Emphasis is made on key optimization factors and strategies that have allowed probiotic cultures to reach the minimum recommended doses to obtain health benefits at the end of the shelf life. The development of these beverages is limited by the high acidity and high content of phenolic compounds in anthocyanin-rich fruits. However, a proper selection of probiotic strains and strategies for their media adaptation may improve their viability in the beverages. Fermentation increases the viability of the probiotic cultures, improves the safety and stability of the product, and may increase its antioxidant capacity. Moreover, fermentation metabolites may synergistically enhance probiotic health benefits. On the other hand, the inoculation of probiotics without fermentation allows for synbiotic beverages with milder changes in terms of physicochemical and sensory attributes.
Collapse
Affiliation(s)
- Marcela Palencia-Argel
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Hawer Rodríguez-Villamil
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Camila Bernal-Castro
- Instituto de Biotecnología (IBUN), Universidad Nacional de Colombia, Bogotá, Bogotá, Colombia
| | - Consuelo Díaz-Moreno
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos Alberto Fuenmayor
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
15
|
Kumar D, Lal MK, Dutt S, Raigond P, Changan SS, Tiwari RK, Chourasia KN, Mangal V, Singh B. Functional Fermented Probiotics, Prebiotics, and Synbiotics from Non-Dairy Products: A Perspective from Nutraceutical. Mol Nutr Food Res 2022; 66:e2101059. [PMID: 35616160 DOI: 10.1002/mnfr.202101059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/11/2022] [Indexed: 12/24/2022]
Abstract
The current trend of health-conscious consumers and healthy food habits prompts researchers to explore developing food products with synbiotic benefits. Synbiotic foods have gained popularity in recent years due to their functional, nutritional, physiological, and therapeutic characteristics. Lactose intolerance, dyslipidemia, and allergic milk proteins become the barriers in the development of dairy probiotics. The present scenario of an increase in the demand for vegetarian products leads to a rise in the consumption of non-dairy probiotics. Prebiotics like, resistant starch, inulin, and polyphenols are selectively used by gut microbiota to enhance the selection and colonization of probiotics bacteria. Probiotic's action mechanisms include the production of bacteriocins, peptides, short-chain fatty acids, amino acids, vitamins, and other metabolites. Therefore, this review article explores the alternative sources of probiotics so it will help to an understanding of non-dairy based functional fermented foods for both pro and prebiotics. Dietary fibers in vegetables, fruits, and cereals are one of prospective prebiotics and highlighted the various methods for making non-dairy synbiotics based on dietary fibers, such as microencapsulation, freeze-drying, and spray drying is also addressed.
Collapse
Affiliation(s)
- Dharmendra Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Som Dutt
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Pinky Raigond
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | | | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Kumar Nishant Chourasia
- ICAR-Central Research Institute for Jute and Allied Fibres, Kolkata, West Bengal, 700120, India
| | - Vikas Mangal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| |
Collapse
|
16
|
Evaluation of probiotics in vegetable juices: tomato (Solanum lycopersicum), carrot (Daucus carota subsp. sativus) and beetroot juice (Beta vulgaris). Arch Microbiol 2022; 204:300. [PMID: 35522324 DOI: 10.1007/s00203-022-02820-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/02/2022]
Abstract
Probiotics are known to human kind since ages as they are important component in fermented milk products, however the use of probiotics in non-dairy product is a novel method for the delivery of probiotics. Delivery of probiotics through non-dairy products will be beneficial for consumers who are lactose intolerant who are deprived of benefits of probiotics by dairy products. This studies aim at developing novel vegetable juices containing probiotic bacteria. Three different strains of bacteria have been used, i.e. Lactobacillus plantarum, Lactobacillus acidophilus, Lactobacillus delbrueckii in carrot, beetroot and tomato juice. The viability of the bacteria has been checked after a specific duration of time of fermentation by Koch's plate count method. The vegetable used for juices (carrot, beetroot, tomato) consist of high amount of antioxidants like carotenoids in carrot, betaxanthins and betacyanins in beetroot, lycopene in tomato. These antioxidant provide numerous health benefits to human body. The antioxidant activity in the juices has been checked before and after fermentation by HPLC and spectroscopic methods. The three bacterial strains Lactobacillus plantarum, Lactobacillus acidophilus and Lactobacillus delbrueckii used in three types of juices including tomato juice, carrot juice and beetroot juice showed good growth except Lactobacillus acidophilus due to reasons like insufficient nutrients. The amount of sugars and acids of the three juices indicated that the fermentation process takes place at a good and satisfying rate. This product will be especially useful for the people who are lactose intolerant who cannot intake probiotics via milk and milk products. Vegetable juices also have almost zero fat content and high in fiber so the people who are on a fat free diet can consume this product.
Collapse
|
17
|
Exploring the Gut Microbiome in Myasthenia Gravis. Nutrients 2022; 14:nu14081647. [PMID: 35458209 PMCID: PMC9027283 DOI: 10.3390/nu14081647] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 12/13/2022] Open
Abstract
The human gut microbiota is vital for maintaining human health in terms of immune system homeostasis. Perturbations in the composition and function of microbiota have been associated with several autoimmune disorders, including myasthenia gravis (MG), a neuromuscular condition associated with varying weakness and rapid fatigue of the skeletal muscles triggered by the host’s antibodies against the acetylcholine receptor (AChR) in the postsynaptic muscle membrane at the neuromuscular junction (NMJ). It is hypothesized that perturbation of the gut microbiota is associated with the pathogenesis of MG. The gut microbiota community profiles are usually generated using 16S rRNA gene sequencing. Compared to healthy individuals, MG participants had an altered gut microbiota’s relative abundance of bacterial taxa, particularly with a drop in Clostridium. The microbial diversity related to MG severity and the overall fecal short-chain fatty acids (SCFAs) were lower in MG subjects. Changes were also found in terms of serum biomarkers and fecal metabolites. A link was found between the bacterial Operational Taxonomic Unit (OTU), some metabolite biomarkers, and MG’s clinical symptoms. There were also variations in microbial and metabolic markers, which, in combination, could be used as an MG diagnostic tool, and interventions via fecal microbiota transplant (FMT) could affect MG development. Probiotics may influence MG by restoring the gut microbiome imbalance, aiding the prevention of MG, and lowering the risk of gut inflammation by normalizing serum biomarkers. Hence, this review will discuss how alterations of gut microbiome composition and function relate to MG and the benefits of gut modulation.
Collapse
|
18
|
Lacticaseibacillus rhamnosus: A Suitable Candidate for the Construction of Novel Bioengineered Probiotic Strains for Targeted Pathogen Control. Foods 2022; 11:foods11060785. [PMID: 35327208 PMCID: PMC8947445 DOI: 10.3390/foods11060785] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotics, with their associated beneficial effects, have gained popularity for the control of foodborne pathogens. Various sources are explored with the intent to isolate novel robust probiotic strains with a broad range of health benefits due to, among other mechanisms, the production of an array of antimicrobial compounds. One of the shortcomings of these wild-type probiotics is their non-specificity. A pursuit to circumvent this limitation led to the advent of the field of pathobiotechnology. In this discipline, specific pathogen gene(s) are cloned and expressed into a given probiotic to yield a novel pathogen-specific strain. The resultant recombinant probiotic strain will exhibit enhanced species-specific inhibition of the pathogen and its associated infection. Such probiotics are also used as vehicles to deliver therapeutic agents. As fascinating as this approach is, coupled with the availability of numerous probiotics, it brings a challenge with regard to deciding which of the probiotics to use. Nonetheless, it is indisputable that an ideal candidate must fulfil the probiotic selection criteria. This review aims to show how Lacticaseibacillus rhamnosus, a clinically best-studied probiotic, presents as such a candidate. The objective is to spark researchers’ interest to conduct further probiotic-engineering studies using L. rhamnosus, with prospects for the successful development of novel probiotic strains with enhanced beneficial attributes.
Collapse
|
19
|
Preparation of pectin-based nanofibers encapsulating Lactobacillus rhamnosus 1.0320 by electrospinning. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107216] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Tang Z, Zhao Z, Wu X, Lin W, Qin Y, Chen H, Wan Y, Zhou C, Bu T, Chen H, Xiao Y. A Review on Fruit and Vegetable Fermented Beverage-Benefits of Microbes and Beneficial Effects. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2024222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zizhong Tang
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Zhiqiao Zhao
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Xulong Wu
- Chengdu Agricultural College, Chengdu, Sichuan, China
| | - Wenjie Lin
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Yihan Qin
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Yujun Wan
- Sichuan Food and Fermentation Industry Research and Design Institute, Chengdu,Sichuan, China
| | - Caixia Zhou
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Tongliang Bu
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Yirong Xiao
- Sichuan Agricultural University Hospital, Ya’an, Sichuan, China
| |
Collapse
|
21
|
GUMUS S, DEMIRCI AS. Survivability of probiotic strains, Lactobacillus fermentum CECT 5716 and Lactobacillus acidophilus DSM 20079 in grape juice and physico-chemical properties of the juice during refrigerated storage. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.08122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Shori AB. Application of Bifidobacterium spp in beverages and dairy food products: an overview of survival during refrigerated storage. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.41520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Advancements in the Use of Fermented Fruit Juices by Lactic Acid Bacteria as Functional Foods: Prospects and Challenges of Lactiplantibacillus (Lpb.) plantarum subsp. plantarum Application. FERMENTATION 2021. [DOI: 10.3390/fermentation8010006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lactic acid fermentation of fresh fruit juices is a low-cost and sustainable process, that aims to preserve and even enhance the organoleptic and nutritional features of the raw matrices and extend their shelf life. Selected Lactic Acid Bacteria (LAB) were evaluated in the fermentation of various fruit juices, leading in some cases to fruit beverages, with enhanced nutritional and sensorial characteristics. Among LAB, Lactiplantibacillus (Lpb.) plantarum subsp. plantarum strains are quite interesting, regarding their application in the fermentation of a broad range of plant-derived substrates, such as vegetables and fruit juices, since they have genome plasticity and high versatility and flexibility. L. plantarum exhibits a remarkable portfolio of enzymes that make it very important and multi-functional in fruit juice fermentations. Therefore, L. plantarum has the potential for the production of various bioactive compounds, which enhance the nutritional value and the shelf life of the final product. In addition, L. plantarum can positively modify the flavor of fruit juices, leading to higher content of desirable volatile compounds. All these features are sought in the frame of this review, aiming at the potential and challenges of L. plantarum applications in the fermentation of fruit juices.
Collapse
|
24
|
Kumari M, Singh P, Nataraj BH, Kokkiligadda A, Naithani H, Azmal Ali S, Behare PV, Nagpal R. Fostering next-generation probiotics in human gut by targeted dietary modulation: An emerging perspective. Food Res Int 2021; 150:110716. [PMID: 34865747 DOI: 10.1016/j.foodres.2021.110716] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/07/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022]
Abstract
Emerging evidence and an in-depth understanding of the microbiome have helped in identifying beneficial commensals and their therapeutic potentials. Specific commensal taxa/ strains of the human gut microbiome have been positively associated with human health and recently termed as next-generation probiotics (NGPs). Of these, Akkermansia muciniphila, Ruminococcus bromii, Faecalibacterium prausnitzii, Anaerobutyricum hallii, and Roseburia intestinalis are the five most relevant gut-derived NGPs that have demonstrated therapeutic potential in managing metabolic diseases. Specific and natural dietary interventions can modulate the abundance and activity of these beneficial bacteria in the gut. Hence, the understanding of targeted stimulation of specific NGP by specific probiotic-targeted diets (PTD) is indispensable for the rational application of their combination. The supplementation of NGP with its specific PTD will help the strain(s) to compete with harmful microbes and acquire its niche. This combination would enhance the effectiveness of NGPs to be used as "live biotherapeutic products" or food nutraceuticals. Under the current milieu, we review various PTDs that influence the abundance of specific potential NGPs, and contemplates potential interactions between diet, microbes, and their effects on host health. Taking into account the study mentioned, we propose that combining NGPs will provide an alternate solution for developing the new diet in conjunction with PTD.
Collapse
Affiliation(s)
- Manorama Kumari
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Parul Singh
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Basavaprabhu H Nataraj
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Anusha Kokkiligadda
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Harshita Naithani
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Pradip V Behare
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India.
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
25
|
Investigation of the possibility of producing synbiotic herbal tea based on chicory, garlic and Jerusalem artichoke by probiotic bacteria. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.52547/fsct.18.118.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Jouki M, Khazaei N, Rashidi-Alavijeh S, Ahmadi S. Encapsulation of Lactobacillus casei in quince seed gum-alginate beads to produce a functional synbiotic drink powder by agro-industrial by-products and freeze-drying. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106895] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Şenöztop E, Dokuzlu T, Güngörmüşler M. A comprehensive review on the development of probiotic supplemented confectioneries. Z NATURFORSCH C 2021; 77:71-84. [PMID: 34653326 DOI: 10.1515/znc-2021-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/25/2021] [Indexed: 11/15/2022]
Abstract
Probiotics are living organisms that have beneficial effects on host by regulating the microbial balance of the intestinal system. While probiotics are naturally found in yogurt and other fermented foods, they can also be added to many products. Although mostly in dairy products, it is possible to see examples of food products supplemented by probiotics in bakeries, chocolates and confectioneries. Nowadays, the COVID-19 pandemic that the world suffers increased the demand for such functional food products including probiotics. Due to probiotics having potential effects on strengthening the immune system, confectioneries supplemented by probiotics were comprehensively discussed in this review together with the suggestion of a novel gelly composition. The suggested formulation of the product is a gel-like snack contains natural ingredients such as carrot, lemon juice and sugar provided from apples. This research review article provided a guide together with the recommendations for potential probiotic research in candy and confectionery industry.
Collapse
Affiliation(s)
- Eylül Şenöztop
- Department of Food Engineering, Izmir University of Economics, Sakarya Caddesi No: 156, 35330 Balçova, Izmir, Turkey
| | - Tuğçe Dokuzlu
- Department of Food Engineering, Izmir University of Economics, Sakarya Caddesi No: 156, 35330 Balçova, Izmir, Turkey
| | - Mine Güngörmüşler
- Department of Genetics and Bioengineering, Izmir University of Economics, Sakarya Caddesi No: 156, 35330 Balçova, Izmir, Turkey
| |
Collapse
|
28
|
Mirza Alizadeh A, Hosseini H, Mohseni M, Eskandari S, Sohrabvandi S, Hosseini MJ, Tajabadi-Ebrahimi M, Mohammadi-Kamrood M, Nahavandi S. Analytic and chemometric assessments of the native probiotic bacteria and inulin effects on bioremediation of lead salts. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5142-5153. [PMID: 33608880 DOI: 10.1002/jsfa.11160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/02/2021] [Accepted: 02/19/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Lead (Pb2+ ) is one of the most toxic heavy metals and can be found in various quantities in the environment. The five native probiotic bacteria and inulin were used to assess in vitro lead nitrate and lead acetate binding capacities, as well as removal potentials. RESULTS The highest decrease in media pH was seen for samples containing a combination of Lactobacillus paracasei IRBC-M 10784, lead nitrate and inulin (5.30 ± 0.012). The presence of inulin in the environment accelerated decreases in the pH of all samples with no significance. In all groups, lead nitrate-containing samples included maximum pH decreases. From the highest to the lowest, the ability of lead removal was linked to Lactobacillus acidophilus PTCC-1932 (88.48%), Bifidobacterium bifidum BIA-7 (85.32%), Bifidobacterium lactis BIA-6 (85.24%), Lactobacillus rhamnosus IBRC-M 10782 (83.18%) and L. paracasei IRBC-M 10784 (80.66%). Most species included the highest decrease in lead nitrate. Fourier-transform infrared spectroscopy (FTIR) analysis demonstrated that various functional groups (hydroxyl, carboxylic, carbonyl, amino and amide binds) on the bacterial cell wall were involved in lead ion binding during incubation. Principal component analysis of the FTIR results showed differences with respect to treated groups and control groups. CONCLUSION The results obtained in the present study reveal that the simultaneous use of native probiotics and inulin can be an effective and safe approach for removing various toxic substances, especially Pb. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Adel Mirza Alizadeh
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition Sciences, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, Faculty of Nutrition Sciences, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Mohseni
- Department of Food and Drug Control, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Soheyl Eskandari
- Food and Drug Laboratory Research Center (FDLRC), Food and Drug Administration (FDA), Ministry of Health and Medical Education (MOH+ME), Tehran, Iran
- Zoonotic Diseases Research Center, Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sara Sohrabvandi
- Department of Food Technology Research, Faculty of Nutrition Sciences, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir-Jamal Hosseini
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | | | - Saeedeh Nahavandi
- Department of Food and Drug Control, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
29
|
Effect of Lactobacillus plantarum-fermented mulberry pomace on antioxidant properties and fecal microbial community. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111651] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
MOSTAFA HS, ALI MR, MOHAMED RM. Production of a novel probiotic date juice with anti-proliferative activity against Hep-2 cancer cells. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.09920] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Exploitation of Sea Buckthorn Fruit for Novel Fermented Foods Production: A Review. Processes (Basel) 2021. [DOI: 10.3390/pr9050749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sea buckthorn fruit is abundant with essential nutrients and bioactive substances, yet it remains less sought after. Therefore, it is valuable to explore new ways of sea buckthorn fruit processing, which can boost consumer acceptance of sea buckthorn fruit and also lead to formulation of new functional foods. In the presented review, we summarize studies focused on development of foods utilizing sea buckthorn fruit or its components and bacterial food cultures. Firstly, we discuss the impact of malolactic fermentation on content and profile of organic acids and polyphenols of sea buckthorn fruit juice. During this process, changes in antioxidant and sensory properties are considerable. Secondly, we address the role of sea buckthorn fruit and its components in formulating novel probiotic dairy and non-dairy products. In this regard, a synergic effect of prebiotic material and probiotic bacteria against pathogens is distinguished. Overall, the potential of sea buckthorn fruit as a botanical ingredient for application in novel foods is highlighted.
Collapse
|
32
|
Muhialdin BJ, Meor Hussin AS, Kadum H, Abdul Hamid A, Jaafar AH. Metabolomic changes and biological activities during the lacto-fermentation of jackfruit juice using Lactobacillus casei ATCC334. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
33
|
Zhang Y, Liu W, Wei Z, Yin B, Man C, Jiang Y. Enhancement of functional characteristics of blueberry juice fermented by Lactobacillus plantarum. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110590] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Influence of sea buckthorn juice addition on the growth of microbial food cultures. ACTA CHIMICA SLOVACA 2021. [DOI: 10.2478/acs-2021-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The aim of the article was to investigate the effect of sea buckthorn juice addition on the growth of microbial cultures in growth medium and juice mixtures. Pure sea buckthorn juice was found to inhibit the growth of all 11 monitored microbial cultures. Lactobacillus plantarum CCM 7039, Lactobacillus plantarum K816, Lactobacillus brevis CCM 1815 and, to a lesser extent, the probiotic strain Lactobacillus rhamnosus GG, grew in a growth medium containing a 25 % addition of sea buckthorn juice. Lactobacillus plantarum K816 and Lactobacillus brevis CCM 1815 grew better in this mixture than in pure growth medium. Moreover, we focused on finding a suitable ratio of sea buckthorn and apple juice for Lactobacillus plantarum CCM 7039, leading to malolactic fermentation, which results in an increase in the pH value and an improvement in the sensory properties of juices. The intention was to incorporate the highest possible addition of sea buckthorn juice while maintaining the viability of Lactobacillus plantarum CCM 7039 for malolactic fermentation to occur. The best results were achieved using 40 % sea buckthorn juice. Practical application of the results points to the possibility of preparing a fermented fruit beverage and a dairy product containing sea buckthorn juice. The results of this work extend the current options of sea buckthorn juice processing increasing thus the consumption of healthy juice.
Collapse
|
35
|
de Oliveira PM, Leite Júnior BRDC, Martins EMF, Martins ML, Vieira ÉNR, de Barros FAR, Cristianini M, de Almeida Costa N, Ramos AM. Mango and carrot mixed juice: a new matrix for the vehicle of probiotic lactobacilli. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:98-109. [PMID: 33505055 DOI: 10.1007/s13197-020-04518-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/29/2020] [Accepted: 05/08/2020] [Indexed: 11/26/2022]
Abstract
This study evaluated the pH, acidity, soluble solids, color, dietary fiber, sensory acceptance and the viability of Lactobacillus rhamnosus, Lactobacillus plantarum and Lactobacillus acidophilus in mango and carrot mixed juices. In addition, this study verified the resistance of L. plantarum that presented greater viability to the gastrointestinal tract simulated in vitro. Three formulations were elaborated (varying the pulps concentration) and the products were stored at 8 °C for 35 days. No difference was found in the total soluble solids and color of the products during storage time at 8 °C. A reduction in pH and an increase in acidity were observed in all samples during storage, probably due to the fermentative action of probiotics, which negatively influenced acceptance after 35 days of storage. On the other hand, juices with a higher concentration of mango pulp were more accepted and may be a strategy to improve the acceptance of fermented juices. Microorganisms showed greater viability in juices that had higher amount of carrot pulp, probably due to the higher fiber content in these samples. During the 35-day shelf life, all juices with L. plantarum maintained counts above 7 log CFU mL-1 after gastrointestinal conditions simulation. Therefore, mango and carrot mixed juice showed to be as a good vehicle for probiotic bacteria and meets the needs of consumers looking for functional, healthy, non-dairy and low-sugar foods.
Collapse
Affiliation(s)
- Patrícia Martins de Oliveira
- Food Technology Department, Federal University of Viçosa (UFV), P.H. Rolfs Avenue, Campus, Viçosa, Minas Gerais 36570-900 Brazil
| | | | - Eliane Maurício Furtado Martins
- Food Science and Technology Department, Federal Institute of Education, Science and Technology of Southeast of Minas Gerais, Av. Dr. José Sebastião da Paixão - Lindo Vale, Rio Pomba, Minas Gerais 36180-000 Brazil
| | - Maurilio Lopes Martins
- Food Science and Technology Department, Federal Institute of Education, Science and Technology of Southeast of Minas Gerais, Av. Dr. José Sebastião da Paixão - Lindo Vale, Rio Pomba, Minas Gerais 36180-000 Brazil
| | - Érica Nascif Rufino Vieira
- Food Technology Department, Federal University of Viçosa (UFV), P.H. Rolfs Avenue, Campus, Viçosa, Minas Gerais 36570-900 Brazil
| | | | - Marcelo Cristianini
- School of Food Engineering, Department of Food Technology, University of Campinas (UNICAMP/FEA-DTA), Campinas, São Paulo 13083-862 Brazil
| | - Nataly de Almeida Costa
- Food Technology Department, Federal University of Viçosa (UFV), P.H. Rolfs Avenue, Campus, Viçosa, Minas Gerais 36570-900 Brazil
| | - Afonso Mota Ramos
- Food Technology Department, Federal University of Viçosa (UFV), P.H. Rolfs Avenue, Campus, Viçosa, Minas Gerais 36570-900 Brazil
| |
Collapse
|
36
|
Toy JYH, Lu Y, Huang D, Matsumura K, Liu SQ. Enzymatic treatment, unfermented and fermented fruit-based products: current state of knowledge. Crit Rev Food Sci Nutr 2020; 62:1890-1911. [PMID: 33249876 DOI: 10.1080/10408398.2020.1848788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In recent years, food manufacturers are increasingly utilizing enzymes in the production of fruit-based (unfermented and fermented) products to increase yield and maximize product quality in a cost-effective manner. Depending on the fruits and desired product characteristics, different enzymes (e.g. pectinase, cellulase, hemicellulase, amylase, and protease) are used alone or in combinations to achieve optimized processing conditions and improve nutritional and sensorial quality. In this review, the mechanisms of action and sources of different enzymes, as well as their effects on the physicochemical, nutritional, and organoleptic properties of unfermented and fermented fruit-based products are summarized and discussed, respectively. In general, the application of enzymatic hydrolysis treatment (EHT) in unfermented fruit-based product helps to achieve four main purposes: (i) viscosity reduction (easy to filter), (ii) clarification (improved appearance/clarity), (iii) better nutritional quality (increase in polyphenolics) and (iv) enhanced organoleptic characteristic (brighter color and complex aroma profile). In addition, EHT provides numerous other advantages to fermented fruit-based products such as better fermentation efficiency and enrichment in aroma. To meet the demand for new market trends, researchers and manufacturers are increasingly employing non-Saccharomyces yeast (with enzymatic activities) alone or in tandem with Saccharomyces cerevisiae to produce complex flavor profile in fermented fruit-based products. Therefore, this review also evaluates the potential of some non-Saccharomyces yeasts with enzymatic activities and how their utilization helps to tailor wines with unique aroma profile. Lastly, in view of an increase in lactose-intolerant individuals, the potential of fermented probiotic fruit juice as an alternative to dairy-based probiotic products is discussed.
Collapse
Affiliation(s)
- Joanne Yi Hui Toy
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Yuyun Lu
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Jiangsu, China
| | - Keisuke Matsumura
- Product and Technology Development Department, Nippon Del Monte Corporation, Numata, Gunma, Japan.,Kikkoman Singapore R&D Laboratory Pte Ltd, Singapore, Singapore
| | - Shao-Quan Liu
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Jiangsu, China
| |
Collapse
|
37
|
Changes in the quality of kefir fortified with anthocyanin-rich juices during storage. Food Chem 2020; 326:126977. [DOI: 10.1016/j.foodchem.2020.126977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 11/19/2022]
|
38
|
Hashemi SMB, Jafarpour D. Fermentation of bergamot juice with Lactobacillus plantarum strains in pure and mixed fermentations: Chemical composition, antioxidant activity and sensorial properties. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109803] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Khorshidian N, Yousefi M, Mortazavian AM. Fermented milk: The most popular probiotic food carrier. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 94:91-114. [PMID: 32892839 DOI: 10.1016/bs.afnr.2020.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Fermented milks are extensively produced and consumed all around the world. The production of these products is an old process that was used for extending the shelf life of milk. Nowadays, numerous traditional and industrial fermented milks with various texture and aroma can be found as an important part of human diet that exhibit several health benefits. In recent years, consumers' awareness about the effect of diet on health and tendency for consuming healthful food products directed manufacturers to develop functional foods. In this context, production of probiotic food products is a common approach. Fermented milks are suitable carrier for probiotics and their production and consumption can be a beneficial way for improving health status. For development of probiotic fermented milks, probiotic viability during fermentation and storage time, their interaction with starter cultures in the product as well as their effect on sensory properties of the product should be taken into account. This chapter describes different fermented milks, probiotics used in fermented milks, process of their production and quality aspects associated with these products.
Collapse
Affiliation(s)
- Nasim Khorshidian
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Mojtaba Yousefi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Amir M Mortazavian
- Department of Food Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Cheng Y, Wu T, Chu X, Tang S, Cao W, Liang F, Fang Y, Pan S, Xu X. Fermented blueberry pomace with antioxidant properties improves fecal microbiota community structure and short chain fatty acids production in an in vitro mode. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109260] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Mustafa SM, Chua LS, El-Enshasy HA, Abd Majid FA, Hanapi SZ. Kinetic profile and anti-diabetic potential of fermented Punica granatum juice using Lactobacillus casei. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Agarbati A, Canonico L, Marini E, Zannini E, Ciani M, Comitini F. Potential Probiotic Yeasts Sourced from Natural Environmental and Spontaneous Processed Foods. Foods 2020; 9:E287. [PMID: 32143376 PMCID: PMC7143343 DOI: 10.3390/foods9030287] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
In the last decades, there has been a growing interest from consumers in their food choices. Organic, natural, less processed, functional, and pre-probiotic products were preferred. Although, Saccharomyces cerevisiae var. boulardii is the most well-characterized probiotic yeast available on the market, improvement in probiotic function using other yeast species is an attractive future direction. In the present study, un-anthropized natural environments and spontaneous processed foods were exploited for wild yeast isolation with the goal of amplifying the knowledge of probiotic aptitudes of different yeast species. For this purpose, 179 yeast species were isolated, identified as belonging to twelve different genera, and characterized for the most important probiotic features. Findings showed interesting probiotic characteristics for some yeast strains belonging to Lachancea thermotolerans, Metschnikowia ziziphicola, Saccharomyces cerevisiae, and Torulaspora delbrueckii species, although these probiotic aptitudes were strictly strain-dependent. These yeast strains could be proposed for different probiotic applications, such as a valid alternative to, or in combination with, the probiotic yeast S. cerevisiae var. boulardii.
Collapse
Affiliation(s)
- Alice Agarbati
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (A.A.); (L.C.); (E.M.); (M.C.)
| | - Laura Canonico
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (A.A.); (L.C.); (E.M.); (M.C.)
| | - Enrica Marini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (A.A.); (L.C.); (E.M.); (M.C.)
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, Cork T12 K8AF Ireland;
| | - Maurizio Ciani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (A.A.); (L.C.); (E.M.); (M.C.)
| | - Francesca Comitini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (A.A.); (L.C.); (E.M.); (M.C.)
| |
Collapse
|
43
|
Cassani L, Gomez-Zavaglia A, Simal-Gandara J. Technological strategies ensuring the safe arrival of beneficial microorganisms to the gut: From food processing and storage to their passage through the gastrointestinal tract. Food Res Int 2020; 129:108852. [DOI: 10.1016/j.foodres.2019.108852] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023]
|
44
|
Abstract
Consumer demands for foods promoting health while preventing diseases have led to development of functional foods that contain probiotic bacteria. Fermented dairy products are good substrates for probiotic delivery, but the large number of lactose intolerant people, their high fat and cholesterol content and also due to the growing vegetarianism the consumers are seeking for alternatives. Therefore, researches have been widely studied the feasibility of probiotic bacteria in non-dairy products such as fruits, vegetables, and cereals. This review describes the application of probiotic cultures in non-dairy food products.
Collapse
|
45
|
Sengun IY, Kirmizigul A, Atlama K, Yilmaz B. The viability of Lactobacillus rhamnosus in orange juice fortified with nettle (Urtica dioica L.) and bioactive properties of the juice during storage. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108707] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
46
|
Kim BS, Kim H, Kang SS. In vitro anti-bacterial and anti-inflammatory activities of lactic acid bacteria-biotransformed mulberry (Morus alba Linnaeus) fruit extract against Salmonella Typhimurium. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.106758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Olivares A, Soto C, Caballero E, Altamirano C. Survival of microencapsulated Lactobacillus casei (prepared by vibration technology) in fruit juice during cold storage. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
48
|
Rovinaru C, Pasarin D. Application of Microencapsulated Synbiotics in Fruit-Based Beverages. Probiotics Antimicrob Proteins 2019; 12:764-773. [DOI: 10.1007/s12602-019-09579-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Terpou A, Papadaki A, Lappa IK, Kachrimanidou V, Bosnea LA, Kopsahelis N. Probiotics in Food Systems: Significance and Emerging Strategies Towards Improved Viability and Delivery of Enhanced Beneficial Value. Nutrients 2019; 11:E1591. [PMID: 31337060 PMCID: PMC6683253 DOI: 10.3390/nu11071591] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/02/2019] [Accepted: 07/10/2019] [Indexed: 12/31/2022] Open
Abstract
Preserving the efficacy of probiotic bacteria exhibits paramount challenges that need to be addressed during the development of functional food products. Several factors have been claimed to be responsible for reducing the viability of probiotics including matrix acidity, level of oxygen in products, presence of other lactic acid bacteria, and sensitivity to metabolites produced by other competing bacteria. Several approaches are undertaken to improve and sustain microbial cell viability, like strain selection, immobilization technologies, synbiotics development etc. Among them, cell immobilization in various carriers, including composite carrier matrix systems has recently attracted interest targeting to protect probiotics from different types of environmental stress (e.g., pH and heat treatments). Likewise, to successfully deliver the probiotics in the large intestine, cells must survive food processing and storage, and withstand the stress conditions encountered in the upper gastrointestinal tract. Hence, the appropriate selection of probiotics and their effective delivery remains a technological challenge with special focus on sustaining the viability of the probiotic culture in the formulated product. Development of synbiotic combinations exhibits another approach of functional food to stimulate the growth of probiotics. The aim of the current review is to summarize the strategies and the novel techniques adopted to enhance the viability of probiotics.
Collapse
Affiliation(s)
- Antonia Terpou
- Food Biotechnology Group, Department of Chemistry, University of Patras, GR-26500 Patras, Greece
| | - Aikaterini Papadaki
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | - Iliada K Lappa
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | - Vasiliki Kachrimanidou
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | - Loulouda A Bosnea
- Hellenic Agricultural Organization DEMETER, Institute of Technology of Agricultural Products, Dairy Department, Katsikas, 45221 Ioannina, Greece.
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece.
| |
Collapse
|
50
|
The resistance of Bacillus, Bifidobacterium, and Lactobacillus strains with claimed probiotic properties in different food matrices exposed to simulated gastrointestinal tract conditions. Food Res Int 2019; 125:108542. [PMID: 31554104 DOI: 10.1016/j.foodres.2019.108542] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 07/09/2019] [Accepted: 07/09/2019] [Indexed: 12/15/2022]
Abstract
The resistance of Bifidobacterium, Lactobacillus, and Bacillus strains with claimed probiotic properties in different food matrices was evaluated. Lactobacillus paracasei PXN 37, Lactobacillus acidophilus La-5, Bifidobacterium animalis subsp. lactis Bb-12, Bifidobacterium breve PXN 25, Bacillus subtilis PXN 21, Bacillus coagulans GBI30 6086 and Bacillus coagulans MTCC 5856 strains were inoculated in "requeijão cremoso" cheese, pasteurized orange juice, and bread. Further, the counts of the strains with claimed probiotic properties were determined throughout the products' shelf-life. Additionally, the survival (%), at the beginning and at the end of their shelf-life, of each strain with claimed probiotic properties inoculated in the three foods was estimated by using a static in vitro system simulating the gastric (pH 2), enteric I (pH 5) and enteric II (pH 7) phases of gastrointestinal tract (GIT). Overall, it has been found that the Bacillus strains with claimed probiotic properties showed greater viability than probiotic Bifidobacterium and Lactobacillus strains no matter the food studied. The percentage of survival of the Bacillus strains with claimed probiotic properties were always above 83%. The Bacillus strains with claimed probiotic properties were able to survive well in all the food matrices tested. Therefore, this study shows that these strains of Bacillus may comprise a feasible strategy for expanding the range of "probiotic food" choices given their high resistance to the composition of foods, manufacturing steps, and resistance to simulated GIT conditions.
Collapse
|