1
|
Khalifa I, Sobhy R, Zou X, Nawaz A, Walayat N, Harlina PW, Abdelkader TK, Ahmed M, Maqsood S. CO 2-moderate-pressure enhances phytonutrients and prolongs shelf-life of flowable smoothie formulated from quadrable functional vegetables. Food Chem X 2024; 23:101663. [PMID: 39139488 PMCID: PMC11321379 DOI: 10.1016/j.fochx.2024.101663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/01/2024] [Accepted: 07/14/2024] [Indexed: 08/15/2024] Open
Abstract
The effect of non-thermal (HPP and semi-HPP-CO2) and thermal (flash pasteurization, FP) treatments on phytonutrients of flowable smoothie prepared from quadrable vegetable blends (FQVS) was investigated using multidimensional methods. First, FQVS gained an acceptability sensorial index (85.7%) compared with other formulas. FQVS/semi-HPP-CO2 showed a greater microbial stability during storage (0-30 d) compared to HPP and FP. Fructose and glucose highly declined than sucrose in all smoothies, where semi-HPP-CO2 steadily declined this reduction during storage. LC/MS-MS analysis showed that semi-HPP-CO2 preserved most of FQVS's phytonutrients and their antioxidant effects measured by ORAC and oxidative enzymes inhibition assays. Semi-HPP-CO2 acquired the lowest apparent viscosity among different FQVS smoothies, showing its post-processing flowability behavior. Most importantly, semi-HPP-CO2 predicted a reduced power consumption for HPP and reduced the gas emission. In conclusion, blending different vegetables assisted with semi-HPP-CO2 could be a novel approach to produce storage-stable smoothies with adequate amounts of phytonutrients and sensorial scores.
Collapse
Affiliation(s)
- Ibrahim Khalifa
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University Zhenjiang, Jiangsu 212013, China
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Remah Sobhy
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University Zhenjiang, Jiangsu 212013, China
- Department of Biochemistry, Faculty of Agriculture, Benha University, 13736 Moshtohor, Egypt
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University Zhenjiang, Jiangsu 212013, China
| | - Asad Nawaz
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 425199 Yongzhou, Hunan, China
| | - Noman Walayat
- College of Tea Science and Tea Culture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Putri Widyanti Harlina
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Tarek Kh. Abdelkader
- Agricultural Engineering Department, Faculty of Agriculture, Fayoum University, 63514 Fayoum, Egypt
| | - Mukhtar Ahmed
- Department of Zoology, College of Science, King Saud University, 2455, Riyadh 11451, Saudi Arabia
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Cheng RM, Usaga J, Worobo RW. Foodborne pathogen inactivation in fruit juices utilizing commercial scale high-pressure processing: Effects of acidulants and pH. FOOD SCI TECHNOL INT 2024; 30:592-600. [PMID: 38086753 DOI: 10.1177/10820132231219525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The effects of juice pH, type of acidulant, and post-treatment refrigeration on the high-pressure processing (HPP) inactivation of Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes in acid beverages were evaluated. Inoculated apple, orange, and grape juices (at their original pH and adjusted to pH 4.00, 4.50, and 5.00) were treated at 550 MPa for 1 min at 5 °C. In addition, inoculated model solutions acidified to a pH of 5.00 with acetic, citric, malic, and tartaric acids were treated at 400 MPa for 1 min at 5 °C. The effect of refrigerated storage for 24 h after treatment on pathogen inactivation in both experiments was also assessed. A greater than 5-log reduction of the three pathogens inoculated was achieved in all juices immediately after HPP at the juices' original pH, and of L. monocytogenes under all experimental conditions. Refrigerated storage for 24 h after HPP treatment improved the inactivation of E. coli O157:H7, to >5-log reduction, at pH 4.00 in apple juice and of Salmonella in the three juices at pH 4.00. The type of acidulant did not significantly (p > 0.01) affect E. coli or Salmonella inactivation in acidified model solutions but a greater than 5-log reduction after HPP was only achieved for L. monocytogenes when acetic acid was used. The effectiveness of HPP for pathogen inactivation depended largely on product pH and the target pathogen of concern.
Collapse
Affiliation(s)
- Rebecca M Cheng
- Department of Food Science, Cornell University, Geneva, New York, USA
| | - Jessie Usaga
- Department of Food Science, Cornell University, Geneva, New York, USA
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, San José, Costa Rica
| | - Randy W Worobo
- Department of Food Science, Cornell University, Geneva, New York, USA
| |
Collapse
|
3
|
Shymialevich D, Wójcicki M, Sokołowska B. The Novel Concept of Synergically Combining: High Hydrostatic Pressure and Lytic Bacteriophages to Eliminate Vegetative and Spore-Forming Bacteria in Food Products. Foods 2024; 13:2519. [PMID: 39200446 PMCID: PMC11353811 DOI: 10.3390/foods13162519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
The article focuses on the ongoing challenge of eliminating vegetative and spore-forming bacteria from food products that exhibit resistance to the traditional preservation methods. In response to this need, the authors highlight an innovative approach based on the synergistic utilization of high-hydrostatic-pressure (HHP) and lytic bacteriophages. The article reviews the current research on the use of HHP and lytic bacteriophages to combat bacteria in food products. The scope includes a comprehensive review of the existing literature on bacterial cell damage following HHP application, aiming to elucidate the synergistic effects of these technologies. Through this in-depth analysis, the article aims to contribute to a deeper understanding of how these innovative techniques can improve food safety and quality. There is no available research on the use of HHP and bacteriophages in the elimination of spore-forming bacteria; however, an important role of the synergistic effect of HHP and lytic bacteriophages with the appropriate adjustment of the parameters has been demonstrated in the more effective elimination of non-spore-forming bacteria from food products. This suggests that, when using this approach in the case of spore-forming bacteria, there is a high chance of the effective inactivation of this biological threat.
Collapse
Affiliation(s)
- Dziyana Shymialevich
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (M.W.); (B.S.)
| | | | | |
Collapse
|
4
|
Yang P, Liao X. High pressure processing plus technologies: Enhancing the inactivation of vegetative microorganisms. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 110:145-195. [PMID: 38906586 DOI: 10.1016/bs.afnr.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
High pressure processing (HPP) is a non-thermal technology that can ensure microbial safety without compromising food quality. However, the presence of pressure-resistant sub-populations, the revival of sub-lethally injured (SLI) cells, and the resuscitation of viable but non-culturable (VBNC) cells pose challenges for its further development. The combination of HPP with other methods such as moderate temperatures, low pH, and natural antimicrobials (e.g., bacteriocins, lactate, reuterin, endolysin, lactoferrin, lactoperoxidase system, chitosan, essential oils) or other non-thermal processes (e.g., CO2, UV-TiO2 photocatalysis, ultrasound, pulsed electric fields, ultrafiltration) offers feasible alternatives to enhance microbial inactivation, termed as "HPP plus" technologies. These combinations can effectively eliminate pressure-resistant sub-populations, reduce SLI or VBNC cell populations, and inhibit their revival or resuscitation. This review provides an updated overview of microbial inactivation by "HPP plus" technologies and elucidates possible inactivation mechanisms.
Collapse
Affiliation(s)
- Peiqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing, P.R. China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, P.R. China; Beijing Key laboratory for Food Non-thermal processing, Beijing, P.R. China.
| |
Collapse
|
5
|
Tian HH, Huang XH, Qin L. Insights into application progress of seafood processing technologies and their implications on flavor: a review. Crit Rev Food Sci Nutr 2023:1-16. [PMID: 37788446 DOI: 10.1080/10408398.2023.2263893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Seafood tends to be highly vulnerable to spoilage and deterioration due to biochemical reactions and microbial contaminations, which requires appropriate processing technologies to improve or maintain its quality. Flavor, as an indispensable aspect reflecting the quality profile of seafood and influencing the final choice of consumers, is closely related to the processing technologies adopted. This review gives updated information on traditional and emerging processing technologies used in seafood processing and their implications on flavor. Traditional processing technologies, especially thermal treatment, effectively deactivate microorganisms to enhance seafood safety and prolong its shelf life. Nonetheless, these methods come with limitations, including reduced processing efficiency, increased energy consumption, and alterations in flavor, color, and texture due to overheating. Emerging processing technologies like microwave heating, infrared heating, high pressure processing, cold plasma, pulsed electric field, and ultrasound show alternative effects to traditional technologies. In addition to deactivating microorganisms and extending shelf life, these technologies can also safeguard the sensory quality of seafood. This review discusses emerging processing technologies in seafood and covers their principles, applications, developments, advantages, and limitations. In addition, this review examines the potential synergies that can arise from combining certain processing technologies in seafood processing.
Collapse
Affiliation(s)
- He-He Tian
- National Engineering Research Center of Seafood, College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xu-Hui Huang
- National Engineering Research Center of Seafood, College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Lei Qin
- National Engineering Research Center of Seafood, College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
6
|
Torres-Ossandón MJ, Castillo L, Uribe E, Bilbao-Sainz C, Ah-Hen KS, Vega-Gálvez A. Combined Effect of High Hydrostatic Pressure and Proteolytic Fraction P1G10 from Vasconcellea cundinamarcensis Latex against Botrytis cinerea in Grape Juice. Foods 2023; 12:3400. [PMID: 37761109 PMCID: PMC10530099 DOI: 10.3390/foods12183400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
The effect of high hydrostatic pressure (HHP) and the proteolytic fraction P1G10 from papaya latex was studied to find out whether a synergy exists in the growth inhibition of Botrytis cinerea in grape juice, contributing to the improvement of conservation techniques and extending the shelf life and quality of food products. Grape juice (GJ) diluted to 16 °Brix with a water activity (aw) of 0.980 was prepared from a concentrated GJ and used in this study. Results indicated a 92% growth inhibition of B. cinerea when exposed to 1 mg/mL of P1G10 and 250 MPa/4 min of pressure treatment. The proximate composition and antioxidant compounds present in the GJ were not significantly affected after the treatments. Eight phenolic compounds and two flavonoids in GJ were identified and quantified, with values fluctuating between 12.77 ± 0.51 and 240.40 ± 20.9 mg/L in the control sample (0.1 MPa). The phenolic compounds showed a significant decrease after the applied treatments, with the HHP sample having a content of 65.4 ± 6.9 mg GAE/100 mL GJ. In conclusion, a synergistic effect at moderate HHP of 250 MPa/4 min with the addition of P1G10 was observed, and the successful development of a stable and acceptable GJ product was possible.
Collapse
Affiliation(s)
- María José Torres-Ossandón
- Laboratorio de Biotecnología y Microbiología Aplicada, Departamento en Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Alameda 3363, Estación Central, Santiago 9170022, Chile
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Luis Castillo
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Elsa Uribe
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
- Instituto de Investigación Multidisciplinario en Ciencia y Tecnología, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
| | - Cristina Bilbao-Sainz
- Healthy Processed Foods Research, U.S. Department of Agriculture, Albany, CA 94710, USA
| | - Kong Shun Ah-Hen
- Instituto de Ciencia y Tecnología de los Alimentos, Universidad Austral de Chile, Avda. Julio Sarrazín sn, Valdivia 5090000, Chile
| | - Antonio Vega-Gálvez
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, Avda. Raúl Bitrán 1305, La Serena 1700000, Chile
| |
Collapse
|
7
|
Popa EE, Ungureanu EL, Geicu-Cristea M, Mitelut AC, Draghici MC, Popescu PA, Popa ME. Trends in Food Pathogens Risk Attenuation. Microorganisms 2023; 11:2023. [PMID: 37630583 PMCID: PMC10459359 DOI: 10.3390/microorganisms11082023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Foodborne pathogens represent one of the most dangerous threats to public health along the food chain all over the world. Over time, many methods were studied for pathogen inhibition in food, such as the development of novel packaging materials with enhanced properties for microorganisms' growth inhibition (coatings, films) and the use of emerging technologies, like ultrasound, radio frequency or microwave. The aim of this study was to evaluate the current trends in the food industry for pathogenic microorganisms' inhibition and food preservation in two directions, namely technology used for food processing and novel packaging materials development. Five technologies were discussed in this study, namely high-voltage atmospheric cold plasma (HVACP), High-Pressure Processing (HPP), microwaves, radio frequency (RF) heating and ultrasound. These technologies proved to be efficient in the reduction of pathogenic microbial loads in different food products. Further, a series of studies were performed, related to novel packaging material development, by using a series of antimicrobial agents such as natural extracts, bacteriocins or antimicrobial nanoparticles. These materials proved to be efficient in the inhibition of a wide range of microorganisms, including Gram-negative and Gram-positive bacteria, fungi and yeasts.
Collapse
Affiliation(s)
- Elisabeta Elena Popa
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Elena Loredana Ungureanu
- National Research and Development Institute for Food Bioresources, 6 Dinu Vintila Str., 021102 Bucharest, Romania
| | - Mihaela Geicu-Cristea
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Amalia Carmen Mitelut
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Mihaela Cristina Draghici
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Paul Alexandru Popescu
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Mona Elena Popa
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| |
Collapse
|
8
|
Ferreira NBM, Rodrigues MI, Cristianini M. Effect of high pressure processing and water activity on pressure resistant spoilage lactic acid bacteria (Latilactobacillus sakei) in a ready-to-eat meat emulsion model. Int J Food Microbiol 2023; 401:110293. [PMID: 37327535 DOI: 10.1016/j.ijfoodmicro.2023.110293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
The main use of High Pressure Processing (HPP) in food processing is microorganism inactivation, and studies demonstrated that the characteristics of matrix and microorganisms can interfere on it. As the behavior of lactic acid bacteria exposed to different water activity (aw) levels in a meat product is still unclear, this study aimed to determine the effect of pressure, time, and aw to inactivate Latilactobacillus sakei, a pressure resistant lactic acid bacteria (LAB) in a meat emulsion model through a response surface methodology. The meat emulsion model was designed with adjusted aw (from 0.940 to 0.960) and was inoculated with a pressure resistant LAB and processed varying pressure (400-600 MPa) and time (180-480 s), following the Central Composite Rotational Design (CCRD). The inactivation of the microorganism ranged from 0.99 to 4.12 UFC/g depending on the applied condition. At studied conditions, according to the best fitting and most significant polynomial equation (R2 of 89.73 %), in a meat emulsion model, aw had no influenced on HPP inactivation on LAB (p > 0.05) and only pressure and holding time had significative impact on it. The results of experimental validation of the mathematical model were satisfactory, confirming the suitability of the model. The information obtained in the present study stands out the matrix, microorganism and process effects at HPP efficiency. The answers obtained support food processors in product development, process optimization and food waste reduction.
Collapse
Affiliation(s)
- Natália Brunna Moresco Ferreira
- Department of Food Technology (DTA), Faculty of Food Engineering (FEA), State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Maria Isabel Rodrigues
- Protimiza Consulting and Training in Experimental Design and Process Optimization, Campinas, São Paulo, Brazil
| | - Marcelo Cristianini
- Department of Food Technology (DTA), Faculty of Food Engineering (FEA), State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
9
|
Assessing the Impact of Different Technological Strategies on the Fate of Salmonella in Chicken Dry-Fermented Sausages by Means of Challenge Testing and Predictive Models. Microorganisms 2023; 11:microorganisms11020432. [PMID: 36838397 PMCID: PMC9965067 DOI: 10.3390/microorganisms11020432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Salmonella is the main relevant pathogen in chicken dry-fermented sausages (DFS). The safety of shelf-stable DFS must rely on the production process, which should not only prevent growth but promote inactivation of Salmonella. The aim of the study was to assess the behaviour of Salmonella during the production process of two types of low-acid chicken DFS. The impact of the use of starter culture, corrective storage and high-pressure processing (HPP) at different processing times was assessed through challenge testing, i.e., inoculating a cocktail of Salmonella into the meat batter (at 6 Log10 cfu/g) used for sausage manufacture. Sausages of medium (fuet-type, FT) and small (snack-type, ST) calibre were elaborated through ripening (10-15 °C/16 d) and fermentation plus ripening (22 °C/3 d + 14 °C/7 d). Physico-chemical parameters were analysed and Salmonella was enumerated throughout the study. The observed results were compared with the simulations provided by predictive models available in the literature. In FT, a slight decrease in Salmonella was observed during the production process while in ST, a 0.9-1.4 Log10 increase occurred during the fermentation at 22 °C. Accordingly, DFS safety has to be based on the process temperature and water activity decrease, these factors can be used as inputs of predictive models based on the gamma-concept, as useful decision support tool for producers. Salmonella lethality was enhanced by combining HPP and corrective storage strategies, achieving >1 and 4 Log10 reductions for FT and ST, respectively.
Collapse
|
10
|
Urugo MM, Teka TA, Berihune RA, Teferi SL, Garbaba CA, Adebo JA, Woldemariam HW, Astatkie T. Novel non-thermal food processing techniques and their mechanism of action in mycotoxins decontamination of foods. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
11
|
Zhang S, Meenu M, Hu L, Ren J, Ramaswamy HS, Yu Y. Recent Progress in the Synergistic Bactericidal Effect of High Pressure and Temperature Processing in Fruits and Vegetables and Related Kinetics. Foods 2022; 11:foods11223698. [PMID: 36429290 PMCID: PMC9689688 DOI: 10.3390/foods11223698] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Traditional thermal processing is a widely used method to ensure food safety. However, thermal processing leads to a significant decline in food quality, especially in the case of fruits and vegetables. To overcome this drawback, researchers are extensively exploring alternative non-thermal High-Pressure Processing (HPP) technology to ensure microbial safety and retaining the sensory and nutritional quality of food. However, HPP is unable to inactivate the spores of some pathogenic bacteria; thus, HPP in conjunction with moderate- and low-temperature is employed for inactivating the spores of harmful microorganisms. Scope and approach: In this paper, the inactivation effect of high-pressure and high-pressure thermal processing (HPTP) on harmful microorganisms in different food systems, along with the bactericidal kinetics model followed by HPP in certain food samples, have been reviewed. In addition, the effects of different factors such as microorganism species and growth stage, process parameters and pressurization mode, and food composition on microbial inactivation under the combined high-pressure and moderate/low-temperature treatment were discussed. KEY FINDINGS AND CONCLUSIONS The establishment of a reliable bactericidal kinetic model and accurate prediction of microbial inactivation will be helpful for industrial design, development, and optimization of safe HPP and HPTP treatment conditions.
Collapse
Affiliation(s)
- Sinan Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Maninder Meenu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Lihui Hu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, 866 Yuhangtang Road, Hangzhou 310058, China
- Hangzhou Jiangnan Talent Service Co., Ltd., 681 Qingchun East Road, Hangzhou 310000, China
| | - Junde Ren
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Hosahalli S. Ramaswamy
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Road, St-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Yong Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, 866 Yuhangtang Road, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-571-88982181
| |
Collapse
|
12
|
Kiprotich SS, Aldrich CG. A review of food additives to control the proliferation and transmission of pathogenic microorganisms with emphasis on applications to raw meat-based diets for companion animals. Front Vet Sci 2022; 9:1049731. [DOI: 10.3389/fvets.2022.1049731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Raw meat-based diets (RMBDs) or sometimes described as biologically appropriate raw food (BARFs) are gaining in popularity amongst dog and cat owners. These pet guardians prefer their animals to eat minimally processed and more “natural” foods instead of highly heat-processed diets manufactured with synthetic preservatives. The market for RMBDs for dogs and cats is estimated at $33 million in the United States. This figure is likely underestimated because some pet owners feed their animals raw diets prepared at home. Despite their increasing demand, RMBDs have been plagued with numerous recalls because of contamination from foodborne pathogens like Salmonella, E. coli, or Campylobacter. Existing literature regarding mitigation strategies in RMBD's for dogs/cats are very limited. Thus, a comprehensive search for published research was conducted regarding technologies used in meat and poultry processing and raw materials tangential to this trade (e.g., meats and poultry). In this review paper, we explored multiple non-thermal processes and GRAS approved food additives that can be used as potential antimicrobials alone or in combinations to assert multiple stressors that impede microbial growth, ultimately leading to pathogen inactivation through hurdle technology. This review focuses on use of high-pressure pasteurization, organic acidulants, essential oils, and bacteriophages as possible approaches to commercially pasteurize RMBDs effectively at a relatively low cost. A summary of the different ways these technologies have been used in the past to control foodborne pathogens in meat and poultry related products and how they can be applied successfully to impede growth of enteric pathogens in commercially produced raw diets for companion animals is provided.
Collapse
|
13
|
Inanoglu S, Barbosa-Cánovas GV, Sablani SS, Zhu MJ, Keener L, Tang J. High-pressure pasteurization of low-acid chilled ready-to-eat food. Compr Rev Food Sci Food Saf 2022; 21:4939-4970. [PMID: 36329575 DOI: 10.1111/1541-4337.13058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/31/2022] [Accepted: 09/08/2022] [Indexed: 11/06/2022]
Abstract
The working population growth have created greater consumer demand for ready-to-eat (RTE) foods. Pasteurization is one of the most common preservation methods for commercial production of low-acid RTE cold-chain products. Proper selection of a pasteurization method plays an important role not only in ensuring microbial safety but also in maintaining food quality during storage. Better retention of flavor, color, appearance, and nutritional value of RTE products is one of the reasons for the food industry to adopt novel technologies such as high-pressure processing (HPP) as a substitute or complementary technology for thermal pasteurization. HPP has been used industrially for the pasteurization of high-acid RTE products. Yet, this method is not commonly used for pasteurization of low-acid RTE food products, due primarily to the need of additional heating to thermally inactivate spores, coupled with relatively long treatment times resulting in high processing costs. Practical Application: Food companies would like to adopt novel technologies such as HPP instead of using conventional thermal processes, yet there is a lack of information on spoilage and the shelf-life of pasteurized low-acid RTE foods (by different novel pasteurization methods including HPP) in cold storage. This article provides an overview of the microbial concerns and related regulatory guidelines for the pasteurization of low-acid RTE foods and summarizes the effects of HPP in terms of microbiology (both pathogens and spoilage microorganisms), quality, and shelf-life on low-acid RTE foods. This review also includes the most recent research articles regarding a comparison between HPP pasteurization and thermal pasteurization treatments and the limitations of HPP for low-acid chilled RTE foods.
Collapse
Affiliation(s)
- Sumeyye Inanoglu
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington, USA
| | - Gustavo V Barbosa-Cánovas
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington, USA.,Center for Nonthermal Processing of Food, Washington State University, Pullman, Washington, USA
| | - Shyam S Sablani
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Larry Keener
- International Product Safety Consultants, Seattle, Washington, USA
| | - Juming Tang
- Department of Biological Systems Engineering, Washington State University, Pullman, Washington, USA
| |
Collapse
|
14
|
Mukhtar K, Nabi BG, Arshad RN, Roobab U, Yaseen B, Ranjha MMAN, Aadil RM, Ibrahim SA. Potential impact of ultrasound, pulsed electric field, high-pressure processing and microfludization against thermal treatments preservation regarding sugarcane juice (Saccharum officinarum). ULTRASONICS SONOCHEMISTRY 2022; 90:106194. [PMID: 36242792 PMCID: PMC9576986 DOI: 10.1016/j.ultsonch.2022.106194] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/21/2022] [Accepted: 10/09/2022] [Indexed: 06/12/2023]
Abstract
Sugarcane juice (Saccharum officinarum) is a proven nutritious beverage with high levels of antioxidants, polyphenols, and other beneficial nutrients. It has recently gained consumer interest due to its high nutritional profile and alkaline nature. Still, high polyphenolic and sugar content start the fermentation in juice, resulting in dark coloration. Lately, some novel techniques have been introduced to extend shelf life and improve the nutritional value of sugarcane juice. The introduction of such processing technologies is beneficial over conventional processes and essential for producing chemical-free, high-quality, fresh juices. The synergistic impact of these novel technologies is also advantageous for preserving sugarcane juice. In literature, novel thermal, non-thermal and hurdle technologies have been executed to preserve sugarcane juice. These technologies include high hydrostatic pressure (HHP), ultrasound (US), pulsed electric field (PEF), ultraviolet irradiation (UV), ohmic heating (OH), microwave (MW), microfludization and ozone treatment. This review manifests the impact of novel thermal, non-thermal, and synergistic technologies on sugarcane juice processing and preservation characteristics. Non-thermal techniques have been successfully proved effective and showed better results than novel thermal treatments. Because they reduced microbial load and retained nutritional content, while thermal treatments degraded nutrients and flavor of sugarcane juice. Among non-thermal treatments, HHP is the most efficient technique for the preservation of sugarcane juice while OH is preferable in thermal techniques due to less nutritional loss.
Collapse
Affiliation(s)
- Kinza Mukhtar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Brera Ghulam Nabi
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Rai Naveed Arshad
- Institute of High Voltage & High Current, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Ume Roobab
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Bilal Yaseen
- Department of Food Sciences, Government College University, Sahiwal 57000, Pakistan
| | | | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Salam A Ibrahim
- Food Microbiology and Biotechnology Laboratory, North Carolina Agricultural and Technical State University, E. Market Street 1601, Greensboro, NC 24711, USA.
| |
Collapse
|
15
|
Chen WT, Kuo YL, Chen CH, Wu HT, Chen HW, Fang WP. Improving the stability and bioactivity of curcumin using chitosan-coated liposomes through a combination mode of high-pressure processing. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Kunnath S, Jaganath B, Panda SK, Ravishankar CN, Gudipati V. Modifying textural and functional characteristics of fish ( Nemipterus japonicus) mince using high pressure technology. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4122-4133. [PMID: 36193359 PMCID: PMC9525518 DOI: 10.1007/s13197-022-05466-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/16/2022] [Accepted: 04/09/2022] [Indexed: 06/16/2023]
Abstract
Effect of high pressure in inducing textural and functional modification has been investigated in pink perch (Nemipterus japonicus) mince. Fish mince undergone pressurization at 200, 400 and 600 MPa for a holding period of 10 min and was compared against cooked mince (90 °C; 40 min). The treated mince at 400 and 600 MPa lost its natural viscosity and behaved like cooked mince through denaturation and formation of protein aggregates. Textural characterisation showed the retention of tenderness in 200 MPa treated samples, but become harder on application of higher pressures. Unlike heat gels, pressure induced gels were more smooth, white and elastic in nature. A decreased in reactive SH groups was observed in 400 and 600 MPa treated samples due to the formation of disulfide bonds. Hydrophobic concentration was higher in cooked and 600 MPa treatments whereas Ca2+-ATPase activity decreased after pressurization. On application of different pressures microbial reduction of 2-3 log cycles was achieved in the mince samples. Hence pressure treatments at lower ranges cannot alter the texture and functionality of protein and the mince can undergo processing as required. Besides extending shelf life, the treatments above 400 MPa can make irreversible effect on texture quality and protein functionality which is similar to that of cooking.
Collapse
Affiliation(s)
- Sarika Kunnath
- Fish Processing Division, ICAR-Central Institute of Fisheries Technology (CIFT), Matsyapuri P.O., Willingdon Island, Kochin, 682029 India
| | - Bindu Jaganath
- Fish Processing Division, ICAR-Central Institute of Fisheries Technology (CIFT), Matsyapuri P.O., Willingdon Island, Kochin, 682029 India
| | - Satyen Kumar Panda
- Quality Assurance and Management Division, ICAR-Central Institute of Fisheries Technology (CIFT), Matsyapuri P.O., Willingdon Island, Kochin, 682029 India
| | - C. N. Ravishankar
- Fish Processing Division, ICAR-Central Institute of Fisheries Technology (CIFT), Matsyapuri P.O., Willingdon Island, Kochin, 682029 India
| | - Venkateshwarlu Gudipati
- Indian Council of Agricultural Research, Krishi Bhavan, Dr. Rajendra Prasad Road, New Delhi, 110 001 India
| |
Collapse
|
17
|
Transcriptome Analysis of the Influence of High-Pressure Carbon Dioxide on Saccharomyces cerevisiae under Sub-Lethal Condition. J Fungi (Basel) 2022; 8:jof8101011. [PMID: 36294576 PMCID: PMC9605315 DOI: 10.3390/jof8101011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
High-pressure carbon dioxide (HPCD), a novel non-thermal pasteurization technology, has attracted the attention of scientists due to its high pasteurization efficiency at a lower temperature and pressure. However, the inactivation mechanism has not been well researched, and this has hindered its commercial application. In this work, we used a sub-lethal HPCD condition (4.0 MPa, 30 °C) and a recovery condition (30 °C) to repair the damaged cells. Transcriptome analysis was performed by using RNA sequencing and gene ontology analysis to investigate the detailed lethal mechanism caused by HPCD treatment. RT-qPCR analysis was conducted for certain upregulated genes, and the influence of HPCD on protoplasts and single-gene deletion strains was investigated. Six major categories of upregulated genes were identified, including genes associated with the pentose phosphate pathway (oxidative phase), cell wall organization or biogenesis, glutathione metabolism, protein refolding, phosphatidylcholine biosynthesis, and AdoMet synthesis, which are all considered to be associated with cell death induced by HPCD. The inactivation or structure alteration of YNL194Cp in the organelle membrane is considered the critical reason for cell death. We believe this work contributes to elucidating the cell-death mechanism and providing a direction for further research on non-thermal HPCD sterilization technology.
Collapse
|
18
|
Lemos ÁT, Casal S, Barba FJ, Phimolsiripol Y, Delgadillo I, Saraiva JA. Preservation of high pressure pasteurised milk by hyperbaric storage at room temperature versus refrigeration on inoculated microorganisms, fatty acids, volatile compounds and lipid oxidation. Food Chem 2022; 387:132887. [PMID: 35472715 DOI: 10.1016/j.foodchem.2022.132887] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/26/2022]
Abstract
High pressure pasteurised (HPP) milk was stored by hyperbaric storage at room temperature (HS/RT) (50-100 MPa at 20 °C) and compared with refrigeration (RF), to assess the effect on two pathogens surrogates and a pathogenic, up to 120 days, and on fatty acids, volatile organic compounds (VOCs) and secondary lipid oxidation over 60 days. HS/RT (75-100 MPa) was able to inactivate at least 6.68/6.31/6.03 log CFU/mL of Escherichia coli/Listeria innocua/Salmonella Senftenberg (to below the detection limit), while RF resulted only in minor changes. Overall, fatty acids profile remained stable under HS/RT, although secondary lipid oxidation showed slightly higher values. In addition, both HS/RT and RF showed stable and similar VOCs profiles and off-flavour indicative compounds were not detected, except for the lowest pressure (50 MPa) after 40 days. HS/RT preserved HPP milk with enhanced microbial safety, shelf-life and quality compared to RF, being in addition quasi-energetically costless and more sustainable than RF.
Collapse
Affiliation(s)
- Álvaro T Lemos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana Casal
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Universitat de València, Avda. Vicent Andrés Estellés, s/n 46100 Burjassot, València, Spain
| | | | - Ivonne Delgadillo
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jorge A Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
19
|
Rodríguez López J, Grande Burgos MJ, Pérez Pulido R, Iglesias Valenzuela B, Gálvez A, Lucas R. Antimicrobial Resistance, Biocide Tolerance, and Bacterial Diversity of a Dressing Made from Coriander and Parsley after Application of Treatments Using High Hydrostatic Pressure Alone or in Combination with Moderate Heat. Foods 2022; 11:2603. [PMID: 36076789 PMCID: PMC9455834 DOI: 10.3390/foods11172603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
The effects of high-hydrostatic pressure (HP) treatments (450 and 600 megapascals, MPa, for 5 min at temperatures of 22 °C and 50 °C) on the microbiota of a coriander and parsley dressing was studied via culture-dependent and culture-independent approaches. Samples were refrigerated for 20 days, with periodic counts of the culture media supplemented with, or without, antimicrobials. HP-treated samples showed significantly lower viable cell counts compared to untreated controls. Only the control samples yielded bacterial growth on media with antimicrobials (imipenem, cefotaxime, benzalkonium chloride), including mostly Pseudomonas and Lactobacillus. Bacillus and Paenibacillus were identified from pressurized samples. Few isolates showed higher tolerance to some of the biocides tested. Pseudomonads showed outstanding resistance to meropenem and ceftazidime. According to high-throughput sequencing analysis, the microbiota of the dressing control samples changes during storage, with a reduction in the relative abundance of Proteobacteria and an increase in Firmicutes. The composition of the residual microbiota detected during storage was highly dependent on the pressure applied, and not on the treatment temperature.
Collapse
Affiliation(s)
| | | | | | | | - Antonio Gálvez
- Microbiology Division, Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain
| | | |
Collapse
|
20
|
Liu H, Xu X, Cui H, Xu J, Yuan Z, Liu J, Li C, Li J, Zhu D. Plant-Based Fermented Beverages and Key Emerging Processing Technologies. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2097256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, China
- Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Bohai University, Jinzhou, China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Xinyue Xu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Huaitian Cui
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Jiaxin Xu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Zhiheng Yuan
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Jun Liu
- Shandong Yuwang Ecological Food Industry Co. Ltd, Dezhou, China
| | - Chunyang Li
- Processing, Jiangsu Academy of Agricultural SciencesInstitute of Agro-Products, Nanjing, China
| | - Jun Li
- College of Food Science and Technology, Bohai University, Jinzhou, China
- Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Bohai University, Jinzhou, China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Danshi Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, China
- Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Bohai University, Jinzhou, China
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| |
Collapse
|
21
|
Serra-Castelló C, Possas A, Jofré A, Garriga M, Bover-Cid S. High-pressure processing inactivation of Salmonella in raw pet food for dog is enhanced by acidulation with lactic acid. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
22
|
A microbiological perspective of raw milk preserved at room temperature using hyperbaric storage compared to refrigerated storage. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Daniloski D, D'Cunha NM, Speer H, McKune AJ, Alexopoulos N, Panagiotakos DB, Petkoska AT, Naumovski N. Recent developments on Opuntia spp., their bioactive composition, nutritional values, and health effects. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
24
|
Chen WT, Wu HT, Chang IC, Chen HW, Fang WP. Preparation of curcumin-loaded liposome with high bioavailability by a novel method of high pressure processing. Chem Phys Lipids 2022; 244:105191. [DOI: 10.1016/j.chemphyslip.2022.105191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/01/2022] [Indexed: 11/29/2022]
|
25
|
Umair M, Jabeen S, Ke Z, Jabbar S, Javed F, Abid M, Rehman Khan KU, Ji Y, Korma SA, El-Saadony MT, Zhao L, Cacciotti I, Mariana Gonçalves Lima C, Adam Conte-Junior C. Thermal treatment alternatives for enzymes inactivation in fruit juices: Recent breakthroughs and advancements. ULTRASONICS SONOCHEMISTRY 2022; 86:105999. [PMID: 35436672 PMCID: PMC9036140 DOI: 10.1016/j.ultsonch.2022.105999] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 05/17/2023]
Abstract
Fruit juices (FJs) are frequently taken owing to their nutritious benefits, appealing flavour, and vibrant colour. The colours of the FJs are critical indicators of the qualitative features that influence the consumer's attention. Although FJs' intrinsic acidity serves as a barrier to bacterial growth, their enzymatic stability remains an issue for their shelf life. Inactivation of enzymes is critical during FJ processing, and selective inactivation is the primary focus of enzyme inactivation. The merchants, on the other hand, want the FJs to stay stable. The most prevalent technique of processing FJ is by conventional heat treatment, which degrades its nutritive value and appearance. The FJ processing industry has undergone a dramatic transformation from thermal treatments to nonthermal treatments (NTTs) during the past two decades to meet the requirements for microbiological and enzymatic stability. The manufacturers want safe and stable FJs, while buyers want high-quality FJs. According to the past investigation, NTTs have the potential to manufacture microbiologically safe and enzymatically stable FJs with low loss of bioactive components. Furthermore, it has been demonstrated that different NTTs combined with or without other NTTs or mild heating as a hurdle technology increase the synergistic effect for microbiological safety and stability of FJs. Concise information about the variables that affect NTTs' action mode has also been addressed. Primary inactivates enzymes by modifying the protein structure and active site conformation. NTTs may increase enzyme activity depending on the nature of the enzyme contained in FJs, the applied pressure, pH, temperature, and treatment period. This is due to the release of membrane-bound enzymes as well as changes in protein structure and active sites that allow substrate interaction. Additionally, the combination of several NTTs as a hurdle technology, as well as temperature and treatment periods, resulted in increased enzyme inactivation in FJs. Therefore, a combination of thermal and non-thermal technologies is suggested to increase the effectiveness of the process as well as preserve the juice quality.
Collapse
Affiliation(s)
- Muhammad Umair
- Department of Food Science and Engineering, College of Chemistry and Engineering, Shenzhen University, 518060 Shenzhen, Guangdong, China; Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Sidra Jabeen
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Zekai Ke
- Department of Orthopaedics, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong, China
| | - Saqib Jabbar
- Food Science Research Institute (FSRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Faiqa Javed
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Abid
- Institute of Food and Nutritional Sciences, Pir Mehr Ali Shah, Arid Agriculture University Rawalpindi, Pakistan
| | - Kashif-Ur Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Yu Ji
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany.
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Liqing Zhao
- Department of Food Science and Engineering, College of Chemistry and Engineering, Shenzhen University, 518060 Shenzhen, Guangdong, China.
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome "Niccolò Cusano", Roma 00166, Italy
| | | | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil
| |
Collapse
|
26
|
Pokhrel PR, Boulet C, Yildiz S, Sablani S, Tang J, Barbosa-Cánovas GV. Effect of high hydrostatic pressure on microbial inactivation and quality changes in carrot-orange juice blends at varying pH. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Sourri P, Tassou CC, Nychas GJE, Panagou EZ. Fruit Juice Spoilage by Alicyclobacillus: Detection and Control Methods—A Comprehensive Review. Foods 2022; 11:foods11050747. [PMID: 35267380 PMCID: PMC8909780 DOI: 10.3390/foods11050747] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 12/03/2022] Open
Abstract
Fruit juices have an important place in humans’ healthy diet. They are considered to be shelf stable products due to their low pH that prevents the growth of most bacteria. However thermo-acidophilic endospore forming bacteria of the genus Alicyclobacillus have the potential to cause spoilage of commercially pasteurized fruit juices. The flat sour type spoilage, with absence of gas production but presence of chemical spoilage compounds (mostly guaiacol) and the ability of Alicyclobacillus spores to survive after pasteurization and germinate under favorable conditions make them a major concern for the fruit juice industry worldwide. Their special characteristics and presence in the fruit juice industry has resulted in the development of many isolation and identification methods based on cell detection (plating methods, ELISA, flow cytometry), nucleic acid analysis (PCR, RAPD-PCR, ERIC-PCR, DGGE-PCR, RT-PCR, RFLP-PCR, IMS-PCR, qPCR, and 16S rRNA sequencing) and measurement of their metabolites (HPLC, GC, GC-MS, GC-O, GC-SPME, Electronic nose, and FTIR). Early detection is a big challenge that can reduce economic loss in the industry while the development of control methods targeting the inactivation of Alicyclobacillus is of paramount importance as well. This review includes a discussion of the various chemical (oxidants, natural compounds of microbial, animal and plant origin), physical (thermal pasteurization), and non-thermal (High Hydrostatic Pressure, High Pressure Homogenization, ultrasound, microwaves, UV-C light, irradiation, ohmic heating and Pulse Electric Field) treatments to control Alicyclobacillus growth in order to ensure the quality and the extended shelf life of fruit juices.
Collapse
Affiliation(s)
- Patra Sourri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Sofokli Venizelou 1, 14123 Lycovrissi, Greece;
| | - Chrysoula C. Tassou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Sofokli Venizelou 1, 14123 Lycovrissi, Greece;
- Correspondence: (C.C.T.); (E.Z.P.)
| | - George-John E. Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Efstathios Z. Panagou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
- Correspondence: (C.C.T.); (E.Z.P.)
| |
Collapse
|
28
|
Koutsoumanis K, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Castle L, Crotta M, Grob K, Milana MR, Petersen A, Roig Sagués AX, Vinagre Silva F, Barthélémy E, Christodoulidou A, Messens W, Allende A. The efficacy and safety of high-pressure processing of food. EFSA J 2022; 20:e07128. [PMID: 35281651 PMCID: PMC8902661 DOI: 10.2903/j.efsa.2022.7128] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
High-pressure processing (HPP) is a non-thermal treatment in which, for microbial inactivation, foods are subjected to isostatic pressures (P) of 400-600 MPa with common holding times (t) from 1.5 to 6 min. The main factors that influence the efficacy (log10 reduction of vegetative microorganisms) of HPP when applied to foodstuffs are intrinsic (e.g. water activity and pH), extrinsic (P and t) and microorganism-related (type, taxonomic unit, strain and physiological state). It was concluded that HPP of food will not present any additional microbial or chemical food safety concerns when compared to other routinely applied treatments (e.g. pasteurisation). Pathogen reductions in milk/colostrum caused by the current HPP conditions applied by the industry are lower than those achieved by the legal requirements for thermal pasteurisation. However, HPP minimum requirements (P/t combinations) could be identified to achieve specific log10 reductions of relevant hazards based on performance criteria (PC) proposed by international standard agencies (5-8 log10 reductions). The most stringent HPP conditions used industrially (600 MPa, 6 min) would achieve the above-mentioned PC, except for Staphylococcus aureus. Alkaline phosphatase (ALP), the endogenous milk enzyme that is widely used to verify adequate thermal pasteurisation of cows' milk, is relatively pressure resistant and its use would be limited to that of an overprocessing indicator. Current data are not robust enough to support the proposal of an appropriate indicator to verify the efficacy of HPP under the current HPP conditions applied by the industry. Minimum HPP requirements to reduce Listeria monocytogenes levels by specific log10 reductions could be identified when HPP is applied to ready-to-eat (RTE) cooked meat products, but not for other types of RTE foods. These identified minimum requirements would result in the inactivation of other relevant pathogens (Salmonella and Escherichia coli) in these RTE foods to a similar or higher extent.
Collapse
|
29
|
Effect of high hydrostatic pressure on Salmonella enterica subsp. enterica in Nutrient Broth and dried parsley. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Cai S, Snyder AB. Thermoresistance in Black Yeasts Is Associated with Halosensitivity and High Pressure Processing Tolerance but Not with UV Tolerance or Sanitizer Tolerance. J Food Prot 2022; 85:203-212. [PMID: 34614188 DOI: 10.4315/jfp-21-314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/01/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Black yeasts can survive extreme conditions in food production because of their polyextremotolerant character. However, significant strain-to-strain variation in black yeast thermoresistance has been observed. In this study, we assessed the variability in tolerance to nonthermal interventions among a collection of food-related black yeast strains. Variation in tolerance to UV light treatment, high pressure processing (HPP), sanitizers, and osmotic pressure was observed within each species. The two strains previously shown to possess high thermotolerance, Exophiala phaeomuriformis FSL-E2-0572 and Exophiala dermatitidis YB-734, were also the most HPP tolerant but were the least halotolerant. Meanwhile, Aureobasidium pullulans FSL-E2-0290 was the most UV and sanitizer tolerant but had been shown to have relatively low thermoresistance. Fisher's exact tests showed that thermoresistance in black yeasts was associated with HPP tolerance and inversely with halotolerance, but no association was found with UV tolerance or sanitizer tolerance. Collectively, the relative stress tolerance among strains varied across interventions. Given this variation, different food products are susceptible to black yeast spoilage. In addition, different strains should be selected in challenge studies specific to the intervention. HIGHLIGHTS
Collapse
Affiliation(s)
- Shiyu Cai
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA
| | - Abigail B Snyder
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
31
|
High pressure processing of raw meat with essential oils-microbial survival, meat quality, and models: A review. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108529] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
32
|
Coroneo V, Corrias F, Brutti A, Addis P, Scano E, Angioni A. Effect of High-Pressure Processing on Fresh Sea Urchin Gonads in Terms of Shelf Life, Chemical Composition, and Microbiological Properties. Foods 2022; 11:foods11030260. [PMID: 35159412 PMCID: PMC8834343 DOI: 10.3390/foods11030260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
Paracentrotus lividus is a widespread sea urchin species appreciated worldwide for the taste of its fresh gonads. High-pressure processing (HPP) can provide a thermal equivalent to pasteurization, maintaining the organoleptic properties of the raw gonads. This study evaluated HPP technology’s effect at 350 MPa and 500 MPa on microbial inactivation and biochemical characteristics of P. lividus gonads. HPP at 350 MPa resulted in a higher decrease in protein and free amino acids associated with a loss of olfactory, color, and gustatory traits and a visual alteration of the texture. On the other hand, gonad samples stored for 40 days after treatments at 500 MPa showed a good organoleptic profile similar to fresh gonads. Furthermore, only 500 MPa effectively reduced mesophilic bacteria contamination among the two HPP treatments carried out. Total lipids increased during storage; however, the SAFA/PUFA rate was homogeneous during HPP trials ranging from 2.61–3.91 g/100 g. Total protein decreased more than 40% after HPP at 350 MPa, whereas, after 500 MPa, it remained stable for 20 days. The amount of free amino acid constantly decreased during storage after HPP at 350 MPa and remained constant at 500 MPa. HPP can effectively remove the bacterial flora and inactivate enzymes, maintaining the properties of the fresh sea urchin gonads.
Collapse
Affiliation(s)
- Valentina Coroneo
- Department of Medical Science and Public Health, Food Hygiene Laboratory, University Campus of Monserrato, University of Cagliari, SS 554, 09042 Cagliari, Italy;
| | - Francesco Corrias
- Food Toxicology Unit, Department of Life and Environmental Science, University Campus of Monserrato, University of Cagliari, SS 554, 09042 Cagliari, Italy; (F.C.); (P.A.)
| | - Andrea Brutti
- Experimental Station for the Food Preservation Industry—Research Foundation, Viale Tanara 31/a, 43121 Parma, Italy;
| | - Piero Addis
- Food Toxicology Unit, Department of Life and Environmental Science, University Campus of Monserrato, University of Cagliari, SS 554, 09042 Cagliari, Italy; (F.C.); (P.A.)
| | - Efisio Scano
- Faculty of Agraria, University of Sassari, Viale Italia 39/a, 07100 Sassari, Italy;
| | - Alberto Angioni
- Food Toxicology Unit, Department of Life and Environmental Science, University Campus of Monserrato, University of Cagliari, SS 554, 09042 Cagliari, Italy; (F.C.); (P.A.)
- Correspondence: ; Tel.: +39-07-0675-8615; Fax: +39-07-0675-8612
| |
Collapse
|
33
|
Abstract
Sustainable food supply has gained considerable consumer concern due to the high percentage of spoilage microorganisms. Food industries need to expand advanced technologies that can maintain the nutritive content of foods, enhance the bio-availability of bioactive compounds, provide environmental and economic sustainability, and fulfill consumers’ requirements of sensory characteristics. Heat treatment negatively affects food samples’ nutritional and sensory properties as bioactives are sensitive to high-temperature processing. The need arises for non-thermal processes to reduce food losses, and sustainable developments in preservation, nutritional security, and food safety are crucial parameters for the upcoming era. Non-thermal processes have been successfully approved because they increase food quality, reduce water utilization, decrease emissions, improve energy efficiency, assure clean labeling, and utilize by-products from waste food. These processes include pulsed electric field (PEF), sonication, high-pressure processing (HPP), cold plasma, and pulsed light. This review describes the use of HPP in various processes for sustainable food processing. The influence of this technique on microbial, physicochemical, and nutritional properties of foods for sustainable food supply is discussed. This approach also emphasizes the limitations of this emerging technique. HPP has been successfully analyzed to meet the global requirements. A limited global food source must have a balanced approach to the raw content, water, energy, and nutrient content. HPP showed positive results in reducing microbial spoilage and, at the same time, retains the nutritional value. HPP technology meets the essential requirements for sustainable and clean labeled food production. It requires limited resources to produce nutritionally suitable foods for consumers’ health.
Collapse
|
34
|
High pressure processing at ultra-low temperatures: Inactivation of foodborne bacterial pathogens and quality changes in frozen fish fillets. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102811] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Ribeiro LR, Cristianini M. Effect of high pressure combined with temperature on the death kinetics of Alicyclobacillus acidoterrestris spores and on the quality characteristics of mango pulp. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Balasubramaniam VM. Process development of high pressure-based technologies for food: research advances and future perspectives. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Inactivation and recovery of bacterial strains, individually and mixed, in milk after high pressure processing. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Nonthermal Processing Technologies for Stabilization and Enhancement of Bioactive Compounds in Foods. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-021-09295-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
39
|
Liu H, Xu Y, Zu S, Wu X, Shi A, Zhang J, Wang Q, He N. Effects of High Hydrostatic Pressure on the Conformational Structure and Gel Properties of Myofibrillar Protein and Meat Quality: A Review. Foods 2021; 10:1872. [PMID: 34441648 PMCID: PMC8393269 DOI: 10.3390/foods10081872] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/08/2021] [Accepted: 08/10/2021] [Indexed: 01/03/2023] Open
Abstract
In meat processing, changes in the myofibrillar protein (MP) structure can affect the quality of meat products. High hydrostatic pressure (HHP) has been widely utilized to change the conformational structure (secondary, tertiary and quaternary structure) of MP so as to improve the quality of meat products. However, a systematic summary of the relationship between the conformational structure (secondary and tertiary structure) changes in MP, gel properties and product quality under HHP is lacking. Hence, this review provides a comprehensive summary of the changes in the conformational structure and gel properties of MP under HHP and discusses the mechanism based on previous studies and recent progress. The relationship between the spatial structure of MP and meat texture under HHP is also explored. Finally, we discuss considerations regarding ways to make HHP an effective strategy in future meat manufacturing.
Collapse
Affiliation(s)
- Huipeng Liu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (H.L.); (Y.X.); (S.Z.); (X.W.)
| | - Yiyuan Xu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (H.L.); (Y.X.); (S.Z.); (X.W.)
| | - Shuyu Zu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (H.L.); (Y.X.); (S.Z.); (X.W.)
| | - Xuee Wu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (H.L.); (Y.X.); (S.Z.); (X.W.)
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China; (A.S.); (J.Z.)
| | - Jinchuang Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China; (A.S.); (J.Z.)
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China; (A.S.); (J.Z.)
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (H.L.); (Y.X.); (S.Z.); (X.W.)
| |
Collapse
|
40
|
Xu J, Janahar JJ, Park HW, Balasubramaniam V, Yousef AE. Influence of water activity and acidity on Bacillus cereus spore inactivation during combined high pressure-thermal treatment. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Aganovic K, Hertel C, Vogel RF, Johne R, Schlüter O, Schwarzenbolz U, Jäger H, Holzhauser T, Bergmair J, Roth A, Sevenich R, Bandick N, Kulling SE, Knorr D, Engel KH, Heinz V. Aspects of high hydrostatic pressure food processing: Perspectives on technology and food safety. Compr Rev Food Sci Food Saf 2021; 20:3225-3266. [PMID: 34056857 DOI: 10.1111/1541-4337.12763] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 04/02/2021] [Accepted: 04/10/2021] [Indexed: 11/29/2022]
Abstract
The last two decades saw a steady increase of high hydrostatic pressure (HHP) used for treatment of foods. Although the science of biomaterials exposed to high pressure started more than a century ago, there still seem to be a number of unanswered questions regarding safety of foods processed using HHP. This review gives an overview on historical development and fundamental aspects of HHP, as well as on potential risks associated with HHP food applications based on available literature. Beside the combination of pressure and temperature, as major factors impacting inactivation of vegetative bacterial cells, bacterial endospores, viruses, and parasites, factors, such as food matrix, water content, presence of dissolved substances, and pH value, also have significant influence on their inactivation by pressure. As a result, pressure treatment of foods should be considered for specific food groups and in accordance with their specific chemical and physical properties. The pressure necessary for inactivation of viruses is in many instances slightly lower than that for vegetative bacterial cells; however, data for food relevant human virus types are missing due to the lack of methods for determining their infectivity. Parasites can be inactivated by comparatively lower pressure than vegetative bacterial cells. The degrees to which chemical reactions progress under pressure treatments are different to those of conventional thermal processes, for example, HHP leads to lower amounts of acrylamide and furan. Additionally, the formation of new unknown or unexpected substances has not yet been observed. To date, no safety-relevant chemical changes have been described for foods treated by HHP. Based on existing sensitization to non-HHP-treated food, the allergenic potential of HHP-treated food is more likely to be equivalent to untreated food. Initial findings on changes in packaging materials under HHP have not yet been adequately supported by scientific data.
Collapse
Affiliation(s)
- Kemal Aganovic
- DIL German Institute of Food Technologies e.V., Quakenbrück, Germany
| | - Christian Hertel
- DIL German Institute of Food Technologies e.V., Quakenbrück, Germany
| | - Rudi F Vogel
- Technical University of Munich (TUM), Munich, Germany
| | - Reimar Johne
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Oliver Schlüter
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany.,Alma Mater Studiorum, University of Bologna, Cesena, Italy
| | | | - Henry Jäger
- University of Natural Resources and Life Sciences (BOKU), Wien, Austria
| | - Thomas Holzhauser
- Division of Allergology, Paul-Ehrlich-Institut (PEI), Langen, Germany
| | | | - Angelika Roth
- Senate Commission on Food Safety (DFG), IfADo, Dortmund, Germany
| | - Robert Sevenich
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany.,Technical University of Berlin (TUB), Berlin, Germany
| | - Niels Bandick
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | | | | | - Volker Heinz
- DIL German Institute of Food Technologies e.V., Quakenbrück, Germany
| |
Collapse
|
42
|
High-Pressure Processing for the Production of Added-Value Claw Meat from Edible Crab ( Cancer pagurus). Foods 2021; 10:foods10050955. [PMID: 33925421 PMCID: PMC8146872 DOI: 10.3390/foods10050955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
High-pressure processing (HPP) in a large-scale industrial unit was explored as a means for producing added-value claw meat products from edible crab (Cancer pagurus). Quality attributes were comparatively evaluated on the meat extracted from pressurized (300 MPa/2 min, 300 MPa/4 min, 500 MPa/2 min) or cooked (92 °C/15 min) chelipeds (i.e., the limb bearing the claw), before and after a thermal in-pack pasteurization (F9010 = 10). Satisfactory meat detachment from the shell was achieved due to HPP-induced cold protein denaturation. Compared to cooked or cooked-pasteurized counterparts, pressurized claws showed significantly higher yield (p < 0.05), which was possibly related to higher intra-myofibrillar water as evidenced by relaxometry data, together with lower volatile nitrogen levels. The polyunsaturated fatty acids content was unaffected, whereas the inactivation of total viable psychrotrophic and mesophilic bacteria increased with treatment pressure and time (1.1-1.9 log10 CFU g-1). Notably, pressurization at 300 MPa for 4 min resulted in meat with no discolorations and, after pasteurization, with high color similarity (ΔE* = 1.2-1.9) to conventionally thermally processed samples. Following further investigations into eating quality and microbiological stability, these HPP conditions could be exploited for producing uncooked ready-to-heat or pasteurized ready-to-eat claw meat products from edible crab.
Collapse
|
43
|
Javed F, Shahbaz HM, Nawaz A, Olaimat AN, Stratakos AC, Wahyono A, Munir S, Mueen-Ud-Din G, Ali Z, Park J. Formation of furan in baby food products: Identification and technical challenges. Compr Rev Food Sci Food Saf 2021; 20:2699-2715. [PMID: 33719191 DOI: 10.1111/1541-4337.12732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 11/26/2022]
Abstract
Furan is generally produced during thermal processing of various foods including baked, fried, and roasted food items such as cereal products, coffee, canned, and jarred prepared foods as well as in baby foods. Furan is a toxic and carcinogenic compound to humans and may be a vital hazard to infants and babies. Furan could be formed in foods through thermal degradation of carbohydrates, dissociation of amino acids, and oxidation of polyunsaturated fatty acids. The detection of furan in food products is difficult due to its high volatility and low molecular weight. Headspace solid-phase microextraction coupled with gas chromatography/mass spectrometer (GC/MS) is generally used for analysis of furan in food samples. The risk assessment of furan can be characterized using margin of exposure approach (MOE). Conventional strategies including cooking in open vessels, reheating of commercially processed foods with stirring, and physical removal using vacuum treatment have remained unsuccessful for the removal of furan due to the complex production mechanisms and possible precursors of furan. The innovative food-processing technologies such as high-pressure processing (HPP), high-pressure thermal sterilization (HPTS), and Ohmic heating have been adapted for the reduction of furan levels in baby foods. But in recent years, only HPP has gained interest due to successful reduction of furan because of its nonthermal mechanism. HPP-treated baby food products are commercially available from different food companies. This review summarizes the mechanism involved in the formation of furan in foods, its toxicity, and identification in infant foods and presents a solution for limiting its formation, occurrence, and retention using novel strategies.
Collapse
Affiliation(s)
- Farah Javed
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Hafiz Muhammad Shahbaz
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Asad Nawaz
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Amin N Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Alexandros Ch Stratakos
- Department of Applied Sciences, Faculty of Health and Life Sciences, University of the West of England, Bristol, United Kingdom
| | - Agung Wahyono
- Department of Food Engineering Technology, State Polytechnic of Jember, Jember, Indonesia
| | - Sadia Munir
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ghulam Mueen-Ud-Din
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Zeshan Ali
- Department of Food Engineering and Nutritional Science, Shaanxi Normal University, Xian, China
| | - Jiyong Park
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| |
Collapse
|
44
|
Yang P, Rao L, Zhao L, Wu X, Wang Y, Liao X. High pressure processing combined with selected hurdles: Enhancement in the inactivation of vegetative microorganisms. Compr Rev Food Sci Food Saf 2021; 20:1800-1828. [PMID: 33594773 DOI: 10.1111/1541-4337.12724] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/28/2020] [Accepted: 01/21/2021] [Indexed: 12/15/2022]
Abstract
High pressure processing (HPP) as a nonthermal processing (NTP) technology can ensure microbial safety to some extent without compromising food quality. However, for vegetative microorganisms, the existence of pressure-resistant subpopulations, the revival of sublethal injury (SLI) state cells, and the resuscitation of viable but nonculturable (VBNC) state cells may constitute potential food safety risks and pose challenges for the further development of HPP application. HPP combined with selected hurdles, such as moderately elevated or low temperature, low pH, natural antimicrobials (bacteriocin, lactate, reuterin, endolysin, lactoferrin, lactoperoxidase system, chitosan, essential oils), or other NTP (CO2 , UV-TiO2 photocatalysis, ultrasound, pulsed electric field, ultrafiltration), have been highlighted as feasible alternatives to enhance microbial inactivation (synergistic or additive effect). These combinations can effectively eliminate the pressure-resistant subpopulation, reduce the population of SLI or VBNC state cells and inhibit their revival or resuscitation. This review provides an updated overview of the microbial inactivation by the combination of HPP and selected hurdles and restructures the possible inactivation mechanisms.
Collapse
Affiliation(s)
- Peiqing Yang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| | - Xiaomeng Wu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
45
|
Hsiao YT, Chen BY, Huang HW, Wang CY. Inactivation Mechanism of Aspergillus flavus Conidia by High Hydrostatic Pressure. Foodborne Pathog Dis 2021; 18:123-130. [PMID: 33544050 DOI: 10.1089/fpd.2020.2825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study investigated the inactivation mechanism of Aspergillus flavus conidia by high hydrostatic pressure (HHP). Activity counts, scanning electron microscopic (SEM) analysis, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) were used to study the effects of the HHP treatment on the morphology and protein composition of A. flavus spores. The results showed that that a 3-min-lasting 600 MPa treatment could completely abolish 107 colony-forming units/mL of live fungi. Furthermore, we also observed that lower spore viability corresponded to a higher Propidium Iodide absorption rate. The SEM images revealed that HHP disrupted the spore morphology and resulted in pore formation that led to the release of intracellular molecules, such as nucleic acids and proteins. The nucleic acid and protein concentration in the spore suspension increased in parallel with the increasing treatment pressure. The SDS-PAGE analysis showed that there were differences in the protein bands between the HHP-treated and untreated A. flavus spores, as the HHP treatment caused partial protein degradation and extracellular release. Therefore, the results of this study proved that high pressure could induce a morphological disruption in the internal and external cellular structures and degrade intracellular and extracellular proteins leading to an inactive state in A. flavus.
Collapse
Affiliation(s)
- Yun-Ting Hsiao
- Department of Biotechnology, National Formosa University, Yunlin, Taiwan
| | - Bang-Yuan Chen
- Department of Food Science, Fu Jen Catholic University, Taipei, Taiwan
| | - Hsiao-Wen Huang
- Department of Animal science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chung-Yi Wang
- Department of Biotechnology, National Formosa University, Yunlin, Taiwan
| |
Collapse
|
46
|
Buerman EC, Worobo RW, Padilla-Zakour OI. High pressure processing of heat and pressure resistant fungi as affected by pH, water activity, sulfites, and dimethyl dicarbonate in a diluted apple juice concentrate. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107551] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Usaga J, Acosta Ó, Churey JJ, Padilla-Zakour OI, Worobo RW. Evaluation of high pressure processing (HPP) inactivation of Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes in acid and acidified juices and beverages. Int J Food Microbiol 2020; 339:109034. [PMID: 33388710 DOI: 10.1016/j.ijfoodmicro.2020.109034] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 12/01/2020] [Accepted: 12/16/2020] [Indexed: 01/06/2023]
Abstract
Increasing consumer demand for high-quality foods has driven adoption by the food industry of non-thermal technologies such as high pressure processing (HPP). The technology is employed as a post-packaging treatment step for inactivation of vegetative microorganisms. In order to evaluate HPP inactivation of Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes in acid and acidified juices and beverages, pressure tolerance parameters were determined using log-linear and Weibull models in pH-adjusted apple juice (pH 4.5) at 5 °C. A commercial processing HPP unit was used. The Weibull model better described the inactivation kinetics of the three tested pathogens. According to estimates from the Weibull model, 1.5, 0.9, and 1.5 min are required at 600 MPa to produce 5-log reductions of E. coli, Salmonella, and L. monocytogenes, respectively, whereas according to the log-linear model, 3.2, 1.8, and 2.1 min are required. The effects of process conditions were verified using commercial products (pH between 3.02 and 4.21). In all tested commercial juices or beverages, greater than 5-log reductions were achieved for all tested pathogens using HPP process conditions of 550 MPa for 1 min. These findings demonstrate that the HPP conditions of 600 MPa for 3 min, typically used by the food industry provide an adequate safety margin for control of relevant vegetative pathogens in acid and acidified juices and beverages (pH < 4.5). Results from this study can be used by food processors to support validation studies and may be useful for the future establishment of safe harbors for the HPP industry.
Collapse
Affiliation(s)
- Jessie Usaga
- Department of Food Science, Cornell University, 630 West North Street, Geneva, NY 14456, USA; Centro Nacional de Ciencia y Tecnología de Alimentos, Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, código postal 11501-2060, San José, Costa Rica.
| | - Óscar Acosta
- Department of Food Science, Cornell University, 630 West North Street, Geneva, NY 14456, USA; Centro Nacional de Ciencia y Tecnología de Alimentos, Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, código postal 11501-2060, San José, Costa Rica
| | - John J Churey
- Department of Food Science, Cornell University, 630 West North Street, Geneva, NY 14456, USA
| | - Olga I Padilla-Zakour
- Department of Food Science, Cornell University, 630 West North Street, Geneva, NY 14456, USA
| | - Randy W Worobo
- Department of Food Science, Cornell University, 630 West North Street, Geneva, NY 14456, USA
| |
Collapse
|
48
|
Sabillón L, Stratton J, Rose D, Eskridge K, Bianchini A. Effect of high‐pressure processing on the microbial load and functionality of sugar‐cookie dough. Cereal Chem 2020. [DOI: 10.1002/cche.10377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Luis Sabillón
- Department of Food Science and Technology University of Nebraska‐Lincoln Lincoln NE USA
- Department of Family and Consumer Sciences New Mexico State University Las Cruces NM USA
| | - Jayne Stratton
- Department of Food Science and Technology University of Nebraska‐Lincoln Lincoln NE USA
- The Food Processing Center University of Nebraska‐Lincoln Lincoln NE USA
| | - Devin Rose
- Department of Food Science and Technology University of Nebraska‐Lincoln Lincoln NE USA
- Department of Agronomy and Horticulture University of Nebraska‐Lincoln Lincoln NE USA
| | - Kent Eskridge
- Department of Statistics University of Nebraska‐Lincoln Lincoln NE USA
| | - Andréia Bianchini
- Department of Food Science and Technology University of Nebraska‐Lincoln Lincoln NE USA
- The Food Processing Center University of Nebraska‐Lincoln Lincoln NE USA
| |
Collapse
|
49
|
Combined high pressure and heat treatment effectively disintegrates spore membranes and inactivates Alicyclobacillus acidoterrestris spores in acidic fruit juice beverage. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
50
|
Effect of high-pressure processing on bacterial inactivation in açaí juices with varying pH and soluble solids content. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102490] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|