1
|
Yu Y, Xu J, Xu J, Li Y, Zhang X, Zhang W. Preparation and characterization of chitosan / corn starch based films loaded with Vaccinium vitis-idaea anthocyanin nanocomplexes and the application in shrimp preservation. Int J Biol Macromol 2025; 303:140734. [PMID: 39920926 DOI: 10.1016/j.ijbiomac.2025.140734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/22/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
In this experiment, the nanocomposite film prepared by adding of nanocomplexes (ACNs-CHC/CMC-WPI) of Vaccinium vitis-idaea anthocyanins encapsulated with carboxymethyl chitosan (CMC), chitosan hydrochloride (CHC), and whey protein isolate (WPI) to chitosan/corn starch (CTS/Corn) blend matrix for food packaging. The functionality and stability of anthocyanin-loaded nanocomplexes and anthocyanin-containing films were determined and compared. Good encapsulation was observed by transmission electron microscopy. The freshness preservation effect of the prepared films on shrimp was investigated. Scanning electron microscopy results showed that ACNs-CHC/CMC-WPI was uniformly dispersed in chitosan-corn starch matrix, indicating the formation of a stable CTS/Corn-anthocyanin nanocomplex film (CTS/Corn-AN film). Although CTS/Corn-free anthocyanin (CTS/Corn-FA film) had better antioxidant activity in the short term, the CTS/Corn-AN film could better maintain the antioxidant activity and original color after 28 days of light exposure. In summary, the CTS/Corn-AN film possessed better mechanical property with elongation at break at 88.67 %, oxidation resistance with DPPH scavenging of 28.71 % at 28th, and other physicochemical properties than those of the CTS/Corn-FA film. Finally, the CTS/Corn-AN film showed effective freshness preservation of shrimp at 4 °C for 10 days compared to the control group due to durable antibacterial and antioxidant properties. Therefore, CTS/Corn-AN film was promising active packaging material in shrimp preservation.
Collapse
Affiliation(s)
- Yuhe Yu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Jieli Xu
- Department of Crop Science in Agricultural Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163316, PR China
| | - Jian Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Yingying Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Xiuling Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Wentao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| |
Collapse
|
2
|
Amjadi S, Almasi H, Gholizadeh S, Hamishehkar H. Double layer packaging based on active black chickpea protein isolate electrospun nanofibers and intelligent salep film containing black chickpea peel anthocyanins for seafood products. Int J Biol Macromol 2024; 278:134897. [PMID: 39168199 DOI: 10.1016/j.ijbiomac.2024.134897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/23/2024] [Revised: 07/31/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
In this study, a double-layer active and intelligent packaging system was developed based on two main natural macromolecules i.e. protein and carbohydrate with green perspective. Firstly, the salep-based films containing different concentrations (0-8 % w/w) of the inclusion complex of β-cyclodextrin/black chickpea anthocyanins (βCD/BCPA) were produced. The salep film containing 8 % of βCD/BCPA complex was specified as the optimized film sample based on its performance as a color indicator. The electrospinning of black chickpea protein isolate nanofibers (BCPI NFs) containing citral nanoliposomes (NLPs) was done on the optimized salep film. The cross-sectional field emission scanning electron microscopy approved the creation of double-layer structure of the developed film. The study of chemical and crystalline structure, as well as the thermal properties of the film exhibited the physical attachment of BCPI electrospun NFs on salep film. The effectiveness of the developed system was studied in detection of spoilage and increasing the shelf life of seafood products, including shrimp and fish fillet. The performance of the intelligent layer in detection of freshness/spoilage was acceptable for both seafood products. In addition, the active layer of the film controlled the changes of pH, total volatile basic nitrogen, oxidation, and microbial load in samples during storage time.
Collapse
Affiliation(s)
- Sajed Amjadi
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, PO Box: 91895-157-356, Iran.
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, P.O. Box 57561-51818, Iran.
| | - Sara Gholizadeh
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, PO Box: 91895-157-356, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Subramani G, Manian R. Bioactive chitosan films: Integrating antibacterial, antioxidant, and antifungal properties in food packaging. Int J Biol Macromol 2024; 278:134596. [PMID: 39127291 DOI: 10.1016/j.ijbiomac.2024.134596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/30/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
In this work, chitosan was combined with bio-vanillin (BV) and kaolin clay (KC) to create a novel antifungal and biodegradable food packaging film. The chitosan/KC/BV film exhibited an antioxidant capacity of 80 % as measured by DPPH assay, which was significantly higher than that of the chitosan film which has 55.6 %). The film also demonstrated strong antimicrobial activity with a reduction of 90 % in the growth of E. coli and S. aureus compared to the control. Additionally, the chitosan/KC/BV film showed a 75 % reduction in fungal growth compared to chitosan film. Furthermore, the water vapor permeability of the chitosan film was reduced as 5.38 with the addition of KC/BV. The degradation study revealed that the chitosan/KC film degraded by 88 % within 20 days under composting conditions. Additionally, fresh-cut apple slices were used to examine the effectiveness of chitosan/KC/BV film as a packaging material. The fruit's weight loss and browning index showed satisfactory food preservation. Our research suggests that the chitosan/KC/BV film has great potential for use in the food sector due to its strong antioxidant, antimicrobial, and biodegradable properties.
Collapse
Affiliation(s)
- Gomathi Subramani
- Department of Biotechnology, School of BioSciences and Technology, VIT University: Vellore Institute of Technology, Vellore, Tamil Nadu, India, 632014
| | - Rameshpathy Manian
- Department of Biotechnology, School of BioSciences and Technology, VIT University: Vellore Institute of Technology, Vellore, Tamil Nadu, India, 632014.
| |
Collapse
|
4
|
Liu K, Song A, Li H, Li C. Xanthan gum ink based on Lycium ruthenicum anthocyanin as an indicator of color change for monitoring freshness of cold fresh meat. Int J Biol Macromol 2024; 276:133788. [PMID: 38992540 DOI: 10.1016/j.ijbiomac.2024.133788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/26/2024] [Revised: 06/19/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
The continuous development of intelligent food packaging has led to an increased focus on using freshness-indicating inks, which could provide a high level of quality control and consumer experience. This study aimed to further promote the application of xanthan gum ink in food freshness indication by optimizing its performance in screen printing. A novel freshness-indicating ink was prepared using Lycium ruthenicum anthocyanin (LRA) as the core indicator, glucose as the pigment carrier, soybean oil as the linker, and xanthan gum (XG) as the thickener. Scanning electron microscopy (SEM) demonstrated that the ink was uniformly distributed on paper using screen printing. Rheological and particle size analyses revealed that the incorporation of XG significantly enhanced the interaction force between droplets in the ink system. Further tests on viscosity, fineness, and initial dryness indicated that XG, a natural microbial polysaccharide with excellent stability, could effectively improve the flowability of the ink. Specifically, at a 0.3 % XG content, the ink exhibited a unimodal particle size distribution with an average particle size of 851.02 nm and a zeta potential of -27 mV. This indicated the ink system was stable and uniform, with optimal rheological properties and printing suitability. Furthermore, the printed freshness indication labels exhibited a significant change in color as the freshness of the refrigerated meat changed. This study develops a natural and safe method for monitoring the freshness of refrigerated meat and provides an optimized idea for applying indicator inks.
Collapse
Affiliation(s)
- Kaya Liu
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China
| | - Anning Song
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China
| | - Hao Li
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China
| | - Chunwei Li
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
5
|
Mohammadzadeh P, Marand SA, Almasi H, Zeynali F, Moradi M. Bacterial nanocellulose-based nanopaper activated by β-cyclodextrin/ Salvia officinalis essential oil complexes for shelf life extension of shrimp. Int J Biol Macromol 2024; 275:133354. [PMID: 38945710 DOI: 10.1016/j.ijbiomac.2024.133354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/09/2024] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
Active bacterial nanocellulose (BNC) nanopapers containing Salvia officinalis essential oil (SEO) in free form and encapsulated with β-cyclodextrin (βCD) were prepared, and their effect on the shelf life extension of shrimp was investigated. The GC-MS analysis of the SEO indicated the presence of various active compounds such as Thujone (21.53 %), Ledol (12.51 %) and Eucalyptol (11.28 %) in the essential oil composition. The cytotoxicity of the SEO and SEO-βCD complexes in the L929 cell line was quite low. FTIR analysis revealed new interactions in the nanopapers containing SEO-βCD complexes. Microscopic images showed that SEO-βCD complexation improved the surface morphology of the BNC nanopapers, whereas free SEO had a negative effect. X-ray diffraction patterns of the nanopapers showed higher crystallinity of the SEO-βCD containing nanopapers than that of the SEO-incorporated nanopapers. Moreover, the addition of the SEO-βCD complex improved the thermal properties of the BNC nanopaper. Water contact angle analysis showed higher hydrophobicity of the samples containing free SEO than that of the other samples. Both SEO-βCD and free SEO increased the elongation at break and decreased the tensile strength of the nanopaper. The prepared active films showed a greater antimicrobial effect on L. monocytogenes than on E. coli. The results showed a higher antioxidant capacity of the free SEO-containing nanopapers (58-78 %). The desirable effects of the active nanopapers on shrimp preservation were demonstrated by the results obtained for the microbial load, pH, and volatile nitrogen content of the product. The results demonstrate the potential of the prepared BNC active nanopapers for use in active antioxidant/antimicrobial food packaging.
Collapse
Affiliation(s)
- Paria Mohammadzadeh
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Sina Ardebilchi Marand
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Fariba Zeynali
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
6
|
Nath PC, Sharma R, Mahapatra U, Mohanta YK, Rustagi S, Sharma M, Mahajan S, Nayak PK, Sridhar K. Sustainable production of cellulosic biopolymers for enhanced smart food packaging: An up-to-date review. Int J Biol Macromol 2024; 273:133090. [PMID: 38878920 DOI: 10.1016/j.ijbiomac.2024.133090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
Biodegradable and sustainable food packaging (FP) materials have gained immense global importance to reduce plastic pollution and environmental impact. Therefore, this review focused on the recent advances in biopolymers based on cellulose derivatives for FP applications. Cellulose, an abundant and renewable biopolymer, and its various derivatives, namely cellulose acetate, cellulose sulphate, nanocellulose, carboxymethyl cellulose, and methylcellulose, are explored as promising substitutes for conventional plastic in FP. These reviews focused on the production, modification processes, and properties of cellulose derivatives and highlighted their potential for their application in FP. Finally, we reviewed the effects of incorporating cellulose derivatives into film in various aspects of packaging properties, including barrier, mechanical, thermal, preservation aspects, antimicrobial, and antioxidant properties. Overall, the findings suggest that cellulose derivatives have the potential to replace conventional plastics in food packaging applications. This can contribute to reducing plastic pollution and lessening the environmental impact of food packaging materials. The review likely provides insights into the current state of research and development in this field and underscores the significance of sustainable food packaging solutions.
Collapse
Affiliation(s)
- Pinku Chandra Nath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India; Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, University of Science and Technology Meghalaya, Baridua 793101, India
| | - Ramesh Sharma
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Uttara Mahapatra
- Department of Chemical Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, University of Science and Technology Meghalaya, Baridua 793101, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun 248007, India
| | - Minaxi Sharma
- Research Center for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation (CBI), University of Nottingham Ningbo China, Ningbo 315000, China
| | - Shikha Mahajan
- Department of Food and Nutrition, Punjab Agricultural University, Ludhiana 141004, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India.
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| |
Collapse
|
7
|
Ekrem Parlak M, Irmak Sahin O, Neslihan Dundar A, Türker Saricaoglu F, Smaoui S, Goksen G, Koirala P, Al-Asmari F, Prakash Nirmal N. Natural colorant incorporated biopolymers-based pH-sensing films for indicating the food product quality and safety. Food Chem 2024; 439:138160. [PMID: 38086233 DOI: 10.1016/j.foodchem.2023.138160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/05/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
The current synthetic plastic-based packaging creates environmental hazards that impact climate change. Hence, the topic of the current research in food packaging is biodegradable packaging and its development. In addition, new smart packaging solutions are being developed to monitor the quality of packaged foods, with dual functions as food preservation and quality indicators. In the creation of intelligent and active food packaging, many natural colorants have been employed effectively as pH indicators and active substances, respectively. This review provides an overview of biodegradable polymers and natural colorants that are being extensively studied for pH-indicating packaging. A comprehensive discussion has been provided on the current status of the development of intelligent packaging systems for food, different incorporation techniques, and technical challenges in the development of such green packaging. Finally, the food industry and environmental protection might be revolutionized by pH-sensing biodegradable packaging enabling real-time detection of food product quality and safety.
Collapse
Affiliation(s)
- Mahmud Ekrem Parlak
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Oya Irmak Sahin
- Department of Chemical Engineering, Faculty of Engineering, Yalova University, 76200 Yalova, Turkey
| | - Ayse Neslihan Dundar
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Furkan Türker Saricaoglu
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Fahad Al-Asmari
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 400, Al-Ahsa, 31982 Al-Hofuf, Saudi Arabia
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
8
|
Shavisi N. Electrospun fiber mats based on chitosan-carrageenan containing Malva sylvestris anthocyanins: Physic-mechanical, thermal, and barrier properties along with application as intelligent food packaging materials. Int J Biol Macromol 2024; 266:131077. [PMID: 38531525 DOI: 10.1016/j.ijbiomac.2024.131077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/13/2023] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
This study aimed to encapsulate Malva sylvestris extract (MSE) into chitosan-carrageenan (CH-KC) fibers using the electrospinning technique and monitor the freshness of silver carp fillets during the refrigerated storage conditions for 8 days. The CH-KC + MSE 4 % fiber mats were red at pH values lower than 3, purple at pH 4-6, dark blue at pH 7, green at pH 8-10, and brown at pH 11-12. The tensile strength, elongation at break, water vapor permeability, oxygen transmission rate, moisture content, and water solubility of fabricated fiber mats were 7.71-11.02 MPa, 13.12 %-30.00 %, 7.35-20.01 × 10-4 g mm/m2 h Pa, 3.81-8.23 cm3/m2 h, 15.74 %-27.34 %, and 3.90 %-7.56 %, respectively. Regarding the potential application of a fabricated indicator for freshness monitoring of silver carp fillets, total viable count, psychrotrophic bacterial count, pH, and total volatile basic nitrogen reached 8.91 log CFU/g, 8.03 log CFU/g, 8.10, and 40.18 mg N/100 g at the end of the study, respectively. Meanwhile, the CH-KC + MSE 4 % fiber mat color changed from white to green. These findings suggest that CH-KC + MSE 4 % fiber mats can be further utilized in the food industry to control the freshness of refrigerated silver carp fillets.
Collapse
Affiliation(s)
- Nassim Shavisi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.
| |
Collapse
|
9
|
Zeng Q, Wang Y, Javeed A, Chen F, Li J, Guan Y, Chen B, Han B. Preparation and properties of polyvinyl alcohol/chitosan-based hydrogel with dual pH/NH 3 sensor for naked-eye monitoring of seafood freshness. Int J Biol Macromol 2024; 263:130440. [PMID: 38417763 DOI: 10.1016/j.ijbiomac.2024.130440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/12/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
To address the issue of food spoilage causing health and economic loss, we developed a pH/NH3 dual sensitive hydrogel based on polyvinyl alcohol/chitosan (PVA/CS) containing chitosan-phenol red (CP). The CP was synthesized via Mannich reaction and immobilized it in PVA/CS hydrogel through freezing/thawing method to prepare the final PVA/CS/CP hydrogel. The synthesis of CP was confirmed by 1H NMR, FT-IR, XRD, UV-vis, and XPS. The characteristics of hydrogel were evaluated by FT-IR, XRD, SEM, mechanical properties, thermal stability, leaching, and color stability tests. The PVA/CS/CP hydrogel showed distinctly different color at various pH and NH3 vapor levels (yellow to purple). The hydrogel exhibited obvious color changes (ΔE = 46.95) in response to shrimp spoilage, stored at 4 °C. It showed positive and strong correlation between the ΔE values of the indicator hydrogel and total volatile basic nitrogen (TVB-N) as (R2 = 0.9573) and with pH as (R2 = 0.8686), respectively. These results clearly show that the PVA/CS/CP hydrogel could be applied for naked-eye real-time monitoring of seafood freshness in intelligent packaging.
Collapse
Affiliation(s)
- Qiuyu Zeng
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Laboratory of Antiallergic Functional Molecules, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yifan Wang
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Laboratory of Antiallergic Functional Molecules, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Ansar Javeed
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Laboratory of Antiallergic Functional Molecules, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Fengyun Chen
- School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Jiaxing Li
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Laboratory of Antiallergic Functional Molecules, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yating Guan
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Laboratory of Antiallergic Functional Molecules, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Baiyu Chen
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Laboratory of Antiallergic Functional Molecules, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Bingnan Han
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Laboratory of Antiallergic Functional Molecules, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
10
|
Gong L, Zhu J, Yang Y, Qiao S, Ma L, Wang H, Zhang Y. Effect of polyethylene glycol on polysaccharides: From molecular modification, composite matrixes, synergetic properties to embeddable application in food fields. Carbohydr Polym 2024; 327:121647. [PMID: 38171672 DOI: 10.1016/j.carbpol.2023.121647] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/20/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 01/05/2024]
Abstract
Polyethylene glycol (PEG) is a flexible, water-soluble, non-immunogenic, as well as biocompatible polymer, and it could synergize with polysaccharides for food applications. The molecular modification strategies, including covalent bond interactions (amino groups, carboxyl groups, aldehyde groups, tosylate groups, etc.), and non-covalent bond interactions (hydrogen bonding, electrostatic interactions, etc.) on PEG molecular chains are discussed. Its versatile structure, group modifiability, and amphiphilic block buildability could improve the functions of polysaccharides (e.g., chitosan, cellulose, starch, alginate, etc.) and adjust the properties of combined PEG/polysaccharides with outstanding chain tunability and matrix processability owing to plasticizing effects, compatibilizing effects, steric stabilizing effects and excluded volume effects by PEG, for achieving the diverse performance targets. The synergetic properties of PEG/polysaccharides with remarkable architecture were summarized, including mechanical properties, antibacterial activity, antioxidant performance, self-healing properties, carrier and delivery characteristics. The PEG/polysaccharides with excellent combined properties and embeddable merits illustrate potential applications including food packaging, food intelligent indication/detection, food 3D printing and nutraceutical food absorption. Additionally, prospects (like food innovation and preferable nutrient utilization) and key challenges (like structure-effectiveness-applicability relationship) for PEG/polysaccharides are proposed and addressed for food fields.
Collapse
Affiliation(s)
- Linshan Gong
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Juncheng Zhu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yuxin Yang
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Shihao Qiao
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 401121, PR China.
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 401121, PR China.
| |
Collapse
|
11
|
Lau WN, Mohammadi Nafchi A, Zargar M, Rozalli NHM, Mat Easa A. Development and evaluation of Bauhinia Kockiana extract-incorporated sago starch intelligent film strips for real-time freshness monitoring of coconut milk. Int J Biol Macromol 2024; 260:129589. [PMID: 38296665 DOI: 10.1016/j.ijbiomac.2024.129589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/11/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
The aim of this work was to fabricate an intelligent film using sago starch incorporated with the natural source of anthocyanins from the Bauhinia Kockiana flower and use it to monitor the freshness of coconut milk. The films were developed using the casting method that included the addition of the different concentrations (0, 5, 10, 15 mg) of Bauhinia Kockiana extract (BKE) obtained using a solvent. The anthocyanin content of Bauhinia Kockiana was 262.17 ± 9.28 mg/100 g of fresh flowers. The spectral characteristics of BKE solutions, cross-section morphology, physiochemical, barrier, and mechanical properties, and the colour variations of films in different pH buffers were investigated. Films having the highest BKE concentration demonstrated the roughest structure and highest thickness (0.16 mm), moisture content (9.72 %), swelling index (435.83 %), water solubility (31.20 %), and elongation at break (262.32 %) compared to the other films. While monitoring the freshness of coconut milk for 16 h, BKE15 showed remarkable visible colour changes (from beige to dark brown), and the pH of coconut milk dropped from 6.21 to 4.56. Therefore, sago starch film incorporated with BKE has excellent potential to act as an intelligent pH film in monitoring the freshness of coconut milk.
Collapse
Affiliation(s)
- Weng Nyan Lau
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Abdorreza Mohammadi Nafchi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia; Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM Penang, Malaysia.
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Norazatul Hanim Mohd Rozalli
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
| | - Azhar Mat Easa
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
12
|
Aliakbari FS, Kashiri M, Ghorani B, Khomeiri M, Jafari SM. Development of halochromic electrospun labels for non-invasive shelf life assessment of rainbow trout ( Oncorhynchus mykiss): Incorporation of barberry anthocyanin extract in protein-based smart packaging. FOOD SCI TECHNOL INT 2024:10820132231219779. [PMID: 38374619 DOI: 10.1177/10820132231219779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/21/2024]
Abstract
Using barberry (Berberis vulgaris L.) as a natural dye in combination with electrospinning technology represents a promising approach for the development of intelligent packaging systems. In this study, the influence of different concentrations of zein (16, 18, and 20%) and barberry anthocyanin-rich powder (BARP) (16, 18, and 20%) on the surface tension and rheological properties of the solution were evaluated. The most favorable nanofibers (NFs) were obtained from a solution containing 18% (w/w) zein under constant voltage. The surface morphology, size, and color-changing properties of electrospun NFs derived from zein polymers containing different concentrations of BARP (16, 18, and 20%) under various electrical fields (20, 22, and 24 kV) were evaluated. The Fourier-transform infrared spectroscopy analysis confirmed the interaction of BARP within the zein-based NFs. The results indicated that the concentration of BARP had a noticeable impact on the physicochemical properties of the NFs. Furthermore, efficacy of the appropriately fabricated halochromic label was evaluated for monitoring the packed rainbow trout fillet during refrigerated storage. On the 10th day, a noticeable visual color turned from pink to pale yellow was observed in response to pH variations. Additionally, the TVN value confirmed the effectiveness of halochromic electrospun labels for non-invasive assessment of fish fillet quality.
Collapse
Affiliation(s)
- Faezeh Sadat Aliakbari
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mahboobeh Kashiri
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Behrouz Ghorani
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Morteza Khomeiri
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
13
|
Doğan V, Evliya M, Nesrin Kahyaoglu L, Kılıç V. On-site colorimetric food spoilage monitoring with smartphone embedded machine learning. Talanta 2024; 266:125021. [PMID: 37549568 DOI: 10.1016/j.talanta.2023.125021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/14/2023] [Revised: 07/15/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Real-time and on-site food spoilage monitoring is still a challenging issue to prevent food poisoning. At the onset of food spoilage, microbial and enzymatic activities lead to the formation of volatile amines. Monitoring of these amines with conventional methods requires sophisticated, costly, labor-intensive, and time consuming analysis. Here, anthocyanins rich red cabbage extract (ARCE) based colorimetric sensing system was developed with the incorporation of embedded machine learning in a smartphone application for real-time food spoilage monitoring. FG-UV-CD100 films were first fabricated by crosslinking ARCE-doped fish gelatin (FG) with carbon dots (CDs) under UV light. The color change of FG-UV-CD100 films with varying ammonia vapor concentrations was captured in different light sources with smartphones of various brands, and a comprehensive dataset was created to train machine learning (ML) classifiers to be robust and adaptable to ambient conditions, resulting in 98.8% classification accuracy. Meanwhile, the ML classifier was embedded into our Android application, SmartFood++, enabling analysis in about 0.1 s without internet access, unlike its counterpart using cloud operation via internet. The proposed system was also tested on a real fish sample with 99.6% accuracy, demonstrating that it has a great advantage as a potent tool for on-site real-time monitoring of food spoilage by non-specialized personnel.
Collapse
Affiliation(s)
- Vakkas Doğan
- Department of Electrical and Electronics Engineering, Izmir Katip Celebi University, 35620 Izmir, Turkey
| | - Melodi Evliya
- Department of Food Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | | | - Volkan Kılıç
- Department of Electrical and Electronics Engineering, Izmir Katip Celebi University, 35620 Izmir, Turkey.
| |
Collapse
|
14
|
Rezaei F, Tajik H, Shahbazi Y. Intelligent double-layer polymers based on carboxymethyl cellulose-cellulose nanocrystals film and poly(lactic acid)-Viola odorata petal anthocyanins nanofibers to monitor food freshness. Int J Biol Macromol 2023; 252:126512. [PMID: 37633548 DOI: 10.1016/j.ijbiomac.2023.126512] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/14/2023] [Revised: 06/14/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The present study was conducted with the aim of fabricating smart bilayer polymers based on carboxymethyl cellulose-cellulose nanocrystals film and poly(lactic acid)-Viola odorata extract nanofibers (CMC-CNC and PLA-VOE) for freshness monitoring of Pacific white shrimps, minced lamb meat, chicken fillets, and rainbow trout fillets, during refrigerated storage conditions. The fabricated indicators based on CMC-PLA-VOE 5%, CMC-CNC 1%-PLA-VOE 5%, and CMC-CNC 3%-PLA-VOE 5% presented remarkable color changes in pH 1-12 buffer solutions, including red at pH 1-6, violet at pH 7-8, green at pH 9-10, and brown at pH 11-12. Significantly lower water vapor permeability and oxygen transmission rate of prepared polymers were found in comparison with the control groups (P < 0.05). Regarding the monitoring of food samples in real-time, the samples spoiled after 3 days, evidenced by total viable count, psychrotrophic bacterial count, total volatile basic nitrogen, and pH values of 7.17-7.54 log CFU/g, 5.68-6.23 log CFU/g, 25.14-28.12 mg N/100 g, and 7.10-7.66, respectively. Meanwhile, the noticeable color change of prepared indicators from white to violet (day 3) and finally dark violet (day 7) was observed, indicating a potential application in intelligent packaging for real-time control of the freshness of perishable food samples.
Collapse
Affiliation(s)
- Fatemeh Rezaei
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hossein Tajik
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Yasser Shahbazi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.
| |
Collapse
|
15
|
Das J, Mishra HN. A comprehensive review of the spoilage of shrimp and advances in various indicators/sensors for shrimp spoilage monitoring. Food Res Int 2023; 173:113270. [PMID: 37803582 DOI: 10.1016/j.foodres.2023.113270] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/09/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 10/08/2023]
Abstract
Shrimp is a popular internationally traded shellfish due to its unique taste, texture, and nutritional value. Shrimp is highly perishable because it has enough free amino acids, high moisture levels, non-nitrogenous compounds used for microbial growth, and melanosis. Shrimp spoilage after death is caused by various reasons, like autolysis (endogenous proteinases actions during shrimp storage), growth of spoilage microorganisms, ATP degradation, melanin formation, and lipid peroxidation. A microbial byproduct, total volatile basic nitrogen, is one of the major reasons for the generation of foul odors from shrimp spoilage. Shrimp freshness monitoring is crucial for market sellers and exporters. Traditional methods for estimating shrimp freshness are expensive and inaccessible to the general public. Sensors are rapid, sensitive, selective, and portable food toxins' detection tools, devoid of expensive instruments, skilled people, sample pretreatment, and a long detection time. This review addresses shrimp spoilage causes. The mechanisms of different stages of shrimp spoilage after death, like rigor mortis, dissolution of rigor mortis, autolysis, and microbial spoilage mechanisms, are discussed. This review highlights the last five years' advances in shrimp freshness detection sensors and indicators like colorimetric pH indicators, fluorescence sensors, electronic noses, and biosensors, their working principles, and their sensitivities. Commercially available indicators and sensors for shrimp spoilage monitoring are also discussed. A review highlighting the applications of the different sensors and indicators for monitoring shrimp freshness is unavailable to date. Challenges and future perspectives in this field are explained at the end.
Collapse
Affiliation(s)
- Joyati Das
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| | - Hari Niwas Mishra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| |
Collapse
|
16
|
Yu D, Cheng S, Li Y, Su W, Tan M. Recent advances on natural colorants-based intelligent colorimetric food freshness indicators: fabrication, multifunctional applications and optimization strategies. Crit Rev Food Sci Nutr 2023; 64:12448-12472. [PMID: 37655606 DOI: 10.1080/10408398.2023.2252904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 09/02/2023]
Abstract
With the increasing concerns of food safety and public health, tremendous efforts have been concentrated on the development of effective, reliable, nondestructive methods to evaluate the freshness level of different kinds of food. Natural colorants-based intelligent colorimetric indicators which are typically constructed with natural colorants and polymer matrices has been regarded as an innovative approach to notify the customers and retailers of the food quality during the storage and transportation procedure in real-time. This review briefly elucidates the mechanism of natural colorants used for intelligent colorimetric indicators and fabrication methodologies of natural colorants-based food freshness indicators. Subsequently, their multifunctional applications in intelligent food packaging systems like antioxidant packaging, antimicrobial packaging, biodegradable packaging, UV-blocking packaging and inkless packaging are well introduced. This paper also summarizes several optimizing strategies for the practical application of this advanced technology from different perspectives. Strategies like adopting a hydrophobic matrix, constructing double-layer film and encapsulation have been developed to improve the stability of the indicators. Co-pigmentation, metal ion complexation, pigment-mixing and using substrates with high surface area are proved to be effective to enhance the sensitivity of the indicators. Approaches include multi-index evaluation, machine learning and smartphone-assisted evaluation have been proven to improve the accuracy of the intelligent food freshness indicators. Finally, future research opportunities and challenges are proposed. Based on the fundamental understanding of natural colorants-based intelligent colorimetric food freshness indicators, and the latest research and findings from literature, this review article will help to develop better, lower cost and more reliable food freshness evaluation technique for modern food industry.
Collapse
Affiliation(s)
- Deyang Yu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Shasha Cheng
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Yu Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi District, Dalian, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian, Liaoning, China
| |
Collapse
|
17
|
Sul Y, Ezati P, Rhim JW. Preparation of chitosan/gelatin-based functional films integrated with carbon dots from banana peel for active packaging application. Int J Biol Macromol 2023; 246:125600. [PMID: 37390998 DOI: 10.1016/j.ijbiomac.2023.125600] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Carbon dots (CDs) were manufactured with banana peels using a hydrothermal method (200 °C for 6 h). The synthesized CDs were spherical particles with a size of 1-3 nm having carboxyl groups and amine groups on the surface. CDs have been impregnated into chitosan/gelatin films to synthesize multifunctional packaging films. The composite film showed a slight decrease in transparency but a significant increase in UV protection properties. The fabricated film displayed strong antioxidant efficacy showing >74 % DPPH and 99 % ABTS radical scavenging potential. The film also unveiled substantial antibacterial activity against the foodborne pathogenic bacteria, Listeria monocytogenes, fully eliminating the growth of these bacteria within 6 h of exposure. The chitosan/gelatin film containing CD was used for minced meat packaging, and the film delayed bacterial growth (< 1 Log CFU/g after 24 h) and maintained the meat color even after 24 h of storage at 20 °C. The CD-added chitosan/gelatin functional film has a high probability of application in active food packaging, especially for extending the shelf life of packaged meat and maintaining its aesthetic quality.
Collapse
Affiliation(s)
- Yoonjung Sul
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Parya Ezati
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
18
|
Mohammadalinejhad S, Kurek M, Jensen IJ, Lerfall J. The potential of anthocyanin-loaded alginate hydrogel beads for intelligent packaging applications: Stability and sensitivity to volatile amines. Curr Res Food Sci 2023; 7:100560. [PMID: 37589019 PMCID: PMC10425905 DOI: 10.1016/j.crfs.2023.100560] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/11/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023] Open
Abstract
pH indicators have emerged as promising tools for real-time monitoring of product freshness and quality in intelligent food packaging applications. However, ensuring the stability of these indicators is critical for practical use. This study aims to evaluate the stability of anthocyanins-loaded alginate hydrogel beads of varying sizes at different temperatures under accelerated light conditions and relative humidity (RH) levels of 53% and 97% during 21 days of storage. Moreover, their sensitivity to the principal spoilage volatiles of muscle food products such as ammonia (NH3), dimethylamine (DMA) and trimethylamine (TMA) was investigated. The half-life of cyanidin-3-glucoside in small hydrogel beads was roughly twice as long as that of the larger beads under accelerated light exposure at 4 °C and they were less likely to undergo noticeable color changes over time. Both sizes of hydrogel beads stored at 97% RH and 4 °C showed color stability over the 21-day period with minimal color variation (|ΔE| ≤ 3). The UV-vis spectra of the purple corn extract exhibited changes across pH 2 to 12, as evidenced by the visible color variations, ranging from pink to green. The limit of detection (LOD) for NH3 was 25 ppm for small beads and 15 ppm for large ones. Both types of beads exhibited similar LOD for DMA and TMA, around 48 ppm. This research showed that alginate hydrogel beads containing anthocyanins from purple corn are a viable option for developing intelligent packaging of muscle foods. Furthermore, the use of hydrogel beads of different sizes can be customized to specific muscle foods based on the primary spoilage compound generated during spoilage.
Collapse
Affiliation(s)
- Samira Mohammadalinejhad
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Marcin Kurek
- Department of Technique and Food Product Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776, Warsaw, Poland
| | - Ida-Johanne Jensen
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Jørgen Lerfall
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway
| |
Collapse
|
19
|
Mirmoeini SS, Moradi M, Tajik H, Almasi H, Gama FM. Cellulose/Salep-based intelligent aerogel with red grape anthocyanins: Preparation, characterization and application in beef packaging. Food Chem 2023; 425:136493. [PMID: 37285628 DOI: 10.1016/j.foodchem.2023.136493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/04/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/09/2023]
Abstract
The purpose of this study was to prepare a porous intelligent aerogel for food packaging applications, in particular for monitoring minced beef freshness, using cellulose extracted from grape stalk, Salep as a copolymer, and red grape anthocyanins as a pH-sensitive pigment. Aerogels based on cellulose 1% (w/v) and Salep 1% (w/v) at ratios of 1:3, 3:1, and 1:1 were prepared by lyophilization. Aerogel with high porosity, low density, and higher mean pore size was chosen for preparing intelligent colorimetric aerogel (ICA) with the addition of 0.44 mg/100 mL of anthocyanins. Based on the color parameters, the stability of ICA was satisfactory when exposed to both light and dark conditions, as well as when stored at either 4 or 25 °C. Additionally, X-ray diffraction and thermogravimetric analyses indicated that an amorphous aerogel was formed, with a thermal decomposition temperature of 320 °C. The color of the ICA changed from purple on the first and 3rd days of packaging to blue-gray on the 6th day. As the spoilage process continued, the color of the indicator became dark brown. Taken together, ICA showed a quick response to minced beef spoilage with the ability to differentiate between fresh and spoiled meat during storage at 4 °C.
Collapse
Affiliation(s)
- Seyedeh Sahar Mirmoeini
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran.
| | - Hossein Tajik
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran.
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, 1177 Urmia, Iran.
| | - Francisco Miguel Gama
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
20
|
Tavassoli M, Khezerlou A, Moghaddam TN, Firoozy S, Bakhshizadeh M, Sani MA, Hashemi M, Ehsani A, Lorenzo JM. Sumac (Rhus coriaria L.) anthocyanin loaded-pectin and chitosan nanofiber matrices for real-time monitoring of shrimp freshness. Int J Biol Macromol 2023; 242:125044. [PMID: 37224901 DOI: 10.1016/j.ijbiomac.2023.125044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/18/2023] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
In this study, pectin (PC)/chitosan nanofiber (ChNF) films containing a novel anthocyanin from sumac extract were successfully developed for freshness monitoring and shelf-life extension of shrimp. The physical, barrier, morphological, color, and antibacterial properties of biodegradable films were evaluated. The addition of sumac anthocyanins to the films caused intramolecular interactions (such as hydrogen bonds) in the film structure, as confirmed by using attenuated total reflectance Fourier transform infrared (ATR-FTIR) analysis, suggesting good compatibility of film ingredients. Also, intelligent films showed significant sensitivity to ammonia vapors and changed color from reddish to olive color at the first 5 min. Moreover, the results showed that PC/ChNF and PC/ChNF/sumac films have significant antibacterial activity against Gram-positive bacteria and Gram-negative bacteria. In addition to the good functional characteristics of the smart film, the resulting films showed acceptable physicomechanical properties. So, PC/ChNF/sumac smart film exhibited the strength = 60 MPa with the flexibility = 23.3 %. Likewise, water vapor barrier reduced from 2.5 (×10-11 g. m/m2. s. Pa) to 2.3 (×10-11 g. m/m2. s. Pa) after adding anthocyanin. The results of the application of intelligent film containing anthocyanins of sumac extract for shrimp freshness monitoring showed that the color of the intelligent film changed from reddish to greenish color after 48 h of storage, which shows the high potential of the produced film for monitoring the spoilage of seafood products.
Collapse
Affiliation(s)
- Milad Tavassoli
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezou Khezerlou
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tina Niknazar Moghaddam
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Solmaz Firoozy
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Milad Bakhshizadeh
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mahmood Alizadeh Sani
- Student's Scientific Research Center, Department of Food Safety and Hygiene, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hashemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900, Ourense, Spain.
| |
Collapse
|
21
|
Jiang X, Cheng J, Yang F, Hu Z, Zheng Z, Deng Y, Cao B, Xie Y. Visual Colorimetric Detection of Edible Oil Freshness for Peroxides Based on Nanocellulose. Foods 2023; 12:foods12091896. [PMID: 37174435 PMCID: PMC10178133 DOI: 10.3390/foods12091896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Traditional methods for evaluating the edibility of lipids involve the use of organic reagents and complex operations, which limit their routine use. In this study, nanocellulose was prepared from bamboo, and a colorimetric reading strategy based on nanocellulose composite hydrogels was explored to monitor the freshness of edible oils. The hydrogels acted as carriers for peroxide dyes that changed color according to the freshness of the oil, and color information was digitized using UV-vis and RGB analysis. The sensitivity and accuracy of the hydrogel were verified using H2O2, which showed a linear relationship between absorbance and H2O2 content in the range of 0-0.5 and 0.5-11 mmol/kg with R2 of 0.9769 and 0.9899, respectively, while the chromatic parameter showed an exponential relationship with R2 of 0.9626. Surprisingly, the freshness of all seven edible oil samples was correctly identified by the hydrogel, with linear correlation coefficients greater than 0.95 in the UV-vis method and exponential correlation coefficients greater than 0.92 in the RGB method. Additionally, a peroxide value color card was established, with an accuracy rate of 91.67%. This functional hydrogel is expected to be used as a household-type oil freshness indicator to meet the needs of general consumers.
Collapse
Affiliation(s)
- Xiongli Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Jun Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Fangwei Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhenyang Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhen Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Yu Deng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Buyuan Cao
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
22
|
Echegaray N, Guzel N, Kumar M, Guzel M, Hassoun A, Lorenzo JM. Recent advancements in natural colorants and their application as coloring in food and in intelligent food packaging. Food Chem 2023; 404:134453. [PMID: 36252374 DOI: 10.1016/j.foodchem.2022.134453] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/21/2022] [Revised: 09/06/2022] [Accepted: 09/26/2022] [Indexed: 01/12/2023]
Abstract
Colorants are widely employed in the food industry as an essential ingredient in many products since color is one of the most valued attributes by consumers. Furthermore, the utilization of colorants is currently being extended to the food packaging technologies. The objective of this review was to compile recent information about the main families of natural coloring compounds, and to describe their real implications in food coloring. In addition, their technological use in different food systems (namely, bakery products, beverages, meat and meat products, and dairy products) and their utilization in intelligent packaging to monitor the freshness of foodstuffs with the aim of extending food shelf life and improving food properties was discussed. The potential of using natural colorant in different food to improve their color has been demonstrated, although color stability is still a challenging task. More interestingly, the application of intelligent colorimetric indicators to exhibit color changes with variations in pH can enable real-time monitoring of food quality.
Collapse
Affiliation(s)
- Noemí Echegaray
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Nihal Guzel
- Department of Food Engineering, Hitit University, Corum, Turkey
| | - Manoj Kumar
- Chemicaland Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Mustafa Guzel
- Department of Food Engineering, Hitit University, Corum, Turkey; Department of Biotechnology, Middle East Technical University, Ankara, Turkey
| | - Abdo Hassoun
- Sustainable AgriFoodtech Innovation & Research (SAFIR), 62000 Arras, France; Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200, Boulogne-sur-Mer, France
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Universidade de Vigo, Área de Tecnoloxía dos Alimentos, Facultade de Ciencias de Ourense, 32004 Ourense, Spain.
| |
Collapse
|
23
|
Dikmetas DN, Uysal E, Karbancioglu-Guler F, Gurmen S. The production of pH indicator Ca and Cu alginate ((1,4)- β -d-mannuronic acid and α -l-guluronic acid) cryogels containing anthocyanin obtained via red cabbage extraction for monitoring chicken fillet freshness. Int J Biol Macromol 2023; 231:123304. [PMID: 36681229 DOI: 10.1016/j.ijbiomac.2023.123304] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/01/2022] [Revised: 01/01/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023]
Abstract
In recent days, intelligent food packaging has gained attention due to consumers' needs and monitoring of the freshness of food. Biopolymers are used to produce matrix parts and dye chemicals, because of their unique properties, such as biodegradability and biocompatibility. In this study, alginate molecules and anthocyanins were used to produce to monitor chicken fillet freshness via pH response characteristics. Anthocyanins' color and UV characteristics at different pHs were investigated. The obtained anthocyanin solution showed visible color response at different pH level. In the red cabbage extract, the anthocyanin concentration was as 0.65 ± 0.03 mg/g. Alginate and extracted anthocyanins from red cabbage were mixed at the solution phase, then metal alginate hydrogels were synthesized via crosslinking Ca2+ and Cu2+ with alginate molecules. Due to the porous structure of the cryogels, hydrogels were freeze dried at -80 °C for 24 h at vacuum atmosphere. The obtained cryogel indicated significant color changes from pH 4 to pH 10, and at a basic environment, the color change was observed with the naked eye. The porosity amounts and sizes of the produced cryogels were examined, the average pore amount of cryogels was found to be 85.46 ± 4.36 %, and the average pore size 97.98 ± 26.20 μm. Furthermore, it was seen that the color change was not directly related to the porosity, but the interaction of anthocyanin and metal alginate matrix effected color changes degree of cryogels. Due to the electronegativity of Cu2+ ions, and the use of a low amount of anthocyanin was found to be more suitable for color change. The color was changed to blue-purple while total volatile basic nitrogen content increased to 46.67 mg/100 g from 14.00 mg/100 g. As a result, prepared cryogels should be a better candidates for use as a freshness indicator and intelligent packaging.
Collapse
Affiliation(s)
| | - Emircan Uysal
- Department of Metallurgical and Materials Engineering, Istanbul Technical University, Türkiye
| | | | - Sebahattin Gurmen
- Department of Metallurgical and Materials Engineering, Istanbul Technical University, Türkiye
| |
Collapse
|
24
|
Khan A, Ezati P, Rhim JW, Kim JT, Molaei R. pH-Sensitive Green Tea-Derived Carbon Quantum Dots for Real-Time Monitoring of Shrimp Freshness. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/09/2023]
|
25
|
Tavakoli S, Mubango E, Tian L, Bohoussou ŃDri Y, Tan Y, Hong H, Luo Y. Novel intelligent films containing anthocyanin and phycocyanin for nondestructively tracing fish spoilage. Food Chem 2023; 402:134203. [DOI: 10.1016/j.foodchem.2022.134203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/07/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022]
|
26
|
Molaei R, Moradi M, Kahyaoğlu LN, Forough M. Application of bacterial nanocellulose decorated with zeolitic imidazolate framework (ZIF-L) as a platform for food freshness monitoring. Int J Biol Macromol 2022; 223:713-721. [PMID: 36372103 DOI: 10.1016/j.ijbiomac.2022.11.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/17/2022] [Revised: 10/15/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Recently, the food freshness indicator (FFI) has garnered great interest from consumers and food producers. A novel FFI based on bacterial nanocellulose (BNC)/zeolitic imidazolate framework-L (ZIF-L) and grape anthocyanins was developed and characterized using field emission scanning electron microscopy, Fourier-transform infrared, X-ray diffraction, water contact angle, and BET techniques. The results confirmed that the BNC fibrils were decorated by in situ growth of ZIF-L, with a 3D flower-shaped structure and randomly multiple sharp-edged petals, and hydroxyl and oxygenated heterocycle aromatic ring functional groups on its surface. The reversibility, color stability performance, and moisture sorption of FFI were studied and its applicability in a two-layer arrangement as a visual freshness monitoring of shrimp and minced beef was evaluated. The FFI was able to distinguish (ΔE > 5) the fresh, medium fresh, and spoiled minced meat and shrimp visually during 10 and 4 days of storage at 4 °C, respectively. Also, monitoring of food chemical and microbiological parameters approved the correlation of food spoilage with the color parameters of FFI. These results confirmed the function of ZIF-L in the fabrication of highly pH-sensitive food intelligent packaging material.
Collapse
Affiliation(s)
- Rahim Molaei
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran.
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, 1177 Urmia, Iran.
| | | | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
27
|
Ezati P, Khan A, Rhim JW, Roy S, Hassan ZU. Saffron: Perspectives and Sustainability for Active and Intelligent Food Packaging Applications. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02949-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022]
|
28
|
K. P. C, T. P. V. A Smartphone Coupled Freshness Indicator Prepared by Rub‐coating of Hibiscus Flowers on Paper substrates for Visual Monitoring of the Spoilage of Milk. ChemistrySelect 2022. [DOI: 10.1002/slct.202201839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chaithra K. P.
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru 560029 India
| | - Vinod T. P.
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bengaluru 560029 India
| |
Collapse
|
29
|
Esfahani A, Mohammadi Nafchi A, Baghaei H, Nouri L. Fabrication and characterization of a smart film based on cassava starch and pomegranate peel powder for monitoring lamb meat freshness. Food Sci Nutr 2022; 10:3293-3301. [PMID: 36249982 PMCID: PMC9548365 DOI: 10.1002/fsn3.2918] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/06/2022] [Revised: 04/17/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Nowadays, the development of pH-sensitive smart edible films using biopolymers and natural plant extracts (especially those rich in anthocyanins) has attracted much attention. Therefore, in this study, the intelligent edible film was produced and characterized using cassava starch and pomegranate peel powder (PPP) and the possibility of using production films to monitor the freshness of lamb meat. The smart films were prepared using different concentrations of PPP (2, 4, 6, and 8% w/w) and the solvent casting method. The results showed that the incorporation of PPP had a significant effect on the mechanical parameters of the starch films. With increasing the levels of PPP, the color of the films became darker and redder. Increasing the PPP levels also led to an increase in total phenol content (TPC) (from 0 to 13 mg GAE (gallic acid equivalent)/g) and antioxidant activity (from 0% to 70% DPPH (1,1-diphenyl-2-picryl hydrazyl) radical scavenging) of the produced films (p < .05). The intelligent film was used in the lamb meat packaging, and the color of the film changed from red to green during the storage period at 25°C. The amount of total volatile basic nitrogen (TVB-N) in the meat could be detected by color changes of the intelligent films. Finally, this study demonstrated that the film based on cassava starch and PPP could be used as an intelligent and pH-sensitive film to monitor the freshness of meat and meat products.
Collapse
Affiliation(s)
- Azadeh Esfahani
- Department of Food Science and TechnologyDamghan BranchIslamic Azad UniversityDamghanIran
| | - Abdorreza Mohammadi Nafchi
- Department of Food Science and TechnologyDamghan BranchIslamic Azad UniversityDamghanIran
- Food Technology DivisionSchool of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia
| | - Homa Baghaei
- Department of Food Science and TechnologyDamghan BranchIslamic Azad UniversityDamghanIran
| | - Leila Nouri
- Department of Food Science and TechnologyDamghan BranchIslamic Azad UniversityDamghanIran
| |
Collapse
|
30
|
Roy S, Ezati P, Biswas D, Rhim JW. Shikonin Functionalized Packaging Film for Monitoring the Freshness of Shrimp. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15196615. [PMID: 36233953 PMCID: PMC9572350 DOI: 10.3390/ma15196615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 06/12/2023]
Abstract
A shikonin embedded smart and active food packaging film was produced using a binary mixture of gelatin and cellulose nanofiber (CNF). Shikonin is an alcohol-soluble natural pigment extracted from Lithospermum erythrorhizon root. The fabricated film showed good pH-responsive color changes and volatile gas sensing properties. Moreover, the film exhibited excellent antioxidant and antibacterial activity against foodborne pathogens. The shikonin incorporated gelatin/CNF-based film showed excellent UV-light barrier properties (>95%) and high tensile strength (>80 MPa), which is useful for food packaging. The hydrodynamic properties of the film were also slightly changed in the presence of shikonin, but the thermal stability and water vapor permeability remained unaffected. Thus, the inclusion of shikonin in the gelatin/CNF-based film improves not only the physical properties but also the functional properties. The film’s color indicator properties also clearly show shrimp’s freshness and spoilage during storage for 48 h. The shikonin-based functional film is expected to be a promising tool for multi-purpose smart and active food packaging applications.
Collapse
Affiliation(s)
- Swarup Roy
- Department of Food and Nutrition, BioNanocomposite Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- School of Bioengineering and Food Technology, Shoolini University, Bajhol 173229, India
| | - Parya Ezati
- Department of Food and Nutrition, BioNanocomposite Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Deblina Biswas
- School of Bioengineering and Food Technology, Shoolini University, Bajhol 173229, India
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
31
|
Laorenza Y, Chonhenchob V, Bumbudsanpharoke N, Jittanit W, Sae-tan S, Rachtanapun C, Chanput WP, Charoensiddhi S, Srisa A, Promhuad K, Wongphan P, Harnkarnsujarit N. Polymeric Packaging Applications for Seafood Products: Packaging-Deterioration Relevance, Technology and Trends. Polymers (Basel) 2022; 14:polym14183706. [PMID: 36145850 PMCID: PMC9504574 DOI: 10.3390/polym14183706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/11/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 12/17/2022] Open
Abstract
Seafood is a highly economical product worldwide. Primary modes of deterioration include autolysis, oxidation of protein and lipids, formation of biogenic amines and melanosis, and microbial deterioration. These post-harvest losses can be properly handled if the appropriate packaging technology has been applied. Therefore, it is necessary for packaging deterioration relevance to be clearly understood. This review demonstrates recent polymeric packaging technology for seafood products. Relationship between packaging and quality deterioration, including microbial growth and chemical and biochemical reactions, are discussed. Recent technology and trends in the development of seafood packaging are demonstrated by recent research articles and patents. Development of functional polymers for active packaging is the largest area for seafood applications. Intelligent packaging, modified atmosphere packaging, thermal insulator cartons, as well as the method of removing a fishy aroma have been widely developed and patented to solve the specific and comprehensive quality issues in seafood products. Many active antioxidant and antimicrobial compounds have been found and successfully incorporated with polymers to preserve the quality and monitor the fish freshness. A thermal insulator has also been developed for seafood packaging to preserve its freshness and avoid deterioration by microbial growth and enzymatic activity. Moreover, the enhanced biodegradable tray is also innovative as a single or bulk fish container for marketing and distribution. Accordingly, this review shows emerging polymeric packaging technology for seafood products and the relevance between packaging and seafood qualities.
Collapse
Affiliation(s)
- Yeyen Laorenza
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Vanee Chonhenchob
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Nattinee Bumbudsanpharoke
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Weerachet Jittanit
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Sudathip Sae-tan
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Chitsiri Rachtanapun
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Wasaporn Pretescille Chanput
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Suvimol Charoensiddhi
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Atcharawan Srisa
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Khwanchat Promhuad
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Phanwipa Wongphan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
- Correspondence: ; Tel.: +66-2-562-5045
| |
Collapse
|
32
|
Li W, Sun W, Jia L, Dong Y, Wu L, Saldaña MDA, Sun W. Poly-l-lactic acid (PLLA)/anthocyanin nanofiber color indicator film for headspace detection of low-level bacterial concentration. Int J Biol Macromol 2022; 215:123-131. [PMID: 35691434 DOI: 10.1016/j.ijbiomac.2022.06.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/06/2022] [Revised: 05/25/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022]
Abstract
Since bacterial contamination is a significant threat to humans, early detection is essential to safeguard dietary safety and physical health. Here, a nanofiber color indicator film based on poly-l-lactic acid (PLLA) as the support and anthocyanin as the indicator material was prepared by electrostatic spinning. It was found that the PLLA/0.8CY nanofiber color indicator film was hydrophobic (the water contact angle of 102.4°) and contained uniform nanofibers with an average diameter of 750 nm. In addition, the film's humidity insensitivity, reusability, color stability, and ammonia sensitivity (the limits of detection 35.39 ppm) made the film environmentally friendly and more accurate and faster for bacterial detection. The film was able to sense 102 CFU/mL of gram-positive and negative bacteria after the model strain E. coli and L. monocytogene. Thus, the PLLA/0.8CY nanofiber color indicator film was able to perform headspace nondestructive detection of low-level bacterial contamination.
Collapse
Affiliation(s)
- Wenbo Li
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wuliang Sun
- College of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Lu Jia
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yue Dong
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lingling Wu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Marleny D A Saldaña
- Department of Agricultural, Food and Nutritional Science (AFNS), University of Alberta, T6G 2P5 Edmonton, AB, Canada
| | - Wenxiu Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Department of Agricultural, Food and Nutritional Science (AFNS), University of Alberta, T6G 2P5 Edmonton, AB, Canada.
| |
Collapse
|
33
|
Hassanpour A, Moradi M, Tajik H, Molaei R. Development of two types of intelligent indicators based on cellulose, black carrot, and grape anthocyanins for monitoring food freshness/spoilage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01507-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/17/2022]
|
34
|
Khanjanzadeh H, Park BD, Pirayesh H. Intelligent pH- and ammonia-sensitive indicator films using neutral red immobilized onto cellulose nanofibrils. Carbohydr Polym 2022; 296:119910. [DOI: 10.1016/j.carbpol.2022.119910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/11/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/02/2022]
|
35
|
Zhang J, Zhang J, Guan Y, Huang X, Arslan M, Shi J, Li Z, Gong Y, Holmes M, Zou X. High- sensitivity bilayer nanofiber film based on polyvinyl alcohol/sodium alginate/polyvinylidene fluoride for pork spoilage visual monitoring and preservation. Food Chem 2022; 394:133439. [PMID: 35753256 DOI: 10.1016/j.foodchem.2022.133439] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/06/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
A colorimetric bilayer film for pork freshness detection and preservation was developed using electrospinning technique. The bilayer film consisted of a layer with polyvinyl alcohol - sodium alginate - alizarin as sensor layer and a layer with polyvinylidene fluoride - vanillin as antibacterial layer. The water contact angle of bilayer film was larger than the single colorimetric layer. The color sensitivity to the ammonia of the bilayer film was higher, with an ΔE value of 47.99. The film could display color shifts from yellow to purple with the naked eye is critical for checking pork freshness. In addition, the bilayer film exhibited sensitive antibacterial activity, with an inhibition zone against S. aureus (8.3 mm) and E. coli (14.7 mm), respectively. Finally, the bilayer film was applied to freshness monitoring of pork. The film displayed significant color changes and prolonged the pork shelf life by 24 h at 25 °C.
Collapse
Affiliation(s)
- Jianing Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Junjun Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yefeng Guan
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Muhammad Arslan
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yunyun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Melvin Holmes
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
36
|
Almasi H, Forghani S, Moradi M. Recent advances on intelligent food freshness indicators; an update on natural colorants and methods of preparation. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100839] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022]
|
37
|
Ghadiri Alamdari N, Forghani S, Salmasi S, Almasi H, Moradi M, Molaei R. Ixiolirion tataricum anthocyanins-loaded biocellulose label: Characterization and application for food freshness monitoring. Int J Biol Macromol 2022; 200:87-98. [PMID: 34998041 DOI: 10.1016/j.ijbiomac.2021.12.188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2021] [Revised: 12/13/2021] [Accepted: 12/29/2021] [Indexed: 12/27/2022]
Abstract
A new intelligent pH-sensitive colorimetric label was fabricated by immobilizing Ixiolirion tataricum anthocyanins (ITA) into biocellulose (bacterial nanocellulose; BNC) film and was then studied to determine how it can be used as a label for monitoring freshness/spoilage of shrimp during storage at 4 °C. The formation of new interactions between ITA and BNC film and disruption of crystalline structure of BNC after anthocyanins immobilization were approved by FT-IR and XRD analyses, respectively. According to FE-SEM observations, the porosity of the BNC network decreased after ITA incorporation. The fabricated BNC-ITA label showed a distinct color change from violet to green over the pH range of 4-12. The pH, total volatile basic nitrogen (TVB-N), total psychrophiles count (TPC), and the quantity of biogenic amines (histamine, cadaverine, putrescine, and tyramine) in the shrimp samples and their correlation with color changes on the label were measured over a 4-day storage period. Consistent with changes in levels of TVB-N, TPC, pH, and biogenic amines, a visually distinguishable color change occurred on the BNC-ITA label as blue (fresh), dark green (medium fresh), and kelly green (spoiled). This research showed that ITA as a novel pH-sensitive dye is a promising candidate for developing pH labels for seafood intelligent packaging.
Collapse
Affiliation(s)
- Nima Ghadiri Alamdari
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Samira Forghani
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Sorour Salmasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | |
Collapse
|