1
|
Chasquibol N, Sotelo A, Tapia M, Alarcón R, Goycoolea F, Perez-Camino MDC. Co-Microencapsulation of Cushuro ( Nostoc sphaericum) Polysaccharide with Sacha Inchi Oil ( Plukenetia huayllabambana) and Natural Antioxidant Extracts. Antioxidants (Basel) 2024; 13:680. [PMID: 38929119 PMCID: PMC11201258 DOI: 10.3390/antiox13060680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Cushuro (Nostoc sphaericum) polysaccharide was used to co-microencapsulate sacha inchi oil, natural antioxidant extracts from the oleoresin of charapita chili peppers (Capsicum frutescens L.) and grape orujo (Vitis vinifera L.). Encapsulation efficiency, moisture, particle size, morphology, oxidative stability, shelf-life, solubility, essential fatty acid profile, sterol content and antioxidant capacity were evaluated. The formulations with grape orujo extract showed higher oxidative stability (4908 ± 184 h), antioxidant capacity (4835.33 ± 40.02 µg Trolox/g ms), higher phenolic contents (960.11 ± 53.59 µg AGE/g ms) and a smaller particle size (7.55 µm) than the other formulations, as well as good solubility and a low moisture content. Therefore, grape orujo extracts can be used as natural antioxidants. The fatty acid composition (ω-3) remained quite stable in all the formulations carried out, which also occurred for sterols and tocopherols. In combination with gum arabic, grape orujo extract offered oxidative protection to sacha inchi oil during the first week of storage.
Collapse
Affiliation(s)
- Nancy Chasquibol
- Grupo de Investigación en Alimentos Funcionales, Carrera de Ingeniería Industrial, Instituto de Investigación Científica, Universidad de Lima, Av. Javier Prado Este 4600, Fundo Monterrico Chico, Surco, Lima 15023, Peru; (A.S.); (M.T.); (R.A.)
| | - Axel Sotelo
- Grupo de Investigación en Alimentos Funcionales, Carrera de Ingeniería Industrial, Instituto de Investigación Científica, Universidad de Lima, Av. Javier Prado Este 4600, Fundo Monterrico Chico, Surco, Lima 15023, Peru; (A.S.); (M.T.); (R.A.)
| | - Mateo Tapia
- Grupo de Investigación en Alimentos Funcionales, Carrera de Ingeniería Industrial, Instituto de Investigación Científica, Universidad de Lima, Av. Javier Prado Este 4600, Fundo Monterrico Chico, Surco, Lima 15023, Peru; (A.S.); (M.T.); (R.A.)
| | - Rafael Alarcón
- Grupo de Investigación en Alimentos Funcionales, Carrera de Ingeniería Industrial, Instituto de Investigación Científica, Universidad de Lima, Av. Javier Prado Este 4600, Fundo Monterrico Chico, Surco, Lima 15023, Peru; (A.S.); (M.T.); (R.A.)
| | - Francisco Goycoolea
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK;
- Faculty of Biology, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - María del Carmen Perez-Camino
- Instituto de la Grasa-Consejo Superior de Investigaciones Científicas, Campus Universidad Pablo de Olavide Ed. 46, Crtra. Sevilla-Utrera km 1, 41013 Sevilla, Spain;
| |
Collapse
|
2
|
Lee ZJ, Xie C, Ng K, Suleria HAR. Unraveling the bioactive interplay: seaweed polysaccharide, polyphenol and their gut modulation effect. Crit Rev Food Sci Nutr 2023; 65:382-405. [PMID: 37991467 DOI: 10.1080/10408398.2023.2274453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Seaweed is rich in many unique bioactive compounds such as polyphenols and sulfated polysaccharides that are not found in terrestrial plant. The discovery of numerous biological activities from seaweed has made seaweed an attractive functional food source with the potential to be exploited for human health benefits. During food processing and digestion, cell wall polysaccharide and polyphenols commonly interact, and this may influence the nutritional properties of food. Interactions between cell wall polysaccharide and polyphenols in plant-based system has been extensively studied. However, similar interactions in seaweed have received little attention despite the vast disparity between the structural and chemical composition of plant and seaweed cell wall. This poses a challenge in extracting seaweed bioactive compounds with intact biological properties. This review aims to summarize the cell wall polysaccharide and polyphenols present in brown, red and green seaweed, and current knowledge on their potential interactions. Moreover, this review gives an overview of the gut modulation effect of seaweed polysaccharide and polyphenol.
Collapse
Affiliation(s)
- Zu Jia Lee
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Australia
| | - Cundong Xie
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Australia
| | - Ken Ng
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Australia
| | - Hafiz A R Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Australia
| |
Collapse
|
3
|
Eka Rani YD, Rahmadi M, Hariyadi DM. Characteristics and release of isoniazid from inhalable alginate/carrageenan microspheres. Ther Deliv 2023; 14:689-704. [PMID: 38084393 DOI: 10.4155/tde-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Aim: Inhalable microspheres made of polymers as a targeted drug delivery system have been developed to overcome the limitation of current treatments in Tuberculosis. Materials & methods: Isoniazid inhalable microspheres were created using a gelation ionotropic method with sodium alginate, carrageenan and calcium chloride in four different formulations. Result: The particle morphology has smooth surfaces and round spherical shapes with sizes below 5 μm; good flowability. The drug loading and entrapment efficiency values ranged from 1.69 to 2.75% and 62.44 to 85.30%, respectively. The microspheres drug release followed the Korsmeyer-Peppas model, indicating Fickian diffusion. Conclusion: Isoniazid inhalable microspheres achieved as targeted lung delivery for tuberculosis treatment.
Collapse
Affiliation(s)
- Yotomi Desia Eka Rani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C Mulyorejo, Surabaya, 60115, Indonesia
| | - Mahardian Rahmadi
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Campus C Jl. Mulyorejo, Surabaya, 60115, Indonesia
| | - Dewi Melani Hariyadi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C Mulyorejo, Surabaya, 60115, Indonesia
- Nanotechnology & Drug Delivery System Research Group, Faculty of Pharmacy, Universitas Airlangga, Campus C Mulyorejo, Surabaya, 60115, Indonesia
| |
Collapse
|
4
|
Iqbal DN, Ashraf A, Nazir A, Alshawwa SZ, Iqbal M, Ahmad N. Fabrication, Properties, and Stability of Oregano Essential Oil and Sodium Alginate-Based Wound-Healing Hydrogels. Dose Response 2023; 21:15593258231204186. [PMID: 37822999 PMCID: PMC10563497 DOI: 10.1177/15593258231204186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/08/2023] [Indexed: 10/13/2023] Open
Abstract
The wound dressings fabricated by polymers and oregano essential oil (OEO) can be very effective as a hydrogel. The current study has been focused on fabricating the hydrogel membranes of oregano oil encapsulated as an antibacterial agent into sodium alginate (SA) solution by solvent casting method and then evaluated the antibacterial, antioxidant activity, and physicochemical performance of SA/OEO-based polymeric membranes. The polymeric interactions, surface morphology, water absorption capability, thermal stability, and encapsulation efficiency were investigated by FT-IR, SEM, swelling ratio, DSC, and encapsulation efficiency. The percentage encapsulation efficiency of essential oil was 40.5%. FTIR validated the presence of molecular interaction between individual components. SEM images showed a rough and porous appearance for hydrogel membranes. Moreover, DSC showed that the fabricated membranes were thermally stable. The inclusion of more content OEO decreased swelling ratios. The antioxidant test was carried out by DPPH assay and antibacterial test through disc diffusion method against microbes. The results revealed that membranes containing the highest content of OEO had more excellent antioxidant and antibacterial efficacy. Therefore, the polymeric membranes of sodium alginate loaded with oregano essential oil can be employed as an effective wound-healing candidate.
Collapse
Affiliation(s)
- Dure Najaf Iqbal
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Asia Ashraf
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Arif Nazir
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Samar Z. Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Naveed Ahmad
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| |
Collapse
|
5
|
Physicochemical and Antibacterial Properties of Alginate Films Containing Tansy ( Tanacetum vulgare L.) Essential Oil. Polymers (Basel) 2023; 15:polym15020260. [PMID: 36679141 PMCID: PMC9866307 DOI: 10.3390/polym15020260] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Tansy (Tanacetum vulgare) is a common plant used in folk medicine for digestive problems, fevers, and migraines; against parasites; and as an insect repellent. The active substances in essential oil are responsible for its antimicrobial and antioxidant activity. Thus, tansy essential oil (TO) was added to alginate films to fabricate materials with antioxidant and antibacterial properties for food packaging. Sodium alginate films with glycerol and TO were tested in terms of structure, mechanical, thermal, antioxidant, and antibacterial properties. The structure of the films was examined using SEM and an ATR-FTIR spectrophotometer. The addition of TO to the alginate film significantly changed the films' microstructure, making them rougher and porous. A low-intensity band at 1739 cm-1, indicative of the presence of TO, appeared in all spectra of alginate films with TO. Moreover, the studies revealed that essential oil acted as a plasticizer, slightly reducing tensile strength from about 7 MPa to 5 MPa and increasing elongation at break from 52% to 56% for the sample with 2% TO. The alginate films enriched in TO exhibited antioxidant properties (280 μmol Trolox/100 g of the sample with 2% TO) and antibacterial activity against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa.
Collapse
|
6
|
Liu B, Wang J, Zhang Y, Liu D, Zhang Y. Structure and properties of gelatin edible film modified using oxidized poly(2-hydroxyethyl acrylate) with multiple aldehyde groups. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6349-6357. [PMID: 35538610 DOI: 10.1002/jsfa.12001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/23/2022] [Accepted: 05/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Pure gelatin film usually exhibits characteristics of being brittle and hydrophilic, which limit its wide use in food packing fields. In this study gelatin/oxidized poly(2-hydroxyethylacrylate) (G/OP) composite films were prepared using casting techniques, the aim of this research was to investigate the effects of OP on the structures and properties of the G/OP composite films. RESULTS The Fourier-transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy results indicated that the G/OP films retained their original secondary structure and random coiled conformation. However, the surface and cross-sectional morphologies of the G/OP films were rougher than those of pure gelatin films, cracks and agglomerates appeared with increasing OP dosage. The remarkable transparency of the G/OP film at 280 nm indicated excellent ultraviolet (UV) light barrier properties of the film, which inhibited UV-light-induced food oxidation. Moreover, the addition of OP decreased the water content and water solubility and considerably increased the water contact angle of pure gelatin films from 78.8° to 116.2° (a maximum increase of 37.5°). This suggested that OP modification improved the hydrophobicity of gelatin films. Furthermore, the inclusion of OP significantly promoted the flexibility of gelatin films, thereby improving their brittleness. CONCLUSIONS The UV light barrier properties, hydrophobicity, and flexibility of gelatin films were improved via OP modification, thus the produced G/OP composite films have the potential to be used in food packaging. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Baohua Liu
- College of Food and Biological Engineering, Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, P. R. China
| | - Jian Wang
- College of Food and Biological Engineering, Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, P. R. China
| | - Yin Zhang
- College of Food and Biological Engineering, Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, P. R. China
| | - Dayu Liu
- College of Food and Biological Engineering, Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, P. R. China
| | - Yunfeng Zhang
- College of Food and Biological Engineering, Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, P. R. China
| |
Collapse
|
7
|
Volić M, Pećinar I, Micić D, Đorđević V, Pešić R, Nedović V, Obradović N. Design and characterization of whey protein nanocarriers for thyme essential oil encapsulation obtained by freeze-drying. Food Chem 2022; 386:132749. [PMID: 35339086 DOI: 10.1016/j.foodchem.2022.132749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/01/2022] [Accepted: 03/18/2022] [Indexed: 11/18/2022]
Abstract
Innovative coating powders, based on whey protein concentrate (10-15 wt%) as native (WPC) or denatured protein (d-WPC), solely or in combination with alginate (0.75 wt%, AL), containing thyme essential oil, were produced using the freeze-drying technique. The impact of individual components (protein, alginate and oil) as well as the effect of heat-induced protein denaturation, was resolved regarding physicochemical, thermal and morphological properties of powders. High product yield (∼100%), particle size (223-257 nm), low moisture content (0.10-0.13%) and zeta potential (-19 to -25.6 mV) were determined for all samples. Strong antimicrobial activity of thyme oil nanocarriers against foodborne pathogens was demonstrated. Thermogravimetric analysis (TGA) indicated enhanced thermal stability of encapsulated oil. The most specific bands of structural compounds were identified in Raman spectra of the tested formulations, but principal component analysis (PCA) on recorded spectra was necessary to show the differences between carriers of different wall materials.
Collapse
Affiliation(s)
- Mina Volić
- University of Belgrade, Innovation Center of Faculty of Technology and Metallurgy, Karnegijeva 4, Belgrade 11000, Serbia.
| | - Ilinka Pećinar
- University of Belgrade, Faculty of Agriculture, Nemanjina 6, Belgrade 11080, Serbia
| | - Darko Micić
- University of Belgrade, Institute of General and Physical Chemistry, Studentski trg 41, Belgrade 11000, Serbia
| | - Verica Đorđević
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, Belgrade 11000, Serbia
| | - Radojica Pešić
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, Belgrade 11000, Serbia
| | - Viktor Nedović
- University of Belgrade, Faculty of Agriculture, Nemanjina 6, Belgrade 11080, Serbia
| | - Nataša Obradović
- University of Belgrade, Innovation Center of Faculty of Technology and Metallurgy, Karnegijeva 4, Belgrade 11000, Serbia
| |
Collapse
|
8
|
Film coating based on native starch and cationic starch blend improved postharvest quality of mangoes. Int J Biol Macromol 2022; 209:125-131. [DOI: 10.1016/j.ijbiomac.2022.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 01/04/2023]
|
9
|
Karimifar P, Saei-Dehkordi SS, Izadi Z. Antibacterial, antioxidative and sensory properties of Ziziphora clinopodioides–Rosmarinus officinalis essential oil nanoencapsulated using sodium alginate in raw lamb burger patties. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Faheem F, Liu ZW, Rabail R, Haq IU, Gul M, Bryła M, Roszko M, Kieliszek M, Din A, Aadil RM. Uncovering the Industrial Potentials of Lemongrass Essential Oil as a Food Preservative: A Review. Antioxidants (Basel) 2022; 11:720. [PMID: 35453405 PMCID: PMC9031912 DOI: 10.3390/antiox11040720] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
The food industry is growing vastly, with an increasing number of food products and the demand of consumers to have safe and pathogen-free food with an extended shelf life for consumption. It is critical to have food safe from pathogenic bacteria, fungi, and unpleasant odors or tastes so that the food may not cause any health risks to consumers. Currently, the direction of food industry has been shifting from synthetically produced preservatives to natural preservatives to lower the unnecessary chemical burden on health. Many new technologies are working on natural prevention tools against food degradation. Lemongrass is one such natural preservative that possesses significant antimicrobial and antioxidant activity. The essential oil of lemongrass contains a series of terpenes that are responsible for these activities. These properties make lemongrass acceptable in the food industry and may fulfill consumer demands. This article provides detailed information about the role of lemongrass and its essential oil in food preservation. The outcomes of the research on lemongrass offer room for its new technological applications in food preservation.
Collapse
Affiliation(s)
- Fatima Faheem
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (F.F.); (R.R.); (M.G.); (A.D.)
| | - Zhi Wei Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Roshina Rabail
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (F.F.); (R.R.); (M.G.); (A.D.)
| | - Iahtisham-Ul Haq
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore 54600, Pakistan;
| | - Maryam Gul
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (F.F.); (R.R.); (M.G.); (A.D.)
| | - Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (M.R.)
| | - Marek Roszko
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (M.R.)
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| | - Ahmad Din
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (F.F.); (R.R.); (M.G.); (A.D.)
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (F.F.); (R.R.); (M.G.); (A.D.)
| |
Collapse
|
11
|
Baltrusch KL, Torres MD, Domínguez H, Flórez-Fernández N. Spray-drying microencapsulation of tea extracts using green starch, alginate or carrageenan as carrier materials. Int J Biol Macromol 2022; 203:417-429. [PMID: 35077749 DOI: 10.1016/j.ijbiomac.2022.01.129] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 12/17/2022]
Abstract
Tea industry generates many by-products which could be used to produce and incorporate bioactive tea extracts (TE) into nutraceuticals, cosmetics and/or clinical applications. However, sensibility to external factors is a major disadvantage hindering its utilization. This study deals with the implementation and characterization of suitable biopolymer delivery systems based on starch, carrageenan or alginate, as microencapsulation, to stabilize and protect TE through innovative thin-carbohydrate-coated formulations. TE were spray-dried and microencapsulated in recycled carrier materials (alginate, carrageenan or starch). Product yields varied from 55 to 58%. High microencapsulation and loading efficiencies were achieved (60-93% and 65-84%, respectively). Antioxidant capacity varied from 32 to 46 g Trolox/100 g extract, within different carrier-systems; which also showed promising rheological and UV-protective properties when transformed into gels. Total phenolic content, particle-size distribution, HPSEC-analysis, SEM-analysis and FTIR-analysis were also performed. In sum, this paper characterizes and discusses the high potential of these recycled carbohydrate-coated microparticles for future applications.
Collapse
Affiliation(s)
- K L Baltrusch
- Department of Chemical Engineering, Universidade de Vigo (Campus Ourense), Edificio Politécnico, As Lagoas, 32004 Ourense, Spain; CINBIO, Universidade de Vigo, 32004 Ourense, Spain
| | - M D Torres
- Department of Chemical Engineering, Universidade de Vigo (Campus Ourense), Edificio Politécnico, As Lagoas, 32004 Ourense, Spain; CINBIO, Universidade de Vigo, 32004 Ourense, Spain.
| | - H Domínguez
- Department of Chemical Engineering, Universidade de Vigo (Campus Ourense), Edificio Politécnico, As Lagoas, 32004 Ourense, Spain; CINBIO, Universidade de Vigo, 32004 Ourense, Spain
| | - N Flórez-Fernández
- Department of Chemical Engineering, Universidade de Vigo (Campus Ourense), Edificio Politécnico, As Lagoas, 32004 Ourense, Spain; CINBIO, Universidade de Vigo, 32004 Ourense, Spain
| |
Collapse
|
12
|
Cao J, Zhang H, Wang L, Zhang H, Chi Y, Xia N, Ma Y, Li H, Bai S, Zhang X. Effect of carvacrol on properties and release behavior of gelatin‐egg white protein/polyethylene bilayer film. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jiahui Cao
- College of Food Science Northeast Agricultural University Harbin China
| | - Hong Zhang
- College of Food Science Northeast Agricultural University Harbin China
| | - Lechuan Wang
- College of Food Science Northeast Agricultural University Harbin China
| | - Huajiang Zhang
- College of Food Science Northeast Agricultural University Harbin China
| | - Yujie Chi
- College of Food Science Northeast Agricultural University Harbin China
| | - Ning Xia
- College of Food Science Northeast Agricultural University Harbin China
| | - Yanqiu Ma
- College of Food Science Northeast Agricultural University Harbin China
| | - Hanyu Li
- College of Food Science Northeast Agricultural University Harbin China
| | - Songyuan Bai
- College of Food Science Northeast Agricultural University Harbin China
| | - Xinxin Zhang
- College of Food Science Northeast Agricultural University Harbin China
| |
Collapse
|
13
|
Khatibi SA, Ehsani A, Nemati M, Javadi A. Microencapsulation of
Zataria multiflora
Boiss. essential oil by complex coacervation using gelatin and gum arabic: Characterization, release profile, antimicrobial and antioxidant activities. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Seyed Amin Khatibi
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Ehsani
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
- Nutrition Research Center, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Mahboob Nemati
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Pharmaceutical and Food Control, Faculty of Pharmacy Tabriz University of Medical Sciences Tabriz Iran
| | - Afshin Javadi
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Food Hygiene, Tabriz Branch Islamic Azad University Tabriz Iran
| |
Collapse
|
14
|
Morales AH, Spuches FC, Hero JS, Alanís AF, Martínez MA, Romero CM. Impact of Prosopis nigra gum exudate in alginate core-shell beads synthesis by inverse gelation technique. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Smaoui S, Ben Hlima H, Ben Braïek O, Ennouri K, Mellouli L, Mousavi Khaneghah A. Recent advancements in encapsulation of bioactive compounds as a promising technique for meat preservation. Meat Sci 2021; 181:108585. [PMID: 34119890 DOI: 10.1016/j.meatsci.2021.108585] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
Encapsulation is currently considered as one the most valuable methods for preserving aromatic compounds or hiding odors, enhancing their thermal and oxidative stability, and expanding their food applications. Indeed, this current article was aimed to provide an overview regarding the encapsulation of plant bioactive compounds and the spray-drying and extrusion processes with a focused discussion regarding the encountered challenges for meat and meat product preservation. Furthermore, different ranges of carbohydrates as wall materials (carriers) besides the process conditions' effects on the encapsulation effectiveness and the particle size of the encapsulated bioactive compounds have been discussed. The encapsulation of these compounds ameliorates the quality of the stored meat products by further delaying in microflora growth and lipid/protein oxidation. Therefore, the innovative technologies for plant active compounds encapsulation offer a prospective alternative for natural preservation development in the meat industry.
Collapse
Affiliation(s)
- Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018 Sfax, Tunisia.
| | - Hajer Ben Hlima
- Algae Biotechnology Unit, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax-Tunisia, 3038 Sfax, Tunisia
| | - Olfa Ben Braïek
- Laboratory of Transmissible Diseases and Biologically Active Substances (LR99ES27), Faculty of Pharmacy, University of Monastir, Tunisia
| | - Karim Ennouri
- Laboratory of Amelioration and Protection of Olive Genetic Resources, Olive Tree Institute, University of Sfax, Sfax, Tunisia
| | - Lotfi Mellouli
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018 Sfax, Tunisia
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil.
| |
Collapse
|
16
|
A Critical Review on the Synthesis of Natural Sodium Alginate Based Composite Materials: An Innovative Biological Polymer for Biomedical Delivery Applications. Processes (Basel) 2021. [DOI: 10.3390/pr9010137] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sodium alginate (Na-Alg) is water-soluble, neutral, and linear polysaccharide. It is the derivative of alginic acid which comprises 1,4-β-d-mannuronic (M) and α-l-guluronic (G) acids and has the chemical formula (NaC6H7O6). It shows water-soluble, non-toxic, biocompatible, biodegradable, and non-immunogenic properties. It had been used for various biomedical applications, among which the most promising are drug delivery, gene delivery, wound dressing, and wound healing. For different biomedical applications, it is used in different forms with the help of new techniques. That is the reason it had been blended with different polymers. In this review article, we present a comprehensive overview of the combinations of sodium alginate with natural and synthetic polymers and their biomedical applications involving delivery systems. All the scientific/technical issues have been addressed, and we have highlighted the recent advancements.
Collapse
|
17
|
Nair MS, Tomar M, Punia S, Kukula-Koch W, Kumar M. Enhancing the functionality of chitosan- and alginate-based active edible coatings/films for the preservation of fruits and vegetables: A review. Int J Biol Macromol 2020; 164:304-320. [DOI: 10.1016/j.ijbiomac.2020.07.083] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/20/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023]
|
18
|
Ocak B. Gum arabic and collagen hydrolysate extracted from hide fleshing wastes as novel wall materials for microencapsulation of Origanum onites L. essential oil through complex coacervation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42727-42737. [PMID: 32720020 DOI: 10.1007/s11356-020-10201-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Renewable resource-based biodegradable materials attract more attention than petroleum-based biodegradable materials to support the sustainable development of ecology. Obtaining collagen hydrolysate (CH) from hide fleshing wastes of leather industry is an environmentally friendly way to develop multifunctional materials that can contribute to technological advances in different industries. In this study, 2:1, 1:1, and 1 2 ratios of gum arabic (GA) and CH extracted from hide fleshing waste were used as wall materials to encapsulate Origanum onites L. essential oil (OOEO) using the complex coacervation method. The encapsulation yield and efficiency, functional group composition, particle size, morphology, and thermal stability of the obtained OOEO microcapsules were characterized. The results showed that the obtained microcapsules had high encapsulation yield and efficiency, as well as good functional properties such as uniform morphology and low water activity. The best mass ratio for the biopolymers (GA:CH) was 1:1. Scanning electron microscopy analysis showed that OOEO microcapsule samples had a spherical shape. FTIR analysis was performed on obtained microcapsules, confirming the molecular interactions between GA and CH. These findings can be useful in designing an ideal wall material using GA and CH for microencapsulation of essential oils by the complex coacervation method.
Collapse
Affiliation(s)
- Bugra Ocak
- Faculty of Engineering, Department of Leather Engineering, Ege University, Bornova, 35100, Izmir, Turkey.
| |
Collapse
|
19
|
Basumatary IB, Mukherjee A, Katiyar V, Kumar S. Biopolymer-based nanocomposite films and coatings: recent advances in shelf-life improvement of fruits and vegetables. Crit Rev Food Sci Nutr 2020; 62:1912-1935. [DOI: 10.1080/10408398.2020.1848789] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Indra Bhusan Basumatary
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, Assam, India
| | - Avik Mukherjee
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, Assam, India
| | - Vimal Katiyar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Santosh Kumar
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, Assam, India
| |
Collapse
|
20
|
Blend of renewable bio-based polymers for oil encapsulation: Control of the emulsion stability and scaffolds of the microcapsule by the gummy exudate of Prosopis nigra. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Valido DP, Júnior WDG, de Andrade ME, Rezende AA, de Andrade de Carvalho FM, de Lima R, das Graças Gomes Trindade G, de Alcântara Campos C, Oliveira AMS, de Souza EPBSS, Frank LA, Guterres SS, Sussuchi EM, Matos CRS, Polloni A, de Souza Araújo AA, Padilha FF, Severino P, Souto EB, de Albuquerque Júnior RLC. Otoliths-composed gelatin/sodium alginate scaffolds for bone regeneration. Drug Deliv Transl Res 2020; 10:1716-1728. [PMID: 32901369 DOI: 10.1007/s13346-020-00845-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Evidence that otoliths, mineral-rich limestone concrescences present in the inner ear of bone fishes, can accelerate bone formation in vivo has been previously reported. The goal of this work was the development, characterization, and evaluation of the cytocompatibility of otoliths-incorporated sodium alginate and gelatin scaffolds. Cynoscion acoupa-derived otoliths were characterized by X-ray fluorescence spectrometry (FRX), particle size, free lime, and weight loss by calcination. Furthermore, otoliths were incorporated into sodium alginate (ALG/OTL-s) or gelatin (GEL/OTL-s) scaffolds, previously developed by freeze-drying. Then, the scaffolds were characterized by thermogravimetric analysis (TGA/DTG), differential scanning calorimetry (DSC), infrared spectroscopy with Fourier transform (FTIR), swelling tests, and scanning electron microscopy (SEM). Cytotoxicity assays were run against J774.G8 macrophages and MC3T3-E1 osteoblasts. Data obtained from TGA/DTG, DSC, and FTIR analyses confirmed the interaction between otoliths and the polymeric scaffolds. SEM showed the homogeneous porous 3D structure rich in otolith micro-fragments in both scaffolds. Swelling of the GEL/OTL-s (63.54 ± 3.0%) was greater than of ALG/OTL-s (13.36 ± 9.9%) (p < 0.001). The viability of J774.G8 macrophages treated with both scaffolds was statistically similar to the group treated with DMEM only (p > 0.05) and significantly higher than that treated with Triton-X (p < 0.01) at 72 h. Both scaffolds showed approximately 100% growth of MC3T3-E1 osteoblasts by 24 h, similarly to control (p > 0.05). However, by 48 h, only ALG/OTL-s showed growth similar to control (p > 0.05), whereas GEL/OTL showed a significantly lower growth index (p < 0.05). In conclusion, the physicochemical profiles suggest proper interaction between the otoliths and the two developed polymeric 3D scaffolds. Moreover, both materials showed cytocompatibility with J774.G8 macrophages but the growth of MC3T3-E1 osteoblasts was higher when exposed to ALG/OTL-s. These data suggest that sodium alginate/otoliths scaffolds are potential biomaterials to be used in bone regeneration applications. Graphical abstract.
Collapse
Affiliation(s)
- Daisy Pereira Valido
- Tiradentes University, Av. Murilo Dantas, 300, Aracaju, 49010-390, Brazil.,Laboratory of Nanomedicine and Nanotecnology, Instituto de Tecnologia e Pesquisa, Av. Murilo Dantas, 300 - Farolândia, Aracaju, SE, 49032-490, Brazil
| | - Wilson Déda Gonçalves Júnior
- Tiradentes University, Av. Murilo Dantas, 300, Aracaju, 49010-390, Brazil.,Laboratory of Nanomedicine and Nanotecnology, Instituto de Tecnologia e Pesquisa, Av. Murilo Dantas, 300 - Farolândia, Aracaju, SE, 49032-490, Brazil
| | - Maria Eliane de Andrade
- Tiradentes University, Av. Murilo Dantas, 300, Aracaju, 49010-390, Brazil.,Laboratory of Nanomedicine and Nanotecnology, Instituto de Tecnologia e Pesquisa, Av. Murilo Dantas, 300 - Farolândia, Aracaju, SE, 49032-490, Brazil
| | - Allan Andrade Rezende
- Tiradentes University, Av. Murilo Dantas, 300, Aracaju, 49010-390, Brazil.,Laboratory of Nanomedicine and Nanotecnology, Instituto de Tecnologia e Pesquisa, Av. Murilo Dantas, 300 - Farolândia, Aracaju, SE, 49032-490, Brazil
| | - Felipe Mendes de Andrade de Carvalho
- Tiradentes University, Av. Murilo Dantas, 300, Aracaju, 49010-390, Brazil.,Laboratory of Nanomedicine and Nanotecnology, Instituto de Tecnologia e Pesquisa, Av. Murilo Dantas, 300 - Farolândia, Aracaju, SE, 49032-490, Brazil
| | - Renata de Lima
- Department of Biotechnology, University of Sorocaba, Rodovia Raposo Tavares S/N-km 92,5, Sorocaba, SP, CEP 18023-000, Brazil
| | | | - Caio de Alcântara Campos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, 49100-00, Brazil
| | | | | | - Luiza Abrahão Frank
- Faculty of Pharmacy, Federal University of Rio Grande do Sul, Av. Ipiranga, 2759, Porto Alegre, Rio Grande do Sul, 90610-000, Brazil
| | - Silvia Stanisçuaski Guterres
- Faculty of Pharmacy, Federal University of Rio Grande do Sul, Av. Ipiranga, 2759, Porto Alegre, Rio Grande do Sul, 90610-000, Brazil
| | - Eliana Midori Sussuchi
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, 49100-00, Brazil
| | | | - André Polloni
- Tiradentes University, Av. Murilo Dantas, 300, Aracaju, 49010-390, Brazil.,Laboratory of Nanomedicine and Nanotecnology, Instituto de Tecnologia e Pesquisa, Av. Murilo Dantas, 300 - Farolândia, Aracaju, SE, 49032-490, Brazil
| | | | - Francine Ferreira Padilha
- Tiradentes University, Av. Murilo Dantas, 300, Aracaju, 49010-390, Brazil.,Laboratory of Nanomedicine and Nanotecnology, Instituto de Tecnologia e Pesquisa, Av. Murilo Dantas, 300 - Farolândia, Aracaju, SE, 49032-490, Brazil
| | - Patrícia Severino
- Tiradentes University, Av. Murilo Dantas, 300, Aracaju, 49010-390, Brazil. .,Laboratory of Nanomedicine and Nanotecnology, Instituto de Tecnologia e Pesquisa, Av. Murilo Dantas, 300 - Farolândia, Aracaju, SE, 49032-490, Brazil. .,Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA, 02125, USA. .,Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA.
| | - Eliana Barbosa Souto
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.,CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Ricardo Luiz Cavalcanti de Albuquerque Júnior
- Tiradentes University, Av. Murilo Dantas, 300, Aracaju, 49010-390, Brazil. .,Laboratory of Nanomedicine and Nanotecnology, Instituto de Tecnologia e Pesquisa, Av. Murilo Dantas, 300 - Farolândia, Aracaju, SE, 49032-490, Brazil.
| |
Collapse
|
22
|
Norcino L, Mendes J, Natarelli C, Manrich A, Oliveira J, Mattoso L. Pectin films loaded with copaiba oil nanoemulsions for potential use as bio-based active packaging. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105862] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Melo AMD, Turola Barbi RC, Souza WFCD, Luna LC, Souza HJB, Lucena GL, Quirino MR, Sousa S. Microencapsulated lemongrass (
Cymbopogon flexuosus
) essential oil: A new source of natural additive applied to Coalho cheese. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Anely Maciel de Melo
- Department of Chemical Engineering Federal University of Parana Curitiba Brazil
- Department of Agroindustrial Management and Technology Federal University of Paraiba Bananeiras Brazil
| | | | - Weysser Felipe Cândido de Souza
- Department of Food Science Federal University of Campinas Campinas Brazil
- Department of Agroindustrial Management and Technology Federal University of Paraiba Bananeiras Brazil
| | - Laís Costa Luna
- Department of Agroindustrial Management and Technology Federal University of Paraiba Bananeiras Brazil
| | | | | | - Max Rocha Quirino
- Department of Agroindustrial Management and Technology Federal University of Paraiba Bananeiras Brazil
| | - Solange Sousa
- Department of Agroindustrial Management and Technology Federal University of Paraiba Bananeiras Brazil
| |
Collapse
|
24
|
Almasi L, Radi M, Amiri S. The release rate and antimicrobial activity of calcium‐alginate films containing self‐microemulsifying
Thymus vulgaris
essential oil against
Escherichia coli
and
Staphylococcus aureus. J Food Saf 2020. [DOI: 10.1111/jfs.12828] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Laleh Almasi
- Department of Food Science and Technology, Yasooj Branch Islamic Azad University Yasooj Iran
- Young Researchers and Elite Club, Yasooj Branch Islamic Azad University Yasooj Iran
| | - Mohsen Radi
- Department of Food Science and Technology, Yasooj Branch Islamic Azad University Yasooj Iran
- Young Researchers and Elite Club, Yasooj Branch Islamic Azad University Yasooj Iran
| | - Sedigheh Amiri
- Department of Food Science and Technology, Yasooj Branch Islamic Azad University Yasooj Iran
- Young Researchers and Elite Club, Yasooj Branch Islamic Azad University Yasooj Iran
| |
Collapse
|
25
|
Recent developments in chitosan encapsulation of various active ingredients for multifunctional applications. Carbohydr Res 2020; 492:108004. [DOI: 10.1016/j.carres.2020.108004] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/16/2020] [Accepted: 04/03/2020] [Indexed: 01/08/2023]
|
26
|
Evaluation of lethality temperature and use of different wall materials in the microencapsulation process of Trichoderma asperellum conidias by spray drying. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.02.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
|
28
|
Pisoschi AM, Pop A, Cimpeanu C, Turcuş V, Predoi G, Iordache F. Nanoencapsulation techniques for compounds and products with antioxidant and antimicrobial activity - A critical view. Eur J Med Chem 2018; 157:1326-1345. [DOI: 10.1016/j.ejmech.2018.08.076] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022]
|
29
|
Luiz de Oliveira J, Ramos Campos EV, Fraceto LF. Recent Developments and Challenges for Nanoscale Formulation of Botanical Pesticides for Use in Sustainable Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8898-8913. [PMID: 30075067 DOI: 10.1021/acs.jafc.8b03183] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In recent years, the use of substances of natural origin, such as botanical pesticides, has emerged as a preferred alternative to the use of synthetic pesticides, the excessive use of which has raised a lot of concern over safety to human/animal health and the environment. Recent developments in nanotechnology have opened up a new avenue for the development of more efficient formulations that can overcome many of the obstacles generally faced in their use in the field, such as loss of activity because of degradation, instability, volatilization, and so on. This Review discusses the key developments in this area, as well as the challenges in relation to nanoscale formulation of botanical pesticides. It presents an appraisal of the recent scientific research, along with an account of the products that have already reached the market. While it acknowledges the great potential of nanotechnology-derived formulations of botanical pesticides for increasing agricultural productivity and reducing health and the environmental impacts, it also highlights the technological challenges that must be addressed to enable adoption of the technology for wider use in agri-food production.
Collapse
Affiliation(s)
- Jhones Luiz de Oliveira
- São Paulo State University (UNESP), Institute of Science and Technology , Avenida Três de Março 511 , Alto da Boa Vista, Sorocaba , São Paulo 18087-180 , Brazil
| | - Estefânia Vangelie Ramos Campos
- São Paulo State University (UNESP), Institute of Science and Technology , Avenida Três de Março 511 , Alto da Boa Vista, Sorocaba , São Paulo 18087-180 , Brazil
| | - Leonardo Fernandes Fraceto
- São Paulo State University (UNESP), Institute of Science and Technology , Avenida Três de Março 511 , Alto da Boa Vista, Sorocaba , São Paulo 18087-180 , Brazil
| |
Collapse
|