1
|
Bezerra FDS, Ramos GMS, Carvalho MGDO, Carvalho HS, de Souza JP, de Carvalho Neto SL, de Souza SMAGU, Ferraz DCDC, Koblitz MGB. Cytotoxic potential of sunflower meal NaDES and liquid-liquid extracts. Food Chem 2025; 474:143148. [PMID: 39919417 DOI: 10.1016/j.foodchem.2025.143148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/13/2025] [Accepted: 01/28/2025] [Indexed: 02/09/2025]
Abstract
Sunflower meal, a by-product rich in proteins and phenolic compounds, has potential applications in food and healthcare due to its bioactive phenolic compounds. However, challenges arise in extracting these compounds, as phenol-protein complexes can reduce digestibility and nutritional value. This study explored phenolic compound extraction from sunflower meal using NaDES and hydroethanolic extract, followed by liquid-liquid extraction (LLE) with organic solvents to recover target compounds. Cytotoxicity assays were performed on breast cancer cell lines and pathogenic bacteria. Acetonitrile was the most effective solvent for phenolic recovery in Choline Chloride:Glycerol and Urea:Glycerol solvents, achieving 80 % and 63 % recovery, respectively. These NaDES combinations reduced cell viability by up to 78.4 % in MCF-7 cells and 74 % in MDA-MB-231 cells. Hydroethanolic extracts showed the highest antimicrobial activity, with up to 100 % bacterial viability reduction. This study confirms NaDES as effective green solvents and highlights their bioactivity, stressing the need for optimal extraction parameters.
Collapse
Affiliation(s)
- Fernanda de Sousa Bezerra
- Food and nutrition graduate program - PPGAN, Federal University of the State of Rio de Janeiro - UNIRIO, 296 Pasteur Av. 2nd floor. Urca, Rio de Janeiro, - RJ 22290-240, Brazil.
| | - Gabriela Macello Soares Ramos
- Food and nutrition graduate program - PPGAN, Federal University of the State of Rio de Janeiro - UNIRIO, 296 Pasteur Av. 2nd floor. Urca, Rio de Janeiro, - RJ 22290-240, Brazil.
| | - Matheus Grilo de Oliveira Carvalho
- Food and nutrition graduate program - PPGAN, Federal University of the State of Rio de Janeiro - UNIRIO, 296 Pasteur Av. 2nd floor. Urca, Rio de Janeiro, - RJ 22290-240, Brazil.
| | - Helena Sacco Carvalho
- Food and nutrition graduate program - PPGAN, Federal University of the State of Rio de Janeiro - UNIRIO, 296 Pasteur Av. 2nd floor. Urca, Rio de Janeiro, - RJ 22290-240, Brazil.
| | - Jonathan Pinheiro de Souza
- Food and nutrition graduate program - PPGAN, Federal University of the State of Rio de Janeiro - UNIRIO, 296 Pasteur Av. 2nd floor. Urca, Rio de Janeiro, - RJ 22290-240, Brazil.
| | - Sálvio Lima de Carvalho Neto
- Chemical engineering graduate program - PósEnq, Federal University of Santa Catarina - UFSC, P.O. Box 476, Florianópolis, SC 88040-900, Brazil
| | | | - Danielly C da Costa Ferraz
- Food, nutrition and health graduate program, State University of Rio de Janeiro - UERJ, 524 São Francisco Xavier St. 12th floor. Maracanã, Rio de Janeiro -, RJ 20550-170, Brazil
| | - Maria Gabriela Bello Koblitz
- Food and nutrition graduate program - PPGAN, Federal University of the State of Rio de Janeiro - UNIRIO, 296 Pasteur Av. 2nd floor. Urca, Rio de Janeiro, - RJ 22290-240, Brazil.
| |
Collapse
|
2
|
Siripattanakulkajorn C, Sombutsuwan P, Villeneuve P, Baréa B, Domingo R, Lebrun M, Aryusuk K, Durand E. Physical properties and oxidative stability of mayonnaises fortified with natural deep eutectic solvent, either alone or enriched with pigmented rice bran. Food Chem 2025; 463:141124. [PMID: 39243623 DOI: 10.1016/j.foodchem.2024.141124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
This article explores the novel use of natural deep eutectic solvents (NaDES) in real food by incorporating them into mayonnaise, either alone or with pigmented rice bran (RB). Results showed that NaDES-fortified mayonnaises could prevent lipid oxidation. Notably, mayonnaises with NaDES2 (betaine:sucrose:water) significantly reduced the production of lipid hydroperoxides, which was maintained to an average of 2.6 mmol LOOH/kg oil, which is 2.9 times lower than the control (7.5 mmol LOOH/kg oil), or 7.4 times lower than mayonnaise with citric acid (19.1 mmol LOOH/kg oil). NaDES2-fortified mayonnaises maintained high tocopherols levels (0.97 g/Kg oil) and reduced volatile compounds from secondary lipid oxidation. This effect may result from NaDES altering the aqueous phase properties of mayonnaise, notably by reducing water activity by ∼0.1. Finally, pre-enrichment of the NaDES phase with bioactive molecules (e.g. from pigmented RB) represents an innovative perspective to promote the health benefits of formulated foods.
Collapse
Affiliation(s)
- Chatchai Siripattanakulkajorn
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand
| | - Piraporn Sombutsuwan
- Pilot Plant Development and Training Institute (PDTI), King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand
| | - Pierre Villeneuve
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France; CIRAD, UMR QualiSud, F-34398 Montpellier, France
| | - Bruno Baréa
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France; CIRAD, UMR QualiSud, F-34398 Montpellier, France
| | - Romain Domingo
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France; CIRAD, UMR QualiSud, F-34398 Montpellier, France
| | - Marc Lebrun
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France; CIRAD, UMR QualiSud, F-34398 Montpellier, France
| | - Kornkanok Aryusuk
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand; Pilot Plant Development and Training Institute (PDTI), King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien, Bangkok 10150, Thailand.
| | - Erwann Durand
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier, France; CIRAD, UMR QualiSud, F-34398 Montpellier, France.
| |
Collapse
|
3
|
Scandar S, Mustafa NR, Zadra C, Marcotullio MC, Choi YH. Development of essential oil diffusion matrices using non-ionic surfactants-supported NADES and hydrophobic NADES. Analyst 2025; 150:425-434. [PMID: 39691961 DOI: 10.1039/d4an01161a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Natural deep eutectic solvents (NADES) represent a significant advance in green chemistry, offering an eco-friendly alternative to conventional organic solvents for applications in extraction, reaction media, and formulations. This study explores the application of NADES in essential oil formulations, using lavender essential oil (LEO) to investigate the solubilization and release of volatile organic compounds (VOCs). Two distinct NADES formulations were evaluated: hydrophilic NADES combined with surfactants, and hydrophobic NADES. The results show that hydrophilic NADES, when combined with non-ionic surfactants, form stable emulsions that effectively solubilize and release LEO's VOCs, overcoming the high hydrophilicity limitation of NADES. Headspace analysis and gas chromatography-mass spectrometry (GC-MS) identified 25 VOCs, with differential components analyzed through orthogonal partial least-squares discriminant analysis (OPLS-DA). VOCs were well-clustered in OPLS-DA and principal component analysis (PCA), with five clearly differentiated groups (C, N1, N3, N5, and N9). However, challenges remain, particularly in the solubilization and gradual release of VOCs. In contrast, hydrophobic NADES demonstrated a controlled release mechanism, effectively encapsulating and steadily releasing VOCs, making them advantageous for sustained fragrance delivery. The study further emphasizes the importance of the Hydrophilic-Lipophilic Balance (HLB) in NADES formulations, showing that adjusting HLB through surfactant concentrations significantly influences VOC release dynamics. In conclusion, this research highlights the potential of NADES as efficient, eco-friendly solvent systems for essential oil applications. By providing insights into optimizing NADES compositions for specific solubility and release profiles, the study identifies both challenges and opportunities, paving the way for further advancements in green chemistry.
Collapse
Affiliation(s)
- Samir Scandar
- Department of Pharmaceutical Sciences, Via del Giochetto, Ed. B, University of Perugia, 06122 Perugia, Italy.
- Natural Products Laboratory, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands.
| | - Natali Rianika Mustafa
- Natural Products Laboratory, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands.
| | - Claudia Zadra
- Department of Pharmaceutical Sciences, Via del Giochetto, Ed. B, University of Perugia, 06122 Perugia, Italy.
| | - Maria Carla Marcotullio
- Department of Pharmaceutical Sciences, Via del Giochetto, Ed. B, University of Perugia, 06122 Perugia, Italy.
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands.
| |
Collapse
|
4
|
Wei Z, Zhang W, Du M, Zhong H, Fang X. Widely targeted metabolomic and KEGG analyses of natural deep eutectic solvent-based saponins extraction from Camellia oleifera Abel.: Effects on composition. Food Chem 2024; 450:139333. [PMID: 38636384 DOI: 10.1016/j.foodchem.2024.139333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
Camellia saponins are important by-products of Camellia Oleifer Abel. processing. In this study, an eco-friendly method based on natural deep eutectic solvents (NaDESs, proline and glycerol at a molar ratio of 2:5) was established to extract saponins from C.oleifera cakes. The content of saponin (702.22 ± 1.28 mg/g) obtained using NaDES was higher than those extracted using water or methanol. UPLC-Q-TOF MS analysis of chemical structure showed that the difference in the extraction technique alter individual saponins. A widely targeted metabolomic approach and KEGG metabolic pathway analysis showed that the upregulated metabolites in the NaDES-based extract mainly included flavonoids, alkaloids, and phenolic acids; and they were involved in arginine and proline metabolism, metabolic pathways, phenylpropanoid biosynthesis, biosynthesis of secondary metabolites, and flavonoid biosynthesis. The present study proposes a selective substitute for use in the extraction of camellia saponins with composition analysis.
Collapse
Affiliation(s)
- Zhenqian Wei
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, 73(#), Daqiao Road, Hangzhou City, Zhejiang Province 311400, China
| | - Weiyan Zhang
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, 73(#), Daqiao Road, Hangzhou City, Zhejiang Province 311400, China; Food Science and Technology College, Central South University of Forestry & Technology, Changsha City, Hunan Province 410004, China
| | - Menghao Du
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, 73(#), Daqiao Road, Hangzhou City, Zhejiang Province 311400, China
| | - Haiyan Zhong
- Food Science and Technology College, Central South University of Forestry & Technology, Changsha City, Hunan Province 410004, China
| | - Xuezhi Fang
- The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, 73(#), Daqiao Road, Hangzhou City, Zhejiang Province 311400, China.
| |
Collapse
|
5
|
Schuh L, Salgado LA, Piau TB, Silveira AP, Leal C, Romera LF, Radicchi MA, Santos MKMS, Falcao L, Grisolia CK, Gris EF, Muehlmann LA, Báo SN, Mello VC. Integrating Natural Deep Eutectic Solvents into Nanostructured Lipid Carriers: An Industrial Look. Pharmaceuticals (Basel) 2024; 17:855. [PMID: 39065706 PMCID: PMC11280234 DOI: 10.3390/ph17070855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The industries are searching for greener alternatives for their productions due to the rising concern about the environment and creation of waste and by-products without industrial utility for that specific line of products. This investigation describes the development of two stable nanostructured lipid carriers (NLCs): one is the formulation of a standard NLC, and the other one is the same NLC formulation associated with a natural deep eutectic solvent (NaDES). The research presents the formulation paths of the NLCs through completeness, which encompass dynamic light scattering (DLS), zeta potential tests, and pH. Transmission electron microscopy (TEM) and confocal microscopy were performed to clarify the morphology. Cytotoxicity tests with zebrafish were realized, and the results are complementary to the in vitro outcomes reached with fibroblast L132 tests by the MTT technique and the zymography test. Infrared spectroscopy and X-ray diffractometry tests elucidated the link between the physicochemical characteristics of the formulation and its behavior and properties. Different cooling techniques were explored to prove the tailorable properties of the NLCs for any industrial applications. In conclusion, the compiled results show the successful formulation of new nanocarriers based on a sustainable, eco-friendly, and highly tailorable technology, which presents low cytotoxic potential.
Collapse
Affiliation(s)
- Luísa Schuh
- Cooil Cosmetics, Brasília 72622-401, DF, Brazil; (L.S.); (L.A.S.); (A.P.S.); (C.L.); (L.F.R.); (M.A.R.)
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil;
| | - Luane Almeida Salgado
- Cooil Cosmetics, Brasília 72622-401, DF, Brazil; (L.S.); (L.A.S.); (A.P.S.); (C.L.); (L.F.R.); (M.A.R.)
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil;
| | - Tathyana Benetis Piau
- Laboratory of Genetic Toxicology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (T.B.P.); (C.K.G.)
| | - Ariane Pandolfo Silveira
- Cooil Cosmetics, Brasília 72622-401, DF, Brazil; (L.S.); (L.A.S.); (A.P.S.); (C.L.); (L.F.R.); (M.A.R.)
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil;
| | - Caio Leal
- Cooil Cosmetics, Brasília 72622-401, DF, Brazil; (L.S.); (L.A.S.); (A.P.S.); (C.L.); (L.F.R.); (M.A.R.)
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil;
| | - Luís Felipe Romera
- Cooil Cosmetics, Brasília 72622-401, DF, Brazil; (L.S.); (L.A.S.); (A.P.S.); (C.L.); (L.F.R.); (M.A.R.)
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil;
| | - Marina Arantes Radicchi
- Cooil Cosmetics, Brasília 72622-401, DF, Brazil; (L.S.); (L.A.S.); (A.P.S.); (C.L.); (L.F.R.); (M.A.R.)
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil;
| | | | - Leila Falcao
- Inaturals SAS, 2 Bis, Impasse Henri Mouret, 84000 Avignon, France;
| | - Cesar Koppe Grisolia
- Laboratory of Genetic Toxicology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (T.B.P.); (C.K.G.)
| | - Eliana Fortes Gris
- Faculty of Ceilândia, University of Brasília, Brasília 72220-275, DF, Brazil; (E.F.G.); (L.A.M.)
| | - Luis Alexandre Muehlmann
- Faculty of Ceilândia, University of Brasília, Brasília 72220-275, DF, Brazil; (E.F.G.); (L.A.M.)
| | - Sônia Nair Báo
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil;
| | - Victor Carlos Mello
- Cooil Cosmetics, Brasília 72622-401, DF, Brazil; (L.S.); (L.A.S.); (A.P.S.); (C.L.); (L.F.R.); (M.A.R.)
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil;
| |
Collapse
|
6
|
Benítez-Correa E, Bastías-Montes JM, Nelson SA, Iznaga TB, Wong MP, Muñoz-Fariña O. Improving the Composition and Bioactivity of Cocoa (Theobroma cacao L.) Bean Shell Extract by Choline Chloride-Lactic Acid Natural Deep Eutectic Solvent Extraction Assisted by Pulsed Electric Field Pre-Treatment. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:351-358. [PMID: 38517668 DOI: 10.1007/s11130-024-01163-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 03/24/2024]
Abstract
An environmentally friendly method for the release of cocoa bean shell (CBS) extracts is proposed in this paper. This work aims to investigate the effect of pulsed electric field (PEF) pre-treatment on subsequent solid-liquid extraction (SLE) of metabolites with choline chloride-lactic acid natural deep eutectic solvent (NaDES) and bioactivity of cocoa bean shell (CBS) extract. Two different media for PEF application were evaluated: water and chlorine chloride-lactic acid. Total polyphenols (TPC), total flavonoids (TFC), individual major compounds, and antioxidant and antibacterial activity of CBS extracts were assessed. The performance of PEF-assisted extraction was compared with SLE and ultrasound-assisted extraction (UAE). The proposed method improved the release of TPC up to 45% and TFC up to 48% compared with the conventional extraction. The CBS extract showed medium growth inhibition of Escherichia coli and high growth inhibition of Salmonella sp, Listeria monocytogenes, and Staphylococcus aureus. Thus, an extract with enhanced antioxidant and antibacterial properties was obtained.
Collapse
Affiliation(s)
- Elaine Benítez-Correa
- Food Engineering Department, University of Bío Bío, Chillán, Chile
- Food Industry Researches Institute, La Habana, Cuba
| | | | | | | | - Mario Pérez Wong
- Food Engineering Department, University of Bío Bío, Chillán, Chile
| | - Ociel Muñoz-Fariña
- Institute of Food Science and Technology, Austral University of Chile, Valdivia, Chile
| |
Collapse
|
7
|
Negi T, Kumar A, Sharma SK, Rawat N, Saini D, Sirohi R, Prakash O, Dubey A, Dutta A, Shahi NC. Deep eutectic solvents: Preparation, properties, and food applications. Heliyon 2024; 10:e28784. [PMID: 38617909 PMCID: PMC11015381 DOI: 10.1016/j.heliyon.2024.e28784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024] Open
Abstract
Deep Eutectic Solvents (DESs) emerge as innovative 21st-century solvents, supplanting traditional ones like ethanol and n-hexane. Renowned for their non-toxic, biodegradable, and water-miscible nature with reduced volatility, DESs are mostly synthesized through heating and stirring method. Physicochemical properties such as polarity, viscosity, density and surface tension of DESs influenced their application. This review paper gives the overview of application of eco-benign DESs in fruits, vegetables, cereals, pulses, spices, herbs, plantation crops, oil seed crops, medicinal and aromatic plants, seaweed, and milk for the extraction of bioactive compounds. Also, it gives insight of determination of pesticides, insecticides, hazardous and toxic compounds, removal of heavy metals, detection of illegal milk additive, purification of antibiotics and preparation of packaging film. Methodologies for separating bioactive compounds from DESs extracts are systematically examined. Further, safety regulations of DESs are briefly discussed and reviewed literature reveals prevalent utilization of DES-based bioactive compound rich extracts in cosmetics, indicating untapped potential of their application in the food industry.
Collapse
Affiliation(s)
- Taru Negi
- Department of Food Science and Technology, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Anil Kumar
- Department of Food Science and Technology, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Satish Kumar Sharma
- Department of Food Science and Technology, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Neha Rawat
- Department of Food Science and Technology, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Deepa Saini
- Department of Food Science and Technology, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Ranjna Sirohi
- Sri Karan Narendra Agriculture University, Jobner, 303329, Rajasthan, India
| | - Om Prakash
- Department of Chemistry, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Ashutosh Dubey
- Department of Biochemistry, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Anuradha Dutta
- Department of Foods & Nutrition, College of Community Sciences, Pantnagar, 263145, Uttarakhand, India
| | - Navin Chand Shahi
- Department of Post-Harvest Process and Food Engineering, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, India
| |
Collapse
|
8
|
Villa C, Caviglia D, Robustelli Della Cuna FS, Zuccari G, Russo E. NaDES Application in Cosmetic and Pharmaceutical Fields: An Overview. Gels 2024; 10:107. [PMID: 38391437 PMCID: PMC10888423 DOI: 10.3390/gels10020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Natural deep eutectic solvents (NaDES) represent a new generation of green, non-flammable solvents, useful as an efficient alternative to the well-known ionic liquids. They can be easily prepared and exhibit unexpected solubilizing power for lipophilic molecules, although those of a hydrophilic nature are mostly used. For their unique properties, they can be recommend for different cosmetic and pharmaceutical applications, ranging from sustainable extraction, obtaining ready-to-use ingredients, to the development of biocompatible drug delivery responsive systems. In the biomedical field, NaDES can be used as biopolymer modifiers, acting as delivery compounds also known as "therapeutic deep eutectic systems", being able to solubilize and stabilize different chemical and galenical formulations. The aim of this review is to give an overview of the current knowledge regarding natural deep eutectic solvents specifically applied in the cosmetic and pharmaceutical fields. The work could help to disclose new opportunities and challenges for their implementation not only as green alternative solvents but also as potential useful pathways to deliver bioactive ingredients in innovative formulations.
Collapse
Affiliation(s)
- Carla Villa
- Department of Pharmacy, Section of Drug and Cosmetic Chemistry, Viale Benedetto XV 3, 16132 Genoa, Italy
| | - Debora Caviglia
- Department of Pharmacy, Section of Drug and Cosmetic Chemistry, Viale Benedetto XV 3, 16132 Genoa, Italy
| | | | - Guendalina Zuccari
- Department of Pharmacy, Section of Drug and Cosmetic Chemistry, Viale Benedetto XV 3, 16132 Genoa, Italy
| | - Eleonora Russo
- Department of Pharmacy, Section of Drug and Cosmetic Chemistry, Viale Benedetto XV 3, 16132 Genoa, Italy
| |
Collapse
|
9
|
Jiménez-Amezcua I, López Martínez MI, Ruiz Matute AI, Sanz ML. Natural Deep Eutectic Solvents for Solubility and Selective Fractionation of Bioactive Low Molecular Weight Carbohydrates. Foods 2023; 12:4355. [PMID: 38231866 DOI: 10.3390/foods12234355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024] Open
Abstract
Natural deep eutectic solvents (NADESs) have been shown to be selective and environmentally friendly solvents for the extraction of bioactive compounds. However, studies on the solubility of low-molecular-weight carbohydrates (LMWCs) in NADESs are scarce. In this work, new solubility data of LMWCs in NADESs are provided and a new approach based on the use of these solvents for the efficient fractionation of bioactive carbohydrates was explored for the first time. Several mono- and disaccharides and three NADESs based on choline chloride (ChCl) and different donors (2-ethylene glycol (EtG), glycerol (Gly) and ethanedioic acid dihydrate (Eth)) were considered. While the degradation of carbohydrates, mainly ketoses, was detected with ChCl:Eth due to its acidic nature, ChCl:EtG and ChCl:Gly were found to be useful alternatives for selectively separating bioactive ketoses and their corresponding aldoses (e.g., lactulose/lactose and tagatose/galactose) present in equimolar binary mixtures. In addition, the usefulness of ChCl:EtG for the selective enrichment of lactulose to be used as food ingredient or nutraceutical was proven (from a 25% in the reaction mixture to a 56% in the purified sample). NADESs could be used for the selective fractionation of value-added carbohydrates from interfering sugars for several applications, including food science, engineering or pharmaceuticals.
Collapse
Affiliation(s)
- Ignacio Jiménez-Amezcua
- Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
- Pharmactive Biotech Products S.L.U., C/Faraday, 7, 28049 Madrid, Spain
| | | | - Ana Isabel Ruiz Matute
- Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - María Luz Sanz
- Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
10
|
Schuh L, Reginato M, Florêncio I, Falcao L, Boron L, Gris EF, Mello V, Báo SN. From Nature to Innovation: The Uncharted Potential of Natural Deep Eutectic Solvents. Molecules 2023; 28:7653. [PMID: 38005377 PMCID: PMC10675409 DOI: 10.3390/molecules28227653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
This review discusses the significance of natural deep eutectic solvents (NaDESs) as a promising green extraction technology. It employs the consolidated meta-analytic approach theory methodology, using the Web of Science and Scopus databases to analyze 2091 articles as the basis of the review. This review explores NaDESs by examining their properties, challenges, and limitations. It underscores the broad applications of NaDESs, some of which remain unexplored, with a focus on their roles as solvents and preservatives. NaDESs' connections with nanocarriers and their use in the food, cosmetics, and pharmaceutical sectors are highlighted. This article suggests that biomimicry could inspire researchers to develop technologies that are less harmful to the human body by emulating natural processes. This approach challenges the notion that green science is inferior. This review presents numerous successful studies and applications of NaDESs, concluding that they represent a viable and promising avenue for research in the field of green chemistry.
Collapse
Affiliation(s)
- Luísa Schuh
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, Brazil; (L.S.); (M.R.); (I.F.); (V.M.)
- Cooil Cosmetics, Brasília 71070-524, Brazil
- Nanocycle Group, Brasília 72622-401, Brazil
| | - Marcella Reginato
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, Brazil; (L.S.); (M.R.); (I.F.); (V.M.)
- Cooil Cosmetics, Brasília 71070-524, Brazil
- Nanocycle Group, Brasília 72622-401, Brazil
| | - Isadora Florêncio
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, Brazil; (L.S.); (M.R.); (I.F.); (V.M.)
- Cooil Cosmetics, Brasília 71070-524, Brazil
- Nanocycle Group, Brasília 72622-401, Brazil
| | - Leila Falcao
- Inaturals SAS, 2 Bis, Impasse Henri Mouret, 84000 Avignon, France;
| | - Luana Boron
- Inaturals BR, Rua Gerson Luís Piovesan 200, Concórdia 89701-012, Brazil;
| | - Eliana Fortes Gris
- Department of Bromatology, Faculty of Ceilândia, University of Brasília, Ceilândia 72220-275, Brazil;
| | - Victor Mello
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, Brazil; (L.S.); (M.R.); (I.F.); (V.M.)
- Cooil Cosmetics, Brasília 71070-524, Brazil
- Nanocycle Group, Brasília 72622-401, Brazil
| | - Sônia Nair Báo
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília 70910-900, Brazil; (L.S.); (M.R.); (I.F.); (V.M.)
- Nanocycle Group, Brasília 72622-401, Brazil
| |
Collapse
|
11
|
Zhou M, Fakayode OA, Li H. Green Extraction of Polyphenols via Deep Eutectic Solvents and Assisted Technologies from Agri-Food By-Products. Molecules 2023; 28:6852. [PMID: 37836694 PMCID: PMC10574355 DOI: 10.3390/molecules28196852] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Polyphenols are the largest group of phytochemicals with important biological properties. Their presence in conveniently available low-cost sources, such as agri-food by-products, has gained considerable attention in their recovery and further exploitation. Retrieving polyphenols in a green and sustainable way is crucial. Recently, deep eutectic solvents (DESs) have been identified as a safe and environmentally benign medium capable of extracting polyphenols efficiently. This review encompasses the current knowledge and applications of DESs and assisted technologies to extract polyphenols from agri-food by-products. Particular attention has been paid to fundamental mechanisms and potential applications in the food, cosmetic, and pharmaceutical industries. In this way, DESs and DESs-assisted with advanced techniques offer promising opportunities to recover polyphenols from agri-food by-products efficiently, contributing to a circular and sustainable economy.
Collapse
Affiliation(s)
- Man Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (O.A.F.)
| | - Olugbenga Abiola Fakayode
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (O.A.F.)
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Haoxin Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (O.A.F.)
| |
Collapse
|
12
|
Llerena W, Samaniego I, Vallejo C, Arreaga A, Zhunio B, Coronel Z, Quiroz J, Angós I, Carrillo W. Profile of Bioactive Components of Cocoa ( Theobroma cacao L.) By-Products from Ecuador and Evaluation of Their Antioxidant Activity. Foods 2023; 12:2583. [PMID: 37444322 DOI: 10.3390/foods12132583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of the study was to determine the profile of bioactive compounds in cocoa residues (mucilage and bean shells), and to evaluate their antioxidant activity in two cocoa varieties, Nacional X Trinitario type (Fine Aroma) and the variety CCN-51. The extraction of phytonutrients from the residues was carried out selectively. The characterization and quantification of the total polyphenol content (TPC), and the total flavonoid content (TFC) were determined by UV-VIS spectrophotometry. High-performance liquid chromatography (HPLC) was used to determine the phenolic profile and methylxanthines. The antioxidant activity was evaluated by the methods of 2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) cation bleaching (ABTS), ferric-reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC). The exudate mucilage samples from Nacional X Trinitario-type cocoa presented the highest content of TPC 105.08 mg gallic acid equivalents (GAE)/100 mL, TFC 36.80 mg catechin equivalents (CE)/100 mL, catechin (CAT) 35.44 mg/g, procyanidins (PCB2: 35.10; PCB1: 25.68; PCC1: 16.83 mg/L), epicatechin (EPI) 13.71 mg/L, caffeine (CAF) 0.90% and theobromine (TBR) 2.65%. In the cocoa bean shell, the variety CCN-51 presented a higher content of TPC (42.17 mg GAE/100 g) and TFC (20.57 mg CE/100 g). However, CAT (16.16 mg/g), CAF (0.35%) and TBR (1.28%) were higher in the Nacional X Trinitario cocoa type. The EPI presented no significant differences between the two samples studied (0.83 and 0.84 mg/g). The antioxidant activity values (ABTS, FRAP and ORAC methods) were higher in the samples of CCN-51 than in the Nacional X Trinitario type. The bean shell samples presented antioxidant values of 171.32, 192.22 and 56.87 mg Trolox equivalents (TE)/g, respectively, and the bean shell samples presented antioxidant values of 167.06, 160.06 and 52.53 mg TE/g, respectively. The antioxidant activity (ABTS, FRAP and ORAC) of the residues was correlated with the bioactive compounds of the mucilage and bean shells, showing a strong positive correlation (<0.99) with the procyanidins (B1, B2 and C1), EPI and CAT and a positive/moderate correlation (0.94) with methylxanthines.
Collapse
Affiliation(s)
- Wilma Llerena
- Facultad de Ciencia de la Industria y la Producción, Universidad Técnica Estatal de Quevedo (UTEQ), km 7 1/2 vía Quevedo-El Empalme, Quevedo 120301, Ecuador
| | - Iván Samaniego
- Departamento de Nutrición y Calidad, Instituto Nacional de Investigaciones Agropecuarias (INIAP), Panamericana Sur km 1, Cutuglahua 171107, Ecuador
| | - Christian Vallejo
- Facultad de Ciencia de la Industria y la Producción, Universidad Técnica Estatal de Quevedo (UTEQ), km 7 1/2 vía Quevedo-El Empalme, Quevedo 120301, Ecuador
| | - Adner Arreaga
- Facultad de Ciencia de la Industria y la Producción, Universidad Técnica Estatal de Quevedo (UTEQ), km 7 1/2 vía Quevedo-El Empalme, Quevedo 120301, Ecuador
| | - Billy Zhunio
- Facultad de Ciencia de la Industria y la Producción, Universidad Técnica Estatal de Quevedo (UTEQ), km 7 1/2 vía Quevedo-El Empalme, Quevedo 120301, Ecuador
| | - Zomayra Coronel
- Facultad de Ciencia de la Industria y la Producción, Universidad Técnica Estatal de Quevedo (UTEQ), km 7 1/2 vía Quevedo-El Empalme, Quevedo 120301, Ecuador
| | - James Quiroz
- Programa de Cacao, Instituto Nacional de Investigaciones Agropecuarias (INIAP), Litoral Sur Experimental Station, km 26 via Duran-El Tambo, Yaguachi 092406, Ecuador
| | - Ignacio Angós
- Departamento de Agronomía, Biotecnología y Alimentación, Universidad Pública de Navarra (UPNA), 31006 Pamplona, Spain
| | - Wilman Carrillo
- Facultad de Ciencia e Ingeniería en Alimentos y Biotecnología, Universidad Técnica de Ambato (UTA), Av. Los Chasquis y Río Payamino, Ambato 180103, Ecuador
| |
Collapse
|
13
|
Li F, Xiao L, Lin X, Dai J, Hou J, Wang L. Deep Eutectic Solvents-Based Ultrasound-Assisted Extraction of Antioxidants from Kudingcha ( llex kudingcha C.J. Tseng): Process Optimization and Comparison with Other Methods. Foods 2023; 12:1872. [PMID: 37174410 PMCID: PMC10178550 DOI: 10.3390/foods12091872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Kudingcha (KDC) is an important tea substitute containing abundant antioxidants. Herein, a ultrasonic-assisted extraction (UAE) technique based on deep eutectic solvents (DESs) was applied to optimize the total phenolic/total flavonoid content (TPC/TFC) from the KDC extracts. Results indicated that DES composed of L-proline and glycerol (Pro-Gly) had excellent extraction performance for TPC, TFC, ABTS•+ and FRAP, which were significantly better than other solvents. Response surface methodology (RSM) was used to obtain optimal extraction parameters for simultaneously maximizing the TPC, TFC and antioxidant activity. Results revealed that water content in Pro-Gly, liquid to solid ratio (L/S), ultrasonic temperature and extraction time were the major influence factors of the TPC, TFC, ABTS•+ and FRAP of the KDC extracts. The optimal conditions included water content in Pro-Gly of 46.4%, L/S of 25:1 (mL/g), ultrasonic temperature of 55 °C and extraction time of 50 min. Meanwhile, HPLC-MS/MS was adopted to identify the KDC extracts, which revealed the presence of major phytochemicals, including 5-chlorogenic acid, 4,5-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, kaempferol 3-rutinoside, myricetin and isorhamnetin. Moreover, UAE-Pro-Gly achieved further higher individual phenolics contents, TPC, TFC, ABTS•+ and FRAP than other methods. In conclusion, UAE-Pro-Gly is a highly efficient method for extraction of phenolic antioxidants from KDC.
Collapse
Affiliation(s)
- Fangliang Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Leyan Xiao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xue Lin
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China
| | - Jincheng Dai
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiale Hou
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China
| |
Collapse
|
14
|
Green Solvents: Emerging Alternatives for Carotenoid Extraction from Fruit and Vegetable By-Products. Foods 2023; 12:foods12040863. [PMID: 36832938 PMCID: PMC9956085 DOI: 10.3390/foods12040863] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Carotenoids have important implications for human health and the food industry due to their antioxidant and functional properties. Their extraction is a crucial step for being able to concentrate them and potentially include them in food products. Traditionally, the extraction of carotenoids is performed using organic solvents that have toxicological effects. Developing greener solvents and techniques for extracting high-value compounds is one of the principles of green chemistry and a challenge for the food industry. This review will analyze the use of green solvents, namely, vegetable oils, supercritical fluids, deep eutectic solvents, ionic liquids, and limonene, combined with nonconventional techniques (ultrasound-assisted extraction and microwave), for carotenoid extraction from fruit and vegetable by-products as upcoming alternatives to organic solvents. Recent developments in the isolation of carotenoids from green solvents and their inclusion in food products will also be discussed. The use of green solvents offers significant advantages in extracting carotenoids, both by decreasing the downstream process of solvent elimination, and the fact that the carotenoids can be included directly in food products without posing a risk to human health.
Collapse
|
15
|
Gómez-Urios C, Viñas-Ospino A, Puchades-Colera P, Blesa J, López-Malo D, Frígola A, Esteve MJ. Choline chloride-based natural deep eutectic solvents for the extraction and stability of phenolic compounds, ascorbic acid, and antioxidant capacity from Citrus sinensis peel. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
16
|
Popović BM, Gligorijević N, Aranđelović S, Macedo AC, Jurić T, Uka D, Mocko-Blažek K, Serra AT. Cytotoxicity profiling of choline chloride-based natural deep eutectic solvents. RSC Adv 2023; 13:3520-3527. [PMID: 36756554 PMCID: PMC9891074 DOI: 10.1039/d2ra07488e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
This study aims to examine in detail for the first time the cytotoxic profile of twelve choline chloride-based deep eutectic solvents (NADES) against HT-29, Caco-2, MCF-7, and MRC-5 cell lines. All NADES systems were synthesized by microwave synthesis using choline chloride as a hydrogen bond acceptor (HBA) and selected sugars, alcohols, organic acids, and urea as hydrogen bond donors (HBD) with the addition of 20% water (w/w) to all systems. It was observed that the cytotoxic effect predominantly depended on the structure of HBD. Acidic systems, where HBDs were organic acids showed the highest cytotoxic effects in all investigated cell lines. The cytotoxicity depended mostly on the concentration of the NADES system in the cell medium as well as on the chemical constitution of the investigated systems. The highest cytotoxic effects showed acidic systems, especially to the HT-29 cell line. The EC50 value for the citric acid-based system was 3.91 mg mL-1 for the HT-29 cell line which was the most vulnerable to acidic NADES systems.
Collapse
Affiliation(s)
- Boris M. Popović
- Chemistry and Biochemistry Laboratory, Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi SadTrg Dositeja Obradovića 821000 Novi SadSerbia+381 21 450 857+381 21 485 3424
| | - Nevenka Gligorijević
- Department of Experimental Oncology, Institute for Oncology and Radiology of SerbiaPasterova 1411000 BelgradeSerbia
| | - Sandra Aranđelović
- Department of Experimental Oncology, Institute for Oncology and Radiology of SerbiaPasterova 1411000 BelgradeSerbia
| | - Ana Catarina Macedo
- iBET, Instituto de Biologia Experimental e TecnológicaAvenida da República, Quinta do Marquês, 2780-157 OeirasPortugal,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA)Avenida da República, Quinta do Marquês, 2780-157 OeirasPortugal
| | - Tatjana Jurić
- Chemistry and Biochemistry Laboratory, Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad Trg Dositeja Obradovića 8 21000 Novi Sad Serbia +381 21 450 857 +381 21 485 3424
| | - Denis Uka
- Chemistry and Biochemistry Laboratory, Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad Trg Dositeja Obradovića 8 21000 Novi Sad Serbia +381 21 450 857 +381 21 485 3424
| | - Karolina Mocko-Blažek
- Chemistry and Biochemistry Laboratory, Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad Trg Dositeja Obradovića 8 21000 Novi Sad Serbia +381 21 450 857 +381 21 485 3424
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e TecnológicaAvenida da República, Quinta do Marquês, 2780-157 OeirasPortugal,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA)Avenida da República, Quinta do Marquês, 2780-157 OeirasPortugal
| |
Collapse
|
17
|
Cannavacciuolo C, Pagliari S, Frigerio J, Giustra CM, Labra M, Campone L. Natural Deep Eutectic Solvents (NADESs) Combined with Sustainable Extraction Techniques: A Review of the Green Chemistry Approach in Food Analysis. Foods 2022; 12:foods12010056. [PMID: 36613272 PMCID: PMC9818194 DOI: 10.3390/foods12010056] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Usual extraction processes for analyzing foods, supplements, and nutraceutical products involve massive amounts of organic solvents contributing to a negative impact on the environment and human health. In recent years, a new class of green solvents called natural deep eutectic solvents (NADES) have been considered a valid alternative to conventional solvents. Compared with conventional organic solvents, NADES have attracted considerable attention since they are sustainable, biodegradable, and non-toxic but also are easy to prepare, and have low production costs. Here we summarize the major aspects of NADEs such as the classification, preparation method physicochemical properties, and toxicity. Moreover, we provide an overview of novel extraction techniques using NADES as potential extractants of bioactive compounds from foods and food by-products, and application of NADEs in food analysis. This review aims to be useful for the further development of NAES and for broadening the knowledge of these new green solvents in order to increase their use for the extraction of bioactive compounds and in food analysis.
Collapse
|
18
|
Cravotto C, Fabiano-Tixier AS, Claux O, Abert-Vian M, Tabasso S, Cravotto G, Chemat F. Towards Substitution of Hexane as Extraction Solvent of Food Products and Ingredients with No Regrets. Foods 2022; 11:3412. [PMID: 36360023 PMCID: PMC9655691 DOI: 10.3390/foods11213412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 08/13/2023] Open
Abstract
Hexane is a solvent used extensively in the food industry for the extraction of various products such as vegetable oils, fats, flavours, fragrances, colour additives or other bioactive ingredients. As it is classified as a "processing aid", it does not have to be declared on the label under current legislation. Therefore, although traces of hexane may be found in final products, especially in processed products, its presence is not known to consumers. However, hexane, and in particular the n-hexane isomer, has been shown to be neurotoxic to humans and has even been listed as a cause of occupational diseases in several European countries since the 1970s. In order to support the European strategy for a toxic-free environment (and toxic-free food), it seemed important to collect scientific information on this substance by reviewing the available literature. This review contains valuable information on the nature and origin of the solvent hexane, its applications in the food industry, its toxicological evaluation and possible alternatives for the extraction of natural products. Numerous publications have investigated the toxicity of hexane, and several studies have demonstrated the presence of its toxic metabolite 2,5-hexanedione (2,5-HD) in the urine of the general, non-occupationally exposed population. Surprisingly, a tolerable daily intake (TDI) has apparently never been established by any food safety authority. Since hexane residues are undoubtedly found in various foods, it seems more than necessary to clearly assess the risks associated with this hidden exposure. A clear indication on food packaging and better information on the toxicity of hexane could encourage the industry to switch towards one of the numerous other alternative extraction methods already developed.
Collapse
Affiliation(s)
- Christian Cravotto
- GREEN Extraction Team, INRAE, UMR 408, Avignon University, F-84000 Avignon, France
| | | | - Ombéline Claux
- GREEN Extraction Team, INRAE, UMR 408, Avignon University, F-84000 Avignon, France
| | - Maryline Abert-Vian
- GREEN Extraction Team, INRAE, UMR 408, Avignon University, F-84000 Avignon, France
| | - Silvia Tabasso
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Farid Chemat
- GREEN Extraction Team, INRAE, UMR 408, Avignon University, F-84000 Avignon, France
| |
Collapse
|
19
|
Sustainable Development and Storage Stability of Orange By-Products Extract Using Natural Deep Eutectic Solvents. Foods 2022; 11:foods11162457. [PMID: 36010457 PMCID: PMC9407522 DOI: 10.3390/foods11162457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
The citrus industry produces large amounts of waste rich in bioactive compounds that have important effects on human health. Their extraction was performed using organic solvents, and a greener alternative to those solvents are natural deep eutectic solvents (NADES). The present study aimed to obtain and optimize extracts rich in polyphenols and flavonoids from orange peels using NADES and monitor polyphenol stability in the extracts for 30 days. The software COSMOtherm (conductor-like screening model) was used to screen fourteen NADES. The most promising solvents were lactic acid:glucose (LA:Glu) with an extraction yield of 1932 ± 7.83 mgGAE/100 gdw for TPC (total polyphenol content) and 82.7 ± 3.0 mg/100 gdw for TFC (total flavonoid content) and in the case of L-proline:malic acid (LP:MA) was 2164 ± 5.17 mgGAE/100 gdw for TPC and 97.0 ± 1.65 mg/100 gdw for TFC. The extraction process using LA:Glu and LP:MA was optimized, and the results showed that the selected variables (%NADES, solid:liquid ratio, and extraction time) had a significant influence on the extraction of TPC and TFC. Results showed that NADES improve the stability of TPC. These findings revealed that NADES are efficient for the extraction of bioactive compounds from orange by-products, and these extracts can represent an alternative for the food industry to enrich food products with natural ingredients.
Collapse
|
20
|
Pavlić B, Mrkonjić Ž, Teslić N, Kljakić AC, Pojić M, Mandić A, Stupar A, Santos F, Duarte ARC, Mišan A. Natural Deep Eutectic Solvent (NADES) Extraction Improves Polyphenol Yield and Antioxidant Activity of Wild Thyme ( Thymus serpyllum L.) Extracts. Molecules 2022; 27:1508. [PMID: 35268607 PMCID: PMC8911718 DOI: 10.3390/molecules27051508] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/14/2022] Open
Abstract
Wild thyme (Thymus serpyllum L.) herbal dust has been recognized as a potential underutilized resource for the recovery of antioxidants. The aim of this paper was to optimize natural deep eutectic solvent (NADES) extraction of polyphenols to obtain improved antioxidant activity of extracts determined by selected in vitro assays (DPPH, FRAP, and ABTS). Twenty different NADES systems were investigated in the first step of the screening of the extraction solvent and l-proline (Pro)-glycerine (Gly) based solvents provided the best results. Preliminary experiments organized by 25-1 fractional factorial design narrowed down the number of extraction factors from five (temperature, extraction time, NADES type, water content and L/S ratio) to three and determined their experimental domain for the final step. A face-centered central composite design with temperature (40-55-70 °C), extraction time (60-120-180 min) and L/S ratio (10-20-30 g NADES/g sample) was applied for influence analysis and process optimization. Multi-response optimization suggested a temperature of 65 °C, time of extraction of 180 min and L/S ratio of 28 g NADES/g DW as optimal extraction parameters. Experimental validation confirmed good agreement between experimental and predicted results in the extract obtained at optimal conditions and the interactions in the most suitable NADES (N16; Pro-Gly-H2O; 1:2:1) were confirmed by the 1H-NMR.
Collapse
Affiliation(s)
- Branimir Pavlić
- Faculty of Technology, University of Novi Sad, Blvd. cara Lazara 1, 21000 Novi Sad, Serbia; (Ž.M.); (A.C.K.)
| | - Živan Mrkonjić
- Faculty of Technology, University of Novi Sad, Blvd. cara Lazara 1, 21000 Novi Sad, Serbia; (Ž.M.); (A.C.K.)
| | - Nemanja Teslić
- Institute of Food Technology, University of Novi Sad, Blvd. cara Lazara 1, 21000 Novi Sad, Serbia; (N.T.); (M.P.); (A.M.); (A.S.)
| | | | - Milica Pojić
- Institute of Food Technology, University of Novi Sad, Blvd. cara Lazara 1, 21000 Novi Sad, Serbia; (N.T.); (M.P.); (A.M.); (A.S.)
| | - Anamarija Mandić
- Institute of Food Technology, University of Novi Sad, Blvd. cara Lazara 1, 21000 Novi Sad, Serbia; (N.T.); (M.P.); (A.M.); (A.S.)
| | - Alena Stupar
- Institute of Food Technology, University of Novi Sad, Blvd. cara Lazara 1, 21000 Novi Sad, Serbia; (N.T.); (M.P.); (A.M.); (A.S.)
| | - Filipa Santos
- LAQV, REQUIMTE, Departamento de Química, Nova School of Science and Technology, 2829-516 Caparica, Portugal; (F.S.); (A.R.C.D.)
| | - Ana Rita C. Duarte
- LAQV, REQUIMTE, Departamento de Química, Nova School of Science and Technology, 2829-516 Caparica, Portugal; (F.S.); (A.R.C.D.)
| | - Aleksandra Mišan
- Institute of Food Technology, University of Novi Sad, Blvd. cara Lazara 1, 21000 Novi Sad, Serbia; (N.T.); (M.P.); (A.M.); (A.S.)
| |
Collapse
|
21
|
COSMOtherm as an Effective Tool for Selection of Deep Eutectic Solvents Based Ready-To-Use Extracts from Graševina Grape Pomace. Molecules 2021; 26:molecules26164722. [PMID: 34443311 PMCID: PMC8398964 DOI: 10.3390/molecules26164722] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Accepted: 08/01/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this work is to develop an industrially suitable process for the sustainable waste disposal in wine production. The proposed process involves the development of an environmentally friendly method for the isolation of biologically active compounds from Graševina grape pomace according to the green extraction principles, in order to obtain a ready-to-use extract. In this process, deep eutectic solvents (DES) were used as extraction solvents. Aiming to save time in selecting the optimal DES that would provide the most efficient Graševina pomace polyphenols extraction, the user-friendly software COSMOtherm was used and 45 DES were screened. Moreover, the prepared extracts were chemically and biologically characterized to confirm their safety for human application. Computational and experimental results proved the applicability of COSMOtherm in the selection of the optimal DES for the environmentally friendly preparation of the ready-to-use extract from Graševina grape pomace with expected application in the cosmetic industry.
Collapse
|
22
|
Mariatti F, Gunjević V, Boffa L, Cravotto G. Process intensification technologies for the recovery of valuable compounds from cocoa by-products. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|