1
|
Lin CC, Wu JY, Huang PY, Sung HL, Tung YC, Lai CC, Wei YF, Fu PK. Comparing prolonged infusion to intermittent infusion strategies for beta-lactam antibiotics in patients with gram-negative bacterial infections: a systematic review and meta-analysis. Expert Rev Anti Infect Ther 2024; 22:557-567. [PMID: 38441052 DOI: 10.1080/14787210.2024.2324940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024]
Abstract
INTRODUCTION Our objective is to determine whether prolonged infusion (PI) of beta-lactam antibiotics yields superior outcomes compared to intermittent infusion (II) in patients with Gram-Negative Bacterial (GNB) infections. METHODS We systematically searched papers from PubMed, the Cochrane Library, Embase, and Clinicaltrials.gov, targeting mortality as the primary outcome and looking at the clinical cure rate, hospital and intensive care unit (ICU) stay lengths, antibiotic treatment duration, and mechanical ventilation (MV) duration as secondary outcomes. RESULTS Our meta-analysis of 18 studies, including 5 randomized control trials and 13 observational studies, with a total of 3,035 patients-1,510 in the PI group and 1,525 in the II group, revealed significant findings. PI was associated with reduced mortality (RR, 0.67; 95% CI, 0.55-0.81; p = 0.001; I2 = 4.52%) and a shorter MV duration (SMD, -0.76; 95% CI, -1.37 to -0.16; p = 0.01; I2 = 87.81%) compared to II. However, no differences were found in clinical cure rates, antibiotic treatment duration, length of hospital stay, or length of ICU stay. CONCLUSIONS The PI approach for administering beta-lactam antibiotics in patients with suspected or confirmed GNB infections may be advantageous in reducing mortality rates and the duration of MV when compared to the II strategy.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Pharmacy, Taichung Veteran General Hospital Puli Branch, Nantou, Taiwan
| | - Jheng-Yen Wu
- Department of Nutrition, Chi Mei Medical Center, Tainan, Taiwan
| | - Po-Yu Huang
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Hui-Lin Sung
- Department of Pharmacy, Taichung Veteran General Hospital Puli Branch, Nantou, Taiwan
| | - Yu-Chun Tung
- Department of Pharmacy, Taichung Veteran General Hospital Puli Branch, Nantou, Taiwan
| | - Chih-Cheng Lai
- Division of Hospital Medicine, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Yu-Feng Wei
- Department of Internal Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Pin-Kuei Fu
- Division of Clinical Research, Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- College of Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
2
|
Kang MS, Baek JY, Ko JH, Cho SY, Lee KY, Lee YH, Yang J, Kim TY, Huh HJ, Lee NY, Huh K, Kang CI, Chung DR, Peck KR. Antimicrobial activity of ceftazidime-avibactam against KPC-2-producing Enterobacterales: a cross-combination and dose-escalation titration study with relebactam and vaborbactam. Microbiol Spectr 2024; 12:e0034424. [PMID: 38687076 PMCID: PMC11237450 DOI: 10.1128/spectrum.00344-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
With the introduction of ceftazidime-avibactam worldwide, the antimicrobial activity of new β-lactam/β-lactamase inhibitors (BL/BLIs) needs to be investigated. From January 2020 to June 2023, Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacterales were collected. With a broth microdilution test of new BL/BLIs, cross-activity test with nine combinations of BLs and new BLIs and dose-escalation titration test for non-susceptible isolates were conducted to investigate inhibitory activities of new BLIs. A total of 188 isolates was collected and most isolates (186/188, 98.9%) carried the KPC-2 gene exclusively, while two isolates (1.1%) co-harbored NDM-1. Among the 186 KPC-2-producing isolates, 184 (98.9%) were susceptible to ceftazidime-avibactam, 173 (93.0%) to imipenem-relebactam, and 184 (98.9%) to meropenem-vaborbactam. All isolates non-susceptible to imipenem-relebactam or meropenem-vaborbactam became susceptible when avibactam replaced relebactam or vaborbactam, with 7 of 11 (63.6%) imipenem-relebactam non-susceptible isolates and both (100.0%) of the meropenem-vaborbactam non-susceptible isolates. When the minimum inhibitory concentrations (MICs) of BLs were compared using log2 scales, combinations with avibactam showed statistically significant efficacy in lowering MICs compared to relebactam and vaborbactam (all P < 0.05). In the dose-escalation test of new BLIs, increasing dose of all new BLIs corresponded to increased susceptibility to BLs. Ceftazidime-avibactam exhibited excellent susceptibility against KPC-2-producing Enterobacterales unless co-harboring metallo-β-lactamase. The cross-combination test against non-susceptible isolates suggests that the inhibitory activity of avibactam was superior to those of relebactam or vaborbactam. Increasing the dose of new BLIs produced increased susceptibility to BLs, suggesting that high-concentration regimen need to be developed. IMPORTANCE This study investigated 188 Klebsiella pneumoniae carbapenemase (KPC)-2-producing Enterobacterales collected from January 2020 to June 2023 in a tertiary care hospital of Korea. Most isolates were susceptible to ceftazidime-avibactam (98.9%) and meropenem-vaborbactam (98.9%), while susceptibility to imipenem-relebactam was lower (93.0%). The cross-combination test using nine combinations of the individual β-lactams (BLs) and new β-lactamase inhibitors (BLIs) showed that the inhibitory activity of avibactam was significantly superior to relebactam or vaborbactam when the Log2 MIC of BLs were compared for each combination with BLIs (all P < 0.05). The dose-escalation test of new BLIs demonstrated that increasing doses of new BLIs corresponded to increased susceptibility to BLs. Taken together, this study illustrates the excellent activity of ceftazidime-avibactam against KPC-2-producing Enterobacterales and suggests further investigation into high-concentration regimens for potentially non-susceptible clinical isolates.
Collapse
Affiliation(s)
- Min Seo Kang
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jin Yang Baek
- Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, South Korea
| | - Jae-Hoon Ko
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sun Young Cho
- Centre for Infection Prevention and Control, Samsung Medical Center, Seoul, South Korea
| | - Keon Young Lee
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Young Ho Lee
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jinyoung Yang
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Tae Yeul Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Nam Yong Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyungmin Huh
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Cheol-In Kang
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Doo Ryeon Chung
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyong Ran Peck
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
3
|
Moran JL, Linden A. Problematic meta-analyses: Bayesian and frequentist perspectives on combining randomized controlled trials and non-randomized studies. BMC Med Res Methodol 2024; 24:99. [PMID: 38678213 PMCID: PMC11056075 DOI: 10.1186/s12874-024-02215-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/10/2024] [Indexed: 04/29/2024] Open
Abstract
PURPOSE In the literature, the propriety of the meta-analytic treatment-effect produced by combining randomized controlled trials (RCT) and non-randomized studies (NRS) is questioned, given the inherent confounding in NRS that may bias the meta-analysis. The current study compared an implicitly principled pooled Bayesian meta-analytic treatment-effect with that of frequentist pooling of RCT and NRS to determine how well each approach handled the NRS bias. MATERIALS & METHODS Binary outcome Critical-Care meta-analyses, reflecting the importance of such outcomes in Critical-Care practice, combining RCT and NRS were identified electronically. Bayesian pooled treatment-effect and 95% credible-intervals (BCrI), posterior model probabilities indicating model plausibility and Bayes-factors (BF) were estimated using an informative heavy-tailed heterogeneity prior (half-Cauchy). Preference for pooling of RCT and NRS was indicated for Bayes-factors > 3 or < 0.333 for the converse. All pooled frequentist treatment-effects and 95% confidence intervals (FCI) were re-estimated using the popular DerSimonian-Laird (DSL) random effects model. RESULTS Fifty meta-analyses were identified (2009-2021), reporting pooled estimates in 44; 29 were pharmaceutical-therapeutic and 21 were non-pharmaceutical therapeutic. Re-computed pooled DSL FCI excluded the null (OR or RR = 1) in 86% (43/50). In 18 meta-analyses there was an agreement between FCI and BCrI in excluding the null. In 23 meta-analyses where FCI excluded the null, BCrI embraced the null. BF supported a pooled model in 27 meta-analyses and separate models in 4. The highest density of the posterior model probabilities for 0.333 < Bayes factor < 1 was 0.8. CONCLUSIONS In the current meta-analytic cohort, an integrated and multifaceted Bayesian approach gave support to including NRS in a pooled-estimate model. Conversely, caution should attend the reporting of naïve frequentist pooled, RCT and NRS, meta-analytic treatment effects.
Collapse
Affiliation(s)
- John L Moran
- The Queen Elizabeth Hospital, Woodville, SA, 5011, Australia.
| | - Ariel Linden
- Department of Medicine, School of Medicine, University of California, San Francisco, USA
| |
Collapse
|
4
|
Zhao Y, Zang B, Wang Q. Prolonged versus intermittent β-lactam infusion in sepsis: a systematic review and meta-analysis of randomized controlled trials. Ann Intensive Care 2024; 14:30. [PMID: 38368588 PMCID: PMC10874917 DOI: 10.1186/s13613-024-01263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/13/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND The two latest studies on prolonged versus intermittent use of β-lactam antibiotics in patients with sepsis did not reach consistent conclusions, further contributing to the controversy surrounding the effectiveness of the prolonged β-lactam antibiotics infusion strategy. We conducted a systemic review and meta-analysis to evaluate the efficacy and safety of prolonged and intermittent β-lactam infusion in adult patients with sepsis. METHODS We systematically searched PubMed, EMBASE, and Cochrane Library databases for original randomized controlled trials comparing prolonged and intermittent β-lactam infusion in sepsis patients. A random-effects model was used to evaluate mortality, clinical success, microbiological success, and adverse events. We also conducted subgroup analyses to explore the impact of various factors on the mortality rates. Relative risk (RR) and corresponding 95% confidence intervals (CIs) were used to calculate the overall effect sizes for dichotomous outcomes. This meta-analysis was registered in PROSPERO (CRD42023463905). RESULTS We assessed 15 studies involving 2130 patients. In our comprehensive assessment, we found a significant reduction in all-cause mortality (RR, 0.83; 95% CI 0.72-0.97; P = 0.02) and a notable improvement in clinical success (RR, 1.16; 95% CI 1.03-1.31; P = 0.02) in the prolonged infusion group compared to the intermittent infusion group, whereas microbiological success did not yield statistically significant results (RR, 1.10; 95% CI 0.98-1.23; P = 0.11). No significant differences in adverse events were observed between the two groups (RR, 0.91; 95% CI 0.64-1.29; P = 0.60). Additionally, remarkable conclusions were drawn from subgroup analyses including studies with sample sizes exceeding 20 individuals per group (RR, 0.84; 95%CI 0.72-0.98; P = 0.03), research conducted post-2010 (RR, 0.84; 95%CI 0.72-0.98; P = 0.03), cases involving infections predominantly caused by Gram-negative bacteria (RR, 0.81; 95%CI 0.68-0.96; P = 0.02), as well as the administration of a loading dose (RR, 0.84; 95% CI 0.72-0.97; P = 0.02) and the use of penicillin (RR, 0.61; 95% CI 0.38-0.98; P = 0.04). CONCLUSIONS Compared to intermittent infusion, prolonged infusion of β-lactam antibiotics significantly decreases all-cause mortality among patients with sepsis and enhances clinical success without increasing adverse events.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110000, China
| | - Bin Zang
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110000, China.
| | - Qian Wang
- Department of Emergency, The Fourth Affiliated Hospital of China Medical University, 4 Chongshan East Road, Shenyang, 110000, China.
| |
Collapse
|
5
|
Monti G, Bradić N, Marzaroli M, Konkayev A, Fominskiy E, Kotani Y, Likhvantsev VV, Momesso E, Nogtev P, Lobreglio R, Redkin I, Toffoletto F, Bruni A, Baiardo Redaelli M, D’Andrea N, Paternoster G, Scandroglio AM, Gallicchio F, Ballestra M, Calabrò MG, Cotoia A, Perone R, Cuffaro R, Montrucchio G, Pota V, Ananiadou S, Lembo R, Musu M, Rauch S, Galbiati C, Pinelli F, Pasin L, Guarracino F, Santarpino G, Agrò FE, Bove T, Corradi F, Forfori F, Longhini F, Cecconi M, Landoni G, Bellomo R, Zangrillo A. Continuous vs Intermittent Meropenem Administration in Critically Ill Patients With Sepsis: The MERCY Randomized Clinical Trial. JAMA 2023; 330:141-151. [PMID: 37326473 PMCID: PMC10276329 DOI: 10.1001/jama.2023.10598] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
Importance Meropenem is a widely prescribed β-lactam antibiotic. Meropenem exhibits maximum pharmacodynamic efficacy when given by continuous infusion to deliver constant drug levels above the minimal inhibitory concentration. Compared with intermittent administration, continuous administration of meropenem may improve clinical outcomes. Objective To determine whether continuous administration of meropenem reduces a composite of mortality and emergence of pandrug-resistant or extensively drug-resistant bacteria compared with intermittent administration in critically ill patients with sepsis. Design, Setting, and Participants A double-blind, randomized clinical trial enrolling critically ill patients with sepsis or septic shock who had been prescribed meropenem by their treating clinicians at 31 intensive care units of 26 hospitals in 4 countries (Croatia, Italy, Kazakhstan, and Russia). Patients were enrolled between June 5, 2018, and August 9, 2022, and the final 90-day follow-up was completed in November 2022. Interventions Patients were randomized to receive an equal dose of the antibiotic meropenem by either continuous administration (n = 303) or intermittent administration (n = 304). Main Outcomes and Measures The primary outcome was a composite of all-cause mortality and emergence of pandrug-resistant or extensively drug-resistant bacteria at day 28. There were 4 secondary outcomes, including days alive and free from antibiotics at day 28, days alive and free from the intensive care unit at day 28, and all-cause mortality at day 90. Seizures, allergic reactions, and mortality were recorded as adverse events. Results All 607 patients (mean age, 64 [SD, 15] years; 203 were women [33%]) were included in the measurement of the 28-day primary outcome and completed the 90-day mortality follow-up. The majority (369 patients, 61%) had septic shock. The median time from hospital admission to randomization was 9 days (IQR, 3-17 days) and the median duration of meropenem therapy was 11 days (IQR, 6-17 days). Only 1 crossover event was recorded. The primary outcome occurred in 142 patients (47%) in the continuous administration group and in 149 patients (49%) in the intermittent administration group (relative risk, 0.96 [95% CI, 0.81-1.13], P = .60). Of the 4 secondary outcomes, none was statistically significant. No adverse events of seizures or allergic reactions related to the study drug were reported. At 90 days, mortality was 42% both in the continuous administration group (127 of 303 patients) and in the intermittent administration group (127 of 304 patients). Conclusions and Relevance In critically ill patients with sepsis, compared with intermittent administration, the continuous administration of meropenem did not improve the composite outcome of mortality and emergence of pandrug-resistant or extensively drug-resistant bacteria at day 28. Trial Registration ClinicalTrials.gov Identifier: NCT03452839.
Collapse
Affiliation(s)
- Giacomo Monti
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Nikola Bradić
- Clinical Department of Anesthesiology, Resuscitation and Intensive Medicine, University Hospital Dubrava, Zagreb, Croatia
- University North, Varazdin, Croatia
| | - Matteo Marzaroli
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Aidos Konkayev
- National Scientific Center of Traumatology and Orthopedia named acad NBatpenov, Astana Medical University, Astana, Kazakhstan
| | - Evgeny Fominskiy
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Yuki Kotani
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Kameda Medical Center, Kamogawa, Japan
| | | | - Elena Momesso
- UOC Anestesia Rianimazione Ospedale San Donà di Piave, San Donà di Piave, Italy
| | - Pavel Nogtev
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Rosetta Lobreglio
- Department of Anesthesia, Intensive Care and Emergency, Citta della Salute e della Scienza University Hospital, Turin, Italy
| | - Ivan Redkin
- Federal Research and Clinical Center of Resuscitation and Rehabilitation, Moscow, Russia
| | - Fabio Toffoletto
- UOC Anestesia Rianimazione Ospedale San Donà di Piave, San Donà di Piave, Italy
| | - Andrea Bruni
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Martina Baiardo Redaelli
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Natascia D’Andrea
- Department of Anesthesia and Intensive Care Medicine, ASUFC University Hospital of Udine, Udine, Italy
| | | | - Anna Mara Scandroglio
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Maria Grazia Calabrò
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Romina Perone
- Department of Cardio Thoracic and Vascular Surgery, Pineta Grande Hospital, Pineta Grande, Italy
| | - Raffaele Cuffaro
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giorgia Montrucchio
- Department of Anesthesia, Intensive Care and Emergency, Citta della Salute e della Scienza University Hospital, Turin, Italy
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Vincenzo Pota
- Università della Campania L. Vanvitelli, Napoli, Italy
| | | | - Rosalba Lembo
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mario Musu
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi di Cagliari, Cagliari, Italy
- Azienda Ospedaliero Universitaria di Cagliari, Cagliari, Italy
| | - Simon Rauch
- Department of Anaesthesiology and Intensive Care Medicine, Hospital of Merano, Merano, Italy
| | - Carola Galbiati
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fulvio Pinelli
- Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Laura Pasin
- Azienda Ospedale Università Padova, Padua, Italy
| | - Fabio Guarracino
- Dipartimento Anestesia e Rianimazione, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Giuseppe Santarpino
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
- GVM Care and Research, Department of Cardiac Surgery, Città di Lecce Hospital, Lecce, Italy
- Department of Cardiac Surgery, Paracelsus Medical University, Nuremberg, Germany
| | - Felice Eugenio Agrò
- Research Unit of Anesthesia and Intensive Care, Department of Medicine and Surgery, Università Campus Bio-Medico, Rome, Italy
- Operative Research Unit of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Tiziana Bove
- Department of Anesthesia and Intensive Care Medicine, ASUFC University Hospital of Udine, Udine, Italy
- Department of Medicine, University of Udine, Udine, Italy
| | - Francesco Corradi
- Department of Surgical, Medical, Molecular Pathology, and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Francesco Forfori
- Department of Surgical, Medical, Molecular Pathology, and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Federico Longhini
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Maurizio Cecconi
- Department of Biomedical Sciences, Humanitas University Pieve Emanuele, Milan, Italy
- Department of Anaesthesia and Intensive Care, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Giovanni Landoni
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Rinaldo Bellomo
- Department of Critical Care, University of Melbourne, Melbourne, Australia
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia
| | - Alberto Zangrillo
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
6
|
Tilanus A, Drusano G. Optimizing the Use of Beta-Lactam Antibiotics in Clinical Practice: A Test of Time. Open Forum Infect Dis 2023; 10:ofad305. [PMID: 37416756 PMCID: PMC10319623 DOI: 10.1093/ofid/ofad305] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 06/03/2023] [Indexed: 07/08/2023] Open
Abstract
Despite their limitations, the pharmacokinetics (PK) and pharmacodynamics (PD) indices form the basis for our current understanding regarding antibiotic development, selection, and dose optimization. Application of PK-PD in medicine has been associated with better clinical outcome, suppression of resistance, and optimization of antibiotic consumption. Beta-lactam antibiotics remain the cornerstone for empirical and directed therapy in many patients. The percentage of time of the dosing interval that the free (unbound) drug concentration remains above the minimal inhibitory concentration (MIC) (%fT > MIC) has been considered the PK-PD index that best predicts the relationship between antibiotic exposure and killing for the beta-lactam antibiotics. Time dependence of beta-lactam antibiotics has its origin in the acylation process of the serine active site of penicillin-binding proteins, which subsequently results in bacteriostatic and bactericidal effects during the dosing interval. To enhance the likelihood of target attainment, higher doses, and prolonged infusion strategies, with/or without loading doses, have been applied to compensate for subtherapeutic levels of antibiotics related to PK-PD changes, especially in the early phase of severe sepsis. To minimize resistance and maximize clinical outcome, empirical therapy with a meropenem loading dose followed by high-dose-prolonged infusion should be considered in patients with high inoculum infections presenting as severe (Gram negative) sepsis. Subsequent de-escalation and dosing of beta-lactam antibiotics should be considered as an individualized dynamic process that requires dose adjustments throughout the time course of the disease process mediated by clinical parameters that indirectly assess PK-PD alterations.
Collapse
Affiliation(s)
- Alwin Tilanus
- Correspondence: Alwin Tilanus, MD, MSc, Internist—Infectious Disease Specialist, Department of Infectious Diseases, Clinica Los Nogales, Calle 95 # 23-61, Bogotá, Colombia, ()
| | | |
Collapse
|
7
|
Shappell CN, Klompas M, Rhee C. Do Prolonged Infusions of β-Lactam Antibiotics Improve Outcomes in Critically Ill Patients With Sepsis? JAMA 2023:2806401. [PMID: 37326478 DOI: 10.1001/jama.2023.6483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Affiliation(s)
- Claire N Shappell
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Michael Klompas
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Chanu Rhee
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
8
|
Stašek J, Keller F, Kočí V, Klučka J, Klabusayová E, Wiewiorka O, Strašilová Z, Beňovská M, Škardová M, Maláska J. Update on Therapeutic Drug Monitoring of Beta-Lactam Antibiotics in Critically Ill Patients—A Narrative Review. Antibiotics (Basel) 2023; 12:antibiotics12030568. [PMID: 36978435 PMCID: PMC10044408 DOI: 10.3390/antibiotics12030568] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Beta-lactam antibiotics remain one of the most preferred groups of antibiotics in critical care due to their excellent safety profiles and their activity against a wide spectrum of pathogens. The cornerstone of appropriate therapy with beta-lactams is to achieve an adequate plasmatic concentration of a given antibiotic, which is derived primarily from the minimum inhibitory concentration (MIC) of the specific pathogen. In a critically ill patient, the plasmatic levels of drugs could be affected by many significant changes in the patient’s physiology, such as hypoalbuminemia, endothelial dysfunction with the leakage of intravascular fluid into interstitial space and acute kidney injury. Predicting antibiotic concentration from models based on non-critically ill populations may be misleading. Therapeutic drug monitoring (TDM) has been shown to be effective in achieving adequate concentrations of many drugs, including beta-lactam antibiotics. Reliable methods, such as high-performance liquid chromatography, provide the accurate testing of a wide range of beta-lactam antibiotics. Long turnaround times remain the main drawback limiting their widespread use, although progress has been made recently in the implementation of different novel methods of antibiotic testing. However, whether the TDM approach can effectively improve clinically relevant patient outcomes must be proved in future clinical trials.
Collapse
Affiliation(s)
- Jan Stašek
- Department of Internal Medicine and Cardiology, Faculty of Medicine, University Hospital Brno, Masaryk University, 625 00 Brno, Czech Republic
- Department of Simulation Medicine, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Filip Keller
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Brno, Masaryk University, 625 00 Brno, Czech Republic
| | - Veronika Kočí
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Brno, Masaryk University, 625 00 Brno, Czech Republic
| | - Jozef Klučka
- Department of Simulation Medicine, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
- Department of Paediatric Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Brno, Masaryk University, 662 63 Brno, Czech Republic
| | - Eva Klabusayová
- Department of Simulation Medicine, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
- Department of Paediatric Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Brno, Masaryk University, 662 63 Brno, Czech Republic
| | - Ondřej Wiewiorka
- Department of Laboratory Medicine, Division of Clinical Biochemistry, University Hospital Brno, 625 00 Brno, Czech Republic
- Department of Laboratory Methods, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Zuzana Strašilová
- Department of Laboratory Medicine, Division of Clinical Biochemistry, University Hospital Brno, 625 00 Brno, Czech Republic
- Department of Laboratory Methods, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
- Department of Pharmacology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Miroslava Beňovská
- Department of Laboratory Medicine, Division of Clinical Biochemistry, University Hospital Brno, 625 00 Brno, Czech Republic
- Department of Laboratory Methods, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Markéta Škardová
- Department of Clinical Pharmacy, Hospital Pharmacy, University Hospital Brno, 625 00 Brno, Czech Republic
| | - Jan Maláska
- Department of Simulation Medicine, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
- Department of Paediatric Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Brno, Masaryk University, 662 63 Brno, Czech Republic
- 2nd Department of Anaesthesiology University Hospital Brno, 620 00 Brno, Czech Republic
- Correspondence:
| |
Collapse
|
9
|
Nunez-Nunez M, Murillo-Izquierdo M, Moya-Martin M, Hoxha M, Quesada Pérez MT, Oltra-Hostalet F, Alonso-Ramos H, Cordero-Ramos J, Barrera-Cabeza J, Retamar-Gentil P, Fernández-Del-Castillo SS. Compatibility of prolonged infusion antibiotics during Y-site administration. Nurs Crit Care 2022; 27:849-858. [PMID: 35088491 DOI: 10.1111/nicc.12754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Antimicrobial resistance is a threat to global public health. The use of prolonged infusions in the hospital setting for certain antimicrobials is widely increasing in order to improve their efficacy and safety, including resistance development. Due to limited vascular access, it is important to clarify whether they can be infused through the same line with other drugs during Y-site administration. AIM The aim of this review is to update and summarize the evidence on Y-site compatibility of antibacterial agents administered as prolonged infusions in intensive care units (ICUs). STUDY DESIGN A literature review of PubMed, EMBASE and Trissel's Handbook on Injectable Drugs databases was conducted on the compatibility of selected antimicrobials administered simultaneously at a Y-site connection with parenteral nutrition and other widely used drugs in ICUs. All articles published up to October 30, 2021, in English or Spanish were included, regardless of the type of publication (original articles, case reports, letters, etc.). Eligible antimicrobials were those that can be administered as prolonged infusions: ceftazidime, cefepime, piperacillin/tazobactam, meropenem, ceftolozane/tazobactam, ceftaroline, cloxacillin, ceftobiprole, vancomycin and fosfomycin. RESULTS A total of 1302 drug-to-drug potential combinations were explored, 196 (15.05%) were found to be incompatible, and in 541 (41.55%), data were not available. The results were presented in a simple 2-dimensional consultation chart as a quick reference for health care professionals. CONCLUSIONS This review provides useful and reliable information on the compatibility of antimicrobials administered as Y-site infusion with other drugs commonly used in the critical setting. This review contributes to patient safety in nursing practice. RELEVANCE TO CLINICAL PRACTICE To our knowledge, this is the first review on Y-site compatibility of antimicrobials used as prolonged infusions with other commonly used drugs, including anti-emetics, analgesics and anti-epileptic and parenteral nutrition. The results of the current review need to be addressed to promote the knowledge sharing between health professionals and improve the quality and safety of patients. We believe that this review may serve as a simple and effective 2-dimensional updated drug-to-drug compatibility reference chart for critical care nurses.
Collapse
Affiliation(s)
- María Nunez-Nunez
- Pharmacy Department, University Hospital Clínico San Cecilio, Granada, Spain
- Biomedical Research Institute of Granada (Ibs.Granada), Granada, Spain
| | | | - Marisa Moya-Martin
- Pharmacy Department, University Hospital Virgen Macarena, Seville, Spain
| | - Malvina Hoxha
- Department of Chemical-Toxicological and Pharmacological Evaluations of Drugs, Catholic University Our Lady of Good Counsel, Tirane, Albania
| | | | | | - Hector Alonso-Ramos
- Pharmacy Department, University Hospital Gran Canaria Doctor Negrín, Las Palmas de Gran Canaria, Spain
| | | | - Jose Barrera-Cabeza
- Pharmacy Department, University Hospital Clínico San Cecilio, Granada, Spain
| | - Pilar Retamar-Gentil
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, University of Seville/University Hospital Virgen Macarena, Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Seville, Spain
| | | |
Collapse
|
10
|
Hong YD, Jansen JP, Guerino J, Berger ML, Crown W, Goettsch WG, Mullins CD, Willke RJ, Orsini LS. Comparative effectiveness and safety of pharmaceuticals assessed in observational studies compared with randomized controlled trials. BMC Med 2021; 19:307. [PMID: 34865623 PMCID: PMC8647453 DOI: 10.1186/s12916-021-02176-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND There have been ongoing efforts to understand when and how data from observational studies can be applied to clinical and regulatory decision making. The objective of this review was to assess the comparability of relative treatment effects of pharmaceuticals from observational studies and randomized controlled trials (RCTs). METHODS We searched PubMed and Embase for systematic literature reviews published between January 1, 1990, and January 31, 2020, that reported relative treatment effects of pharmaceuticals from both observational studies and RCTs. We extracted pooled relative effect estimates from observational studies and RCTs for each outcome, intervention-comparator, or indication assessed in the reviews. We calculated the ratio of the relative effect estimate from observational studies over that from RCTs, along with the corresponding 95% confidence interval (CI) for each pair of pooled RCT and observational study estimates, and we evaluated the consistency in relative treatment effects. RESULTS Thirty systematic reviews across 7 therapeutic areas were identified from the literature. We analyzed 74 pairs of pooled relative effect estimates from RCTs and observational studies from 29 reviews. There was no statistically significant difference (based on the 95% CI) in relative effect estimates between RCTs and observational studies in 79.7% of pairs. There was an extreme difference (ratio < 0.7 or > 1.43) in 43.2% of pairs, and, in 17.6% of pairs, there was a significant difference and the estimates pointed in opposite directions. CONCLUSIONS Overall, our review shows that while there is no significant difference in the relative risk ratios between the majority of RCTs and observational studies compared, there is significant variation in about 20% of comparisons. The source of this variation should be the subject of further inquiry to elucidate how much of the variation is due to differences in patient populations versus biased estimates arising from issues with study design or analytical/statistical methods.
Collapse
Affiliation(s)
- Yoon Duk Hong
- University of Maryland School of Pharmacy, Baltimore, MD, USA.
| | - Jeroen P Jansen
- Department of Clinical Pharmacy, School of Pharmacy, University of California-San Francisco, San Francisco, CA, USA.,PrecisionHEOR, Oakland, CA, USA
| | | | | | - William Crown
- The Heller School for Social Policy and Management, Brandeis University, Waltham, MA, USA
| | - Wim G Goettsch
- Utrecht Centre of Pharmaceutical Policy, Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht University, Utrecht, The Netherlands.,National Health Care Institute, Diemen, The Netherlands
| | | | - Richard J Willke
- ISPOR-The Professional Society for Health Economics and Outcomes Research, Lawrenceville, NJ, USA
| | | |
Collapse
|
11
|
Ullah S, Beer R, Fuhr U, Taubert M, Zeitlinger M, Kratzer A, Dorn C, Arshad U, Kofler M, Helbok R. Brain Exposure to Piperacillin in Acute Hemorrhagic Stroke Patients Assessed by Cerebral Microdialysis and Population Pharmacokinetics. Neurocrit Care 2021; 33:740-748. [PMID: 32219679 PMCID: PMC7736006 DOI: 10.1007/s12028-020-00947-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The broad antibacterial spectrum of piperacillin/tazobactam makes the combination suitable for the treatment of nosocomial bacterial central nervous system (CNS) infections. As limited data are available regarding piperacillin CNS exposure in patients without or with low-grade inflammation, a clinical study was conducted (1) to quantify CNS exposure of piperacillin by cerebral microdialysis and (2) to evaluate different dosing regimens in order to improve probability of target attainment (PTA) in brain. METHODS Ten acute hemorrhagic stroke patients (subarachnoid hemorrhage, n = 6; intracerebral hemorrhage, n = 4) undergoing multimodality neuromonitoring received 4 g piperacillin/0.5 g tazobactam every 8 h by 30-min infusions for the management of healthcare-associated pneumonia. Cerebral microdialysis was performed as part of the clinical neuromonitoring routine, and brain interstitial fluid samples were retrospectively analyzed for piperacillin concentrations after the first and after multiple doses for at least 5 days and quantified by high-performance liquid chromatography. Population pharmacokinetic modeling and Monte Carlo simulations with various doses and types of infusions were performed to predict exposure. A T>MIC of 50% was selected as pharmacokinetic/pharmacodynamic target parameter. RESULTS Median peak concentrations of unbound piperacillin in brain interstitial space fluid were 1.16 (range 0.08-3.59) and 2.78 (range 0.47-7.53) mg/L after the first dose and multiple doses, respectively. A one-compartment model with a transit compartment and a lag time (for the first dose) between systemic and brain exposure was appropriate to describe the brain concentrations. Bootstrap median estimates of the parameters were: transfer rate from plasma to brain (0.32 h-1), transfer rate from brain to plasma (7.31 h-1), and lag time [2.70 h (coefficient of variation 19.7%)]. The simulations suggested that PTA would exceed 90% for minimum inhibitory concentrations (MICs) up to 0.5 mg/L and 1 mg/L at a dose of 12-16 and 24 g/day, respectively, regardless of type of infusion. For higher MICs, PTA dropped significantly. CONCLUSION Limited CNS exposure of piperacillin might be an obstacle in treating patients without general meningeal inflammation except for infections with highly susceptible pathogens. Brain exposure of piperacillin did not improve significantly with a prolongation of infusions.
Collapse
Affiliation(s)
- Sami Ullah
- Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Pharmacy, Clinical Pharmacy, University of Bonn, Bonn, Germany
| | - Ronny Beer
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Uwe Fuhr
- Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Max Taubert
- Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Alexander Kratzer
- Hospital Pharmacy, University Hospital Regensburg, Regensburg, Germany
| | - Christoph Dorn
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Usman Arshad
- Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Pharmacy, Clinical Pharmacy, University of Bonn, Bonn, Germany
| | - Mario Kofler
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Raimund Helbok
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Moran JL. Multivariate meta-analysis of critical care meta-analyses: a meta-epidemiological study. BMC Med Res Methodol 2021; 21:148. [PMID: 34275460 PMCID: PMC8286437 DOI: 10.1186/s12874-021-01336-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022] Open
Abstract
Background Meta-analyses typically consider multiple outcomes and report univariate effect sizes considered as independent. Multivariate meta-analysis (MVMA) incorporates outcome correlation and synthesises direct evidence and related outcome estimates within a single analysis. In a series of meta-analyses from the critically ill literature, the current study contrasts multiple univariate effect estimates and their precision with those derived from MVMA. Methods A previous meta-epidemiological study was used to identify meta-analyses with either one or two secondary outcomes providing sufficient detail to structure bivariate or tri-variate MVMA, with mortality as primary outcome. Analysis was performed using a random effects model for both odds ratio (OR) and risk ratio (RR); borrowing of strength (BoS) between multivariate outcome estimates was reported. Estimate comparisons, β coefficients, standard errors (SE) and confidence interval (CI) width, univariate versus multivariate, were performed using Lin’s concordance correlation coefficient (CCC). Results In bivariate meta-analyses, for OR (n = 49) and RR (n = 48), there was substantial concordance (≥ 0.69) between estimates; but this was less so for tri-variate meta-analyses for both OR (n = 25; ≥ 0.38) and RR (≥ -0.10; n = 22). A variable change in the multivariate precision of primary mortality outcome estimates compared with univariate was present for both bivariate and tri-variate meta-analyses and for metrics. For second outcomes, precision tended to decrease and CI width increase for bivariate meta-analyses, but was variable in the tri-variate. For third outcomes, precision increased and CI width decreased. In bivariate meta-analyses, OR coefficient significance reversal, univariate versus MVMA, occurred once for mortality and 6 cases for second outcomes. RR coefficient significance reversal occurred in 4 cases; 2 were discordant with OR. For tri-variate OR meta-analyses reversal of coefficient estimate significance occurred in two cases for mortality, nine cases for second and 7 cases for third outcomes. In RR meta-analyses significance reversals occurred for mortality in 2 cases, 6 cases for second and 3 cases for third; there were 7 discordances with OR. BoS was greater in trivariate MVMAs compared with bivariate and for OR versus RR. Conclusions MVMA would appear to be the preferred solution to multiple univariate analyses; parameter significance changes may occur. Analytic metric appears to be a determinant.
Collapse
Affiliation(s)
- John L Moran
- Department of Intensive Care Medicine, The Queen Elizabeth Hospital, Woodville, SA, 5011, Australia.
| |
Collapse
|
13
|
Hartman SJF, Brüggemann RJ, Orriëns L, Dia N, Schreuder MF, de Wildt SN. Pharmacokinetics and Target Attainment of Antibiotics in Critically Ill Children: A Systematic Review of Current Literature. Clin Pharmacokinet 2021; 59:173-205. [PMID: 31432468 PMCID: PMC7007426 DOI: 10.1007/s40262-019-00813-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Pharmacokinetics (PK) are severely altered in critically ill patients due to changes in volume of distribution (Vd) and/or drug clearance (Cl). This affects the target attainment of antibiotics in critically ill children. We aimed to identify gaps in current knowledge and to compare published PK parameters and target attainment of antibiotics in critically ill children to healthy children and critically ill adults. METHODS Systematic literature search in PubMed, EMBASE and Web of Science. Articles were labelled as relevant when they included information on PK of antibiotics in critically ill, non-neonatal, pediatric patients. Extracted PK-parameters included Vd, Cl, (trough) concentrations, AUC, probability of target attainment, and elimination half-life. RESULTS 50 relevant articles were identified. Studies focusing on vancomycin were most prevalent (17/50). Other studies included data on penicillins, cephalosporins, carbapenems and aminoglycosides, but data on ceftriaxone, ceftazidime, penicillin and metronidazole could not be found. Critically ill children generally show a higher Cl and larger Vd than healthy children and critically ill adults. Reduced target-attainment was described in critically ill children for multiple antibiotics, including amoxicillin, piperacillin, cefotaxime, vancomycin, gentamicin, teicoplanin, amikacin and daptomycin. 38/50 articles included information on both Vd and Cl, but a dosing advice was given in only 22 articles. CONCLUSION The majority of studies focus on agents where TDM is applied, while other antibiotics lack data altogether. The larger Vd and higher Cl in critically ill children might warrant a higher dose or extended infusions of antibiotics in this patient population to increase target-attainment. Studies frequently fail to provide a dosing advice for this patient population, even if the necessary information is available. Our study shows gaps in current knowledge and encourages future researchers to provide dosing advice for special populations whenever possible.
Collapse
Affiliation(s)
- Stan J F Hartman
- Department of Pharmacology-Toxicology, Radboudumc, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands.
| | | | - Lynn Orriëns
- Department of Pharmacology-Toxicology, Radboudumc, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Nada Dia
- Department of Pharmacology-Toxicology, Radboudumc, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Michiel F Schreuder
- Division of Pediatric Nephrology, Department of Pediatrics, Radboudumc Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Saskia N de Wildt
- Department of Pharmacology-Toxicology, Radboudumc, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands.,Department of Intensive Care Medicine, Radboudumc, Nijmegen, The Netherlands.,Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Zembles TN, Schortemeyer R, Kuhn EM, Bushee G, Thompson NE, Mitchell ML. Extended Infusion of Beta-Lactams Is Associated With Improved Outcomes in Pediatric Patients. J Pediatr Pharmacol Ther 2021; 26:187-193. [PMID: 33603583 DOI: 10.5863/1551-6776-26.2.187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/26/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The pharmacokinetics of beta-lactam antibiotics favor administration via an extended infusion. Although literature supporting extended infusion beta-lactams exists in adults, few data are available to guide the practice in pediatrics. The purpose of this study was to compare clinical outcomes between extended and standard infusions in children. METHODS This retrospective chart analysis included hospitalized patients 0 to 18 years old who received at least 72 hours of cefepime, piperacillin-tazobactam, or meropenem between October 1, 2017, and March 31, 2019. Clinical outcomes of care included hospital length of stay, readmission within 30 days, and all-cause mortality. RESULTS A total of 551 patients (258 extended infusion, 293 standard infusion) met criteria for evaluation. Clinical outcomes among the entire population were similar. A subanalysis of select populations demonstrated decreased mortality in critical care patients (2.1% vs 19.6%, p = 0.006) and decreased 30-day readmission rates in bone marrow transplant patients (0% vs 50%, p = 0.012) who received the extended infusion compared with a standard infusion. CONCLUSIONS Outcomes were similar between extended and standard infusions in children. Subgroup analyses suggest a possible mortality benefit in the critically ill and decreased readmission rate in bone marrow transplant patients.
Collapse
|
15
|
Thabet P, Joshi A, MacDonald E, Hutton B, Cheng W, Stevens A, Kanji S. Clinical and pharmacokinetic/dynamic outcomes of prolonged infusions of beta-lactam antimicrobials: An overview of systematic reviews. PLoS One 2021; 16:e0244966. [PMID: 33481817 PMCID: PMC7822342 DOI: 10.1371/journal.pone.0244966] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 12/19/2020] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE This overview of reviews aims to map and compare of objectives, methods, and findings of existing systematic reviews to develop a greater understanding of the information available about prolonged beta-lactam infusions in hospitalized patients with infection. DESIGN Overview of systematic reviews. DATA SOURCES Medline, Embase, PROSPERO and the Cochrane Library were systematically searched from January, 1990 to June, 2019 using a peer reviewed search strategy. Grey literature was also searched for relevant reviews. ELIGIBILITY CRITERIA FOR SELECTING REVIEWS Systematic reviews were sought that compared two or more infusion strategies for intravenous beta-lactam antimicrobials and report clinical cure or mortality. Populations of included reviews were restricted to hospitalized patients with infection, without restrictions on age, infection type, or disease. DATA EXTRACTION AND ANALYSIS Abstract screening, data extraction, quality and risk of bias assessment were conducted by two independent reviewers. Overlap between reviews was assessed using a modified corrected covered area. Overview findings are reported in accordance with Cochrane's recommendation for overview conduct. Clinical outcomes extracted included survival, clinical cure, treatment failure, microbiological cure, length of stay, adverse events, cost, and emergence of resistance. RESULTS The search strategy identified 3327 unique citations from which 21 eligible reviews were included. Reviews varied by population, intervention and outcomes studied. Between reviews, overlap of primary studies was generally high, methodologic quality generally low and risk of bias variable. Nine of 14 reviews that quantitatively evaluated mortality and clinical cure identified a benefit with prolonged infusions of beta lactams when compared with intermittent infusions. Evidence of mortality and clinical cure benefit was greater among critically ill patients when compared to less sick patients and lower in randomized controlled trials when compared with observational studies. CONCLUSIONS Findings from our review demonstrate a consistent and reproducible lack of harm with prolonged infusions of beta-lactam antibiotics with variability in effect size and significance of benefits. Despite 21 systematic reviews addressing prolonged infusions of beta-lactams, this overview supports the continued need for a definitive systematic review given variability in populations, interventions and outcomes in the current systematic reviews. Subsequent systematic reviews should have more rigorous and transparent methods, only include RCTs and evaluate the proposed benefits found in various subgroup-analyses-i.e. high risk of mortality. TRIAL REGISTRATION Prospero registry, CRD42019117118.
Collapse
Affiliation(s)
| | - Anchal Joshi
- University of Waterloo, Waterloo, Ontario, Canada
| | | | - Brian Hutton
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- University of Ottawa School of Epidemiology and Public Health, Ottawa, Canada
| | - Wei Cheng
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | - Salmaan Kanji
- The Ottawa Hospital, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- University of Ottawa School of Epidemiology and Public Health, Ottawa, Canada
- * E-mail:
| |
Collapse
|
16
|
[Pharmacokinetic modifications and pharmacokinetic/pharmacodynamic optimization of beta-lactams in ICU]. ANNALES PHARMACEUTIQUES FRANÇAISES 2020; 79:346-360. [PMID: 33309603 DOI: 10.1016/j.pharma.2020.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 01/12/2023]
Abstract
Pharmacokinetic modifications in critically ill patients and those induced by ICU therapeutics raise a lot of issues about antibiotic dose adaptation. Beta-lactams are anti-infectious widely used in ICU. Frequent beta-lactam underdoses induce a risk of therapeutic failure potentially lethal and of emergence of bacterial resistance. Overdoses expose to a neurotoxic and nephrotoxic risk. Therefore, an understanding of pharmacokinetics modifications appears to be essential. A global pharmacokinetic/pharmacodynamic approach is required, including use of prolonged or continued beta-lactam infusions to optimise probability of pharmacokinetic/pharmacodynamic target attainment. Beta-lactam therapeutic drug monitoring should also be considered. Experts agree to target a free plasma betalactam concentration above four times the MIC of the causative bacteria for 100 % of the dosing interval. Bayesian methods could permit individualized doses adaptations.
Collapse
|
17
|
Fawaz S, Barton S, Whitney L, Nabhani-Gebara S. Differential antibiotic dosing in critical care: survey on nurses' knowledge, perceptions and experience. JAC Antimicrob Resist 2020; 2:dlaa083. [PMID: 34223038 PMCID: PMC8210199 DOI: 10.1093/jacamr/dlaa083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/26/2020] [Indexed: 11/15/2022] Open
Abstract
Background With the discovery of new antibiotics diminishing, optimizing the administration of existing antibiotics has become a necessity. Critical care nurses play a crucial role in combating antimicrobial resistance and are involved in preparing and administering antibiotics as well as monitoring their effects on patients. A dosing strategy proposed to reduce the development of ever-evolving antimicrobial resistance involves differential dosing regimens such as prolonged/continuous infusions. Objectives To assess critical care nurses’ knowledge, perceptions, comfort and experience in relation to prolonged/continuous infusion antibiotics. Methods A descriptive cross-sectional study was conducted using an investigator-developed, self-administered survey consisting of open- and closed-ended questions. Obtained data were computed using SPSS. Descriptive and inferential statistics were used to analyse the data. Results Fifty-two critical care nurses participated in the survey. Data revealed that nurses have adequate levels of knowledge and comfort relating to the use of prolonged/continuous infusion antibiotics along with the ability to communicate effectively on the topic. Results indicate there is a need for further learning, especially in terms of multiplicity of methods for preparing and administering prolonged/continuous infusions and dose calculations. Overall, results are promising as nurses support the wider implementation of prolonged/continuous infusion treatment regimens in critical care. Conclusion Although critical care nurses had a good understanding surrounding the use of prolonged/continuous infusion antibiotics, there is a need for further learning beyond information gained from nursing education courses. Findings from this study indicate that nurses are supportive of prolonged/continuous infusion antibiotics. However, further research is needed to determine the most effective mode of antibiotic administration.
Collapse
Affiliation(s)
| | - Stephen Barton
- Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK
| | - Laura Whitney
- St George's Hospital Healthcare NHS Trust, London, UK
| | - Shereen Nabhani-Gebara
- Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK
| |
Collapse
|
18
|
Kondo Y, Ota K, Imura H, Hara N, Shime N. Prolonged versus intermittent β-lactam antibiotics intravenous infusion strategy in sepsis or septic shock patients: a systematic review with meta-analysis and trial sequential analysis of randomized trials. J Intensive Care 2020; 8:77. [PMID: 33042550 PMCID: PMC7541232 DOI: 10.1186/s40560-020-00490-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/09/2020] [Indexed: 01/17/2023] Open
Abstract
Background The prolonged β-lactam infusion strategy has emerged as the standard treatment for sepsis or septic shock despite its unknown efficacy. This study aimed to assess the efficacy of prolonged versus intermittent β-lactam antibiotics infusion on outcomes in sepsis or septic shock patients by conducting a systematic review and meta-analysis. Methods A thorough search was conducted on MEDLINE, the Cochrane Central Register of Controlled Trials, and the Igaku Chuo Zasshi databases. Randomized controlled trials (RCTs) comparing mortality between prolonged and intermittent infusion in adult patients with sepsis or septic shock were included. The primary outcome was hospital mortality. The secondary outcomes were the attainment of the target plasma concentration, clinical cure, adverse events, and occurrence of antibiotic-resistant bacteria. We performed a subgroup analysis stratified according to the year of publication before or after 2015 and a trial sequential analysis (TSA). The Der Simonian–Laird random-effects models were subsequently used to report the pooled risk ratios (RR) with confidence intervals (CI). Results We identified 2869 studies from the 3 databases, and 13 studies were included in the meta-analysis. Hospital mortality did not decrease (RR 0.69 [95%CI 0.47–1.02]) in the prolonged infusion group. The attainment of the target plasma concentration and clinical cure significantly improved (RR 0.40 [95%CI 0.21–0.75] and RR 0.84 [95%CI 0.73–0.97], respectively) in the prolonged infusion group. There were, however, no significant differences in the adverse events and the occurrence of antibiotic-resistant bacteria between the groups (RR 1.01 (95%CI 0.95–1.06) and RR 0.53 [95%CI 0.10–2.83], respectively). For the subgroup analysis, a significant improvement in hospital mortality or clinical cure was reported in studies published in or after 2015 (RR 0.66 [95%CI 0.44–0.98] and RR 0.67 [95%CI 0.50–0.90], respectively). The results of the TSA indicated an insufficient number of studies for a definitive analysis. Conclusions The prolonged infusion of β-lactam antibiotics significantly improved upon attaining the target plasma concentration and clinical cure without increasing the adverse event or the occurrence of antibiotic-resistant bacteria. Prolonged infusion could not improve hospital mortality although an improvement was shown for studies published in or after 2015. Further studies are warranted as suggested by our TSA results.
Collapse
Affiliation(s)
- Yutaka Kondo
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba, 279-0021 Japan
| | - Kohei Ota
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551 Japan
| | - Haruki Imura
- Department of Infectious Diseases, Rakuwakai Otowa Hospital, Otowachinjicho 2, Kyoto-shi, Yamashina-ku, Kyoto, 607-8062 Japan
| | - Naoki Hara
- Japan Organization of Occupational Health and Safety, Yokohama Rosai Hospital, 3211 Kozukue, Kohoku, Yokohama, Kanagawa 222-0036 Japan
| | - Nobuaki Shime
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551 Japan
| |
Collapse
|
19
|
Evaluation of OPAT in the Age of Antimicrobial Stewardship. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2020. [DOI: 10.1007/s40506-020-00217-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Derendorf H, Heinrichs T, Reimers T, Lebert C, Brinkmann A. Calculated initial parenteral treatment of bacterial infections: Pharmacokinetics and pharmacodynamics. GMS INFECTIOUS DISEASES 2020; 8:Doc17. [PMID: 32373442 PMCID: PMC7186811 DOI: 10.3205/id000061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This is the third chapter of the guideline "Calculated initial parenteral treatment of bacterial infections in adults - update 2018" in the 2nd updated version. The German guideline by the Paul-Ehrlich-Gesellschaft für Chemotherapie e.V. (PEG) has been translated to address an international audience. The chapter features the pharmacokinetic and pharmacodynamics properties of the most frequently used antiinfective agents.
Collapse
Affiliation(s)
- Hartmut Derendorf
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, USA
| | | | - Tobias Reimers
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, USA
| | | | - Alexander Brinkmann
- Klinik für Anästhesie, operative Intensivmedizin und spezielle Schmerztherapie, Klinikum Heidenheim, Germany
| |
Collapse
|
21
|
Cosimi RA, Howe ZW, Saum LM. Impact of Extended- Versus Intermittent-Infusion Cefepime on Clinical Outcomes in Hospitalized Patients. Hosp Pharm 2020; 56:302-307. [PMID: 34381265 DOI: 10.1177/0018578719893377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Pharmacodynamic models support potential improved antimicrobial pharmacokinetic and pharmacodynamic goal attainment in patients treated with extended-infusion (EI) versus intermittent-infusion (II) cefepime. Small clinical studies demonstrate inconsistent findings in patient outcomes, necessitating a deeper review of this administration method. Methods: This was a retrospective cohort study comparing patients receiving EI versus II cefepime between September 1, 2017, and March 31, 2018. The primary outcome was in-hospital all-cause mortality. Secondary objectives included length of hospital and ICU stay, time to defervescence, duration of therapy, duration of mechanical ventilation, and readmission rate. Subgroup analyses for the primary objective were conducted based on comorbid burden and isolate susceptibilities. Results: No statistically significant differences were noted in the 645 included patients for the primary outcome between the EI and II groups (7.8% vs 10.4%, P = .32). Median length of stay was 9 days (IQR 12) versus 11 days (IQR 14) (P = .30), respectively. In addition, statistical significance was not seen in any of the subgroups for the primary outcome including patients with APACHE II score ≥ 20 (17.4% vs 30.6%, P = .26) and for infections caused by Pseudomonas aeruginosa (5.9% vs 20.0%, P = .23) or Enterobacteriaceae (11.1% vs 20.0%, P = .13) with minimum inhibitory concentration (MIC) ≥ 4. Conclusion: No statistically significant differences were noted between EI and II groups, although benefits in specific subpopulations may exist when these results are correlated with findings from studies examining alternative antipseudomonal beta lactams.
Collapse
Affiliation(s)
| | | | - Lindsay M Saum
- Ascension - St. Vincent Health, Indianapolis, IN, USA.,Butler University, Indianapolis, IN, USA
| |
Collapse
|
22
|
Thabit AK, Hobbs ALV, Guzman OE, Shea KM. The Pharmacodynamics of Prolonged Infusion β-Lactams for the Treatment of Pseudomonas aeruginosa Infections: A Systematic Review. Clin Ther 2019; 41:2397-2415.e8. [PMID: 31679822 DOI: 10.1016/j.clinthera.2019.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 01/22/2023]
Abstract
PURPOSE Pseudomonas aeruginosa is a commonly isolated nosocomial pathogen for which treatment options are often limited for multidrug-resistant isolates. In addition to newer available antimicrobial agents active against P. aeruginosa, strategies such as extended (eg, prolonged or continuous) infusion have been suggested to optimize the pharmacokinetic and pharmacodynamic profiles of β-lactams. Literature regarding clinical outcomes for extended infusion β-lactams has been controversial; however, this use seems most beneficial in patients with severe illness. Prolonged infusion of β-lactams (eg, 3- to 4-hour infusion) can enhance the pharmacodynamic target attainment via increasing the amount of time throughout the dosing interval to which the free drug concentration remains above the MIC (minimum inhibitory concentration) of the organism (fT > MIC). This systematic review summarizes current literature related to the probability of target attainment (PTA) of various antipseudomonal β-lactam regimens administered as prolonged infusions in an effort to provide guidance in selecting optimal dosing regimens and infusion times for the treatment of P. aeruginosa infections. METHODS A literature search for all pertinent studies was performed by using the PubMed database (with no year limit) through March 31, 2019. FINDINGS Thirty-nine studies were included. Although many standard antipseudomonal β-lactam intermittent infusion regimens can provide adequate PTA against most susceptible isolates, prolonged infusion may enhance percent fT > MIC for organisms with higher MICs (eg, nonsusceptible) or patients with altered pharmacokinetic profiles (eg, obese, critically ill, those with febrile neutropenia). IMPLICATIONS Prolonged infusion β-lactam regimens can enhance PTA against nonsusceptible P. aeruginosa isolates and may provide a potential therapeutic option for multidrug-resistant infections. Before implementing prolonged infusion antipseudomonal β-lactams, institutions should consider the half-life of the antibiotic, local incidence of P. aeruginosa infections, antibiotic MIC distributions or MICs isolated from individual patients, individual patient characteristics that may alter pharmacokinetic variables, and PTA (eg, critically ill), as well as implementation challenges.
Collapse
Affiliation(s)
- Abrar K Thabit
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Athena L V Hobbs
- Department of Pharmacy, Baptist Memorial Hospital-Memphis, Memphis, TN, USA
| | | | - Katherine M Shea
- Innovative Delivery Solutions, Cardinal Health, Houston, TX, USA.
| |
Collapse
|
23
|
Overcoming stability challenges during continuous intravenous administration of high-dose amoxicillin using portable elastomeric pumps. PLoS One 2019; 14:e0221391. [PMID: 31419268 PMCID: PMC6697341 DOI: 10.1371/journal.pone.0221391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022] Open
Abstract
While treatment of serious infectious diseases may require high-dose amoxicillin, continuous infusion may be limited by lack of knowledge regarding the chemical stability of the drug. Therefore, we have performed a comprehensive study so as to determine the chemical stability of high-dose amoxicillin solutions conducive to safe and effective continuous intravenous administration using portable elastomeric pumps. First, amoxicillin solubility in water was assessed within the range of 25 to 300 mg/mL. Then, amoxicillin solutions were prepared at different concentrations (25, 50, 125, 250 mg/mL) and stored in different conditions (5±2°C, 25±1°C, 30±1°C and 37±1°C) to investigate the influence of concentration and temperature on the chemical stability of amoxicillin. Finally, its stability was assessed under optimized conditions using a fully validated HPLC-UV stability-indicating method. Degradation products of amoxicillin were investigated by accurate mass determination using high-resolution mass spectrometry. Amoxicillin displayed limited water solubility requiring reconstitution at concentrations below or equal to 150 mg/mL. Amoxicillin degradation were time, temperature as well as concentration-dependent, resulting in short-term stability, in particular at high concentrations. Four degradation products of amoxicillin have been identified. Among them, amoxicilloic acid and diketopiperazine amoxicillin are at risk of allergic reaction and may accumulate in the patient. Optimized conditions allowing for continuous infusion of high-dose amoxicillin has been determined: amoxicillin should be reconstituted at 25 mg/mL and stored up to 12 hours at room temperature (22 ± 4°C) or up to 24 hours between 4 and 8°C.
Collapse
|
24
|
Martín-Cazaña M, Grau S, Epalza C, Brañas P, Flores M, Olmedilla M, Blázquez-Gamero D. Successful ceftolozane-tazobactam rescue therapy in a child with endocarditis caused by multidrug-resistant Pseudomonas aeruginosa. J Paediatr Child Health 2019; 55:985-987. [PMID: 30737855 DOI: 10.1111/jpc.14388] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 11/29/2022]
Affiliation(s)
| | - Santiago Grau
- Pharmacy Department, Autonomous University of Barcelona, Barcelona, Spain
| | - Cristina Epalza
- Department of Pediatrics, Complutense University of Madrid, Madrid, Spain
| | - Patricia Brañas
- Department of Pediatrics, Complutense University of Madrid, Madrid, Spain
| | - Marta Flores
- Department of Pediatrics, Complutense University of Madrid, Madrid, Spain
| | - Marta Olmedilla
- Department of Pediatrics, Complutense University of Madrid, Madrid, Spain
| | | |
Collapse
|
25
|
Moran JL, Graham PL. Risk related therapy in meta-analyses of critical care interventions: Bayesian meta-regression analysis. J Crit Care 2019; 53:114-119. [PMID: 31228761 DOI: 10.1016/j.jcrc.2019.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 06/03/2019] [Indexed: 01/22/2023]
Abstract
PURPOSE The relationship between treatment efficacy and patient risk is explored in a series of meta-analyses from the critical care domain, focusing on mortality outcome. METHODS Systematic reviews of randomized controlled trials were identified by electronic search over the period 2002 to July 2018. A Bayesian meta-regression model was employed, using the risk difference metric to estimate the relationship between mortality difference and control arm risk, and estimate the mortality difference with and without adjusting for control arm risk. RESULTS Of 780 initially identified published systematic reviews, 113 had appropriate mortality data comprising 123 analysable groups. The 123 meta-analyses were pharmaceutical therapeutic (59.3%), non-pharmaceutical therapeutic (24.4%) and nutritional (16.3%), with a 25% overall average control arm mortality. In 25/123 (20%) analyses, meta-regression indicated significant baseline risk (Bayesian 95% credible intervals excluding zero). In all analyses, the relationship between risk-difference and control arm risk was negative indicating a positive treatment effect with increasing control arm risk. Adjusted estimates identified six studies with significant positive treatment effects, not evident until after adjustment for control arm risk. CONCLUSION Underlying risk-related therapy is apparent in meta-analyses of the critically-ill and identification is of importance to both the conduct and interpretation of these meta-analyses.
Collapse
Affiliation(s)
- John L Moran
- Department of Intensive Care Medicine, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia.
| | - Petra L Graham
- Centre for Economic Impacts of Genomic Medicine (GenIMPACT), Macquarie Business School, Macquarie University, North Ryde, NSW 2109, Australia.
| |
Collapse
|
26
|
Chen H, Yu L, Yu Z. Prolonged infusion with β-lactam antibiotics for treatment of infection caused by non-susceptible bacteria: a study protocol for a systemic review and meta-analysis. BMJ Open 2019; 9:e027509. [PMID: 31122992 PMCID: PMC6538082 DOI: 10.1136/bmjopen-2018-027509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/27/2019] [Accepted: 04/30/2019] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Prolonged infusion with β-lactam antibiotics should theoretically produce a better clinical efficacy than intermittent infusion in severe infection and infection caused by non-susceptible micro-organisms. The efficacy of prolonged infusion in severe infection has been well illustrated recently, but is still confusing in non-susceptible microbial infection. The objective of this meta-analysis is to determine the clinical effects of prolonged infusion with β-lactams for patients infected by microbes non-susceptible to the given drug. METHODS AND ANALYSIS Literature searches will be performed with Medline, the Cochrane database, EMBASE database, Cumulative Index to Nursing and Allied Health Literature database, the Chinese National Knowledge Infrastructure and Wanfang database. Two reviewers will screen and select studies according to a priori defined eligibility criteria, and then the data from the included studies will be extracted. The quality will be evaluated based on a modified Jadad score and the Newcastle-Ottawa system for randomised controlled trials and observational studies, respectively. Data synthesis will be performed with Review Manager 5.3 software. Sensitivity analysis and publication bias will also be investigated. ETHICS AND DISSEMINATION No ethics approval is required. The full article will be published in a peer-reviewed journal and presented at international conferences. PROSPERO REGISTRATION NUMBER CRD42018105111.
Collapse
Affiliation(s)
- Huadong Chen
- Department of Pharmacy, Dongyang People’s Hospital, Dongyang, Zhejiang, China
| | - Lingyan Yu
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenwei Yu
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
27
|
Guilhaumou R, Benaboud S, Bennis Y, Dahyot-Fizelier C, Dailly E, Gandia P, Goutelle S, Lefeuvre S, Mongardon N, Roger C, Scala-Bertola J, Lemaitre F, Garnier M. Optimization of the treatment with beta-lactam antibiotics in critically ill patients-guidelines from the French Society of Pharmacology and Therapeutics (Société Française de Pharmacologie et Thérapeutique-SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Société Française d'Anesthésie et Réanimation-SFAR). Crit Care 2019; 23:104. [PMID: 30925922 PMCID: PMC6441232 DOI: 10.1186/s13054-019-2378-9] [Citation(s) in RCA: 302] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/26/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Beta-lactam antibiotics (βLA) are the most commonly used antibiotics in the intensive care unit (ICU). ICU patients present many pathophysiological features that cause pharmacokinetic (PK) and pharmacodynamic (PD) specificities, leading to the risk of underdosage. The French Society of Pharmacology and Therapeutics (SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (SFAR) have joined forces to provide guidelines on the optimization of beta-lactam treatment in ICU patients. METHODS A consensus committee of 18 experts from the two societies had the mission of producing these guidelines. The entire process was conducted independently of any industry funding. A list of questions formulated according to the PICO model (Population, Intervention, Comparison, and Outcomes) was drawn-up by the experts. Then, two bibliographic experts analysed the literature published since January 2000 using predefined keywords according to PRISMA recommendations. The quality of the data identified from the literature was assessed using the GRADE® methodology. Due to the lack of powerful studies having used mortality as main judgement criteria, it was decided, before drafting the recommendations, to formulate only "optional" recommendations. RESULTS After two rounds of rating and one amendment, a strong agreement was reached by the SFPT-SFAR guideline panel for 21 optional recommendations and a recapitulative algorithm for care covering four areas: (i) pharmacokinetic variability, (ii) PK-PD relationship, (iii) administration modalities, and (iv) therapeutic drug monitoring (TDM). The most important recommendations regarding βLA administration in ICU patients concerned (i) the consideration of the many sources of PK variability in this population; (ii) the definition of free plasma concentration between four and eight times the Minimal Inhibitory Concentration (MIC) of the causative bacteria for 100% of the dosing interval as PK-PD target to maximize bacteriological and clinical responses; (iii) the use of continuous or prolonged administration of βLA in the most severe patients, in case of high MIC bacteria and in case of lower respiratory tract infection to improve clinical cure; and (iv) the use of TDM to improve PK-PD target achievement. CONCLUSIONS The experts strongly suggest the use of personalized dosing, continuous or prolonged infusion and therapeutic drug monitoring when administering βLA in critically ill patients.
Collapse
Affiliation(s)
- Romain Guilhaumou
- AP-HM Hôpital de la Timone, Service de Pharmacologie Clinique et Pharmacovigilance, 264 rue Saint Pierre, 13005 Marseille, France
| | - Sihem Benaboud
- AP-HP Hôpital Cochin, Service de Pharmacologie, 27 rue du Faubourg St-Jacques, 75679 Paris Cedex 14, France
| | - Youssef Bennis
- CHU d’Amiens Picardie, Service de Pharmacologie Clinique, UPJV EA7517, Avenue Laennec, 80054 Amiens Cedex 1, France
| | - Claire Dahyot-Fizelier
- CHU de Poitiers, Département d’Anesthésie Réanimation, 2 Rue de la Milétrie, 86021 Poitiers, France
| | - Eric Dailly
- CHU de Nantes, Département de Pharmacologie Clinique, 5 allée de l’île gloriette, 44093 Nantes Cedex 01, France
| | - Peggy Gandia
- CHU de Toulouse, Laboratoire de Pharmacocinétique et Toxicologie Clinique, Institut Fédératif de Biologie, 330, avenue de Grande-Bretagne, 31059 Toulouse cedex 9, France
| | - Sylvain Goutelle
- CHU de Lyon, Service de Pharmacie, Groupement Hospitalier Nord, Hôpital Pierre Garraud, 136 rue du Commandant Charcot, 69322 Lyon cedex 05, France
| | - Sandrine Lefeuvre
- CHR d’Orléans, Laboratoire de Biochimie, 14 Avenue de l’Hôpital, 45067 Orléans, France
| | - Nicolas Mongardon
- AP-HP Hôpital Henri Mondor, Département d’Anesthésie-Réanimation, 51 Avenue du Maréchal de Lattre de Tassigny, 94000 Créteil, France
| | - Claire Roger
- CHU de Nîmes, Département d’anesthésie, réanimation, douleur et médicine d’urgence, Place du Pr Robert Debré, 30029 Nîmes cedex 9, France
| | - Julien Scala-Bertola
- CHRU de Nancy, Département de pharmacologie clinique et de toxicologie, 29 rue Lionnois, 54000 Nancy, France
| | - Florian Lemaitre
- CHU Pontchaillou, Service de Pharmacologie Clinique et épidémiologique, 2 Rue Henri le Guilloux, 35000 Rennes, France
| | - Marc Garnier
- AP-HP Hôpital Tenon, Département d’Anesthésie et Réanimation, 4 rue de la Chine, 75020 Paris, France
| |
Collapse
|
28
|
Outpatient parenteral antimicrobial therapy and antibiotic stewardship: opponents or teammates? Infection 2018; 47:169-181. [PMID: 30443780 DOI: 10.1007/s15010-018-1250-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/09/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE This narrative review aims to describe barriers of outpatient parenteral antimicrobial therapy at home (OPAT), potentially compromising general standards of antibiotic stewardship (ABS) and facilitators of OPAT for ABS. METHODS After a literature review, five authors determined the barriers and facilitators to discuss in this review. RESULTS Sixty-six publications were included in the narrative review and seven barriers and five facilitators are discussed in this article. The impracticability of multiple daily dosing during OPAT, the impact of real-life temperature variations, deviations of the infusion rates of elastomeric devices, access to prolonged intravenous antibiotic therapy, not administering loading doses before the initiation of extended or continuous infusions and the transmural nature of care associated with OPAT, can lead to deviations of recommended treatment regimens and sub-optimal clinical and laboratory follow-up, with a risk of inferior clinical outcomes, adverse events, drug-resistance and higher costs. On the other hand, OPAT provides access to treatments with intravenous antibiotics and simultaneously avoids prolonged hospitalization. CONCLUSION Implementing ABS guidelines in OPAT programs, e.g., by using a multidisciplinary team approach and facility-specific protocols for OPAT with patient selection criteria and instructions for selection, storage, preparation and administration of antibiotics, can improve appropriate antibiotic use. Additionally, further research should examine the effectiveness of these interventions on outcomes of OPAT.
Collapse
|
29
|
Koulenti D, Song A, Ellingboe A, Abdul-Aziz MH, Harris P, Gavey E, Lipman J. Infections by multidrug-resistant Gram-negative Bacteria: What's new in our arsenal and what's in the pipeline? Int J Antimicrob Agents 2018; 53:211-224. [PMID: 30394301 DOI: 10.1016/j.ijantimicag.2018.10.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/11/2018] [Accepted: 10/23/2018] [Indexed: 01/22/2023]
Abstract
The spread of multidrug-resistant bacteria is an ever-growing concern, particularly among Gram-negative bacteria because of their intrinsic resistance and how quickly they acquire and spread new resistance mechanisms. Treating infections caused by Gram-negative bacteria is a challenge for medical practitioners and increases patient mortality and cost of care globally. This vulnerability, along with strategies to tackle antimicrobial resistance development, prompts the development of new antibiotic agents and exploration of alternative treatment options. This article summarises the new antibiotics that have recently been approved for Gram-negative bacterial infections, looks down the pipeline at promising agents currently in phase I, II, or III clinical trials, and introduces new alternative avenues that show potential in combating multidrug-resistant Gram-negative bacteria.
Collapse
Affiliation(s)
- Despoina Koulenti
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Royal Brisbane Clinical Unit, Faculty of Medicine, The University of Queensland, Brisbane, Australia; 2nd Critical Care Department, Attikon University Hospital, Athens, Greece.
| | - Andrew Song
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Aaron Ellingboe
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Mohd Hafiz Abdul-Aziz
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia; School of Pharmacy, International Islamic University, Malaysia, Kuantan, Malaysia
| | - Patrick Harris
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Pathology Queensland, Central Laboratory, Herston, Queensland, Australia; Infection Management Services, Princess Alexandra Hospital, Queensland, Australia
| | - Emile Gavey
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Jeffrey Lipman
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Royal Brisbane Clinical Unit, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane
| |
Collapse
|
30
|
Zhu LL, Zhou Q. Optimal infusion rate in antimicrobial therapy explosion of evidence in the last five years. Infect Drug Resist 2018; 11:1105-1117. [PMID: 30127628 PMCID: PMC6089111 DOI: 10.2147/idr.s167616] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Sporadic studies in antimicrobial therapy have evaluated the effects of infusion rates on therapeutic and economic outcomes, and new findings may challenge the regular infusion regimen. Methods Focusing on studies comparing the outcomes of different infusion regimens, the relevant literature was identified by searching PubMed, Web of Science, and Scopus from January 1, 2013 to March 1, 2018. Papers were finally chosen using a PRISMA flowchart. Results Antimicrobials with the superiority of prolonged infusion to standard infusion in terms of efficacy and safety include meropenem, doripenem, imipenem, cefepime, ceftazidime, piperacillin/tazobactam, linezolid, and vancomycin. The strategy of concomitantly reducing total daily dose and prolonging infusion time may cause treatment failure (eg, imipenem). Extended infusion of piperacillin/tazobactam has pharmacoeconomic advantage over standard infusion. Prolonged infusion of voriconazole is inferior to standard infusion because of lower efficacy caused by pharmacokinetic changes. Comparable outcomes following standard infusion and continuous infusion were observed with norvancomycin and nafcillin. Factors determining whether prolonged infusion has a benefit over standard infusion include MIC of bacterial pathogens, bacterial density, diagnosis, disease severity, total daily dose, and renal function. Conclusion To maximally preserve the effectiveness of current antimicrobials, effective interventions should be implemented to enhance the application of optimal infusion strategies. For reducing nephrotoxicity, prolonged infusion of meropenem is better than conventional infusion in neonates with Gram-negative late-onset sepsis, and continuous infusion of vancomycin is superior to intermittent infusion. For increasing efficacy, prolonged or continuous infusion of time-dependent antimicrobials (eg, meropenem, doripenem, imipenem, cefepime, ceftazidime, piperacillin/tazobactam, linezolid, and vancomycin) is an optimal choice. Nevertheless, such advantages may only be demonstrated in special clinical circumstances and special populations (eg, patients with a sequential organ failure assessment (SOFA) score≥9, respiratory tract infections, urinary or intra-abdominal infections, or infections caused by less susceptible pathogens would benefit from prolonged infusion of piperacillin/tazobactam).
Collapse
Affiliation(s)
- Ling-Ling Zhu
- VIP care ward, Division of Nursing, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Quan Zhou
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China,
| |
Collapse
|
31
|
Clinical outcomes of prolonged infusion (extended infusion or continuous infusion) versus intermittent bolus of meropenem in severe infection: A meta-analysis. PLoS One 2018; 13:e0201667. [PMID: 30059536 PMCID: PMC6066326 DOI: 10.1371/journal.pone.0201667] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 07/19/2018] [Indexed: 11/19/2022] Open
Abstract
Background Meropenem exhibits time-dependent antimicrobial activity and prolonged infusion (PI) (extended infusion or continuous infusion, EI or CI) of meropenem can better achieve pharmacodynamics target when comparing with intermittent bolus (IB). However, the clinical outcomes between two groups remain inconclusive. Objective To evaluate current published literatures by meta-analysis to ascertain whether PI of meropenem can improve clinical outcomes. Methods Medline, Cochrane database and EMBASE were searched. Randomized control trails (RCT) and observational studies which compared the clinical outcomes of PI and IB groups were included and evaluated for quality. The data of studies were extracted and meta-analysis was performed using Revman 5.3 software. Results Six RCTs and 4 observation studies with relatively high quality were included in this analysis. Compared to IB group, PI group had a higher clinical success rate (odd ratio 2.10, 95% confidence interval 1.31–3.38) and a lower mortality (risk ratio 0.66, 95% confidence interval 0.50–0.88). The sensitivity analysis showed the results were stable. Conclusion PI of meropenem was associated with a higher clinical improvement rate and a lower mortality. It is recommended for patients with severe infection or infected by less sensitive microbial.
Collapse
|
32
|
Abdul-Aziz MH, Driver E, Lipman J, Roberts JA. New paradigm for rapid achievement of appropriate therapy in special populations: coupling antibiotic dose optimization rapid microbiological methods. Expert Opin Drug Metab Toxicol 2018; 14:693-708. [PMID: 29865877 DOI: 10.1080/17425255.2018.1484452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Some special patient populations (e.g. critically ill, burns, hematological malignancy, post-major surgery, post-major trauma) have characteristics that lead to higher rates of failure and mortality associated with infection. Choice of effective antibiotics and optimized doses are challenging in these patients that are commonly infected by multidrug-resistant pathogens. Areas covered: A review of the importance of diagnosis and the place of newer microbiological methods (e.g. whole-genome sequencing) to ensure rapid transition from empiric to directed antibiotic therapy is provided. The effects of pathophysiological changes on antibiotic pharmacokinetics are also provided. Expert opinion: Product information dosing regimens do not address the pharmacokinetic alterations that can occur in special patient populations and increase the likelihood of therapeutic failure and the emergence of bacterial resistance. Altered dosing approaches, supplemented with the use of dosing software and therapeutic drug monitoring, may be needed to ensure optimal antibiotic exposure and better therapeutic outcomes in these patients with severe infection. Dose optimization needs to be coupled with advanced microbiological techniques that enable rapid microbiological identification and characterization of resistance mechanism to ensure that maximally effective directed therapy can be chosen.
Collapse
Affiliation(s)
- Mohd H Abdul-Aziz
- a Faculty of Medicine , University of Queensland Centre for Clinical Research, The University of Queensland , Brisbane , Queensland , Australia
| | - Elicia Driver
- a Faculty of Medicine , University of Queensland Centre for Clinical Research, The University of Queensland , Brisbane , Queensland , Australia
| | - Jeffrey Lipman
- a Faculty of Medicine , University of Queensland Centre for Clinical Research, The University of Queensland , Brisbane , Queensland , Australia.,b Department of Intensive Care Medicine , Royal Brisbane and Women's Hospital , Brisbane , Queensland , Australia
| | - Jason A Roberts
- a Faculty of Medicine , University of Queensland Centre for Clinical Research, The University of Queensland , Brisbane , Queensland , Australia.,b Department of Intensive Care Medicine , Royal Brisbane and Women's Hospital , Brisbane , Queensland , Australia.,c Department of Pharmacy , Royal Brisbane and Women's Hospital , Brisbane , Queensland , Australia.,d School of Pharmacy, Centre for Translational Anti-infective Pharmacodynamics , The University of Queensland , Brisbane , Queensland , Australia
| |
Collapse
|
33
|
Hoo GSR, Liew YX, Kwa ALH. Optimisation of antimicrobial dosing based on pharmacokinetic and pharmacodynamic principles. Indian J Med Microbiol 2018; 35:340-346. [PMID: 29063877 DOI: 10.4103/ijmm.ijmm_17_278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While suboptimal dosing of antimicrobials has been attributed to poorer clinical outcomes, clinical cure and mortality advantages have been demonstrated when target pharmacokinetic (PK) and pharmacodynamic (PD) indices for various classes of antimicrobials were achieved to maximise antibiotic activity. Dosing optimisation requires a good knowledge of PK/PD principles. This review serves to provide a foundation in PK/PD principles for the commonly prescribed antibiotics (β-lactams, vancomycin, fluoroquinolones and aminoglycosides), as well as dosing considerations in special populations (critically ill and obese patients). PK principles determine whether an appropriate dose of antimicrobial reaches the intended pathogen(s). It involves the fundamental processes of absorption, distribution, metabolism and elimination, and is affected by the antimicrobial's physicochemical properties. Antimicrobial pharmacodynamics define the relationship between the drug concentration and its observed effect on the pathogen. The major indicator of the effect of the antibiotics is the minimum inhibitory concentration. The quantitative relationship between a PK and microbiological parameter is known as a PK/PD index, which describes the relationship between dose administered and the rate and extent of bacterial killing. Improvements in clinical outcomes have been observed when antimicrobial agents are dosed optimally to achieve their respective PK/PD targets. With the rising rates of antimicrobial resistance and a limited drug development pipeline, PK/PD concepts can foster more rational and individualised dosing regimens, improving outcomes while simultaneously limiting the toxicity of antimicrobials.
Collapse
Affiliation(s)
| | - Yi Xin Liew
- Department of Pharmacy, Singapore General Hospital, Singapore
| | - Andrea Lay-Hoon Kwa
- Department of Pharmacy, Singapore General Hospital; Emerging Infectious Diseases, Duke-National University of Singapore; Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|
34
|
Andersen MG, Thorsted A, Storgaard M, Kristoffersson AN, Friberg LE, Öbrink-Hansen K. Population Pharmacokinetics of Piperacillin in Sepsis Patients: Should Alternative Dosing Strategies Be Considered? Antimicrob Agents Chemother 2018; 62:e02306-17. [PMID: 29507062 PMCID: PMC5923116 DOI: 10.1128/aac.02306-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/17/2018] [Indexed: 12/11/2022] Open
Abstract
Sufficient antibiotic dosing in septic patients is essential for reducing mortality. Piperacillin-tazobactam is often used for empirical treatment, but due to the pharmacokinetic (PK) variability seen in septic patients, optimal dosing may be a challenge. We determined the PK profile for piperacillin given at 4 g every 8 h in 22 septic patients admitted to a medical ward. Piperacillin concentrations were compared to the clinical breakpoint MIC for Pseudomonas aeruginosa (16 mg/liter), and the following PK/pharmacodynamic (PD) targets were evaluated: the percentage of the dosing interval that the free drug concentration is maintained above the MIC (fTMIC) of 50% and 100%. A two-compartment population PK model described the data well, with clearance being divided into renal and nonrenal components. The renal component was proportional to the estimated creatinine clearance (eCLCR) and constituted 74% of the total clearance in a typical individual (eCLCR, 83.9 ml/min). Patients with a high eCLCR (>130 ml/min) were at risk of subtherapeutic concentrations for the current regimen, with a 90% probability of target attainment being reached at MICs of 2.0 (50% fTMIC) and 0.125 mg/liter (100% fTMIC). Simulations of alternative dosing regimens and modes of administration showed that dose increment and prolonged infusion increased the chance of achieving predefined PK/PD targets. Alternative dosing strategies may therefore be needed to optimize piperacillin exposure in septic patients. (This study has been registered at ClinicalTrials.gov under identifier NCT02569086.).
Collapse
Affiliation(s)
- Maria Goul Andersen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Thorsted
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Merete Storgaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | | | - Lena E Friberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
35
|
Extended Versus Intermittent Infusions of Cefepime for the Treatment of Febrile Neutropenia. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2018. [DOI: 10.1097/ipc.0000000000000600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Pharmacokinetic/Pharmacodynamic Considerations of Beta-Lactam Antibiotics in Adult Critically Ill Patients. Curr Infect Dis Rep 2018; 20:9. [PMID: 29619607 DOI: 10.1007/s11908-018-0613-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE OF REVIEW Beta-lactam antibiotics are commonly prescribed in critically ill patients for a variety of infectious conditions. Our understanding of how critical illness alters beta-lactam pharmacokinetics/pharmacodynamics (PK/PD) is rapidly evolving. RECENT FINDINGS There is a growing body of literature in adult patients demonstrating that physiological alterations occurring in critically ill patients may limit our ability to optimally dose beta-lactam antibiotics to reach these PK/PD targets. These alterations include changes in volume of distribution and renal clearance with multiple, often overlapping causative pathways, including hypoalbuminemia, renal replacement therapy, and extracorporeal membrane oxygenation. Strategies to overcome these PK alterations include extended infusions and therapeutic drug monitoring. Combined data has demonstrated a possible survival benefit associated with extending beta-lactam infusions in critically ill adult patients. This review highlights research on physiological derangements affecting beta-lactam concentrations and strategies to optimize beta-lactam PK/PD in critically ill adults.
Collapse
|
37
|
Abstract
Appropriate antimicrobial therapy is essential to ensuring positive patient outcomes. Inappropriate or suboptimal utilization of antibiotics can lead to increased length of stay, multidrug-resistant infections, and mortality. Critically ill intensive care patients, particularly those with severe sepsis and septic shock, are at risk of antibiotic failure and secondary infections associated with incorrect antibiotic use. Through the initiation of active empiric antibiotic therapy based upon local susceptibilities, daily evaluation of signs and symptoms of infection and narrowing of antibiotic therapy when feasible, providers can streamline the treatment of common intensive care unit (ICU) infections. Optimizing antibiotic dosing through prolonged infusions can be beneficial in intensive care populations with altered pharmacokinetics. Antimicrobial stewardship teams can assist ICU providers in managing and implementing these tactics. This review will discuss the current literature on antibiotic use in the ICU applying antimicrobial stewardship strategies. Based upon the most recent evidence, ICUs would benefit from employing empiric guidelines for antibiotic use, collecting appropriate specimens and implementing molecular diagnostics, optimizing the dosing of antibiotics, and reducing the duration of total therapy. These strategies for antibiotic use have the potential to enhance patient care while preventing adverse outcomes.
Collapse
Affiliation(s)
- Maureen Campion
- 1 Division of Infectious Disease, Department of Medicine, UMass Memorial Medical Center, Worcester, MA, USA
| | - Gail Scully
- 1 Division of Infectious Disease, Department of Medicine, UMass Memorial Medical Center, Worcester, MA, USA
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Nosocomial pneumonia caused by multidrug-resistant pathogens is increasing in the ICU, and these infections are negatively associated with patient outcomes. Optimization of antibiotic dosing has been suggested as a key intervention to improve clinical outcomes in patients with nosocomial pneumonia. This review describes the recent pharmacokinetic/pharmacodynamic data relevant to antibiotic dosing for nosocomial pneumonia caused by multidrug-resistant pathogens. RECENT FINDINGS Optimal antibiotic treatment is challenging in critically ill patients with nosocomial pneumonia; most dosing guidelines do not consider the altered physiology and illness severity associated with severe lung infections. Antibiotic dosing can be guided by plasma drug concentrations, which do not reflect the concentrations at the site of infection. The application of aggressive dosing regimens, in accordance to the antibiotic's pharmacokinetic/pharmacodynamic characteristics, may be required to ensure rapid and effective drug exposure in infected lung tissues. SUMMARY Conventional antibiotic dosing increases the likelihood of therapeutic failure in critically ill patients with nosocomial pneumonia. Alternative dosing strategies, which exploit the pharmacokinetic/pharmacodynamic properties of an antibiotic, should be strongly considered to ensure optimal antibiotic exposure and better therapeutic outcomes in these patients.
Collapse
|
39
|
Vardakas KZ, Voulgaris GL, Maliaros A, Samonis G, Falagas ME. Prolonged versus short-term intravenous infusion of antipseudomonal β-lactams for patients with sepsis: a systematic review and meta-analysis of randomised trials. THE LANCET. INFECTIOUS DISEASES 2018; 18:108-120. [DOI: 10.1016/s1473-3099(17)30615-1] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/07/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
|
40
|
Metatrancriptomic analysis from the Hepatopancreas of adult white leg shrimp (Litopenaeus vannamei). Symbiosis 2017. [DOI: 10.1007/s13199-017-0534-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Neurotoxic Concentration of Piperacillin during Continuous Infusion in Critically Ill Patients. Antimicrob Agents Chemother 2017; 61:AAC.00654-17. [PMID: 28717035 DOI: 10.1128/aac.00654-17] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/03/2017] [Indexed: 11/20/2022] Open
Abstract
This retrospective cohort study included 53 patients admitted to the intensive care unit (ICU), with an average age of 69 years, without neurologic disorder before initiation of a continuous piperacillin infusion at the standard dose and who underwent piperacillin serum concentration monitoring. Among them, 23 developed a neurologic disorder for which the piperacillin causality was chronologically and semiologically suggestive. A concentration threshold of 157.2 mg/liter independently predicted neurotoxicity with 96.7% specificity and 52.2% sensitivity and may constitute a limitation when targeting less susceptible pathogens.
Collapse
|
42
|
Roberts JA, Abdul-Aziz MH, Davis JS, Dulhunty JM, Cotta MO, Myburgh J, Bellomo R, Lipman J. Continuous versus Intermittent β-Lactam Infusion in Severe Sepsis. A Meta-analysis of Individual Patient Data from Randomized Trials. Am J Respir Crit Care Med 2017; 194:681-91. [PMID: 26974879 DOI: 10.1164/rccm.201601-0024oc] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RATIONALE Optimization of β-lactam antibiotic dosing for critically ill patients is an intervention that may improve outcomes in severe sepsis. OBJECTIVES In this individual patient data meta-analysis of critically ill patients with severe sepsis, we aimed to compare clinical outcomes of those treated with continuous versus intermittent infusion of β-lactam antibiotics. METHODS We identified relevant randomized controlled trials comparing continuous versus intermittent infusion of β-lactam antibiotics in critically ill patients with severe sepsis. We assessed the quality of the studies according to four criteria. We combined individual patient data from studies and assessed data integrity for common baseline demographics and study endpoints, including hospital mortality censored at 30 days and clinical cure. We then determined the pooled estimates of effect and investigated factors associated with hospital mortality in multivariable analysis. MEASUREMENTS AND MAIN RESULTS We identified three randomized controlled trials in which researchers recruited a total of 632 patients with severe sepsis. The two groups were well balanced in terms of age, sex, and illness severity. The rates of hospital mortality and clinical cure for the continuous versus intermittent infusion groups were 19.6% versus 26.3% (relative risk, 0.74; 95% confidence interval, 0.56-1.00; P = 0.045) and 55.4% versus 46.3% (relative risk, 1.20; 95% confidence interval, 1.03-1.40; P = 0.021), respectively. In a multivariable model, intermittent β-lactam administration, higher Acute Physiology and Chronic Health Evaluation II score, use of renal replacement therapy, and infection by nonfermenting gram-negative bacilli were significantly associated with hospital mortality. Continuous β-lactam administration was not independently associated with clinical cure. CONCLUSIONS Compared with intermittent dosing, administration of β-lactam antibiotics by continuous infusion in critically ill patients with severe sepsis is associated with decreased hospital mortality.
Collapse
Affiliation(s)
- Jason A Roberts
- 1 Department of Intensive Care Medicine and.,3 Pharmacy Department, Royal Brisbane and Women's Hospital, Brisbane, Australia.,2 Burns, Trauma & Critical Care Research Centre and.,4 School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - Mohd-Hafiz Abdul-Aziz
- 2 Burns, Trauma & Critical Care Research Centre and.,5 School of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Joshua S Davis
- 6 Menzies School of Health Research, Charles Darwin University, Darwin, Australia.,7 Department of Infectious Diseases, John Hunter Hospital, Newcastle, Australia
| | - Joel M Dulhunty
- 1 Department of Intensive Care Medicine and.,2 Burns, Trauma & Critical Care Research Centre and.,8 Redcliffe Hospital, Brisbane, Australia
| | - Menino O Cotta
- 1 Department of Intensive Care Medicine and.,3 Pharmacy Department, Royal Brisbane and Women's Hospital, Brisbane, Australia.,2 Burns, Trauma & Critical Care Research Centre and.,4 School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - John Myburgh
- 9 Critical Care and Trauma Division, The George Institute for Global Health, Sydney, Australia.,10 St. George Clinical School, University of New South Wales, Sydney, Australia
| | - Rinaldo Bellomo
- 11 Department of Intensive Care, Austin Hospital, Melbourne, Australia; and.,12 Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia
| | - Jeffrey Lipman
- 1 Department of Intensive Care Medicine and.,2 Burns, Trauma & Critical Care Research Centre and
| |
Collapse
|
43
|
Rizk NA, Kanafani ZA, Tabaja HZ, Kanj SS. Extended infusion of beta-lactam antibiotics: optimizing therapy in critically-ill patients in the era of antimicrobial resistance. Expert Rev Anti Infect Ther 2017; 15:645-652. [PMID: 28657373 DOI: 10.1080/14787210.2017.1348894] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Beta-lactams are at the cornerstone of therapy in critical care settings, but their clinical efficacy is challenged by the rise in bacterial resistance. Infections with multi-drug resistant organisms are frequent in intensive care units, posing significant therapeutic challenges. The problem is compounded by a dearth in the development of new antibiotics. In addition, critically-ill patients have unique physiologic characteristics that alter the drugs pharmacokinetics and pharmacodynamics. Areas covered: The prolonged infusion of antibiotics (extended infusion [EI] and continuous infusion [CI]) has been the focus of research in the last decade. As beta-lactams have time-dependent killing characteristics that are altered in critically-ill patients, prolonged infusion is an attractive approach to maximize their drug delivery and efficacy. Several studies have compared traditional dosing to EI/CI of beta-lactams with regard to clinical efficacy. Clinical data are primarily composed of retrospective studies and some randomized controlled trials. Several reports show promising results. Expert commentary: Reviewing the currently available evidence, we conclude that EI/CI is probably beneficial in the treatment of critically-ill patients in whom an organism has been identified, particularly those with respiratory infections. Further studies are needed to evaluate the efficacy of EI/CI in the management of infections with resistant organisms.
Collapse
Affiliation(s)
- Nesrine A Rizk
- a Division of Infectious Diseases, Department of Internal Medicine , American University of Beirut Medical Center , Beirut , Lebanon
| | - Zeina A Kanafani
- a Division of Infectious Diseases, Department of Internal Medicine , American University of Beirut Medical Center , Beirut , Lebanon
| | - Hussam Z Tabaja
- a Division of Infectious Diseases, Department of Internal Medicine , American University of Beirut Medical Center , Beirut , Lebanon
| | - Souha S Kanj
- a Division of Infectious Diseases, Department of Internal Medicine , American University of Beirut Medical Center , Beirut , Lebanon
| |
Collapse
|
44
|
Chan JD, Dellit TH, Lynch JB. Hospital Length of Stay Among Patients Receiving Intermittent Versus Prolonged Piperacillin/Tazobactam Infusion in the Intensive Care Units. J Intensive Care Med 2017; 33:134-141. [PMID: 28486867 DOI: 10.1177/0885066617708756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES We sought to evaluate clinical outcomes of intensive care unit (ICU) patients following a hospital-wide initiative of prolonged piperacillin/tazobactam (PIP/TAZ) infusion. METHODS Retrospective observational study of patients >18 years old who was hospitalized in the ICU receiving PIP/TAZ for >72 hours during the preimplementation (June 1, 2010 to May 31, 2011) and postimplementation (July 7, 2011 to June 30, 2014) periods. RESULTS There were 124 and 429 patients who met inclusion criteria with average age of 54.3 and 56.9 years, and average duration of PIP/TAZ therapy was 6.1 ± 2.8 days and 5.9 ± 3.4 days in the pre- and postimplementation period, respectively. Intensive care unit and hospital length of stay (LOS) following initiation of PIP/TAZ were 8.0 ± 8.4 days versus 6.4 ± 6.8 days and 26.3 ± 22.8 days versus 20.4 ± 16.1 days among patients in the pre- and postimplementation periods, respectively. Compared to patients who received intermittent PIP/TAZ infusion, the adjusted difference in ICU and hospital LOS was 0.6 ± 0.8 days (95% confidence interval [CI]: -0.9 to 2.1 days) and 5.6 ± 2.1 days (95% CI: 1.4 - 9.7 days) shorter among patients who received prolonged PIP/TAZ infusion. At hospital discharge, 19 (15.3%) intermittent infusion and 74 (17.2%) prolonged infusion recipients had died. In comparison to intermittent infusion recipients, the adjusted odds ratio for mortality was 1.17 (95% CI: 0.65-2.1) with prolonged infusion. CONCLUSION Our study demonstrated a reduction in hospital LOS with prolonged PIP/TAZ infusion among critically ill patients. Randomized trials are needed to further validate these findings.
Collapse
Affiliation(s)
- Jeannie D Chan
- 1 Department of Pharmacy, Harborview Medical Center, School of Pharmacy, University of Washington, Seattle, WA, USA.,2 Division of Allergy and Infectious Diseases, Department of Medicine, Harborview Medical Center and School of Medicine, University of Washington, Seattle, WA, USA
| | - Timothy H Dellit
- 2 Division of Allergy and Infectious Diseases, Department of Medicine, Harborview Medical Center and School of Medicine, University of Washington, Seattle, WA, USA
| | - John B Lynch
- 2 Division of Allergy and Infectious Diseases, Department of Medicine, Harborview Medical Center and School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
45
|
Haj-Darrah R, Leung E, Zvonar R. Should Prolonged Infusion of β-Lactams Become Standard of Practice? Can J Hosp Pharm 2017; 70:156-160. [PMID: 28487584 DOI: 10.4212/cjhp.v70i2.1650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Continuous and Prolonged Intravenous β-Lactam Dosing: Implications for the Clinical Laboratory. Clin Microbiol Rev 2017; 29:759-72. [PMID: 27413094 DOI: 10.1128/cmr.00022-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Beta-lactam antibiotics serve as a cornerstone in the management of bacterial infections because of their wide spectrum of activity and low toxicity. Since resistance rates among bacteria are continuously on the rise and the pipeline for new antibiotics does not meet this trend, an optimization of current beta-lactam treatment is needed. This review provides an overview of optimization through use of prolonged- and continuous-infusion dosing strategies compared with more traditional intermittent infusions. Included is an overview of the scientific basis for using these nontraditional prolonged- and continuous-infusion-based regimens, with a focus on major areas in which the clinical laboratory can support the clinical use of these regimens.
Collapse
|
47
|
Ropski MK, Guillaumin J, Monnig AA, Townsend K, McLoughlin MA. Use of cryopoor plasma for albumin replacement and continuous antimicrobial infusion for treatment of septic peritonitis in a dog. J Vet Emerg Crit Care (San Antonio) 2017; 27:348-356. [PMID: 28135411 DOI: 10.1111/vec.12583] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 02/17/2015] [Accepted: 04/12/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To report the successful management of a dog with septic peritonitis and septic shock secondary to enterectomy dehiscence using novel techniques for identification of intestinal dehiscence and for septic shock treatment. CASE SUMMARY A 5-year-old castrated male Bernese Mountain Dog presented for lethargy 6 days following enterotomy for foreign body obstruction. Septic peritonitis was identified due to dehiscence of the enterotomy site, and resection and anastomosis were performed using a gastrointestinal anastomosis and thoracoabdominal stapling device. Postoperatively the patient experienced severe hypotension, which responded to norepinephrine constant rate infusion (CRI) after failing to improve with fluid therapy or dopamine CRI. Further treatment included antimicrobial CRI and supportive care including careful fluid therapy. Due to low effective circulating volume paired with intersititial fluid overload and large volume abdominal effusion, fluid therapy consisted of a combination of human serum albumin, canine albumin, synthetic colloids, and isotonic crystalloids. Cryopoor plasma (CPP) was used as a source of canine albumin and intravascular volume. On Day 4, food dye was given through a nasogastric tube due to suspicion of dehiscence of the anastomosis site. Dehiscence was confirmed during abdominal exploratory, and a second resection and anastomosis was performed. Abdominal partial closure with vacuum-assisted closure device was performed. Supportive care was continued with CPP CRI and imipenem CRI. Planned relaparotomy to change the vacuum-assisted closure device was performed 48 hours later, with abdominal closure 96 hours after anastomosis. The patient was discharged on Day 15. Recheck 12 months later was normal. NEW OR UNIQUE INFORMATION PROVIDED This case includes novel techniques such food dye via nasogastric tube to identify anastomosis dehiscence, use of CPP as a source of canine albumin, and antimicrobial CRI in a dog with septic peritonitis.
Collapse
Affiliation(s)
- Meaghan K Ropski
- Department of Clinical Sciences, Ohio State University, Columbus, OH, 43210
| | - Julien Guillaumin
- Department of Clinical Sciences, Ohio State University, Columbus, OH, 43210
| | - Andrea A Monnig
- Department of Clinical Sciences, Ohio State University, Columbus, OH, 43210
| | - Katy Townsend
- Department of Clinical Sciences, Ohio State University, Columbus, OH, 43210
| | - Mary A McLoughlin
- Department of Clinical Sciences, Ohio State University, Columbus, OH, 43210
| |
Collapse
|
48
|
Edwards SH, Khalfan SA, Jacobson GA, Pirie AD, Raidal SL. Pharmacokinetics of intravenous continuous rate infusions of sodium benzylpenicillin and ceftiofur sodium in adult horses. Am J Vet Res 2017; 78:17-26. [DOI: 10.2460/ajvr.78.1.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Petersson J, Giske CG, Eliasson E. Standard dosing of piperacillin and meropenem fail to achieve adequate plasma concentrations in ICU patients. Acta Anaesthesiol Scand 2016; 60:1425-1436. [PMID: 27655029 DOI: 10.1111/aas.12808] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/25/2016] [Accepted: 08/14/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Controversies remain regarding optimal dosing and the need for plasma concentration measurements when treating intensive care patients with beta-lactam antibiotics. METHODS We studied ICU patients treated with either antibiotic, excluding patients on renal replacement therapy. Antibiotic concentrations were measured at the mid and end of the dosing interval, and repeated after 2-3 days when feasible. Glomerular filtration rate (GFR) was estimated from plasma creatinine and cystatin C, GFR calculated from cystatin C (eGFR) and measured creatinine clearance (CrCl). Measured concentrations were compared to the clinical susceptible breakpoints for Pseudomonas aeruginosa, 16 and 2 mg/l for piperacillin and meropenem respectively. RESULTS We analysed 33 and 31 paired samples from 20 and 19 patients treated with piperacillin-tazobactam and meropenem respectively. Antibiotic concentrations at the mid and end of the dosing interval were for piperacillin, 27.0 (14.7-52.9) and 8.6 (2.7-30.3); and for meropenem, 7.5 (4.7-10.2) and 2.4 (1.0-3.5). All values median (interquartile range) and concentrations in mg/l. The percentage of measured concentrations below the breakpoint at the mid and end of the dosing interval were for piperacillin, 27% and 61%; and for meropenem, 6% and 48%. Lower estimates of GFR were associated with higher concentrations but concentrations varied greatly between patients with similar GFR. The correlation with terminal concentration half-life was similar for eGFR and CrCl. CONCLUSIONS With standard doses of meropenem and piperacillin-tazobactam, plasma concentrations in ICU patients vary > 10-fold and are suboptimal in a significant percentage of patients. The variation is large also between patients with similar renal function.
Collapse
Affiliation(s)
- J. Petersson
- Function Perioperative Medicine and Intensive Care; Karolinska University hospital Solna; Stockholm Sweden
- Section of Anesthesiology and Intensive Care Medicine; Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - C. G. Giske
- Clinical Microbiology; Karolinska University Hospital Solna; Stockholm Sweden
- Division of Clinical Microbiology; Department of Laboratory Medicine; Karolinska Institutet; Stockholm Sweden
| | - E. Eliasson
- Division of Clinical Pharmacology; Department of Laboratory Medicine; Karolinska Institutet; Stockholm Sweden
- Clinical Pharmacology; Karolinska University Hospital Huddinge; Stockholm Sweden
| |
Collapse
|
50
|
Brinkmann A, Röhr AC, Köberer A, Fuchs T, Preisenberger J, Krüger WA, Frey OR. [Therapeutic drug monitoring and individual dosing of antibiotics during sepsis : Modern or just "trendy"?]. Med Klin Intensivmed Notfmed 2016; 113:82-93. [PMID: 27624768 DOI: 10.1007/s00063-016-0213-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/31/2016] [Accepted: 06/13/2016] [Indexed: 01/25/2023]
Abstract
Pharmacokinetic variability of anti-infective drugs due to pathophysiological changes by severe sepsis and septic shock is a well-known problem for critically ill patients resulting in suboptimal serum and most likely tissue concentrations of these agents.To cover a wide range of potential pathogens, high concentrations of broad spectrum anti-infectives have to reach the site of infection. Microbiological susceptibility testing (susceptible, intermediate, resistant) don't take the pharmacokinetic variability into account and are based on data generated by non-critically ill patients. But inter-patient variability in distribution and elimination of anti-infective drugs in ICU patients is extremely high and also highly unpredictable. Drug clearance of mainly renally eliminated drugs and thus the required dose can differ up to 10-fold due to the variability in renal function in patients with severe infections. To assure a timely and adequate anti-infective regime, individual dosing and therapeutic drug monitoring (TDM) seem to be appropriate tools in the setting of pathophysiological changes in pharmacokinetics (PK) and pharmakodynamics (PD) due to severe sepsis. In the case of known minimal inhibitory concentration, PK/PD indices (time or peak concentration dependent activity) and measured serum level can provide an optimal target concentration for the individual drug and patient.Modern anti-infective management for ICU patients includes more than the choice of drug and prompt application. Individual dosing, optimized prolonged infusion time and TDM give way to new and promising opportunities in infection control.
Collapse
Affiliation(s)
- A Brinkmann
- Klinik für Anästhesie, operative Intensivmedizin und spezielle Schmerztherapie, Klinikum Heidenheim, Schlosshaustraße 100, 89522, Heidenheim, Deutschland.
| | - A C Röhr
- Apotheke, Klinikum Heidenheim, Heidenheim, Deutschland
| | - A Köberer
- Klinik für Anästhesie, operative Intensivmedizin und spezielle Schmerztherapie, Klinikum Heidenheim, Schlosshaustraße 100, 89522, Heidenheim, Deutschland
| | - T Fuchs
- Klinik für Anästhesie, operative Intensivmedizin und spezielle Schmerztherapie, Klinikum Heidenheim, Schlosshaustraße 100, 89522, Heidenheim, Deutschland
| | | | - W A Krüger
- Klinik für Anästhesiologie und Operative Intensivmedizin, Klinikum Konstanz, Konstanz, Deutschland
| | - O R Frey
- Apotheke, Klinikum Heidenheim, Heidenheim, Deutschland
| |
Collapse
|