1
|
Beaubier S, Albe-Slabi S, Beau L, Galet O, Kapel R. Study of the in vitro digestibility of oilseed protein concentrates compared to isolates for food applications. Food Chem 2024; 464:141737. [PMID: 39461314 DOI: 10.1016/j.foodchem.2024.141737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/02/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
The research has primarily focused on isolates (>90 % protein) when studying oilseed protein products, but there is a growing interest in concentrates (65-90 % protein) due to their industrial viability and lower environmental impact. This study aimed to compare the in vitro digestibility of rapeseed and sunflower protein concentrates with isolates. Simulated digestion was conducted, and the resulting samples were analyzed using a size-exclusion chromatography approach. This approach can reliably quantify assimilable peptide fractions without interference from the complex matrix of these products. Surprisingly, similar digestibility values (around 40 %) were found for both oilseed protein concentrates and isolates. The study also compared the digestibility of total protein isolates versus albumin isolates from rapeseed and sunflower. The results highlighted the significant gastrointestinal resistance of the albumin fraction, which is the most important factor affecting the digestibility of these products. These digestibility results emphasize the strong potential of concentrates in food applications.
Collapse
Affiliation(s)
- Sophie Beaubier
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France.
| | | | - Luna Beau
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France
| | | | - Romain Kapel
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France
| |
Collapse
|
2
|
Schweiggert-Weisz U, Etzbach L, Gola S, Kulling SE, Diekmann C, Egert S, Daniel H. Opinion Piece: New Plant-Based Food Products Between Technology and Physiology. Mol Nutr Food Res 2024; 68:e2400376. [PMID: 39348094 DOI: 10.1002/mnfr.202400376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/14/2024] [Indexed: 10/01/2024]
Abstract
The rapid growth of product sectors for plant-based meat and dairy alternatives has raised significant scientific interest in their nutritional and ecological benefits. Here, it outlines the fractionation of plant-based raw materials and describes the technologies applied in the production of meat and dairy substitutes. Moreover, the study describes the effects of these new products on human nutrient supply and metabolic responses. Examples of meat-like products produced by extrusion technology and dairy alternatives are provided, addressing production challenges and the effects of processing on nutrient digestibility and bioavailability. In contrast to animal-based products, plant-based protein ingredients can contain many compounds produced by plants for defense or symbiotic interactions, such as lectins, phytates, and a wide range of secondary metabolites. The intake of these compounds as part of a plant-based diet can influence the digestion, bioaccessibility, and bioavailability of essential nutrients such as minerals and trace elements but also of amino acids. This is a critical factor, especially in regions with limited plant species for human consumption and inadequate technologies to eliminate these compounds. To fully understand these impacts and ensure that plant-based diets meet human nutritional needs, well-controlled human studies are needed.
Collapse
Affiliation(s)
- Ute Schweiggert-Weisz
- School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Fraunhofer Institute for Process Engineering and Packaging, 85354, Freising, Germany
| | - Lara Etzbach
- School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Susanne Gola
- Fraunhofer Institute for Process Engineering and Packaging, 85354, Freising, Germany
| | - Sabine E Kulling
- Max Rubner-Institut (MRI), Department of Safety and Quality of Fruit and Vegetables, 76131, Karlsruhe, Germany
| | - Christina Diekmann
- Institute for Nutritional and Food Science, University of Bonn, 53115, Bonn, Germany
| | - Sarah Egert
- Institute for Nutritional and Food Science, University of Bonn, 53115, Bonn, Germany
| | - Hannelore Daniel
- School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| |
Collapse
|
3
|
Alpiger SB, Solet C, Dang TT, Corredig M. Ultrafiltration of Rapeseed Protein Concentrate: Effect of Pectinase Treatment on Membrane Fouling. Foods 2024; 13:2423. [PMID: 39123614 PMCID: PMC11311750 DOI: 10.3390/foods13152423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Membrane filtration technologies have shown great potential as a gentle and effective method for concentrating and fractionating proteins for food applications. However, the application of this technology to plant-derived protein streams is in its infancy. In this study, an aqueous rapeseed protein concentrate was obtained with wet milling, and its performance during ultrafiltration with two distinct molecular weight cut-offs (10 and 100 kDa) was tested. All rapeseed proteins were retained during filtration. The addition of pectinase during extraction prior to filtration caused important structural modifications to the extract, resulting in increased permeate fluxes, increased carbohydrate permeation and a reduction in irreversible fouling. Lager pore sizes led to more pronounced fouling. FTIR analysis of the spent membranes showed that proteins and lipids are causing irreversible fouling.
Collapse
Affiliation(s)
- Simone Bleibach Alpiger
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark; (C.S.); (T.T.D.); (M.C.)
| | | | | | | |
Collapse
|
4
|
Yang J, Shen P, de Groot A, Mocking-Bode HCM, Nikiforidis CV, Sagis LMC. Oil-water interface and emulsion stabilising properties of rapeseed proteins napin and cruciferin studied by nonlinear surface rheology. J Colloid Interface Sci 2024; 662:192-207. [PMID: 38341942 DOI: 10.1016/j.jcis.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/21/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
HYPOTHESIS Two major protein families are present in rapeseed, namely cruciferins and napins. The structural differences between the two protein families indicate that they might behave differently when their mixture stabilises oil-water interfaces. Therefore, this work focuses on elucidating the role of both proteins in interface and emulsion stabilisation. EXPERIMENTS Protein molecular properties were evaluated, using SEC, DSC, CD, and hydrophobicity analysis. The oil-water interface mechanical properties were studied using LAOS and LAOD. General stress decomposition (GSD) was used as a novel method to characterise the nonlinear response. Additionally, to evaluate the emulsifying properties of the rapeseed proteins, emulsions were prepared using pure napins or cruciferin and also their mixtures at 1:3, 1:1 and 3:1 (w:w) ratios. FINDINGS Cruciferins formed stiff viscoelastic solid-like interfacial layers (Gs' = 0.046 mN/m; Ed' = 30.1 mN/m), while napin formed weaker and more stretchable layers at the oil-water interface (Gs' = 0.010 mN/m; Ed' = 26.4 mN/m). As a result, cruciferin-formed oil droplets with much higher stability against coalescence (coalescence index, CI up to 10%) than napin-stabilised ones (CI up to 146%) during two months of storage. Both proteins have a different role in emulsions produced with napin-cruciferin mixtures, where cruciferin provides high coalescence stability, while napin induces flocculation. Our work showed the role of each rapeseed protein in liquid-liquid multiphase systems.
Collapse
Affiliation(s)
- Jack Yang
- TiFN, Nieuwe Kanaal 9A, 6709 PA Wageningen, the Netherlands; Laboratory of Biobased Chemistry and Technology, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, the Netherlands; Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, the Netherlands
| | - Penghui Shen
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, the Netherlands
| | - Anteun de Groot
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, the Netherlands
| | - Helene C M Mocking-Bode
- Agrotechnology and Food Sciences Group, Wageningen University & Research, Bornse Weilanden 9, 6700AA Wageningen, the Netherlands
| | - Constantinos V Nikiforidis
- Laboratory of Biobased Chemistry and Technology, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, the Netherlands
| | - Leonard M C Sagis
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, the Netherlands.
| |
Collapse
|
5
|
Zhang R, Fang X, Feng Z, Chen M, Qiu X, Sun J, Wu M, He J. Protein from rapeseed for food applications: Extraction, sensory quality, functional and nutritional properties. Food Chem 2024; 439:138109. [PMID: 38070236 DOI: 10.1016/j.foodchem.2023.138109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/12/2023] [Accepted: 11/26/2023] [Indexed: 01/10/2024]
Abstract
The application of rapeseed protein in human foods is limited by residual antinutritive components and poor sensory quality. The effects of five extraction protocols on rapeseed protein yield, sensory, functional and nutritional properties were systematically evaluated in this study. In particular, the potential of weakly acidic salt (pH 6.5, 150 mmol·L-1 MgCl2) extraction as a mild method for recovering edible rapeseed protein was investigated compared with conventional alkali extraction. All salt-extracted proteins showed above 40 % extraction yield and low antinutritional factor contents. They also had ideal amino acid patterns and better in vitro gastroduodenal digestibility than alkaline-extracted proteins. Additionally, the lighter color and odor, as well as better solubility, emulsion activity, foaming property, and water/oil holding capacity were found in weakly acidic salt extraction-ultrafiltered proteins. These findings suggest that weakly acidic salt extraction-ultrafiltration could be used for obtaining edible rapeseed protein, while extraction yield should be improved for scale application.
Collapse
Affiliation(s)
- Rui Zhang
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Se-lenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Xuelian Fang
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Se-lenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zisheng Feng
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Se-lenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Ming Chen
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Se-lenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Xiushuang Qiu
- Hubei Yuanda Plant Technology Co., Ltd, Xiangyang 441100, PR China
| | - Jinmeng Sun
- Hubei ShuangmingLiangmianyou Co., Ltd, Huanggang 438205, PR China
| | - Muci Wu
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Se-lenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Jingren He
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Se-lenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
6
|
Betchem G, Dabbour M, Tuly JA, Lu F, Liu D, Monto AR, Dusabe KD, Ma H. Effect of magnetic field-assisted fermentation on the in vitro protein digestibility and molecular structure of rapeseed meal. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3883-3893. [PMID: 38270454 DOI: 10.1002/jsfa.13269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/08/2023] [Accepted: 01/01/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND There has been a significant growth in demand for plant-derived protein, and this has been accompanied by an increasing need for sustainable animal-feed options. The aim of this study was to investigate the effect of magnetic field-assisted solid fermentation (MSSF) on the in vitro protein digestibility (IVPD) and functional and structural characteristics of rapeseed meal (RSM) with a mutant strain of Bacillus subtilis. RESULTS Our investigation demonstrated that the MSSF nitrogen release rate reached 86.3% after 96 h of fermentation. The soluble protein and peptide content in magnetic field feremented rapeseed meal reached 29.34 and 34.49 mg mL-1 after simulated gastric digestion, and the content of soluble protein and peptide in MF-FRSM reached 61.81 and 69.85 mg mL-1 after simulated gastrointestinal digestion, which significantly increased (p > 0.05) compared with the fermented rapeseed meal (FRSM). Studies of different microstructures - using scanning electron microscopy (SEM) and atomic force microscopy (AFM) - and protein secondary structures have shown that the decline in intermolecular or intramolecular cross-linking leads to the relative dispersion of proteins and improves the rate of nitrogen release. The smaller number of disulfide bonds and conformational alterations suggests that the IVPD of RSM was improved. CONCLUSIONS Magnetic field-assisted solid fermentation can be applied to enhance the nutritional and protein digestibility of FRSM. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Garba Betchem
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Mokhtar Dabbour
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, Moshtohor, Egypt
| | - Jamila Akter Tuly
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Feng Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Dandan Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Abdul Razak Monto
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Hadidi M, Tan C, Assadpour E, Jafari SM. Oilseed meal proteins: From novel extraction methods to nanocarriers of bioactive compounds. Food Chem 2024; 438:137971. [PMID: 37979261 DOI: 10.1016/j.foodchem.2023.137971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/20/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
The global demand for animal proteins is predicted to increase twofold by 2050. This has led to growing environmental and health apprehensions, thereby prompting the appraisal of alternative protein sources. Oilseed meals present a promising alternative due to their abundance in global production and inherent dietary protein content. The alkaline extraction remains the preferred technique for protein extraction from oilseed meals in commercial processes. However, the combination of innovative techniques has proven to be more effective in the recovery and functional modification of oilseed meal proteins (OMPs), resulting in improved protein quality and reduced allergenicity and environmental hazards. This manuscript explores the extraction of valuable proteins from sustainable sources, specifically by-products from the oil processing industry, using emerging technologies. Chemical structure, nutritional value, and functional properties of the main OMPs are evaluated with a particular focus on their potential application as nanocarriers for bioactive compounds.
Collapse
Affiliation(s)
- Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Chen Tan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
8
|
Hadidi M, Aghababaei F, Gonzalez-Serrano DJ, Goksen G, Trif M, McClements DJ, Moreno A. Plant-based proteins from agro-industrial waste and by-products: Towards a more circular economy. Int J Biol Macromol 2024; 261:129576. [PMID: 38253140 DOI: 10.1016/j.ijbiomac.2024.129576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
There is a pressing need for affordable, abundant, and sustainable sources of proteins to address the rising nutrient demands of a growing global population. The food and agriculture sectors produce significant quantities of waste and by-products during the growing, harvesting, storing, transporting, and processing of raw materials. These waste and by-products can sometimes be converted into valuable protein-rich ingredients with excellent functional and nutritional attributes, thereby contributing to a more circular economy. This review critically assesses the potential for agro-industrial wastes and by-products to contribute to global protein requirements. Initially, we discuss the origins and molecular characteristics of plant proteins derived from agro-industrial waste and by-products. We then discuss the techno-functional attributes, extraction methods, and modification techniques that are applied to these plant proteins. Finally, challenges linked to the safety, allergenicity, anti-nutritional factors, digestibility, and sensory attributes of plant proteins derived from these sources are highlighted. The utilization of agro-industrial by-products and wastes as an economical, abundant, and sustainable protein source could contribute towards achieving the Sustainable Development Agenda's 2030 goal of a "zero hunger world", as well as mitigating fluctuations in food availability and prices, which have detrimental impacts on global food security and nutrition.
Collapse
Affiliation(s)
- Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria.
| | | | - Diego J Gonzalez-Serrano
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Turkey
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering (CENTIV) GmbH, 28816 Stuhr, Germany; CENCIRA Agrofood Research and Innovation Centre, Ion Mester 6, 400650 Cluj-Napoca, Romania
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, 102 Holdsworth Way, Amherst, MA 01002, United States
| | - Andres Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
9
|
Peng Y, Zhao D, Li M, Wen X, Ni Y. The Interactions of Soy Protein and Wheat Gluten for the Development of Meat-like Fibrous Structure. Molecules 2023; 28:7431. [PMID: 37959850 PMCID: PMC10647354 DOI: 10.3390/molecules28217431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Consumers who are environmentally and health conscious are increasingly looking for plant-based alternatives to replace animal-based products in their daily diets. Among these alternatives, there is a growing demand for meat analogues that closely resemble the taste and texture of meat. As a result, significant efforts have been dedicated to developing meat analogues with a desirable meat-like structure. Currently, soy protein and wheat gluten are the main ingredients used for producing these meat analogues due to their availability and unique functionalities. This study observed that high moisture extrusion at moisture levels of 50-80% has become a common approach for creating fibrous structures, with soy protein and wheat gluten being considered incompatible proteins. After the structuring process, they form two-phase filled gels, with wheat gluten acting as the continuous phase and soy protein serving as a filler material. Moreover, the formation of soy protein and wheat gluten networks relies on a combination of covalent and non-covalent interaction bonds, including hydrogen bonds that stabilize the protein networks, hydrophobic interactions governing protein chain associations during thermo-mechanical processes, and disulfide bonds that potentially contribute to fibrous structure formation. This review provides case studies and examples that demonstrate how specific processing conditions can improve the overall structure, aiming to serve as a valuable reference for further research and the advancement of fibrous structures.
Collapse
Affiliation(s)
- Yu Peng
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Beijing 100083, China; (Y.P.); (M.L.); (Y.N.)
| | - Dandan Zhao
- College of Food Science & Biology, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang 050000, China;
| | - Mo Li
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Beijing 100083, China; (Y.P.); (M.L.); (Y.N.)
| | - Xin Wen
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Beijing 100083, China; (Y.P.); (M.L.); (Y.N.)
| | - Yuanying Ni
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Beijing 100083, China; (Y.P.); (M.L.); (Y.N.)
| |
Collapse
|
10
|
Bailey HM, Fanelli NS, Stein HH. Effect of heat treatment on protein quality of rapeseed protein isolate compared with non-heated rapeseed isolate, soy and whey protein isolates, and rice and pea protein concentrates. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7251-7259. [PMID: 37357639 DOI: 10.1002/jsfa.12809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/10/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Rapeseed protein isolate is used in the food industry, and heating is often used during rapeseed processing. However, the digestible indispensable amino acid score (DIAAS) for heat-treated rapeseed protein isolate is unknown. The present study aimed to test the hypothesis that heating rapeseed protein isolate improves protein quality resulting in DIAAS that is greater than for pea and rice protein concentrates, and comparable to that of soy and whey protein isolates. RESULTS Standardized ileal digestibility (SID) of amino acids (AA), except leucine and methionine, was not different between heat-treated rapeseed protein isolate and soy protein isolate, but SID of most AA was greater (P < 0.001) for heat-treated rapeseed protein isolate than for brown rice protein concentrate, pea protein concentrate, rapeseed protein isolate and soy protein isolate, but not whey protein isolate. Non-heated rapeseed protein isolate had a reduced (P < 0.001) DIAAS for 6-month-old to 3-year-old children compared with soy protein isolate, but this was greater (P < 0.001) than for pea and brown rice protein concentrates. The DIAAS for heat-treated rapeseed protein isolate was greater (P < 0.001) than for non-heated rapeseed protein isolate for all age groups. Heat-treated rapeseed protein isolate and whey protein isolate had a DIAAS > 100 for individuals older than 3 years. CONCLUSION Rapeseed protein isolate had a DIAAS comparable to soy protein isolate, but heat-treated rapeseed protein isolate and whey protein isolate had DIAAS ≥ 100, qualifying these proteins as 'excellent'. Rice and pea protein concentrates had DIAAS < 75. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hannah M Bailey
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Natalia S Fanelli
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Hans H Stein
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
11
|
Dukić J, Košpić K, Kelava V, Mavrić R, Nutrizio M, Balen B, Butorac A, Halil Öztop M, Režek Jambrak A. Alternative methods for RuBisCO extraction from sugar beet waste: A comparative approach of ultrasound and high voltage electrical discharge. ULTRASONICS SONOCHEMISTRY 2023; 99:106535. [PMID: 37541125 PMCID: PMC10410599 DOI: 10.1016/j.ultsonch.2023.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 08/06/2023]
Abstract
Ultrasound (US) and high voltage electric discharge (HVED) with water as a green solvent represent promising novel non-thermal techniques for protein extraction from sugar beet (Beta vulgaris subsp. vulgaris var. altissima) leaves. Compared to HVED, US proved to be a better alternative method for total soluble protein extraction with the aim of obtaining high yield of ribulose-1,5-bisphosphate carboxylase-oxygenase enzyme (RuBisCO). Regardless of the solvent temperature, the highest protein yields were observed at 100% amplitude and 9 min treatment time (84.60 ± 3.98 mg/gd.m. with cold and 96.75 ± 4.30 mg/gd.m. with room temperature deionized water). US treatments at 75% amplitude and 9 min treatment time showed the highest abundance of RuBisCO obtained by immunoblotting assay. The highest protein yields recorded among HVED-treated samples were observed at a voltage of 20 kV and a treatment time of 3 min, disregarding the used gas (33.33 ± 1.06 mg/gd.m. with argon and 34.89 ± 1.59 mg/gd.m. with nitrogen as injected gas), while the highest abundance of the RuBisCO among HVED-treated samples was noticed at 25 kV voltage and 3 min treatment time. By optimizing the US and HVED parameters, it is possible to affect the solubility and improve the isolation of RuBisCO, which could then be purified and implemented into new or already existing functional products.
Collapse
Affiliation(s)
- Josipa Dukić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia.
| | - Karla Košpić
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia.
| | - Vanja Kelava
- BICRO BIOCentre Ltd, Cent Lab, 10000 Zagreb, Croatia
| | - Renata Mavrić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Marinela Nutrizio
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Biljana Balen
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Ana Butorac
- BICRO BIOCentre Ltd, Cent Lab, 10000 Zagreb, Croatia
| | - Mecit Halil Öztop
- Department of Food Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
12
|
Cairone F, Allevi D, Cesa S, Fabrizi G, Goggiamani A, Masci D, Iazzetti A. Valorisation of Side Stream Products through Green Approaches: The Rapeseed Meal Case. Foods 2023; 12:3286. [PMID: 37685219 PMCID: PMC10486371 DOI: 10.3390/foods12173286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Rapeseed meal (RSM) is a by-product of rapeseed oil extraction and is a rich source of bioactive compounds, including proteins and antioxidants. This study compared two methods for extracting antioxidants from RSM: conventional ethanol Soxhlet extraction and supercritical CO2 extraction. These procedures were applied to both native RSM and RSM after protein removal to evaluate their bio-compound composition and potential applications. HPLC-DAD, NMR, and GC/MS analyses revealed a rich polyphenolic profile in the extracts, including the presence of sinapic acid. The concentration of sinapic acid varied depending on the extraction method used. The anti-radical activity of the extracts was also analysed using the DPPH assay, which confirmed the potential of RSM as a source of antioxidants for use in cosmetics, food, and pharmaceutical formulations.
Collapse
Affiliation(s)
- Francesco Cairone
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro 5, 00185 Rome, Italy; (F.C.); (S.C.); (G.F.); (A.G.)
| | - Dario Allevi
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, L.go Francesco Vito 1, 00168 Rome, Italy; (D.A.); (D.M.)
- Policlinico Universitario ‘A. Gemelli’ Foundation-IRCCS, 00168 Rome, Italy
| | - Stefania Cesa
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro 5, 00185 Rome, Italy; (F.C.); (S.C.); (G.F.); (A.G.)
| | - Giancarlo Fabrizi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro 5, 00185 Rome, Italy; (F.C.); (S.C.); (G.F.); (A.G.)
| | - Antonella Goggiamani
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro 5, 00185 Rome, Italy; (F.C.); (S.C.); (G.F.); (A.G.)
| | - Domiziana Masci
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, L.go Francesco Vito 1, 00168 Rome, Italy; (D.A.); (D.M.)
- Policlinico Universitario ‘A. Gemelli’ Foundation-IRCCS, 00168 Rome, Italy
| | - Antonia Iazzetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, L.go Francesco Vito 1, 00168 Rome, Italy; (D.A.); (D.M.)
- Policlinico Universitario ‘A. Gemelli’ Foundation-IRCCS, 00168 Rome, Italy
| |
Collapse
|
13
|
De Angelis D, Opaluwa C, Pasqualone A, Karbstein HP, Summo C. Rheological properties of dry-fractionated mung bean protein and structural, textural, and rheological evaluation of meat analogues produced by high-moisture extrusion cooking. Curr Res Food Sci 2023; 7:100552. [PMID: 37575131 PMCID: PMC10412858 DOI: 10.1016/j.crfs.2023.100552] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
A closed cavity rheometer was used to study the rheology of dry-fractionated mung bean protein -DFMB- (55% protein d.m.). Then, the high-moisture extrusion cooking at 40% and 50% moisture contents and different temperatures (115, 125, 135 and 145 °C) was performed, investigating the impact on structural, textural, and rheological properties of extrudates. When subjected to a temperature ramp (40-170 °C), DFMB showed an increase of G* from 70 °C, as a consequence of starch gelatinization and protein gelation. The peak, indicating the end of aggregation reactions, was at 105 °C and 110 °C for DFMB at 50% and 40% moisture content, respectively. The time sweep analysis described the protein behavior in no-shear/shear conditions, highlighting a more pronounced effect of the temperatures compared to moisture content. During the extrusion cooking, the temperature increase led to a decrease of pressure, indicating a reduction of the melt viscosity. The microstructure of the extrudates showed a more pronounced anisotropic profile when higher temperatures were applied. Hardness, chewiness, and cohesion were directly correlated with the temperature, which also affected the rheological properties of extrudates. A combination of textural and rheological analyses can offer a clear overview of the structural characteristics of meat analogues.
Collapse
Affiliation(s)
- Davide De Angelis
- University of Bari “Aldo Moro”, Department of Soil, Plant and Food Science (DISSPA), Via Amendola, 165/A, 70126, Bari, Italy
| | - Christina Opaluwa
- Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences, Chair of Food Process Engineering, Gotthard-Franz-Straße 3, 76131, Karlsruhe, Germany
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354, Freising, Germany
| | - Antonella Pasqualone
- University of Bari “Aldo Moro”, Department of Soil, Plant and Food Science (DISSPA), Via Amendola, 165/A, 70126, Bari, Italy
| | - Heike P. Karbstein
- Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences, Chair of Food Process Engineering, Gotthard-Franz-Straße 3, 76131, Karlsruhe, Germany
| | - Carmine Summo
- University of Bari “Aldo Moro”, Department of Soil, Plant and Food Science (DISSPA), Via Amendola, 165/A, 70126, Bari, Italy
| |
Collapse
|
14
|
Abstract
For each kilogram of food protein wasted, between 15 and 750 kg of CO2 end up in the atmosphere. With this alarming carbon footprint, food protein waste not only contributes to climate change but also significantly impacts other environmental boundaries, such as nitrogen and phosphorus cycles, global freshwater use, change in land composition, chemical pollution, and biodiversity loss. This contrasts sharply with both the high nutritional value of proteins, as well as their unique chemical and physical versatility, which enable their use in new materials and innovative technologies. In this review, we discuss how food protein waste can be efficiently valorized not only by reintroduction into the food chain supply but also as a template for the development of sustainable technologies by allowing it to exit the food-value chain, thus alleviating some of the most urgent global challenges. We showcase three technologies of immediate significance and environmental impact: biodegradable plastics, water purification, and renewable energy. We discuss, by carefully reviewing the current state of the art, how proteins extracted from food waste can be valorized into key players to facilitate these technologies. We furthermore support analysis of the extant literature by original life cycle assessment (LCA) examples run ad hoc on both plant and animal waste proteins in the context of the technologies considered, and against realistic benchmarks, to quantitatively demonstrate their efficacy and potential. We finally conclude the review with an outlook on how such a comprehensive management of food protein waste is anticipated to transform its carbon footprint from positive to negative and, more generally, have a favorable impact on several other important planetary boundaries.
Collapse
Affiliation(s)
- Mohammad Peydayesh
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
| | - Massimo Bagnani
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
| | - Wei Long Soon
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University, 639798 Singapore
| | - Raffaele Mezzenga
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
- Department
of Materials, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
15
|
How do pH and temperature influence extraction yield, physicochemical, functional, and rheological characteristics of brewer spent grain protein concentrates? FOOD AND BIOPRODUCTS PROCESSING 2023. [DOI: 10.1016/j.fbp.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
16
|
Bermejo-Cruz M, Osorio-Ruiz A, Rodríguez-Canto W, Betancur-Ancona D, Martínez-Ayala A, Chel-Guerrero L. Antioxidant potential of protein hydrolysates from canola (Brassica napus L.) seeds. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
17
|
Wang Y, Lyu B, Fu H, Li J, Ji L, Gong H, Zhang R, Liu J, Yu H. The development process of plant-based meat alternatives: raw material formulations and processing strategies. Food Res Int 2023; 167:112689. [PMID: 37087261 DOI: 10.1016/j.foodres.2023.112689] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
With the rapid growth of the world's population, the demand for meat is gradually increasing. The emergence and development of plant-based meat alternatives (PBMs) offer a good alternative to solve the environmental problems and disease problems caused by the over-consumption of meat products. Soybean is now the primary material for the production of PBMs due to its excellent gelation properties, potential from fibrous structure, balanced nutritional value, and relatively low price. Extrusion is the most widely used process for producing PBMs, and it has a remarkable effect on simulating the fibrous structure of real meat products. However, interactions related to phase transitions in protein molecules or fibrous structures during extrusion remain a challenge. Currently, PBMs do not meet people's demand for realistic meat in terms of texture, taste, and flavor. Therefore, the objectives of this review are to explore how to improve fiber structure formation in terms of raw material formulation and processing technology. Factors to improve the taste and texture of PBMs are summarized in terms of optimizing process parameters, changing the composition of raw materials, and enriching taste and flavor. It will provide a theoretical basis for the future development of PBMs.
Collapse
|
18
|
Yan X, Zeng Z, McClements DJ, Gong X, Yu P, Xia J, Gong D. A review of the structure, function, and application of plant-based protein-phenolic conjugates and complexes. Compr Rev Food Sci Food Saf 2023; 22:1312-1336. [PMID: 36789802 DOI: 10.1111/1541-4337.13112] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 02/16/2023]
Abstract
Interactions between plant-based proteins (PP) and phenolic compounds (PC) occur naturally in many food products. Recently, special attention has been paid to the fabrication of PP-PC conjugates or complexes in model systems with a focus on their effects on their structure, functionality, and health benefits. Conjugates are held together by covalent bonds, whereas complexes are held together by noncovalent ones. This review highlights the nature of protein-phenolic interactions involving PP. The interactions of these PC with the PP in model systems are discussed, as well as their impact on the structural, functional, and health-promoting properties of PP. The PP in conjugates and complexes tend to be more unfolded than in their native state, which often improves their functional attributes. PP-PC conjugates and complexes often exhibit improved in vitro digestibility, antioxidant activity, and potential allergy-reducing activities. Consequently, they may be used as antioxidant emulsifiers, edible film additives, nanoparticles, and hydrogels in the food industry. However, studies focusing on the application of PP-PC conjugates and complexes in real foods are still scarce. Further research is therefore required to determine the structure-function relationships of PP-PC conjugates and complexes that may influence their application as functional ingredients in the food industry.
Collapse
Affiliation(s)
- Xianghui Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Resources & Environment, Nanchang University, Nanchang, China
| | - Zheling Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | | | - Xiaofeng Gong
- School of Resources & Environment, Nanchang University, Nanchang, China
| | - Ping Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Jiaheng Xia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- New Zealand Institute of Natural Medicine Research, Auckland, New Zealand
| |
Collapse
|
19
|
Peng Y, Zhao D, Li M, Wen X, Ni Y. Production and functional characteristics of low-sodium high-potassium soy protein for the development of healthy soy-based foods. Int J Biol Macromol 2023; 226:1332-1340. [PMID: 36442573 DOI: 10.1016/j.ijbiomac.2022.11.244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
The plant-based products that are mainly produced by soy protein isolate (SPI) present significantly higher sodium (Na) content than the corresponding animal-based products. Accordingly, the production of low-sodium soy protein ingredients becomes a challenging task. For this purpose, alternative soy fractionation processes were investigated, and the use of KOH as the replacement for NaOH has been established to produce soy protein fractions (SPFs). The obtained MF-K contained 0.2 mg sodium and 24 mg potassium per 100 g of fraction, which was 3 % of the sodium content in the SPI, and the potassium content was over 10 times higher than SPI. Besides, using KOH increased the protein content of SPFs by almost 7 %, as well as their water holding capacity (WHC) and thermal stability; however, the yields of SPFs were dropped by around 4-8 % while the protein solubility of SPFs was reduced companied with the application of KOH. The fractionation processes mainly affected the protein composition, powder morphology, and viscosity of SPFs, while the sodium and potassium content showed limited impacts on the variations. Overall, the application of KOH during different fractionation procedures provided the possibility to produce low-sodium high‑potassium soy protein ingredients for the development of healthy soy-based foods.
Collapse
Affiliation(s)
- Yu Peng
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Beijing 100083, China
| | - Dandan Zhao
- Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, Hebei, China
| | - Mo Li
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Beijing 100083, China
| | - Xin Wen
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Beijing 100083, China.
| | - Yuanying Ni
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Beijing 100083, China
| |
Collapse
|
20
|
Lozano-Aguirre MG, Rodríguez-Miranda J, Falfán-Cortes RN, Hernández-Santos B. Physicochemical and techno-functional properties of mixtures of Michigan bean protein concentrate ( Phaseolus vulgaris L): maltodextrin. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [PMCID: PMC9758670 DOI: 10.1007/s11694-022-01753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The objective of this research was to evaluate some physicochemical and techno-functional properties of mixtures of Michigan bean protein concentrate: maltodextrin. The beans were cleaned and hulled, then dried (55 °C/1 h), ground to obtain the flour, then the concentrate was obtained by the isoelectric precipitation technique. The mixtures were established based on preliminary tests with a maximum concentration of 60% bean protein concentrate, 0:100, 9:91, 30:70, 51:49, 60:40 w/w, bean protein concentrate:maltodextrin, respectively. The chemical composition proximal to the flour and concentrate was determined, while the pH color, apparent density and the techno-functional properties were made to the mixtures, in addition to the flour, concentrate and maltodextrin. The protein concentrate presented the highest water absorption capacity (4.46 g/g) and the highest apparent density (0.66 g/cm3). Maltodextrin and the 60:40 mixture were the ones that presented the lowest apparent density values (0.52 g/cm3). The flour presented the highest emulsifying capacity (39.60%), while the 0:100 mixture did not present water absorption capacity and lower oil absorption capacity (2.08 g/g). The 9:91 mixture presented the highest oil absorption capacity (2.68 g/g) and the lowest emulsifying capacity (7.44%). The flour presented a pH of 6.68 while the concentrate and the mixtures presented similar values (4.43). These studies indicate that flour and concentrate or protein concentrate:maltodextrin mixtures can be used as ingredients for the production or development of new food products, or their possible use as wall material in microencapsulated.
Collapse
Affiliation(s)
- María G. Lozano-Aguirre
- Tecnológico Nacional de México, Instituto Tecnológico de Tuxtepec, Calzada Dr. Víctor Bravo Ahuja, No. 561, Col. Predio el paraíso, 68350 Tuxtepec, Oaxaca México
| | - Jesús Rodríguez-Miranda
- Tecnológico Nacional de México, Instituto Tecnológico de Tuxtepec, Calzada Dr. Víctor Bravo Ahuja, No. 561, Col. Predio el paraíso, 68350 Tuxtepec, Oaxaca México
| | - Reyna N. Falfán-Cortes
- Centro de Investigaciones Químicas, ICBI–UAEH, Car. Pachuca-Tulancingo Km 4.5. Mineral de la Reforma, 42184 Pachuca, Hidalgo México
| | - Betsabé Hernández-Santos
- Tecnológico Nacional de México, Instituto Tecnológico de Tuxtepec, Calzada Dr. Víctor Bravo Ahuja, No. 561, Col. Predio el paraíso, 68350 Tuxtepec, Oaxaca México
| |
Collapse
|
21
|
Baune MC, Terjung N, Tülbek MÇ, Boukid F. Textured vegetable proteins (TVP): Future foods standing on their merits as meat alternatives. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
22
|
Lyu Z, Sala G, Scholten E. Water distribution in maize starch-pea protein gels as determined by a novel confocal laser scanning microscopy image analysis method and its effect on structural and mechanical properties of composite gels. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Wang Y, Rosa-Sibakov N, Edelmann M, Sozer N, Katina K, Coda R. Enhancing the utilization of rapeseed protein ingredients in bread making by tailored lactic acid fermentation. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
24
|
Toledo e Silva SH, Silva LB, Eisner P, Bader-Mittermaier S. Production of Protein Concentrates from Macauba ( Acrocomia aculeata and Acrocomia totai) Kernels by Sieve Fractionation. Foods 2022; 11:foods11223608. [PMID: 36429200 PMCID: PMC9689480 DOI: 10.3390/foods11223608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
Macauba palm fruits (Acrocomia aculeata and Acrocomia totai) are emerging as sources of high-quality oils from their pulp and kernels. The protein-rich macauba kernel meal (MKM) left after oil extraction remains undervalued, mainly due to the lack of suitable deoiling parameters and integrated protein recovery methods. Therefore, the present study aimed to produce protein concentrates from MKM using sieve fractionation. The deoiling parameters, comprising pressing, milling, and solvent extraction, were improved in terms of MKM functionality. The combination of hydraulic pressing, milling to 1 mm, and the hexane extraction of A. aculeata kernels resulted in MKM with the highest protein solubility (77.1%), emulsifying activity index (181 m2/g protein), and emulsion stability (149 min). After sieve fractionation (cut size of 62 µm), this meal yielded a protein concentrate with a protein content of 65.6%, representing a 74.1% protein enrichment compared to the initial MKM. This protein concentrate showed a reduced gelling concentration from 8 to 6%, and an increased emulsion stability from 149 to 345 min, in comparison to the MKM before sieving. Therefore, sieve fractionation after improved deoiling allows for the simple, cheap, and environmentally friendly recovery of MKM proteins, highlighting the potential of macauba kernels as a new source of protein.
Collapse
Affiliation(s)
- Sérgio Henrique Toledo e Silva
- Department of Food Process Development, Fraunhofer Institute for Process Engineering and Packaging IVV, 85354 Freising, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), 85354 Freising, Germany
- Correspondence: ; Tel.: +49-08161-4910-422
| | - Lidiane Bataglia Silva
- Department of Food Process Development, Fraunhofer Institute for Process Engineering and Packaging IVV, 85354 Freising, Germany
| | - Peter Eisner
- Department of Food Process Development, Fraunhofer Institute for Process Engineering and Packaging IVV, 85354 Freising, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), 85354 Freising, Germany
- Steinbeis Hochschule Berlin, 12489 Berlin, Germany
| | - Stephanie Bader-Mittermaier
- Department of Food Process Development, Fraunhofer Institute for Process Engineering and Packaging IVV, 85354 Freising, Germany
| |
Collapse
|
25
|
Liu K. A new method for determining protein solubility index (PSI) based on extraction with 5
mM
alkali hydroxide and its correlation with trypsin inhibitor activity in soybean products. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Keshun Liu
- U.S. Department of Agriculture, Agricultural Research Service National Small Grains and Potato Germplasm Research Unit Aberdeen Idaho USA
| |
Collapse
|
26
|
Effect of salt concentration and drying temperature on functional properties of sesame (Sesamum indicum L.) meal protein isolate. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
27
|
A Novel Fermented Rapeseed Meal, Inoculated with Selected Protease-Assisting Screened B. subtilis YY-4 and L. plantarum 6026, Showed High Availability and Strong Antioxidant and Immunomodulation Potential Capacity. Foods 2022; 11:foods11142118. [PMID: 35885361 PMCID: PMC9317248 DOI: 10.3390/foods11142118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
A study was conducted to investigate the yield of small peptides from rapeseed meal (RSM) by solid-state fermentation (SSF) with acid-protease-assisting B. subtilis YY-4 and L. plantarum CICC6026 (FRSMP). This study explored the availability, antioxidant capacity and immunomodulation activity. The objective of this study was to develop a novel functional food ingredient to contribute to health improvement. The results showed that the concentrations of soluble peptides and free amino acids significantly increased after fermentation (p < 0.001), and the concentration of small molecular peptides (molecular weight < 1 KDa) significantly increased (p < 0.001). The dense surface microstructure of the RSM after fermentation was changed to be loose and porous. The FRSMP exhibited high availability and high antioxidant activity, and it displayed high immunomodulation activity. The novel fermentation was effective for improving the nutritional and biological properties, which provided a feasible method of enhancing the added value.
Collapse
|
28
|
Penchalaraju M, Bosco SJD. Leveraging Indian pulses for plant‐based meat: functional properties and development of meatball analogues. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Malleboina Penchalaraju
- Department of Food Science and Technology Pondicherry Central University Kalapet Puducherry India 605014
| | - Sowriappan John Don Bosco
- Department of Food Science and Technology Pondicherry Central University Kalapet Puducherry India 605014
| |
Collapse
|
29
|
Vahedifar A, Wu J. Extraction, nutrition, functionality and commercial applications of canola proteins as an underutilized plant protein source for human nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 101:17-69. [PMID: 35940704 DOI: 10.1016/bs.afnr.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Concerns about sustainability and nutrition security have encouraged the food sector to replace animal proteins in food formulations with underutilized plant protein sources and their co-products. In this scenario, canola protein-rich materials produced after oil extraction, including canola cold-pressed cakes and meals, offer an excellent opportunity, considering their nutritional advantages such as a well-balanced amino acid composition and their potential bioactivity. However, radical differences among major proteins (i.e., cruciferin and napin) in terms of the physicochemical properties, and the presence of a wide array of antinutritional factors in canola, impede the production of a highly pure protein extract with a reasonable extraction yield. In this manuscript, principles regarding the extraction methods applicable for the production of canola protein concentrates and isolates are explored in detail. Alkaline and salt extraction methods are presented as the primary isolation methods, which result in cruciferin-rich and napin-rich isolates with different nutritional and functional properties. Since a harsh alkaline condition would result in an inferior functionality in protein isolates, strategies are recommended to reduce the required solvent alkalinity, including using a combination of salt and alkaline and employing membrane technologies, application of proteases and carbohydrases to facilitate the protein solubilization from biomass, and novel green physical methods, such as ultrasound and microwave treatments. In terms of the commercialization progress, several canola protein products have received a GRAS notification so far, which facilitates their incorporation in food formulations, such as bakery, beverages, salad dressings, meat products and meat analogues, and dairies.
Collapse
Affiliation(s)
- Amir Vahedifar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
30
|
Yano H, Fu W. Effective Use of Plant Proteins for the Development of "New" Foods. Foods 2022; 11:foods11091185. [PMID: 35563905 PMCID: PMC9102783 DOI: 10.3390/foods11091185] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
Diversity in our diet mirrors modern society. Affluent lifestyles and extended longevity have caused the prevalence of diabetes and sarcopenia, which has led to the increased demand of low-carb, high-protein foods. Expansion of the global population and Westernization of Asian diets have surged the number of meat eaters, which has eventually disrupted the supply–demand balance of meat. In contrast, some people do not eat meat for religious reasons or due to veganism. With these multiple circumstances, our society has begun to resort to obtaining protein from plant sources rather than animal origins. This “protein shift” urges food researchers to develop high-quality foods based on plant proteins. Meanwhile, patients with food allergies, especially gluten-related ones, are reported to be increasing. Additionally, growing popularity of the gluten-free diet demands development of foods without using ingredients of wheat origin. Besides, consumers prefer “clean-label” products in which products are expected to contain fewer artificial compounds. These diversified demands on foods have spurred the development of “new” foods in view of food-processing technologies as well as selection of the primary ingredients. In this short review, examples of foodstuffs that have achieved tremendous recent progress are introduced: effective use of plant protein realized low-carb, high protein, gluten-free bread/pasta. Basic manufacturing principles of plant-based vegan cheese have also been established. We will also discuss on the strategy of effective development of new foods in view of the better communication with consumers as well as efficient use of plant proteins.
Collapse
|
31
|
Pilot-Scale Protein Recovery from Cold-Pressed Rapeseed Press Cake: Influence of Solids Recirculation. Processes (Basel) 2022. [DOI: 10.3390/pr10030557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The agricultural sector is responsible for about 30% of greenhouse gas emissions, and thus there is a need to develop new plant-based proteins with lower climate impact. Rapeseed press cake, a by-product from rapeseed oil production, contains 30% high-quality protein. The purpose of this study was to recover protein from cold-pressed rapeseed press cakes on a pilot scale using a decanter and investigate the effect of recirculation of the spent solids fraction on protein yield. Proteins were extracted under alkaline conditions (pH 10.5) followed by precipitation at pH 3.5. Recirculating the spent solids fraction once increased the accumulated protein yield from 70% to 83%. The efficiency of the recovery process was highest in the first and second cycles. The additional yield after the third and fourth cycles was only 2%. The amino acid composition showed high levels of essential amino acids and was not reduced throughout the recovery process. The glucosinolate and phytate content was reduced in the precipitate after one cycle, although additional process steps are needed to further reduce the phytate content and limit the negative effect on mineral uptake.
Collapse
|
32
|
Sá AGA, Laurindo JB, Moreno YMF, Carciofi BAM. Influence of Emerging Technologies on the Utilization of Plant Proteins. Front Nutr 2022; 9:809058. [PMID: 35223951 PMCID: PMC8873936 DOI: 10.3389/fnut.2022.809058] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
Protein from plant sources is claimed alternatives to animal sources in the human diet. Suitable protein sources need high protein digestibility and amino acid bioavailability. In terms of protein functionality and food applications, they also need high-quality attributes, such as solubility, gelling, water- and oil-holding capacities, emulsifying, and foaming. Thermal processing can improve the nutritional quality of plants with some disadvantages, like reducing the assimilation of micronutrients (vitamins and minerals). Emerging technologies-such as ultrasound, high-pressure, ohmic heating, microwave, pulsed electric field, cold plasma, and enzymatic processes-can overcome those disadvantages. Recent studies demonstrate their enormous potential to improve protein techno-functional properties, protein quality, and decrease protein allergenicity. However, the literature lacks a broader evaluation, including protein digestibility, industrial-scale optimization, and exploring applications to these alternative protein sources.
Collapse
Affiliation(s)
- Amanda Gomes Almeida Sá
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - João Borges Laurindo
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | | |
Collapse
|
33
|
Di Lena G, Sanchez del Pulgar J, Lucarini M, Durazzo A, Ondrejíčková P, Oancea F, Frincu RM, Aguzzi A, Ferrari Nicoli S, Casini I, Gabrielli P, Caproni R, Červeň I, Lombardi-Boccia G. Valorization Potentials of Rapeseed Meal in a Biorefinery Perspective: Focus on Nutritional and Bioactive Components. Molecules 2021; 26:6787. [PMID: 34833884 PMCID: PMC8618708 DOI: 10.3390/molecules26226787] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 11/16/2022] Open
Abstract
Rapeseed meal (RSM), a by-product of oilseed extraction connected to the agri-food and biofuel sectors, is currently used as animal feed and for other low-value purposes. With a biorefinery approach, RSM could be valorized as a source of bio-based molecules for high-value applications. This study provides a chemical characterization of RSM in the perspective of its valorization. A qualitative study of main functional groups by fourier transform infrared (FTIR) spectroscopy was integrated with a chemical characterization of macronutrients, minerals by inductively coupled plasma optical emission spectrometry (ICP-OES), phenolic acids and lipid components by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), HPLC-diode-array detector (HPLC-DAD) and gas chromatography-mass spectrometry/flame ionization detector (GC-MS/FID). The study, conducted on different lots of RSM collected over a one-year period from an oil pressing factory serving a biofuel biorefinery, highlighted a constant quality over time of RSM, characterized by high protein (31-34%), fiber (33-40%) and mineral (5.5-6.8%) contents. Polyphenol extracts showed a significant antioxidant activity and a prevalence of sinapic acid, accounting for more than 85% of total phenolic acids (395-437 mg kg-1 RSM). Results highlight the potentialities of RSM for further valorization strategies that may lead to the creation of new cross-sector interconnections and bio-based value chains with improvement of the economics and sustainability of the bioeconomy sectors involved.
Collapse
Affiliation(s)
- Gabriella Di Lena
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (J.S.d.P.); (M.L.); (A.D.); (A.A.); (S.F.N.); (I.C.); (P.G.); (R.C.); (G.L.-B.)
| | - Jose Sanchez del Pulgar
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (J.S.d.P.); (M.L.); (A.D.); (A.A.); (S.F.N.); (I.C.); (P.G.); (R.C.); (G.L.-B.)
| | - Massimo Lucarini
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (J.S.d.P.); (M.L.); (A.D.); (A.A.); (S.F.N.); (I.C.); (P.G.); (R.C.); (G.L.-B.)
| | - Alessandra Durazzo
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (J.S.d.P.); (M.L.); (A.D.); (A.A.); (S.F.N.); (I.C.); (P.G.); (R.C.); (G.L.-B.)
| | | | - Florin Oancea
- National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania; (F.O.); (R.-M.F.)
| | - Rodica-Mihaela Frincu
- National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania; (F.O.); (R.-M.F.)
| | - Altero Aguzzi
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (J.S.d.P.); (M.L.); (A.D.); (A.A.); (S.F.N.); (I.C.); (P.G.); (R.C.); (G.L.-B.)
| | - Stefano Ferrari Nicoli
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (J.S.d.P.); (M.L.); (A.D.); (A.A.); (S.F.N.); (I.C.); (P.G.); (R.C.); (G.L.-B.)
| | - Irene Casini
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (J.S.d.P.); (M.L.); (A.D.); (A.A.); (S.F.N.); (I.C.); (P.G.); (R.C.); (G.L.-B.)
| | - Paolo Gabrielli
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (J.S.d.P.); (M.L.); (A.D.); (A.A.); (S.F.N.); (I.C.); (P.G.); (R.C.); (G.L.-B.)
| | - Roberto Caproni
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (J.S.d.P.); (M.L.); (A.D.); (A.A.); (S.F.N.); (I.C.); (P.G.); (R.C.); (G.L.-B.)
| | - Igor Červeň
- Poľnoservis a.s., Trnavská Cesta, 920 41 Leopoldov, Slovakia;
| | - Ginevra Lombardi-Boccia
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (J.S.d.P.); (M.L.); (A.D.); (A.A.); (S.F.N.); (I.C.); (P.G.); (R.C.); (G.L.-B.)
| |
Collapse
|
34
|
|
35
|
Immonen M, Chandrakusuma A, Sibakov J, Poikelispää M, Sontag-Strohm T. Texturization of a Blend of Pea and Destarched Oat Protein Using High-Moisture Extrusion. Foods 2021; 10:1517. [PMID: 34359387 PMCID: PMC8304661 DOI: 10.3390/foods10071517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Grain protein fractions have great potential as ingredients that contain high amounts of valuable nutritional components. The aim of this study was to study the rheological behavior of destarched oat and pea proteins and their blends in extrusion-like conditions with a closed cavity rheometer. Additionally, the possibility of producing fibrous structures with high-moisture extrusion from a blend of destarched oat and pea protein was investigated. In the temperature sweep measurement (60-160 °C) of the destarched oat protein concentrate and pea protein isolate blend, three denaturation and polymerization sections were observed. In addition, polymerization as a function of time was recorded in the time sweep measurements. The melting temperature of grain proteins was an important factor when producing texturized structures with a high-moisture extrusion. The formation of fibrillar structures was investigated with high-moisture extrusion from the destarched oat and pea protein blend at temperatures ranging from 140 to 170 °C. The protein-protein interactions were significantly influenced in the extruded samples. This was due to a decrease in the amount of extractable protein in selective buffers. In particular, there was a decrease in non-covalent and covalent bonds due to the formation of insoluble protein complexes.
Collapse
Affiliation(s)
- Mika Immonen
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 27, FI-00014 Helsinki, Finland;
- Valio Ltd., P.O. Box 10, FI-00039 Helsinki, Finland;
| | | | - Juhani Sibakov
- Fazer Bakery Finland, P.O. Box 17, FI-00941 Helsinki, Finland;
| | - Minna Poikelispää
- Department of Materials Science, Faculty of Engineering Sciences, Tampere University, P.O. Box 689, FI-33014 Tampere, Finland;
| | - Tuula Sontag-Strohm
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 27, FI-00014 Helsinki, Finland;
| |
Collapse
|
36
|
Sá AGA, Silva DCD, Pacheco MTB, Moreno YMF, Carciofi BAM. Oilseed by-products as plant-based protein sources: Amino acid profile and digestibility. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100023] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
37
|
Functionality of Ingredients and Additives in Plant-Based Meat Analogues. Foods 2021; 10:foods10030600. [PMID: 33809143 PMCID: PMC7999387 DOI: 10.3390/foods10030600] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Meat analogue research and development focuses on the production of sustainable products that recreate conventional meat in its physical sensations (texture, appearance, taste, etc.) and nutritional aspects. Minced products, like burger patties and nuggets, muscle-type products, like chicken or steak-like cuts, and emulsion products, like Frankfurter and Mortadella type sausages, are the major categories of meat analogues. In this review, we discuss key ingredients for the production of these novel products, with special focus on protein sources, and underline the importance of ingredient functionality. Our observation is that structuring processes are optimized based on ingredients that were not originally designed for meat analogues applications. Therefore, mixing and blending different plant materials to obtain superior functionality is for now the common practice. We observed though that an alternative approach towards the use of ingredients such as flours, is gaining more interest. The emphasis, in this case, is on functionality towards use in meat analogues, rather than classical functionality such as purity and solubility. Another trend is the exploration of novel protein sources such as seaweed, algae and proteins produced via fermentation (cellular agriculture).
Collapse
|