1
|
Cárdenas-Pérez S, Grigore MN, Piernik A. Prediction of Salicornia europaea L. biomass using a computer vision system to distinguish different salt-tolerant populations. BMC PLANT BIOLOGY 2024; 24:1086. [PMID: 39548379 PMCID: PMC11568609 DOI: 10.1186/s12870-024-05743-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Salicornia europaea L. is emerging as a versatile crop halophyte, requiring a low-cost, non-destructive method for salt tolerance classification to aid selective breeding. We propose using a computer vision system (CVS) with multivariate analysis to classify S. europaea based on morphometric and colour traits to predict plant biomass and the salinity in their substrate. RESULTS A trial and validation set of 96 and 24 plants from 2 populations confirmed the efficacy. CVS and multivariate analysis evaluated the plants by morphometric traits and CIELab colour variability. Through Pearson analysis, the strongest correlations were between biomass fresh weight (FW) vs. projected area (PA) (0.91) and anatomical cross-section (ACS) vs. shoot diameter (Sd) (0.94). The PA and FW correlation retrieved different equation fits between lower and higher salt-tolerant populations (R2 = 0.93 for linear and 0.90 for 2nd-degree polynomial), respectively. The higher salt-tolerant reached a maximum biomass PA at 400 mM NaCl, while the lower salt-tolerant produced less under 200 and 400 mM. A second Pearson correlation and PCA described sample variability with 80% reliability using only morphometric-colour parameters. Multivariate discriminant analysis (MDA) demonstrated that the method correctly classifies plants (90%) depending on their salinity level and tolerance, which was validated with 100% effectiveness. Through multiple linear regression, a predictive model successfully estimated biomass production by PA, and a second model predicted the salinity substrate (Sal.s.) where the plants thrive. Plants' Sd and height influenced PA prediction, while Sd and colour difference (ΔE1) influenced Sal.s. Models validation of actual vs. predicted values showed a R2 of 0.97 and 0.90 for PA, and 0.95 and 0.97 for Sal.s. for lower and higher salt-tolerant, respectively. This outcome confirms the method as a cost-effective tool for managing S. europaea breeding. CONCLUSIONS The CVS effectively extracted morphological and colour features from S. europaea cultivated at different salinity levels, enabling classification and plant sorting through image and multivariate analysis. Biomass and salinity substrate were accurately predicted by modelling non-destructive parameters. Enhanced by AI, machine learning and smartphone technology, this method shows great potential in ecology, bio-agriculture, and industry.
Collapse
Affiliation(s)
- S Cárdenas-Pérez
- Department of Geobotany and Landscape Planning, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, Toruń, 87-100, Poland.
| | - M N Grigore
- Doctoral School of Biology, IOSUD-UAIC, Bulevardul Carol I nr. 20A, Iasi, Romania
| | - A Piernik
- Department of Geobotany and Landscape Planning, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, Toruń, 87-100, Poland
| |
Collapse
|
2
|
Huang W, Hua MZ, Li S, Chen K, Lu X, Wu D. Application of atomic force microscopy in the characterization of fruits and vegetables and associated substances toward improvement in quality, preservation, and processing: nanoscale structure and mechanics perspectives. Crit Rev Food Sci Nutr 2024; 64:11672-11700. [PMID: 37585698 DOI: 10.1080/10408398.2023.2242944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Fruits and vegetables are essential horticultural crops for humans. The quality of fruits and vegetables is critical in determining their nutritional value and edibility, which are decisive to their commercial value. Besides, it is also important to understand the changes in key substances involved in the preservation and processing of fruits and vegetables. Atomic force microscopy (AFM), a powerful technique for investigating biological surfaces, has been widely used to characterize the quality of fruits and vegetables and the substances involved in their preservation and processing from the perspective of nanoscale structure and mechanics. This review summarizes the applications of AFM to investigate the texture, appearance, and nutrients of fruits and vegetables based on structural imaging and force measurements. Additionally, the review highlights the application of AFM in characterizing the morphological and mechanical properties of nanomaterials involved in preserving and processing fruits and vegetables, including films and coatings for preservation, bioactive compounds for processing purposes, nanofiltration membrane for concentration, and nanoencapsulation for delivery of bioactive compounds. Furthermore, the strengths and weaknesses of AFM for characterizing the quality of fruits and vegetables and the substances involved in their preservation and processing are examined, followed by a discussion on the prospects of AFM in this field.
Collapse
Affiliation(s)
- Weinan Huang
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou, P. R. China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, P. R. China
| | - Marti Z Hua
- Department of Food Science and Agricultural Chemistry, McGill University, Quebec, Canada
| | - Shenmiao Li
- Department of Food Science and Agricultural Chemistry, McGill University, Quebec, Canada
| | - Kunsong Chen
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou, P. R. China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, P. R. China
| | - Xiaonan Lu
- Department of Food Science and Agricultural Chemistry, McGill University, Quebec, Canada
| | - Di Wu
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/Key Laboratory of Ministry of Agriculture and Rural Affairs of Biology and Genetic Improvement of Horticultural Crops (Growth and Development), Zhejiang University, Hangzhou, P. R. China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, P. R. China
| |
Collapse
|
3
|
Iida D, Kokawa M, Kitamura Y. Estimation of Apple Mealiness by Means of Laser Scattering Measurement. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03068-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
4
|
Warechowska M, Anders A, Warechowski J, Bramowicz M, Markowska-Mendik A, Rejmer W, Tyburski J, Kulesza S. The endosperm microstructure, physical, thermal properties and specific milling energy of spelt (Triticum aestivum ssp. spelta) grain and flour. Sci Rep 2023; 13:3629. [PMID: 36869096 PMCID: PMC9984367 DOI: 10.1038/s41598-023-30285-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Previous research has shown that the endosperm microstructure and physical properties of grain have significance in grain processing and in the development of processing machines. The aim of our study was to analyze the endosperm microstructure, physical, thermal properties, and specific milling energy of organic spelt (Triticum aestivum ssp. spelta) grain and flour. Image analysis combined with fractal analysis was used to describe the microstructural differences of the endosperm of spelt grain. The endosperm morphology of spelt kernels was monofractal, isotropic, and complex. A higher proportion of Type-A starch granules resulted in an increased proportion of voids and interphase boundaries in the endosperm. Changes in the fractal dimension were correlated with kernel hardness, specific milling energy, the particle size distribution of flour, and the starch damage rate. Spelt cultivars varied in size and shape of the kernels. Kernel hardness was a property that differentiated specific milling energy, particle size distribution of flour, and starch damage rate. Fractal analysis may be considered as a useful tool for evaluating milling processes in the future.
Collapse
Affiliation(s)
- Małgorzata Warechowska
- Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, Oczapowskiego 11, 10-719, Olsztyn, Poland
| | - Andrzej Anders
- Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, Oczapowskiego 11, 10-719, Olsztyn, Poland
| | - Józef Warechowski
- Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 7, 10-719, Olsztyn, Poland.
| | - Mirosław Bramowicz
- Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, Oczapowskiego 11, 10-719, Olsztyn, Poland
| | - Agnieszka Markowska-Mendik
- Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, Oczapowskiego 11, 10-719, Olsztyn, Poland
| | - Wojciech Rejmer
- Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, Oczapowskiego 11, 10-719, Olsztyn, Poland
| | - Józef Tyburski
- Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 3, 10-719, Olsztyn, Poland
| | - Sławomir Kulesza
- Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, Oczapowskiego 11, 10-719, Olsztyn, Poland
| |
Collapse
|
5
|
Khan MIH, Longa D, Sablani SS, Gu Y. A Novel Machine Learning–Based Approach for Characterising the Micromechanical Properties of Food Material During Drying. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02945-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Joardder MUH, Rashid F, Karim MA. The Relationships Between Structural Properties and Mechanical Properties of Plant-Based Food Materials: A Critical Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2100415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Mohammad U. H. Joardder
- Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
- Faculty of Engineering and Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Fazlur Rashid
- Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi, Bangladesh
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, Missouri, USA
| | - M. A. Karim
- Faculty of Engineering and Science, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
7
|
Silva THL, Monteiro RL, Salvador AA, Laurindo JB, Carciofi BAM. Kinetics of bread physical properties in baking depending on actual finely controlled temperature. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Characterization of the hierarchical architecture and micromechanical properties of walnut shell (Juglans regia L.). J Mech Behav Biomed Mater 2022; 130:105190. [PMID: 35344757 DOI: 10.1016/j.jmbbm.2022.105190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/22/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022]
Abstract
In the present work a comprehensive characterization of the hierarchical architecture of the walnut shell (Juglans regia L.) was carried out using scanning electron microscopy (SEM), atomic force microscopy (AFM) and confocal laser scanning microscopy (CLSM). Furthermore, micromechanical properties (hardness, HIT and elastic modulus, EIT) of plant tissues were evaluated at cell wall level by applying the instrumented indentation technique (IIT). The complex architecture of the material was described in terms of four hierarchical levels (HL): endocarp (H1), plant tissues (H2), plant cells (H3) and cell wall (H4). Our findings revealed that the walnut shell consists of a multilayer structure (sclerenchyma tissue, ST; interface tissue, IT; porous tissue, PT; and flattened parenchyma tissue, FPT), where differences in the microstructure and composition of plant tissues generate parallel gradients along the cross-section. The indentation tests showed a functional gradient with a sandwich-like configuration, i.e., a lightweight and soft layer (PT, HIT = 0.04 GPa) is located between two dense and hard layers (ST, HIT = 0.33 GPa; FPT, HIT = 0.28 GPa); where additionally there is an interface between ST and PT (IT, HIT = 0.16 GPa). This configuration is a successful strategy designed by nature to improve the protection of the kernel by increasing the strength of the shell. Therefore, the walnut shell can be considered as a functionally graded material (FGM), which can be used as bioinspiration for the design of new functional synthetic materials. In addition, we proposed some structure-property-function relationships in the whole walnut shell and in each of the plant tissues.
Collapse
|
9
|
Ayón Reyna LE, Uriarte Gastelum YG, Camacho Díaz BH, Tapia Maruri D, López López ME, López Velázquez JG, Vega García MO. Antifungal Activity of a Chitosan and Mint Essential Oil Coating on the Development of Colletotrichum Gloeosporioides in Papaya Using Macroscopic and Microscopic Analysis. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02764-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
García-Armenta E, Gutiérrez-López GF. Fractal Microstructure of Foods. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-021-09302-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
11
|
Liu Y, Wu Q, Huang J, Zhang X, Zhu Y, Zhang S, Liu H, Gao L, Chen M. Comparison of apple firmness prediction models based on non‐destructive acoustic signal. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yang Liu
- School of Biology and Food Engineering Changshu Institute of Technology No. 99 Nan San Huan Road (East Lake Campus) Changshu City 215500 China
| | - Qianwen Wu
- School of Biology and Food Engineering Changshu Institute of Technology No. 99 Nan San Huan Road (East Lake Campus) Changshu City 215500 China
| | - Jialing Huang
- School of Biology and Food Engineering Changshu Institute of Technology No. 99 Nan San Huan Road (East Lake Campus) Changshu City 215500 China
| | - Xinru Zhang
- School of Biology and Food Engineering Changshu Institute of Technology No. 99 Nan San Huan Road (East Lake Campus) Changshu City 215500 China
| | - Yingheng Zhu
- School of Biology and Food Engineering Changshu Institute of Technology No. 99 Nan San Huan Road (East Lake Campus) Changshu City 215500 China
| | - Saimin Zhang
- School of Biology and Food Engineering Changshu Institute of Technology No. 99 Nan San Huan Road (East Lake Campus) Changshu City 215500 China
| | - Huimin Liu
- College of Food Science and Engineering Jilin Agricultural University Changchun 130000 China
| | - Lin Gao
- School of Biology and Food Engineering Changshu Institute of Technology No. 99 Nan San Huan Road (East Lake Campus) Changshu City 215500 China
| | - Mengling Chen
- School of Biology and Food Engineering Changshu Institute of Technology No. 99 Nan San Huan Road (East Lake Campus) Changshu City 215500 China
| |
Collapse
|
12
|
Effect of pepper extracts on the viability kinetics, topography and Quantitative NanoMechanics (QNM) of Campylobacter jejuni evaluated with AFM. Micron 2021; 152:103183. [PMID: 34801959 DOI: 10.1016/j.micron.2021.103183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/17/2021] [Accepted: 11/14/2021] [Indexed: 11/22/2022]
Abstract
Campylobacter jejuni is a pathogen bacterium that causes foodborne gastroenteritis in humans. However, phenolic compounds extracted from natural sources such as capsicum pepper plant (Capsicum annuum L. var. aviculare) could inhibit the growth of C. jejuni. Therefore, different extracts were prepared using ultrasonic extraction (USE), conventional extraction (CE) and thermosonic extraction (TSE). C. jejuni was then exposed to chili extracts to examine the antimicrobial effect and their growth/death bacterial kinetics were studied using different mathematical models. Atomic force microscopy was applied to investigate the microstructural and nanomechanical changes in the bacteria. Extracts obtained by TSE had the highest phenolic content (4.59 ± 0.03 mg/g of chili fresh weight [FW]) in comparison to USE (4.12 ± 0.05 mg/g of chili FW) and CE (4.28 ± 0.07 mg/g of chili FW). The inactivation of C. jejuni was more efficient when thermosonic extract was used. The Gompertz model was the most suitable mathematical model to describe the inactivation kinetics of C. jejuni. Roughness and nanomechanical analysis performed by atomic force microscopy (AFM) provided evidence that the chili extracts had significant effects on morphology, surface, and the reduced Young's modulus of C. jejuni. The novelty of this work was integrating growth/death bacterial kinetics of C. jejuni using different mathematical models and chili extracts, and its relationship with the morphological, topographic and nanomechanical changes estimated by AFM.
Collapse
|
13
|
Li R, Pan X, An X, Wang K, Dong F, Xu J, Liu X, Wu X, Zheng Y. Monitoring the behavior of imazalil and its metabolite in grapes, apples, and the processing of fruit wine at enantiomeric level. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5478-5486. [PMID: 33682082 DOI: 10.1002/jsfa.11196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/17/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Imazalil is widely used in agriculture, which may pose a threat to food safety. This study aimed to investigate the fate of imazalil and its main metabolite, R14821 (imazalil-M), in field grapes and apples, and in the processing of fruit wine at the enantiomeric level. RESULTS Analysis method was established to determine imazalil and imazalil-M enantiomers in grape, apple, fruit wine and pomace. The method showed acceptable recoveries of 71.6-99.9% and precision with relative standard deviation of 0.3-11.7%. Processing factors (PFs) were 0.15-0.40 (for imazalil enantiomers) and <0.13-0.83 (for imazalil-M enantiomers) during the wine-making process. The PFs after individual steps including washing, peeling, fermentation, and clarification were all less than 1. No enantioselective dissipation of imazalil was found in grapes under field conditions with half-lives of 23.82-24.49 days. R-(-)-imazalil degraded slightly faster than S-(+)-imazalil in apples under field conditions with half-lives of 9.82-10.09 days. S-(+)-imazalil-M preferentially degraded in field grapes and apple. No significant enantioselectivity of imazalil and imazalil-M was observed during the wine-making process. The enantiomeric fraction (EF) values of imazalil were 0.484-0.511 and 0.509-0.522 in grape wine and cider, respectively. The EFs were 0.484-0.501(in grape wine) and 0.484-0.504 (in cider) for imazalil-M. CONCLUSION The results showed that the wine-making process could reduce imazalil and imazalil-M residues in grapes and apples. The finding of non-enantioselectivity of imazalil during the processing of fruit wine was useful for accurate risk assessment for imazalil in raw and processing fruits. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Runan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xiaokang An
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Kuan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
14
|
Khodabakhshian R, Naeemi A, Bayati MR. Determination of texture properties of banana fruit cells with an atomic force microscope: A case study on elastic modulus and stiffness. J Texture Stud 2021; 52:389-399. [PMID: 33675545 DOI: 10.1111/jtxs.12594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/21/2021] [Accepted: 02/27/2021] [Indexed: 11/30/2022]
Abstract
Characterization of biological materials with their elasto-mechanical properties is considered essential for understanding their nature. In addition, elasto-mechanical studies at the macroscale are frequently used to determine these characteristics by a resistance measurement such as the Magness-Taylor penetration test or compression test using an Instron Universal Mechanical Testing Machine. In this regard, the atomic force microscopy (AFM) was presented as a new method for identifying the alterations of elasto-mechanical properties at a nanoscale. Therefore, the present study estimated the elastic modulus and stiffness of the cell walls which were isolated from the banana mesocarp with AFM-based nanoindentation. Then, the elastic modulus of a cell and stiffness were determined by analyzing the force-separation curves using the theory of Hertz and the mechanics of Sneddon. Using two tips of the distinct radius of the curvature (10 and 10,000 nm), it was revealed that the tip geometry significantly affected the measured elasto-mechanical properties. Further, the elastic modulus was around 95 ± 45 and 18.5 ± 12.5 kPa for the sharper tip (R = 10 nm) and a bead (R = 10,000 nm) tips, respectively. Furthermore, a large variability was considered regarding the elasto-mechanical property (>100%) among the cells which were sampled from the same region in the fruit. Therefore, the AFM can be highly suitable for evaluating the structure-related properties of biological materials at the cellular and subcellular scales by combining nano elasto-mechanical properties with topography imaging.
Collapse
Affiliation(s)
| | - Asal Naeemi
- Department of Biosystems Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Reza Bayati
- Department of Biosystems Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
15
|
Khan MIH, Patel N, Mahiuddin M, Karim M. Characterisation of mechanical properties of food materials during drying using nanoindentation. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Zhao L, Kristi N, Ye Z. Atomic force microscopy in food preservation research: New insights to overcome spoilage issues. Food Res Int 2020; 140:110043. [PMID: 33648269 DOI: 10.1016/j.foodres.2020.110043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 11/25/2022]
Abstract
A higher level of food safety is required due to the fast-growing human population along with the increased awareness of healthy lifestyles. Currently, a large percentage of food is spoiled during storage and processing due to enzymes and microbial activity, causing huge economic losses to both producers and consumers. Atomic force microscopy (AFM), as a powerful scanning probe microscopy, has been successfully and widely used in food preservation research. This technique allows a non-invasive examination of food products, providing high-resolution images of surface structure and individual polymers as well as the physical properties and adhesion of single molecules. In this paper, detailed applications of AFM in food preservation are reviewed. AFM has been used to provide comprehensive information in food preservation by evaluating the spoilage with its related structure modification. By utilizing AFM imaging and force measurement function, the main mechanisms involved in the loss of food quality and preservation technologies development can be further elucidated. It is also capable of exploring the activities of enzymes and microbes in influencing the quality of food products during storage. AFM provides comprehensive solutions to overcome spoilage issues with its versatile functions and high-throughput outcomes. Further research and development of this novel technique in order to solve integrated problems in food preservation are necessary.
Collapse
Affiliation(s)
- Leqian Zhao
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, People's Republic of China
| | - Natalia Kristi
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, People's Republic of China
| | - Zhiyi Ye
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, People's Republic of China.
| |
Collapse
|
17
|
Wen Y, Xu Z, Liu Y, Corke H, Sui Z. Investigation of food microstructure and texture using atomic force microscopy: A review. Compr Rev Food Sci Food Saf 2020; 19:2357-2379. [PMID: 33336971 DOI: 10.1111/1541-4337.12605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022]
Abstract
We review recent applications of atomic force microscopy (AFM) to characterize microstructural and textural properties of food materials. Based on interaction between probe and sample, AFM can image in three dimensions with nanoscale resolution especially in the vertical orientation. When the scanning probe is used as an indenter, mechanical features such as stiffness and elasticity can be analyzed. The linkage between structure and texture can thus be elucidated, providing the basis for many further future applications of AFM. Microstructure of simple systems such as polysaccharides, proteins, or lipids separately, as characterized by AFM, is discussed. Interaction of component mixtures gives rise to novel properties in complex food systems due to development of structure. AFM has been used to explore the morphological characteristics of such complexes and to investigate the effect of such characteristics on properties. Based on insights from such investigations, development of food products and manufacturing can be facilitated. Mechanical analysis is often carried out to evaluate the suitability of natural or artificial materials in food formulations. The textural properties of cellular tissues, food colloids, and biodegradable films can all be explored at nanometer scale, leading to the potential to connect texture to this fine structural level. More profound understanding of natural food materials will enable new classes of fabricated food products to be developed.
Collapse
Affiliation(s)
- Yadi Wen
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zekun Xu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Liu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, 515063, China.,Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Zdunek A, Pieczywek PM, Cybulska J. The primary, secondary, and structures of higher levels of pectin polysaccharides. Compr Rev Food Sci Food Saf 2020; 20:1101-1117. [PMID: 33331080 DOI: 10.1111/1541-4337.12689] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/04/2020] [Accepted: 11/20/2020] [Indexed: 12/01/2022]
Abstract
Pectin is a heteropolysaccharide abundant in the cell wall of plants and is obtained mainly from fruit (citrus and apple), thus its properties are particularly prone to changes occurring during ripening process. Properties of pectin depend on the string-like structure (conformation, stiffness) of the molecules that determines their mutual interaction and with the surrounding environment. Therefore, in this review the primary, secondary, and structures of higher levels of pectin chains are discussed in relation to external factors including crosslinking mechanisms. The review shows that the primary structure of pectin is relatively well known, however, we still know little about the conformation and properties of the more realistic systems of higher orders involving side chains, functional groups, and complexes of pectin domains. In particular, there is lack of knowledge on the influence of postharvest changes and extraction method on the primary and secondary structure of pectin that would affect conformation in a given environment and assembly to higher structural levels. Exploring the above-mentioned issues will allow to improve our understanding of pectin functionality and will help to tailor new functionalities for the food industry based on natural but often biologically variable source. The review also demonstrates that atomic force microscopy is a very convenient and adequate tool for the evaluation of pectin conformation since it allows for the relatively straightforward stretching of the pectin molecule in order to measure the force-extension curve which is directly related to its stiffness or flexibility.
Collapse
Affiliation(s)
- Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, ul. Doświadczalna 4, Lublin, 20-290, Poland
| | - Piotr M Pieczywek
- Institute of Agrophysics, Polish Academy of Sciences, ul. Doświadczalna 4, Lublin, 20-290, Poland
| | - Justyna Cybulska
- Institute of Agrophysics, Polish Academy of Sciences, ul. Doświadczalna 4, Lublin, 20-290, Poland
| |
Collapse
|
19
|
Zarza-Albarrán MA, Olmedo-Juárez A, Rojo-Rubio R, Mendoza-de Gives P, González-Cortazar M, Tapia-Maruri D, Mondragón-Ancelmo J, García-Hernández C, Blé-González EA, Zamilpa A. Galloyl flavonoids from Acacia farnesiana pods possess potent anthelmintic activity against Haemonchus contortus eggs and infective larvae. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112402. [PMID: 31739102 DOI: 10.1016/j.jep.2019.112402] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 08/26/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Acacia farnesiana (L.) Willd is a shrub legume used as condiment, medicinal plant and bioactive herbage. This species is used in traditional medicine of several countries to relieve the symptoms of gastrointestinal diseases, diarrhoea, stomach pain and typhoid as well as astringent, antidysenteric and anthelmintic. Some studies have shown that this plant displayed anthelmintic activity against several gastrointestinal nematode parasites of livestock, and also against parasites of human beings, such as malaria. AIM OF THE STUDY This work describes the isolation and chemical identification of the anthelmintic compounds of Acacia farnesiana pods against eggs and infective larvae of the sheep parasitic nematode Haemonchus contortus. The bio-guided chemical fractioning of A. farnesiana pods using ethyl acetate against H. contortus eggs and infective larvae allowed for the identification of naringenin 7-O-(6″-galloylglucoside) (flavonol group) as the compound responsible for the anthelmintic activity against this important parasitic nematode. MATERIALS AND METHODS Anthelmintic activity was assessed using the egg hatching inhibition assay (EHI) and mortality tests. A complete hydroalcoholic extract (HA-E) at 12.5-50 mg/mL, an aqueous fraction (Aq-F) at 3.12-25 mg/mL and an ethyl acetate fraction (EtOAc-F) at 3.12-25 mg/mL were analysed in the first selection phase. The purification of compounds through the chromatographic separation of the organic fraction resulted in nine less complex mixtures (C1F1, C1F2, C1F3, C1F4, C2F1, C2F2, C2F3, C2F4 and C2F5) that were assessed at 0.62-5 mg/mL concentrations. In addition, thiabendazole (0.6 mg/mL) and ivermectin (5 mg/mL) were used as positive controls. Likewise, distilled water and 4% methanol were used as negative controls. The bioactive compounds of EtOAc-F were obtained and characterised through chromatographic processes like open column chromatography, thin layer chromatography (TLC), high performance liquid chromatography (HPLC), ultra-performance liquid chromatography (UPLC) and gass chromatography-mass detection (GC-MS). Bioactive compounds were identified by spectroscopy (1H and 13C NMR) and mass spectrometric analysis. Additionally, the H. contortus eggs and infective larvae exposed to the bioactive compounds were observed through environmental scanning electron microscopy (ESEM) and confocal laser scanning microscopy (CLSM). Data were analysed based on a completely randomised design using ANOVA through a general linear model. RESULTS The EtOAc-F fraction showed the highest ovicidal and larvicidal activities, at close to 100% at 3.12 and 6.25 mg/mL, respectively. The treatments C1F2, C1F3 and C2F3 displayed the main ovicidal activity (80-100%) at 2.5 mg/mL. The major compounds found in these sub-fractions were identified as galloyl derivatives and flavanones, including gallic acid (1), methyl gallate (2), ethyl gallate (3), naringin (4), naringenin 7-O-(4″, 6″-digalloylglucoside) (5), naringenin 7-O-(6″-galloylglucoside) (6) and naringenin (7). Likewise, the ESEM and CLSM images showed that the assessed compounds adhered to the eggshell and the external cuticle of the larvae. CONCLUSION These results indicate that A. farnesiana pods contain nematocidal compounds and might be promising natural anthelmintic agents against H. contortus. This leguminous plant could be used as a nutraceutical food source for the control of gastrointestinal nematodes in small ruminants.
Collapse
Affiliation(s)
- M A Zarza-Albarrán
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Carr. Fed. Cuernavaca-Cuautla No. 8534, Jiutepec, Morelos, Mexico; Centro Universitario UAEM Temascaltepec, Universidad Autónoma del Estado de México, Km 67.5 Carr. Fed, Toluca-Tejupilco, Temascaltepec, Mexico, Mexico
| | - A Olmedo-Juárez
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Carr. Fed. Cuernavaca-Cuautla No. 8534, Jiutepec, Morelos, Mexico.
| | - R Rojo-Rubio
- Centro Universitario UAEM Temascaltepec, Universidad Autónoma del Estado de México, Km 67.5 Carr. Fed, Toluca-Tejupilco, Temascaltepec, Mexico, Mexico
| | - P Mendoza-de Gives
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Carr. Fed. Cuernavaca-Cuautla No. 8534, Jiutepec, Morelos, Mexico
| | - M González-Cortazar
- Instituto Mexicano del Seguro Social, Centro de Investigación Biomédica del Sur, Argentina No. 1, Xochitepec, Morelos, Mexico
| | - D Tapia-Maruri
- Departamento de Biotecnología, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Carretera Yautepec-Jojutla Km 6, calle CEPROBI N°8, Col. San Isidro, Yautepec, Morelos, C.P. 62731, Mexico
| | - J Mondragón-Ancelmo
- Centro Universitario UAEM Temascaltepec, Universidad Autónoma del Estado de México, Km 67.5 Carr. Fed, Toluca-Tejupilco, Temascaltepec, Mexico, Mexico
| | - C García-Hernández
- Centro Universitario UAEM Temascaltepec, Universidad Autónoma del Estado de México, Km 67.5 Carr. Fed, Toluca-Tejupilco, Temascaltepec, Mexico, Mexico
| | - Ever A Blé-González
- Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa Km. 0.5, 86690, Cunduacán, Tabasco, Mexico
| | - A Zamilpa
- Instituto Mexicano del Seguro Social, Centro de Investigación Biomédica del Sur, Argentina No. 1, Xochitepec, Morelos, Mexico.
| |
Collapse
|
20
|
Vasighi-Shojae H, Gholami-Parashkouhi M, Mohammadzamani D, Soheili A. Predicting Mechanical Properties of Golden Delicious Apple Using Ultrasound Technique and Artificial Neural Network. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01689-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
Stangierski J, Weiss D, Kaczmarek A. Multiple regression models and Artificial Neural Network (ANN) as prediction tools of changes in overall quality during the storage of spreadable processed Gouda cheese. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03369-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract
The aim of the study was to compare the ability of multiple linear regression (MLR) and Artificial Neural Network (ANN) to predict the overall quality of spreadable Gouda cheese during storage at 8 °C, 20 °C and 30 °C. The ANN used five factors selected by Principal Component Analysis, which was used as input data for the ANN calculation. The datasets were divided into three subsets: a training set, a validation set, and a test set. The multiple regression models were highly significant with high determination coefficients: R2 = 0.99, 0.87 and 0.87 for 8, 20 and 30 °C, respectively, which made them a useful tool to predict quality deterioration. Simultaneously, the artificial neural networks models with determination coefficient of R2 = 0.99, 0.96 and 0.96 for 8, 20 and 30 °C, respectively were built. The models based on ANNs with higher values of determination coefficients and lower RMSE values proved to be more accurate. The best fit of the model to the experimental data was found for processed cheese stored at 8 °C.
Collapse
|
22
|
Nicolás-Álvarez DE, Andraca-Adame JA, Chanona-Pérez JJ, Méndez-Méndez JV, Cárdenas-Pérez S, Rodríguez-Pulido A. Evaluation of Nanomechanical Properties of Tomato Root by Atomic Force Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:989-997. [PMID: 31272515 DOI: 10.1017/s1431927619014636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Here, different tissue surfaces of tomato root were characterized employing atomic force microscopy on day 7 and day 21 of growth through Young's modulus and plasticity index. These parameters provide quantitative information regarding the mechanical behavior of the tomato root under fresh conditions in different locations of the cross-section of root [cell surface of the epidermis, parenchyma (Pa), and vascular bundles (Vb)]. The results show that the mechanical parameters depend on the indented region, tissue type, and growth time. Thereby, the stiffness increases in the cell surface of epidermal tissue with increasing growth time (from 9.19 ± 0.68 to 13.90 ± 1.68 MPa) and the cell surface of Pa tissue displays the opposite behavior (from 1.74 ± 0.49 to 0.48 ± 0.55); the stiffness of cell surfaces of Vb tissue changes from 10.60 ± 0.58 to 6.37 ± 0.53 MPa, all cases showed a statistical difference (p < 0.05). Viscoelastic behavior dominates the mechanical forces in the tomato root. The current study is a contribution to a better understanding of the cell mechanics behavior of different tomato root tissues during growth.
Collapse
Affiliation(s)
- D E Nicolás-Álvarez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas,Instituto Politécnico Nacional,Av. Wilfrido Massieu Esq. Cda. Miguel Stampa s/n, C.P. 07738, Gustavo A. Madero, CDMX,Mexico
| | - J A Andraca-Adame
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Hidalgo,Instituto Politécnico Nacional,Carretera "Pachuca-Actopan" Kilómetro 1+500, Municipio San Agustín Tlaxiaca, Hidalgo, Ciudad del Conocimiento y la Cultura, Hidalgo, Edo,Mexico
| | - J J Chanona-Pérez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas,Instituto Politécnico Nacional,Av. Wilfrido Massieu Esq. Cda. Miguel Stampa s/n, C.P. 07738, Gustavo A. Madero, CDMX,Mexico
| | - J V Méndez-Méndez
- Centro de Nanociencias, Micro y Nanotecnologías,Instituto Politécnico Nacional,Wilfrido Massieu s/n. UPALM, Gustavo A. Madero, 07738 CDMX,Mexico
| | - S Cárdenas-Pérez
- Chair of Geobotany and Landscape Planning, Faculty of Biology and Environment Protection,Nicolaus Copernicus University,Toruń,Poland
| | - A Rodríguez-Pulido
- Centro de Investigación en Sustentabilidad Energética y Ambiental,Universidad Autónoma del Noreste,A. C. Prolongación Constituyentes 1002, Col. Las Rusias, C.P. 87560, H. Matamoros, Tamaulipas,Mexico
| |
Collapse
|
23
|
Cárdenas-Pérez S, Chanona-Pérez JJ, Méndez-Méndez JV, Arzate-Vázquez I, Hernández-Varela JD, Vera NG. Recent advances in atomic force microscopy for assessing the nanomechanical properties of food materials. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
García-Hernández C, Rojo-Rubio R, Olmedo-Juárez A, Zamilpa A, Mendoza de Gives P, Antonio-Romo IA, Aguilar-Marcelino L, Arece-García J, Tapia-Maruri D, González-Cortazar M. Galloyl derivatives from Caesalpinia coriaria exhibit in vitro ovicidal activity against cattle gastrointestinal parasitic nematodes. Exp Parasitol 2019; 200:16-23. [PMID: 30914262 DOI: 10.1016/j.exppara.2019.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 01/08/2019] [Accepted: 03/21/2019] [Indexed: 11/25/2022]
Abstract
Gastrointestinal nematodes (GIN) are responsible for enormous economic losses worldwide. The use of anthelmintic drugs reduces the parasitic burden in ruminants. However, the excessive use of these drugs triggers anthelmintic resistance in these parasites, which leads to a worrisome inefficacy of most of the commercially available antiparasitic drugs. Caesalpinia coriaria is an arboreal legume possessing medical properties, although the antiparasitic potential of this plant against animal parasitic nematodes has not yet been studied. The aim of this study was to assess the in vitro ovicidal activity of a hydro-alcoholic extract (HA-E) from C. coriaria fruits against GIN and to identify the compounds responsible for this activity through an egg hatch inhibition (EHI) assay. GIN eggs obtained from cattle faeces were used in bio-guided assays. The HA-E was subjected to a liquid-liquid extraction using water and ethyl acetate to obtain two fractions, an organic fraction (EtOAc-F, 27% yield) and an aqueous (Aq-F, 73% yield) fraction. The chromatographic fractionation of the EtOAc-F (2 gr) was performed on a glass column packed with silica gel and eluted with dichloromethane/methanol with 10% ascending polarity. The bioactive compounds were analysed using high-performance liquid chromatography (HPLC) with UV detection, nuclear magnetic resonance (NMR) spectroscopy and mass spectroscopy (MS). The HA-E extract and the EtOAc-F showed ovicidal activity at a LC50 of 0.92 and 0.16 mg/mL, respectively. A concentration-dependant effect was observed in both treatments. Chromatographic fractionation of the EtOAc-F, allowed for the isolation and characterisation of three important compounds: methyl gallate (1), gallic acid (2) and an unidentified compound (UC). The bioactive molecules (2 and UC) displayed an ovicidal activity close to 100% at 1 mg/mL concentration. The results of this work show that gallic acid (2) isolated from C. coriaria fruits is responsible for its ovicidal activity. The use of Caesalpinia coriaria could be explored in future studies as an environmentally-friendly alternative for the control of GIN in ruminants.
Collapse
Affiliation(s)
- C García-Hernández
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria, Carr. Fed. Cuernavaca-Cuautla No. 8534, Jiutepec, Morelos, Mexico; Centro Universitario UAEM Temascaltepec, Universidad Autónoma Del Estado de México, Km 67.5 Carr. Fed. Toluca-Tejupilco, Temascaltepec, México, Mexico
| | - R Rojo-Rubio
- Centro Universitario UAEM Temascaltepec, Universidad Autónoma Del Estado de México, Km 67.5 Carr. Fed. Toluca-Tejupilco, Temascaltepec, México, Mexico
| | - A Olmedo-Juárez
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria, Carr. Fed. Cuernavaca-Cuautla No. 8534, Jiutepec, Morelos, Mexico.
| | - A Zamilpa
- Instituto Mexicano Del Seguro Social, Centro de Investigación Biomédica Del Sur, Argentina No. 1, Centro, Xochitepec, Morelos, 62790, Mexico
| | - P Mendoza de Gives
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria, Carr. Fed. Cuernavaca-Cuautla No. 8534, Jiutepec, Morelos, Mexico
| | - I A Antonio-Romo
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria, Carr. Fed. Cuernavaca-Cuautla No. 8534, Jiutepec, Morelos, Mexico
| | - L Aguilar-Marcelino
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria, Carr. Fed. Cuernavaca-Cuautla No. 8534, Jiutepec, Morelos, Mexico
| | - J Arece-García
- Estación Experimental de Pastos y Forrajes Indio Hatuey, Universidad de Matanzas. Central España Republicana, CP 44280, Matanzas, Cuba
| | - D Tapia-Maruri
- Departamento de Biotecnología, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional. Carretera Yautepec-Jojutla Km 6, Calle CEPROBI N°8, Col. San Isidro, Yautepec, Morelos, CP 62731, Mexico
| | - M González-Cortazar
- Instituto Mexicano Del Seguro Social, Centro de Investigación Biomédica Del Sur, Argentina No. 1, Centro, Xochitepec, Morelos, 62790, Mexico.
| |
Collapse
|
25
|
Structural, mechanical and enzymatic study of pectin and cellulose during mango ripening. Carbohydr Polym 2018; 196:313-321. [DOI: 10.1016/j.carbpol.2018.05.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/02/2018] [Accepted: 05/14/2018] [Indexed: 01/31/2023]
|
26
|
A visible-range computer-vision system for automated, non-intrusive assessment of the pH value in Thomson oranges. COMPUT IND 2018. [DOI: 10.1016/j.compind.2018.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Zhao Y, Yin J. Effects of Pichia guilliermondii and Hot Air Treatment on the Postharvest Preservation of Red Fuji Apple Quality Attributes. J Food Prot 2018; 81:186-194. [PMID: 29315028 DOI: 10.4315/0362-028x.jfp-17-244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effects of individual and combined Pichia guilliermondii (at 1 × 108 CFU mL-1) and hot air (at 38°C for 96 h) treatments on the three major postharvest diseases Botrytis cinerea, Penicillium expansum, and Colletotrichum gloeosporioides, as well as the quality and antioxidant content of Red Fuji ( Malus pumila var. domestica) apple fruit, were investigated in this work. Results suggested that the combined hot air and antagonistic yeast ( P. guilliermondii) treatment effectively and completely inhibited the infection of apple fruit wounds by the three major postharvest diseases. Furthermore, apple fruit treated with antagonistic yeast or heat alone maintained better quality, which included mass loss, firmness, solid/acid ratio, and ascorbic acid content, than the control. The combination of the two treatments yielded the optimum apple quality. Moreover, the combined hot air and P. guilliermondii treatment also maintained or enhanced the antioxidative enzyme activities and total phenolic content of apple fruit. All results demonstrated that the combined antagonistic yeast and hot air treatment maintained the postharvest freshness of apple fruit.
Collapse
Affiliation(s)
- Yan Zhao
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Jingjing Yin
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| |
Collapse
|